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Special curves in modular surfaces
Matteo Tamiozzo

Abstract. We show that geodesics in H attached to a maximal split torus or a real quadratic torus in
GL2,Q are the only irreducible algebraic curves in H whose image in R2 via the j-invariant is contained
in an algebraic curve.

1 Introduction

Maximal tori in GL2,Q arise from embeddings of étale Q-algebras E of degree 2 in
M2(Q). Such an algebra is either isomorphic to Q × Q, or to an imaginary quadratic
field K, or to a real quadratic field F. If E = K, the unique fixed point τ of K× acting
on the Poincaré upper half-plane H has coordinates in Q̄, and the classical theory
of complex multiplication tells us that the j-invariant j(τ) also belongs to Q̄ (more
precisely, to an abelian extension of K). Schneider proved that all the Q̄-points in H
whose j-invariant is an algebraic number are obtained in this way [Sch36]; they are
called special points.

If E = Q × Q or E = F, one can instead attach to it a geodesic in H, which we call a
special geodesic. It is the unique geodesic in H whose endpoints in P1(R) are fixed by
the action of E×. We show the following properties of special geodesics.
(1) They are the only geodesics in H containing infinitely many special points;

dually, special points are the only ones belonging to infinitely many special
geodesics.

(2) They are weakly bialgebraic curves in H, i.e., they are irreducible algebraic curves
in H ≃ {(x , y) ∈ R2 ∣ y > 0}, and their projection to any modular curve, seen as
a surface over R, is contained in an algebraic curve.

(3) They are the only weakly bialgebraic curves in H.
(4) An irreducible curve in R2 containing infinitely many images via the j-invariant

of special points must contain the image of a special geodesic.
In the last part of the document, we describe the Zariski closure of the image of a
special geodesic in the modular curve with full level. We give a condition implying
that the image of such a geodesic is algebraic, and we examine some examples in which
this property fails: for a geodesic attached to a real quadratic field, nontriviality of the
class group turns out to be related with this failure.
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2 M. Tamiozzo

Similar results have been studied and established in great generality for subvarieties
of Shimura varieties seen as complex algebraic varieties: we refer the reader to the
survey [KUY18] and the references therein. The main observation in this note is that
in the simple case of modular curves, regarding the relevant spaces as real algebraic
varieties instead, one still obtains a group-theoretic characterization of (weakly)
bialgebraic subvarieties—although the groups which appear are not those classically
considered in the theory of Shimura varieties.

This being said, the heart of our proof of the facts listed above rests on a “base
change” argument allowing to reduce ourselves to a similar problem on the product
of two (complex) modular curves, for which (an analogue of) the Ax–Lindemann–
Weierstrass theorem and the André–Oort conjecture are known.

The same idea can be used to characterize irreducible algebraic curves in R2 whose
image via the exponential map is algebraic; we treat this simpler case first at the
beginning of the document. Finally, let us mention that geodesics in modular curves
have recently been used for arithmetic purposes in [DV21, Ric21].

1.1 Notations and conventions

By a subvariety of an algebraic variety, we always mean a closed subvariety. We will
often tacitly identify complex algebraic varieties with their complex points—but we
will be careful to distinguish between real algebraic varieties and their real points. We
will denote by Z>0 (resp. R>0) the set of positive integers (resp. positive real numbers).

2 The exponential map

2.1 The complex situation

Let us consider the exponential

exp ∶ C → C×

z ↦ e2πiz

and, for every n ≥ 1, the map expn ∶ Cn → (C×)n , which equals exp on each com-
ponent. We identify the source (resp. target) with the set of C-points of An

C (resp.
Gn

m ,C). As in [KUY18, Definition 4.3], an irreducible algebraic variety V ⊂ An
C (resp.

W ⊂ Gn
m ,C) is called bialgebraic if expn(V) is algebraic (resp. each analytic irreducible

component of the preimage of W via expn is algebraic).

Theorem 2.1.1 (Ax–Lindemann–Weierstrass [BT20, Corollary 4.1.2 and Theorem
4.1.3])
(1) An irreducible algebraic variety V ⊂ An

C (resp. W ⊂ Gn
m ,C) is bialgebraic if and

only if it is a translate of a C-vector subspace of Cn defined over Q (resp. a translate
of a subtorus of Gn

m ,C).
(2) Let V ⊂ An

C be an irreducible algebraic variety. The Zariski closure of expn(V) is
bialgebraic.
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Special curves in modular surfaces 3

2.2 The real situation

We are now interested in studying the situation described in Section 2.1 for n = 1,
regarding the relevant spaces as real rather than complex varieties. Precisely, let
us consider the algebraic group ResC/RGm ,C = Spec R[X , Y] [ 1

X2+Y 2 ], which will be
denoted by G in this section. We identify R2 = A2(R) with C via the map sending
(x , y) to x + iy. We consider the map

E ∶ R2 → G(R) = R2 ∖ {0}
(x , y) ↦ (Re exp(x + iy), Im exp(x + iy)).

Our aim is to determine irreducible algebraic subvarieties of A2
R whose image via

E is an algebraic subvariety of G.

Example 2.2.1 For every t ∈ R, let Lt = {(x , t), x ∈ R}. This is an irreducible alge-
braic subvariety of R2, whose image

E(Lt) = {(x , y) ∈ R2 ∣ x2 + y2 = e−2πt}

is also algebraic.
A vertical line St = {(t, y), y ∈ R} has image the half-line Rt = {re2πi t , r > 0} ⊂

G(R), which is semi-algebraic but not algebraic.

Definition 2.2.2 A subset V ⊊ R2 is called strongly bialgebraic if it satisfies the
following conditions:
(1) There exist algebraic subvarieties V ⊂ A2

R , W ⊂ G such that V = V(R) and
E(V) = W(R).

(2) V cannot be written in the form V = V1(R) ∪ V2(R), where V1 , V2 ⊂ A2
R are

algebraic subvarieties, and the inclusions Vi(R) ⊂ V are proper for i = 1, 2.
We call V ⊊ R2 weakly bialgebraic if it satisfies the following conditions:
(1) There exist algebraic subvarieties V ⊂ A2

R , W ⊊ G such that V = V(R) and
E(V) ⊂ W(R).

(2) V cannot be written in the form V = V1(R) ∪ V2(R), where V1 , V2 ⊂ A2
R are

algebraic subvarieties, and the inclusions Vi(R) ⊂ V are proper for i = 1, 2.

Remark 2.2.3 The notion of strongly (resp. weakly) bialgebraic subset we intro-
duced mirrors the definition given in the complex setting in [KUY18, Definition
4.3] (resp. [BT20, Definition 1.2.8])—as in [KUY18], we require irreducibility in our
definition. As Example 2.2.1 shows, these two notions do not coincide in our situation:
every point in R2 is strongly bialgebraic, and the lines Lt are strongly bialgebraic.
On the other hand, the lines St are weakly bialgebraic but not strongly bialgebraic.
We will now show that there are no other examples of weakly bialgebraic subsets
V ⊊ R2.

Theorem 2.2.4 Let V ⊂ R2 be a weakly bialgebraic subset which is not a singleton.
Then, either V = Lt for some t ∈ R or V = St for some t ∈ R.
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4 M. Tamiozzo

Proof Step 0: Preliminaries. Take V ⊂ R2 weakly bialgebraic, and suppose that it
is not a point. By assumption, V is the set of common real zeros of finitely many
nonconstant polynomials in R[X , Y]. The sum of their squares S ∈ R[X , Y] is a
polynomial whose set of real zeros is V. As V is irreducible, by definition, it is the
vanishing locus of an irreducible factor P ∈ R[X , Y] of S. Furthermore, the set V is
infinite; hence, such a P is irreducible in C[X , Y] as well. In addition, there exists a
smooth point (x , y) ∈ V, and a neighborhood of (x , y) in V is diffeomorphic to the
open interval (0, 1). Finally, by assumption, there exists a nonconstant polynomial
Q ∈ R[X , Y] such that E(V) ⊂ {(x , y) ∈ R2 ∖ {0} ∣ Q(x , y) = 0}.

Step 1: Base change. For (x , y) ∈ R2, we have exp(x + iy) = exp(−x + iy); hence,

Re exp(x + iy) = exp(x + iy) + exp(−x + iy)
2

,

Im exp(x + iy) = exp(x + iy) − exp(−x + iy)
2i

.

We introduce the maps

f ∶ C2 → C2 g ∶ C2 → C2

(v , w) ↦ (v + iw ,−v + iw) (a, b) ↦ ( a + b
2

, a − b
2i

) ,

so that the restriction of g ○ exp2 ○ f to R2 ⊂ C2 equals E. Let us denote by CP (resp.
CQ ) the complex plane curve with equation P = 0 (resp. Q = 0). We know that Q ○ E ∶
R2 → R vanishes on V; hence, the same is true for the map h = Q ○ g ○ exp2 ○ f ∶ C2 →
C. It follows that the vanishing locus of the holomorphic function h restricted to the
complex curve CP contains a subset diffeomorphic to (0, 1). As CP is irreducible, it is
connected in the Euclidean topology; hence, h must vanish identically on CP .

Step 2: Application of Ax–Lindemann–Weierstrass. The outcome of the previous
step is that the image of CP via the map g ○ exp2 ○ f is contained in CQ . In other
words, exp2( f (CP)) ⊂ g−1(CQ). Hence, the Zariski closure Z ⊂ G2

m ,C of exp2 ○ f (CP)
is contained in g−1(CQ). It follows from Theorem 2.2.1 that Z is bialgebraic, and it
is a translate of a one-dimensional subtorus of G2

m ,C. The curve f (CP) is connected,
because CP is; hence, f (CP) is contained in a translate of a one-dimensional subspace
of C2 defined over Q.

Step 3: The final computation. By construction,V consists of the real points of CP , so
f (V) ⊂ f (CP). A line L ⊂ A2

C with slope in Q ∪ {∞} is either vertical or has equation
Y = rX + α with r ∈ Q and α = a + ib ∈ C. Notice that f (CP) cannot be contained
in a vertical line: indeed, in this case, there would be α = a + ib ∈ C such that every
point (x , y) ∈ V satisfies x + iy = a + ib, contradicting the assumption that V is not
a point. Now, assume that L ∶ Y = rX + α is not a vertical line and f (CP) ⊂ L; then,
every point (x , y) ∈ V satisfies

−x + iy = r(x + iy) + (a + ib) ⇒ (r + 1)x = −a, (r − 1)y = −b.

As we are supposing V not to be a point, we must have either r = −1; hence, y = b
2 , or

r = 1 and x = − a
2 . Therefore, V is one of the lines considered in Example 2.2.1. ∎
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2.2.5 Special points and bialgebraicity for the exponential

By the Gelfond–Schneider theorem, if α ∈ Q̄ is not rational, then e2πiα is transcenden-
tal. In other words, the only points (x , y) ∈ R2 with algebraic coordinates and such
that E(x , y) has algebraic coordinates are those with x ∈ Q and y = 0. The image of
such a point in G(R) is a torsion point—i.e., a root of unity—which will be called a
special point. With this terminology, Theorem 2.2.4 has the following consequence.

Corollary 2.2.6 Let W ⊊ G be an irreducible subvariety with more than one real
point.
(1) The set W(R) is the image of a strongly bialgebraic subset of R2 if and only if it is

a G(R)-translate of the unit circle S1(R).
(2) If W satisfies the equivalent conditions in (1), then W contains a special point if

and only if it contains infinitely many special points.
(3) If W(R) contains infinitely many special points, then W(R) = S1(R).

Proof The first point is a direct consequence of Theorem 2.2.4, and the second
point follows immediately. Finally, the third point follows from the fact that the
Zariski closure of an infinite set of roots of unity in G is S1. ∎

Remark 2.2.7 The third point in the above corollary is an analogue in our situa-
tion of the Manin-Mumford conjecture for complex tori. Observe that the unique
irreducible subvariety of G containing infinitely many special points arises from the
embedding of groups S1 ⊂ G; hence, one could regard it as a special subvariety. The
image of the inclusion Gm(R) ⊂ G(R) instead coincides with the Zariski closure of
the image via E of the weakly bialgebraic subvariety S0; however, it only contains
finitely many special points.

3 The j-invariant

3.1 Setup

In this section, we set G = GL2,Q; if H is a subgroup of G(R), we will denote by H+ ⊂
H the subgroup of matrices with positive determinant. Let

H = {z = x + iy ∈ C ∣ y > 0} ≃ G(R)/R>0O2(R)

be the Poincaré upper half-plane, with hyperbolic metric dx2+dy2

y2 . We identify H with
a subset of the R-points of A2

R; this allows us, in particular, to talk about algebraic
subvarieties of H. For each congruence subgroup � ⊂ SL2(Z), the quotient �/H is a
Riemann surface, which is the analytification of an algebraic curve over C whose Weil
restriction to R will be denoted by Y�. Hence, Y� is a real surface with Y�(R) ≃ �/H;
we will call it the modular surface of level �. Let p� ∶ H → Y�(R) be the projection
map.

Remark 3.1.1 As a side remark, let us notice that the varieties Y� admit models
over number fields. Indeed, each Riemann surface �/H has a (canonical) model
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Ỹ�,Q(ζn) over a suitable cyclotomic field Q(ζn), which we may take to be different
from Q. Let Q(ζn)+ ⊂ Q(ζn) be the maximal totally real subfield. Then, we claim that
Y�,Q(ζn)+ = ResQ(ζn)/Q(ζn)+ Ỹ�,Q(ζn) is a model of Y�. Indeed, let S be an R-scheme.
We will denote by S∣Q(ζn)+ (resp. (S ×R C)∣Q(ζn)) the scheme S (resp. S ×R C) seen as
a Q(ζn)+-scheme (resp. Q(ζn)-scheme). We have canonical identifications

HomR(S , Y�,Q(ζn)+ ×Q(ζn)+ R) = HomQ(ζn)+(S∣Q(ζn)+ , Y�,Q(ζn)+)
= HomQ(ζn)(S∣Q(ζn)+ ×Q(ζn)+ Q(ζn), Ỹ�,Q(ζn))
= HomQ(ζn)((S ×R C)∣Q(ζn) , Ỹ�,Q(ζn))
= HomC(S ×R C, Ỹ�,Q(ζn) ×Q(ζn) C)
= HomR(S , Y�).

Definition 3.1.2 Let � ⊂ SL2(Z) be a congruence subgroup. A subsetV ⊊ H is called
weakly bialgebraic if it satisfies the following conditions:
(1) There exist algebraic subvarieties V ⊂ A2

R , W ⊊ Y� such that V = V(R) ∩ H and
p�(V) ⊂ W(R).

(2) V cannot be written in the form V = (V1(R) ∩ H) ∪ (V2(R) ∩ H), where
V1 , V2 ⊂ A2

R are algebraic subvarieties, and the inclusions Vi(R) ∩ H ⊂ V are
proper for i = 1, 2.

Remark 3.1.3 Observe that the fact that a subset V ⊂ H is weakly bialgebraic does
not depend on �: assume that there exists � ⊂ SL2(Z) congruence subgroup and
W ⊊ Y� such that V = V(R) ∩ H and p�(V) ⊂ W(R). Let �′ ⊂ SL2(Z) be another
congruence subgroup. Then, � ∩ �′ has finite index in �; hence, the maps p1 ∶ Y�∩�′ →
Y� and p2 ∶ Y�∩�′ → Y�′ are finite. We have

p�′(V) = p2 ○ p�∩�′(V) ⊂ (p2 ○ p−1
1 (W))(R),

and p2 ○ p−1
1 (W) ⊊ Y�′ is algebraic.

Our aim is to describe weakly bialgebraic subsets of H. In view of the above remark,
it suffices to consider the case � = SL2(Z), so that Y� = A2

R and p� ∶ H → R2 is the
map sending z to (Re j(z), Im j(z)). We will focus on this case in what follows, with
the exception of Section 3.2.2 below. We start by describing two concrete examples
illustrating the general phenomena we will later study.

3.2 Two examples

3.2.1 The positive imaginary axis

The j-invariant is injective and takes real values on the half-line {(x , y) ∈ R2 , x =
0, y ≥ 1}, and j(it) goes to infinity as t > 0 goes to infinity. Furthermore, j(i) = 1, 728
and j(−1/z) = j(z) for z ∈ H. It follows that the image via j of the vertical half-
line C0,∞ = {(x , y) ∈ R2 ∣ x = 0, y > 0} ⊂ H is the semi-algebraic set {(x , y) ∈ R2 ∣
y = 0, x ≥ 1728}. In particular, C0,∞ is a weakly bialgebraic curve in H. Notice that
j(C0,∞) is not algebraic; the smallest algebraic set containing it is the axis Y = 0 in
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Special curves in modular surfaces 7

R2. This is the image of the union C0,∞ ∪ ∂+, where ∂+ is the part of the boundary of
the usual fundamental domain for the SL2(Z)-action with positive first coordinate.
Let us end this example by pointing out that C0,∞ is the unique geodesic in H with
endpoints 0,∞, and it contains infinitely many special points. It can also be described

as the orbit of any of its points via the action of the group {(t 0
0 t−1) , t ∈ R×} of

matrices of determinant 1 in T(R), where T ⊂ G is the diagonal torus.

3.2.2 Bernoulli’s lemniscate

We learned the example we are going to explain now from the MathOverflow post
[mo220], which was the starting point of our investigations.1 Let us take � = �(2),
so that Y�(2)(R) = C ∖ {0, 1} and the projection map is Klein’s λ-function. Let us

consider the matrix A = (1 1
1 −1), and the curve CA ⊂ H with equation Az = z̄; it is

the half-circle with center (1, 0) and radius
√

2. In other words, it is the only geodesic
in H with endpoints 1 ±

√
2 ∈ R. It can be described in a slightly different way, which

will be generalized later on: we have an embedding

ι ∶ F = Q(
√

2) → M2(Q)
a + b

√
2 ↦ aId + bA,

inducing a map ιR ∶ F 1
R = {x ∈ F ⊗Q R ∣ N(x) = 1} → G(R)+. The geodesic CA is the

F 1
R-orbit of any of its points. In particular, 3Id + 2A = (5 2

2 1) ∈ �(2) ∩ F 1
R fixes CA.

It follows that the image of CA in Y�(2) coincides with the image of the compact
set F 1

R/(±εZ), where ε = 3 + 2
√

2; therefore, it is a compact geodesic in Y�(2). In
fact, p�(2)(CA) is the lemminscate with equation (X2 + Y 2)((X − 1)2 + Y 2) = 1

16 . In
particular, CA is bialgebraic. Finally, notice that, as in the previous example, the curve
CA contains infinitely many special points.

3.3 Special geodesics

Geodesics in H are either vertical lines or half-circles with center on the real axis.
They can be described as follows: given A ∈ GL2(R) with trace zero and hyperbolic
(i.e., with negative determinant), let us consider the curve CA ⊂ H with equation

Az = z̄. Writing z = x + iy and A = (a b
c −a), we see that points x + iy ∈ CA satisfy

the equation
az + b
cz − a

= z̄ ⇔ c∣z∣2 − 2aRez − b = 0 ⇔ c(x2 + y2) − 2ax − b = 0.

Hence, CA is the unique geodesic with endpoints the fixed points of A in P1(R). Every
geodesic in H can be obtained in this way: indeed, a nonvertical geodesic has an

1We thank Gregorio Baldi for pointing it out to us.
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equation of the form (X − x0)2 + Y 2 = r, and it suffices to choose a, b, c such that
a
c = x0 and bc+a2

c2 = r. A vertical geodesic has equation X = x0, so we may choose
a = 1, b = −2x0, and c = 0.

Remark 3.3.1 An alternative way to think about geodesics in H is the following: for
every A ∈ GL2(R) with trace zero and negative determinant, the map z ↦ Az̄ is an
anti-holomorphic involution of H, and the curve CA is the set of fixed points of this
involution. This is the point of view adopted by Jaffee [Jaf74], who first suggested to
use this idea to study the arithmetic properties of symmetric spaces attached to certain
reductive groups when they do not carry a complex structure.

3.3.2 Geodesics attached to real quadratic fields

Given a real quadratic field F = Q(
√

d) and an embedding ι ∶ F → M2(Q), the
element ι(

√
d) ∈ GL2(R) has trace zero and is hyperbolic. The geodesic attached to

ι(
√

d) via the previous construction will be denoted by CF , ι . This construction has
the following group-theoretic interpretation (which in particular shows that CF , ι only
depends on F and ι, and not on the choice of d). Consider the torus TF = ResF/QGm ,F ;
the embedding ι induces an embedding of groups, abusively denoted by the same
symbol, ι ∶ TF ↪ G, which in turn induces an map

TF(R)/R× → G(R)/R× .

There are two points in R ⊂ P1(R) fixed by TF(Q), and CF , ι is the unique geodesic in
H having these endpoints. The image of the subgroup TF(R)+/R× via the above map
acts on H; the geodesic CF , ι is the TF(R)+/R×-orbit of any of its points.

Remark 3.3.3 (1) In particular, in the above construction of CF , ι we may choose
d such that A = ι(

√
d) belongs to M2(Z), and the greatest common divisor of

the coefficients of A is 1.
(2) All the embeddings of F in M2(Q) are conjugate; hence, the resulting geodesics

are translates of a given one via the action of G(Q)+.

3.3.4 Geodesics attached to split tori

Another distinguished class of geodesics consists of vertical geodesics with rational
first coordinate and half-circles with rational endpoints on the real axis (which give
rise to modular symbols). In group-theoretic terms, those arise from embeddings of
the split torus T = Gm ,Q × Gm ,Q in G, as follows: letting ι ∶ T ↪ G be an embedding,
there is a unique geodesic CQ×Q, ι in H with endpoints the points of P1(R) fixed
by ι(T(Q)). For example, if δ ∶ T ↪ G is the diagonal embedding, then the group
δ(T(Q)) fixes the points 0,∞ ∈ P1(R), and the geodesic CQ×Q,δ is the vertical line
with equation X = 0. As above, this is also the T(R)+/R×-orbit of any of its points. Any
other embedding ι ∶ T → G is G(Q)+-conjugate to δ; hence, the attached geodesic is
a G(Q)+-translate of CQ×Q,δ . This construction accounts for all the geodesics in H
whose endpoints in P1(R) are rational.
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Special curves in modular surfaces 9

Definition 3.3.5 A geodesic in H obtained from an embedding of T or TF for some
real quadratic field F via the above construction is called a special geodesic.

Remark 3.3.6 Concretely, special geodesics in H have equation Az = z̄ for some
hyperbolic trace-zero matrix A ∈ M2(Q) (which can be rescaled so as to have integral
coprime coefficients). Such a geodesic is attached to a split torus (resp. to a torus
coming from a real quadratic field) if the absolute value of the determinant of A is
(resp. is not) a square in Q. Notice that special points satisfy instead equations of the
form Az = z with A ∈ M2(Q) elliptic trace-zero matrix.

Observe that every geodesic in H is an algebraic curve. The following proposition
gives a first characterization of special geodesics among all geodesics in H.

Proposition 3.3.7 Let C ⊂ H be a geodesic. The following are equivalent:
(1) C is special.
(2) C contains infinitely many special points.
(3) C is defined over Q.
(4) The endpoints of C in P1(R) are rational or quadratic conjugates.

Proof By construction, every special geodesic is defined over Q; furthermore,
the endpoints of a geodesic defined by an equation with rational coefficients are
either rational or quadratic conjugates. On the other hand, for any two rational or
quadratic conjugate points of P1(R), the unique geodesic having them as endpoints is
defined over Q. Now, a geodesic C defined over Q is either vertical with rational first
coordinate—hence special—or a half-circle with equation (X − x0)2 + Y 2 = r, with
x0 , r ∈ Q; in the latter case, we may choose a, b, c ∈ Q such that a

c = x0 and bc+a2

c2 = r,

and set A = (a b
c −a). Then, C has equation Az = z̄, and by Remark 3.3.6, it is special.

Hence, we have established the equivalence of (1), (3), and (4).
Finally, let us show that geodesics defined over Q are precisely those containing

infinitely many special points. This is clear for vertical geodesics. Now, take a geodesic
C with equation (X − x0)2 + Y 2 = r. If x0 , r are rational, then any point in C with
rational first coordinate is special. Conversely, assume that C contains infinitely many
special points. Then, there exist (x1 , y1), (x2 , y2) ∈ Q2 with x1 ≠ x2 and y1 , y2 > 0, and
d1 , d2 ∈ Z>0 such that

(x i − x0)2 + d i y2
i = r, i = 1, 2.

Taking the difference, we obtain

x2
1 − x2

2 + d1 y2
1 − d2 y2

2 − 2x0(x1 − x2) = 0 ⇒ x0 ∈ Q ⇒ r ∈ Q,

so C is defined over Q. ∎

Remark 3.3.8 The computations in the above proof give the following more precise
information.
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(1) A geodesic is special if and only if it contains at least two distinct special points—
in which case it contains infinitely many. However, unlike in the classical case
[KUY18, Theorem 3.5], containing one special point is not enough for a geodesic
to be special—indeed, any half-circle with real irrational center passing through
a special point is not defined over Q.

(2) A special point attached to an imaginary quadratic field K is contained in a
special geodesic attached to a real quadratic field F = Q(

√
d) if and only if d

is the norm of an element in K.
Let us also notice that the following “dual” version of the above proposition holds
true.

Proposition 3.3.9 Let z ∈ H be a point. The following assertions are equivalent:
(1) z is a special point.
(2) z belongs to infinitely many special geodesics.

Proof Take z = x + iy ∈ H special, so that x ∈ Q and y ∈ R>0 has rational square;
let D = y2 ∈ Q. For every x0 ∈ Q, we have (x − x0)2 + y2 = (x − x0)2 + D; letting r =
(x − x0)2 + D, we see that z belongs to the special geodesic with equation (X − x0)2 +
Y 2 = r.

Conversely, assume that z = x + iy ∈ H belongs to infinitely many special
geodesics. Then, there are two couples of rational numbers (x0 , r), (x′0 , r′) such
that x0 ≠ x′0 and

(x − x0)2 + y2 = r, (x − x′0)2 + y2 = r′ .

Taking the difference, we deduce that x ∈ Q; hence, y2 ∈ Q and z is a special point. ∎

3.4 The j-invariant and bialgebraicity

We now wish to describe weakly bialgebraic subsets of H. In view of Remark 3.1.3, it
suffices to study weakly bialgebraic subsets for the map

J ∶ H → R2 ,
z ↦ (Re j(z), Im j(z)).

In order to do this, we will follow the same general strategy used in the proof of
Theorem 2.2.4; in particular, we will make use of the Ax–Lindemann–Weierstrass
theorem for the map

j2 = j × j ∶ H2 → C2 ,

due to Pila.

Theorem 3.4.1 [Pil11] Let V ⊂ A2
C be an irreducible algebraic variety. If there is a point

P ∈ V ∩ H2 such that j2 maps an open neighborhood of P in V to an algebraic subvariety
properly contained in C2, then one of the following assertions holds true:
(1) V is a point.
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(2) V ∩ H2 = {(x , y) ∈ H2 ∣ y = c} or V ∩ H2 = {(x , y) ∈ H2 ∣ x = c} for some
c ∈ C.

(3) V ∩ H2 = {(x , y) ∈ H2 ∣ y = Ax} for some A ∈ G(Q)+.

Theorem 3.4.2 Weakly bialgebraic subvarieties of H are either points or special
geodesics.

Proof Step 0: Preliminaries. Take V ⊂ H weakly bialgebraic; then, V is the set of
zeros in H of an irreducible polynomial P(X , Y) ∈ R[X , Y]. Assume that V is not
a point; then, it is infinite; hence, P is irreducible in C[X , Y]. There exists a smooth
point x ∈ V, and a neighborhood of x in V is diffeomorphic to the open interval (0, 1).
Finally, by assumption, there exists a nonconstant polynomial Q ∈ R[X , Y] such that
J(V) ⊂ {(x , y) ∈ R2 ∣ Q(x , y) = 0}.

Step 1: Base change. Recall that for z ∈ C, we have j(z) = j(−z̄). Hence, for (x , y) ∈
R × R>0, we have

Re j(x + iy) = j(x + iy) + j(−x + iy)
2

, Im j(x + iy) = j(x + iy) − j(−x + iy)
2i

.

Consider the maps

f ∶ C2 → C2 g ∶ C2 → C2

(v , w) ↦ (v + iw ,−v + iw) (a, b) ↦ ( a + b
2

, a − b
2i

) ;

let U ⊂ C2 be the set of points (v , w) such that the imaginary parts of v + iw ,−v + iw
are positive. In particular, R × R>0 is contained in U, and the restriction of g ○ j2 ○ f
to R × R>0 equals J. Let CP (resp. CQ ) be the complex plane curve with equation P = 0
(resp. Q = 0). The map h = Q ○ g ○ j2 ○ f ∶ U → C vanishes on V; because V contains
a subset I diffeomorphic to (0, 1), the holomorphic map h must vanish identically on
the connected component C of CP ∩ U containing I.

Step 2: Application of Ax–Lindemann–Weierstrass. The outcome of the previous
step is that the image of C via the map g ○ j2 ○ f is contained in CQ . In other
words, j2( f (C)) is contained in the algebraic subvariety g−1(CQ) ⊊ A2

C. Therefore,
we deduce that f (CP) is a subvariety of A2

C as in Theorem 3.4.1.
Step 3: The final computation. As f (V) ⊂ f (CP) and V is not a point, we deduce

that f (CP) ∩ H2 has equation either X = c, or Y = c, or Y = AX for some A ∈ G(Q)+
and c ∈ C. In the first case, we find that every (x , y) ∈ V satisfies x + iy = c, contra-
dicting the assumption that V is not a point; similarly, the second case cannot occur.
Therefore, we deduce that there exists A ∈ G(Q)+ such that every (x , y) ∈ V satisfies

−x + iy = A(x + iy).

Let Ã = (−1 0
0 1)A; writing Ã = (a b

c d), the previous equation becomes

c(x2 + y2) + (d − a)x − (a + d)iy − b = 0.

https://doi.org/10.4153/S0008439521000941 Published online by Cambridge University Press

https://doi.org/10.4153/S0008439521000941


12 M. Tamiozzo

In particular, we must have a = −d. By Remark 3.3.6, we deduce that every weakly
bialgebraic set V which is not a point must be a special geodesic.

Finally, special geodesics are indeed weakly bialgebraic, as explained below in
Section 3.5. ∎

Remark 3.4.3 LetV ⊂ H be a weakly bialgebraic subset which is not a singleton. The
above theorem tells us, in particular, that V is an orbit for the action of a subgroup of
PSL2(R) arising from the group of real points of a split or real quadratic torus in G.
Letting ι ∶ H → H × H be the map sending z to (z,−z̄), Step 3 of our argument rests
on the observation that the pullback via ι of a subvariety with equation Y = AX for A ∈
G(Q)+ turns out to be either empty or a geodesic attached to a torus as above. There
is a more conceptual way to show that each connected component V0 ⊂ V must be
the orbit of a connected Lie subgroup of PSL2(R), which may be of use to generalize
Theorem 3.4.2. With the same notations as in the proof, consider the commutative
diagram

H H × H

R2 C2 ,

ι

J g○ j2

where the bottom arrow is the natural inclusion. Steps 1 and 2 in the proof of Theorem
3.4.2 (which rely on Theorem 3.4.1) imply that f (CP) ∩ H2 is a totally geodesic
submanifold of the symmetric space H2. Therefore, the same is true for ι−1( f (CP) ∩
H2) = V, so V0 ⊂ H is a connected totally geodesic submanifold. It follows from
the proof of [Hel78, Chapter IV, Theorem 7.2] that V0 is the orbit of a connected
Lie subgroup of PSL2(R)—whose Lie algebra arises from a Lie triple system as in
loc. cit.

3.5 Modular polynomials and special geodesics

3.5.1 Modular curves in the modular surface

For N ≥ 1, let ΦN(X , Y) ∈ Z[X , Y] be the Nth modular polynomial. Recall that
ΦN(X , Y) = ΦN(Y , X) if N > 1, and ΦN is irreducible in C(X)[Y]. It follows that ΦN
is also irreducible in C[X , Y]. Let Φ̃N(X , Y) = ΦN(X + iY , X − iY). If N = 1, then
Φ̃N(X , Y) = 2iY , whereas for N > 1, we have:
(1) Φ̃N(X , Y) ∈ Z[X , Y] and Φ̃N(X ,−Y) = Φ̃N(X , Y).
(2) Φ̃N(X , Y) is irreducible in C[X , Y].
The first (resp. second) property follows from symmetry (resp. irreducibility) of ΦN .
Let

ZN = {Φ̃N = 0} ⊂ A2
R;

the above properties imply that ZN is a geometrically irreducible plane curve, sym-
metric with respect to the axis Y = 0.
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Now, take A ∈ G(Q) with trace zero and negative determinant and consider the
curve CA in H with equation Az = z̄. The curve CA is unchanged if we replace A by
λA for some λ ∈ Z>0; hence, we may (and will) assume that A has integral coprime
coefficients. Let N be the absolute value of the determinant of A; if z is a point of
CA, the elliptic curves attached to the lattices Z ⊕ zZ and Z ⊕ z̄Z are related by an
isogeny with cyclic kernel of cardinality N; hence, we have ΦN( j(z), j(−z̄)) = 0.
As j(−z̄) = j(z), we see that J(CA) ⊂ R2 is contained in the curve ZN . This shows
that every special geodesic is weakly bialgebraic. Notice, however, that the curve ZN
may contain distinct images of geodesics CA; this is related to the existence of trace-
zero matrices of determinant −N which are not SL2(Z)-conjugate. We examine this
phenomenon below.

3.5.2 The curve Z1

For N = 1, we obtain the curve Y = 0. If A ∈ M2(Z) has trace zero and determinant

−1, then J(CA) is contained in Z1. If we take A1
1 = (

−1 0
0 1), then the curve CA1

1
is the

positive imaginary axis. As observed in Example 3.2.1, its image is the closed half-line

{(x , y) ∈ R2 ∣ y = 0, x ≥ 1728}. For A1
2 = (

0 1
1 0), the curve CA1

2
is the intersection of

the unit circle with center at the origin and the upper half-plane. Notice that A1
1 and

A1
2 are not SL2(Z)-conjugate, and the images J(CA1

1
) and J(CA1

2
) do not coincide. One

checks that every matrix A ∈ M2(Z) with trace zero and determinant −1 is SL2(Z)-
conjugate either to A1

1 or to A1
2, and we have

Z1(R) = J(CA1
1
) ∪ J(CA1

2
).

3.5.3 The curve ZN for N square-free

Take N > 1 square-free; the ring Z[
√

N] is an order in the real quadratic field Q(
√

N),
and every matrix in M2(Z) with determinant −N has coprime coefficients. Hence,
for every SL2(Z)-conjugacy class of matrices with integral coefficients, trace zero,
and determinant −N , we obtain a curve J(CA) ⊂ ZN(R), where A is any matrix in
the given conjugacy class. The set of SL2(Z)-conjugacy classes of matrices in M2(Z)
with trace zero and determinant −N is in bijection with the set Cl+(Z[

√
N]) of

(not necessarily invertible) narrow ideal classes of Z[
√

N] (see [Con, Remark 9]).
Identifying these two sets, we have an inclusion

⋃
A∈C l+(Z[

√
N])

J(CA) ⊂ ZN(R).

In fact, the above inclusion is an equality. Indeed, if (x , y) ∈ R2 satisfies ΦN(x +
iy, x − iy) = 0, writing x + iy = j(z), we see that the elliptic curves attached to
the lattices Z ⊕ zZ and Z ⊕ (−z̄)Z are related by an isogeny with cyclic kernel of
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cardinality N; hence, we must have −z̄ = az+b
cz+d for some matrix Ã = (a b

c d) ∈ M2(Z)

with determinant N. The matrix A = (−1 0
0 1) Ã has determinant −N , and Az = z̄.

Furthermore, as z ∈ H, the trace of A must be zero, and (x , y) belongs to J(CA).
Let us also observe that if A ∈ M2(Z) has trace zero and determinant −N , then

the same is true for −A, and C−A = CA. Letting C̃ l
+
(Z[

√
N]) be the quotient of

Cl+(Z[
√

N]) by the equivalence relation identifying A with −A, we obtain the
following proposition.

Proposition 3.5.4 Let N > 1 be a square-free integer, and ZN ⊂ A2
R the curve with

equation Φ̃N(X , Y) = 0. Then,

⋃
A∈C̃ l+(Z[

√
N])

J(CA) = ZN(R).

Furthermore, if A, B ∈ M2(Z) are two matrices with trace zero, determinant −N, and
distinct image in C̃l

+
(Z[

√
N]), then J(CA) ≠ J(CB).

Proof The first assertion follows from the discussion before the statement of the
proposition. To prove the last assertion, notice that a geodesic Az = z̄ in H is uniquely
determined by its endpoints in P1(R), which are the fixed points of A. It follows that
two matrices with integral coefficients, trace zero, and determinant −N giving rise to
the same geodesic in H must be either equal or opposite. Take A, B ∈ M2(Z) having
distinct image in C̃ l

+
(Z[

√
N]). Then, for every M ∈ SL2(Z), the geodesics M ⋅ CA

and CB are distinct; hence, they have at most one point of intersection. Therefore,
J(CA) ≠ J(CB). ∎

3.5.5 The curves Z2 and Z3

As the narrow class group of Z[
√

2] is trivial, the image of any geodesic attached
to a matrix with integral coefficients, trace zero, and determinant −2 is the
curve Z2.

The narrow class group of Z[
√

3] has two elements. Two matrices with trace

zero and determinant −3 which are not SL2(Z)-conjugate are A3
1 = (

0 3
1 0) and

A3
2 = (

0 1
3 0). However, A3

1 is SL2(Z)-conjugate to −A3
2, which gives rise to the same

geodesic as A3
2. Hence,

J(CA3
1
) = J(CA3

2
) = Z3(R).

Notice, however, that there are two SL2(Z)-orbits of oriented geodesics CA with A
of trace zero and determinant −3.

The curve Z2 (resp. Z3) is represented below on the left (resp. right).
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Generalizing the previous example, we obtain the following result.

Corollary 3.5.6 Let N > 1 be a square-free integer congruent to 2 or 3 modulo 4.
Assume that the class group of Z[

√
N] is trivial. Then, J(CA) = ZN(R) for any A ∈

M2(Z) with trace zero and determinant −N.

Proof If Z[
√

N]× contains an element of norm −1, then the narrow class group of
Z[
√

N] is trivial; hence, the statement follows from Proposition 3.5.4. Now, assume
that the equation X2 − NY 2 = −1 has no integral solution; in this case, Cl+(Z[

√
N])

has two elements. Consider the two matrices AN
1 = (0 N

1 0) and AN
2 = ( 0 1

N 0).

Given (a b
c d) ∈ SL2(Z), we have

(a b
c d)(

0 1
N 0)(

d −b
−c a ) = (Nbd − ac a2 − Nb2

Nd2 − c2 −Nbd + ac) .

It follows that the matrices AN
1 and AN

2 are not SL2(Z)-conjugate, so they correspond
to the two elements of Cl+(Z[

√
N]); on the other hand,

( 0 1
−1 0)(

0 1
N 0)(

0 −1
1 0 ) = (

0 −N
−1 0 ) .

As CAN
1
= C−AN

1
, the result follows. ∎

Remark 3.5.7 For a general N > 1 square-free and congruent to 2, 3 modulo 4, the
set C̃ l

+
(Z[

√
N]) may have different cardinality from the (narrow) class group of
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Z[
√

N]. Indeed, the matrices A ∈ M2(Z) with trace zero and determinant −N whose
image in Cl+(Z[

√
N]) is fixed by the involution sending A to−A give rise to reciprocal

geodesics studied in [Sar07] (see, in particular, pages 223 and 224 of loc. cit. for a
description of the elements of the narrow class group corresponding to such matrices).
For example, take N = 82. Then, Cl+(Z[

√
82]) = Cl(Z[

√
82]) is cyclic of order 4, and

only two elements correspond to reciprocal geodesics. Explicitly, the matrix(−1 27
3 1 )

is not SL2(Z)-conjugate to its opposite.

3.5.8 The curve Z5

We have seen above that the curve Z1 is the union of two images of geodesics, each of
which is not algebraic. Let us give further examples of this phenomenon.

There are two elements in C̃ l
+
(Z[

√
5]) (because there is one invertible and one

noninvertible ideal class for the ring Z[
√

5]) corresponding to the matrices A5
1 =

(0 5
1 0) and A5

2 = (
1 2
2 −1). The matrix A5

1 is not SL2(Z)-conjugate to ±A5
2; hence, we

learn from Proposition 3.5.4 thatZ5(R) = J(CA5
1
) ∪ J(CA5

2
); furthermore, each J(CA5

i
)

is a compact curve (in the Euclidean topology) properly contained in Z5(R). We
have

CA5
1
∶ X2 + Y 2 = 5, CA5

2
∶ X2 + Y 2 − X − 1 = 0.

In particular, (2, 1) ∈ CA5
1

and (0, 1) ∈ CA5
2
, so the curves J(CA5

1
) and J(CA5

2
) intersect

at j(2 + i) = j(i). Finally, it follows from Theorem 3.5.10 below that each J(CA5
i
) is

not algebraic.

3.5.9 The curve Z10

Let us finally describe the curveZ10. The narrow class group of Z[
√

10] coincides with
its class group, and it has two elements. The two matrices

A10
1 = (0 10

1 0) , A10
2 = (0 5

2 0)

are not SL2(Z)-conjugate; better, A10
1 is not conjugate to ±A10

2 . The curve CA10
1

(resp.
CA10

2
) is the upper half-circle with equation X2 + Y 2 = 10 (resp. X2 + Y 2 = 5

2 ). Propo-
sition 3.5.4 tells us that J(CA10

1
) ∪ J(CA10

2
) = Z10(R), and the inclusions J(CA10

i
) ⊂

Z10(R) are strict. Notice that (3, 1) ∈ CA10
1

and ( 3
2 , 1

2) ∈ CA10
2

. As 3
2 +

i
2 =

2i+1
i+1 , we have

j(3 + i) = j(i) = j ( 3
2 +

i
2); hence, the curves J(CA10

i
) intersect at 1, 728. The situation

is represented in the picture below, where the curve J(CA10
1
) (resp. J(CA10

2
)) is depicted

in blue (resp. red).
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As before, the following André–Oort-type statement in our situation implies that
each J(CA10

i
) is not algebraic.

Theorem 3.5.10 Let C ⊂ A2
R be an irreducible curve. Assume that C(R) contains

infinitely many images of special points in H. Then, C(R) = ZN(R) for some N ≥ 1.

Proof We can write C(R) = {(x , y) ∈ R2 ∣ P(x , y) = 0} for some geometrically
irreducible polynomial P(X , Y) ∈ R[X , Y]. Let CC ⊂ A2

C be the base change of C to
C. Consider the map

f ∶ C2 → C2

(x , y) ↦ (x + iy, x − iy).

Observe that (x , y) ∈ R2 is the image of a special point in H if and only if f (x , y) ∈ C2

is the image of a couple of special points in H × H. Therefore, the image C̃ = f (CC)
is an irreducible algebraic curve in C2 containing infinitely many special points. The
curve C̃ cannot be vertical: indeed, in this case, there would be c ∈ C such that x + iy =
c for every (x , y) ∈ C(R), contradicting the fact that C(R) is infinite. For the same
reason, C̃ cannot be horizontal. Hence, by [And98], the curve C̃ is the vanishing locus
of a modular polynomial ΦN(X , Y). Therefore,

C(R) = {(x , y) ∈ R2 ∣ ΦN( f (x , y)) = 0} = ZN(R). ∎
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