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ON THE ASYMPTOTIC BEHAVIOR OF THE
LINEARITY DEFECT

HOP D. NGUYEN and THANH VU

Abstract. This work concerns the linearity defect of a module M over a

Noetherian local ring R, introduced by Herzog and Iyengar in 2005, and denoted

ldRM . Roughly speaking, ldRM is the homological degree beyond which the

minimal free resolution of M is linear. It is proved that for any ideal I in a

regular local ring R and for any finitely generated R-module M , each of the

sequences
(
ldR(InM)

)
n

and
(
ldR(M/InM)

)
n

is eventually constant. The first

statement follows from a more general result about the eventual constancy of

the sequence (ldRCn)n where C is a finitely generated graded module over a

standard graded algebra over R.

§1. Introduction

This paper concerns the asymptotic behavior of the powers of an ideal

in a Noetherian local ring R. A paradigm for our results is the statement,

due to Hilbert, and to Samuel, that for any ideal I that is primary to the

maximal ideal of R, the sequence
(
lengthR(R/In)

)
n

is eventually given by

a polynomial in n. Another example, due to Brodmann [3], is that for any

ideal I, the sequence
(
depthR(R/In)

)
n

is eventually constant. We are also

interested in the value of n beyond which the asymptotic behavior sets in,

and the asymptotic value of the relevant invariants. The papers [5, 13] and

their references discuss various aspects of similar asymptotic results.

In this paper, we study the linearity defect introduced by Herzog and

Iyengar [15] (see Section 2). One of the motivations for studying the linearity

defect is the research on the linear part of minimal free resolutions over the

exterior algebras in [9]. The finiteness of the linearity defect has strong

consequences on the structure of a module: if ldRM is finite, then the

Poincaré series of M is rational with denominator depending only on R
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36 H. D. NGUYEN AND T. VU

(see [15, Proposition 1.8]). However, there remain many open questions on

the finiteness of the linearity defect (see [1, 6, 23] for details).

The linearity defect was studied by many authors (see e.g., [1, 6, 15,

19, 21, 23, 24]). Nevertheless, it is still an elusive invariant. The problem

is highly nontrivial as to bound efficiently the linearity defect even for

familiar classes of ideals like monomial ideals. Beyond componentwise linear

ideals [12] (which have linearity defect zero), there are few interesting

and large enough classes of ideals whose linearity defect is known. In this

paper, the above remarks notwithstanding, we show that the linearity defect

behaves in a pleasant way asymptotically. Let gl ldR be the supremum of the

numbers ldRM , where M runs through all the finitely generated R-modules

(see Section 2). The main result of this paper is

Theorem 1.1. Let (R,m) be a Noetherian local ring such that gl ldR is

finite. For any ideal I ⊆m and finitely generated R-module M , the sequences(
ldR(InM)

)
n

,
(
ldR(InM/In+1M)

)
n

, and
(
ldR(M/InM)

)
n

are eventually

constant.

We obtain the assertion concerning the linearity defect of the sequences

(InM)n and (InM/In+1M)n as a corollary of Theorem 1.2 below, whose

proof makes crucial use of work of Şega [23], and the theory of Rees algebras.

The assertion involving (M/InM)n uses, in addition, a result of Avramov [2]

concerning small homomorphisms of modules. Below, recall that S is called

a standard graded algebra over R if it is an N-graded ring with S0 =R and

S is generated over R by finitely many elements of S1.

Theorem 1.2. Let (R,m) be a Noetherian local ring such that gl ldR<

∞. Let S be a standard graded algebra over R, and let C be a finitely

generated graded S-module. Then the sequence (ldRCn)n is eventually

constant.

This result is motivated by previous work of Herzog and Hibi [13,

Theorem 1.1] on depth. In the last part of Section 4, particularly Remark 4.3,

we discuss variations of Theorem 1.2.

We do not know how to bound effectively the asymptotic values of the

sequences in Theorem 1.1. A rare result in this direction is [14, Theorem 2.4].

There the authors establish a necessary and sufficient condition for all the

powers of a polynomial ideal to have linearity defect zero, using the theory

of d-sequences [17]. It would be interesting to study possible generalizations

and analogues of this result.
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ON THE ASYMPTOTIC BEHAVIOR OF THE LINEARITY DEFECT 37

We use [4, 8] as our reference for standard concepts and facts in

commutative algebra.

§2. Linearity defect

Let (R,m) be a commutative Noetherian local ring with residue field k.

Let I be a proper ideal of R. Let M be a finitely generated R-module. We

call

grIM =
⊕
j>0

IjM

Ij+1M

the associated graded module of M with respect to I.

Let F be the minimal free resolution of M :

F : · · · // Fi
// Fi−1 // · · · // F1

// F0
// 0.

Since ∂(F )⊆mF the graded submodule

F iF : · · · // Fi+1
// Fi

// mFi−1 // · · · // mi−jFj
// · · ·

of F is stable under the differential; said otherwise, F iF is a subcomplex of

F . The linear part of F is the associated graded complex

linRF :=
∞⊕
i=0

F iF

F i+1F
.

Note that linRF is a complex of graded modules over grmR, and (linRF )i =

(grmFi)(−i) for every i> 0. Following [15], the linearity defect of M is

defined by

ldRM := sup
{
i :Hi(lin

RF ) 6= 0
}
.

If M ∼= 0, we set ldRM = 0. This convention guarantees that the maximal

ideal (0) of the field k has linearity defect zero.

In order to establish our main results, we use the following characteriza-

tion of the linearity defect due to Şega [23, Theorem 2.2].

Theorem 2.1. Let (R,m) be a Noetherian local ring, M be a finitely

generated R-module, and d> 0 be an integer. The following statements are

equivalent:

(i) ldRM 6 d;

(ii) the natural morphism TorRi (R/mq+1, M)−→ TorRi (R/mq, M) is the

zero map for every i > d and every q > 0.
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38 H. D. NGUYEN AND T. VU

The following result is useful to study the sequence (ldR(M/InM))n in

Theorem 1.1.

Lemma 2.2. Let 0−→M −→ P −→N −→ 0 be an exact sequence of

nonzero, finitely generated R-modules. Let F and G be the minimal free

resolutions of M and P , respectively. Assume that there is a lifting ϕ : F −→
G of M → P such that ϕ(F )⊆m2G. Then there is an equality

ldRN = max{ldRP, ldRM + 1}.

Proof. Since ϕ(F )⊆m2G, the mapping cone, say W , of ϕ, is a minimal

free resolution of N . By simple computations, we get a direct sum decom-

position

linRW ∼= linRG⊕ (linRF )[−1].

Hence by accounting, ldRN = max{ldRP, ldRM + 1}, as desired.

Our results require the finiteness of the global linearity defect of R, which

is defined by

gl ldR= sup{ldRM :M is a finitely generated R-module}.

There is an ample supply of rings with finite global linearity defect: regular

rings, or more generally local rings which are both Koszul and Golod

(see [15, Corollary 6.2]).

§3. Asymptotic behavior of the linearity defect

Let R be a Noetherian local ring with gl ldR<∞. Assuming that S

is a standard graded polynomial ring over R, we can make Theorem 1.2

more precise by giving an upper bound for the smallest integer from which

the sequence (ldRCn)n becomes constant. This requires certain information

about the minimal graded free resolution of C as an S-module.

Definition 3.1. Let S =R[y1, . . . , ym] be a polynomial extension of

R, where m> 0, each variable yi has degree 1. For each finitely generated

graded S-module C, let pdegS(C) be the minimal number such that

Ci = 0 for all i> pdegS(C) or Ci 6= 0 for all i> pdegS(C). If C = 0, we

set pdegS(0) =−∞. Note that pdegS(C) is well defined since S is standard

graded.
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We can compute the number pdegS(C) effectively, using two simple facts:

(i) pdegS(C) = pdegS/mS(C/mC). This is by Nakayama’s lemma.

(ii) pdegS/mS(C/mC) is bounded above by one plus the postulation number

of C/mC, viewed as a module over S/mS = k[y1, . . . , ym]. The latter

number is given, for example, in [4, Proposition 4.12].

Definition 3.2. Given a finitely generated graded S-module C, define

the constant N(C) as follows. For i= 0, denote n(0) = pdegS(C). For 1 6
i6 min{gl ldR, pdSC}, let c(i, q) := pdegS

(
Im µi,q

)
, where µi,q denotes the

map

TorSi (S/mq+1S, C)→ TorSi (S/mqS, C).

Let

· · · // Fi
// Fi−1 // · · · // F0

// 0

be the minimal graded free resolution of C over S (see [4, Section 1.5]).

Set Mi = Im (Fi→ Fi−1) and let

T (i) = min
{
h> 1 : mqFi−1 ∩Mi = mq−h(mhFi−1 ∩Mi) for all q > h

}
.

Note that T (i) is finite, by the Artin–Rees lemma. Denote

n(i) = max
{
c(i, 1), . . . , c(i, T (i))

}
.

Finally, define N(C) := max
{
n(0), n(1), . . . , n(min{gl ldR, pdSC})

}
.

Since gl ldR is a finite number, N(C) is also finite.

Remark 3.3. In principal, the numbers T (i) in the definition of N(C)

should not be difficult to compute. Indeed, consider the graded ring grmSS

and the ideal n =
⊕

j>1

(
mjS/mj+1S

)
. Denote by Ki the kernel of the

natural surjective map grmS(Fi−1)→ grmS(Fi−1/Mi). Then there is an

equality

T (i) = sup
{
q : (Ki/nKi)q 6= 0

}
.

The proof is straightforward (see [16, Proposition 2.1] for an analogous

statement).

The main technical result of this paper is as follows.
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Theorem 3.4. Let (R,m) be a Noetherian local ring with gl ldR<∞.

Let S be a standard graded polynomial ring over R, and let C be a finitely

generated graded S-module. Then for all n>N(C), there is an equality

ldRCn = ldRCN(C).

Proof. Since S is a flat R-algebra, there is an isomorphism of R-modules

TorRi (R/mq, Cn)∼= TorSi (S/mqS, C)n(3.1)

for all i, q > 0, n ∈ Z.

Let N =N(C) and e= sup{ldRCn : n>N}6 gl ldR<∞. We prove that

ldRCn = e for any n>N . There is nothing to do if e= 0, so we assume that

e> 1. Note that, since TorSi (S/mqS, C) = 0 for i > pdSC, Isomorphism (3.1)

yields e6 min{gl ldR, pdSC}.
Denote by µe,qn the following map

TorSe (S/mq+1S, C)n −→ TorSe (S/mqS, C)n.

Choose m>N such that ldRCm = e. Since ldRCm = e > e− 1, Theorem 2.1

implies that µe,qm 6= 0 for some q > 0. To prove the inequality ldRCn > e, also

by Theorem 2.1, it suffices to show that µe,qn 6= 0 for some q > 0.

Firstly, consider the case q < T (e). Since n, m>N > c(e, q), the definition

of c(e, q) implies that µe,qn and µe,qm are both zero or both nonzero. This

implies that µe,qn 6= 0, as desired.

Secondly, consider the case q > T (e). Denote T = T (e), we claim that

µe,Tn 6= 0. As m, n> c(e, T ), µe,Tm and µe,Tn are both zero or both nonzero, so

it suffices to prove that µe,Tm 6= 0. Assume the contrary, so µe,Tm = 0. Let F

be the minimal graded free resolution of C over S. Denote Mi = Im (Fi→
Fi−1), the ith syzygy of C as an S-module if i> 1 and M0 = C. Denote

M =Me and P = Fe−1. Clearly

TorSe (S/mqS, C)∼= TorS1 (S/mqS, Me−1)∼=
mqP ∩M
mqM

,

Im µe,q ∼=
mq+1P ∩M + mqM

mqM
.

The equality µe,Tm = 0 then yields

(mT+1P ∩M + mTM)m = (mTM)m.(3.2)

We show that µe,qm = 0. Indeed,
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ON THE ASYMPTOTIC BEHAVIOR OF THE LINEARITY DEFECT 41(
mq+1P ∩M + mqM

)
m

=
(
mq−T (mT+1P ∩M + mTM)

)
m

= mq−T (mT+1P ∩M + mTM
)
m

= mq−T (mTM)m = (mqM)m.

In the above string, the first equality holds because of the inequality q >
T = T (e) and the definition of T (e), the second and fourth because m⊆ S0,
the third because of (3.2).

Therefore, µe,qm = 0. But this is a contradiction, so the proof of the theorem

is finished.

From Theorem 3.4, it is easy to deduce the

Proof of Theorem 1.2. Let Q be a standard graded polynomial ring over

R which surjects onto S, then by scalar restriction, C is a finitely generated

graded Q-module. The conclusion follows by applying Theorem 3.4.

Now we present the proof of Theorem 1.1. Recall that Rees (I) =R⊕ I ⊕
I2 ⊕ · · · denotes the Rees algebra of I, whose grading is given by deg In = n.

Since R is Noetherian, Rees (I) is a standard graded R-algebra.

Proof of Theorem 1.1. Clearly
⊕

n>0 I
nM and

⊕
n>0 I

nM/In+1M are

finitely generated graded modules over Rees (I). By Theorem 1.2, we see

that each of the sequences (ldRI
nM)n and (ldRI

nM/In+1M)n is eventually

constant.

Next, we prove the eventual constancy of the sequence (ldR(M/InM))n.

If InM = 0 then so is In+1M , hence below, we assume that InM 6= 0 for all

n> 0.

Applying [2, Corollary A.4] for M , there exists d> 1 such that for any

P ⊆mdM , the map

TorRi (k, P )→ TorRi (k, M)

is zero for all i> 0. Applying the same result for mdM , there exists e> 1

such that for any P ⊆md+eM , the map

TorRi (k, P )→ TorRi (k,mdM)

is zero for all i> 0.

Take n> max{N, d+ e}. Then the maps TorRi (k, InM)→ TorRi (k, IdM)

and TorRi (k, IdM)→ TorRi (k, M) are zero for all i> 0. Let F, G, H be the

minimal free resolution of InM, IdM,M , respectively. Take any lifting λ :

F →G of the map InM → IdM , then λ(F )⊆mG. Similarly, for any lifting
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ψ :G→H of the map IdM →M , we have ψ(G)⊆mH. Therefore, we obtain

a lifting φ= ψ ◦ λ : F →H on the level of minimal free resolutions of the

map InM →M which satisfies φ(F )⊆m2G.

By Lemma 2.2, we have for any n> max{N, d+ e} the equality

ldR(M/InM) = max
{

ldRM, ldR(InM) + 1
}
.

As explained above, for n large enough, ldR(InM) is a constant independent

of n. Hence the same is true for ldR(M/InM). This concludes the proof.

Theorem 3.4 has the following consequence on the linearity defect of the

integral closure of powers (see [18] for the definition of the integral closure

I of an ideal I).

Corollary 3.5. Let (R,m) be a regular local ring, and let I ⊆m be an

ideal. Then the sequence (ldRIn)n is eventually constant.

Proof. Denote C =R⊕ I ⊕ I2 ⊕ · · · , then C is a graded module over

Rees (I) with deg In = n. By [18, Proposition 5.3.4], C is a finitely generated

Rees (I)-module. An application of Theorem 1.2 yields the desired conclu-

sion.

§4. Examples and remarks

The following example illustrates how N(C) can be computed using

Macaulay2 [10].

Example 4.1. Let R= Q[x, y, z] be a polynomial ring of dimension

3, and let I = (x2, xy, z2). Denote S =R[w0, w1, w2] a standard graded

polynomial extension of R which surjects onto the Rees algebra E = Rees (I)

by mapping w0 7→ x2, w1 7→ xy, w2 7→ z2. The ring E has the following

presentation

E ∼=
S

(p1, p2, p3)
,

where p1 = w0y − w1x, p2 = w0z
2 − w2x

2, p3 = w1z
2 − w2xy.

The minimal graded free resolution of E over S is as follows

F : 0−→
S(−2)⊕
S(−1)


w2x −z2
−w1 y
w0 −x


−−−−−−−−−−→ S(−1)3

(
p1 p2 p3

)
−−−−−−−−−−−→ S −→ 0.
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Using the notation of the proof of Theorem 3.4, we show that N = 1, namely

all the powers of I have the same linearity defect, which turns out to

be 1. Since pdSE = 2< gl ldR= 3, N = max
{
n(0), n(1), n(2)

}
. The graded

structure of E tells us that n(0) = pdegS(E) = 0.

Let J ⊆ S, M2 ⊆G be the first and second syzygies of E, where G denotes

the module F1 = S(−1)3. We claim that T (1) = 2 and T (2) = 1, namely,

mqS ∩ J = mq−2(m2S ∩ J) for all q > 2,(4.1)

mqG ∩M2 = mq−1(mG ∩M2) for all q > 1.(4.2)

For (4.1): one sees immediately that both sides are equal to mq−1(w0y −
w1x)S + mq−2(w0z

2 − w2x
2, w1z

2 − w2xy)S.

For (4.2): we have M2 = (w2xe1 − w1e2 + w0e3,−z2e1 + ye2 − xe3),
where e1, e2, e3 is the standard basis of G sitting in degree 1. It is not

hard to check that both sides of (4.2) are equal to

mq(w2xe1 − w1e2 + w0e3) + mq−1(−z2e1 + ye2 − xe3).

The above arguments yield n(1) = max
{
c(1, 1), c(1, 2)

}
and n(2) = c(2, 1).

We prove that n(1) = 1 and n(2) =−∞.

For each q > 1, TorS1 (S/mqS, E) = TorS1 (S/mqS, S/J) = (J ∩mqS)/

(JmqS). Therefore, the image of TorS1 (S/mq+1S, E)→ TorS1 (S/mqS, E) is

Im µ1,q = (J ∩mq+1S + JmqS)/(JmqS). Computations show that

Im µ1,1 =
S2

mS2 + (w0e11 − w1e12)
,

where e11, e
1
2 is a basis for S2, both of degree 1, and

Im µ1,2 =
S5

mS(e23, e
2
4, e

2
5) + m2S(e21, e

2
2)+(−xe21 + ye22, w0e21 − w1e22 + w2e25)

,

where e21, . . . , e
2
5 are a basis for S5, all of them of degree 1. Thanks to

routine Gröbner basis arguments, the residue classes wi
0e

1
2 ∈ Im µ1,1 and

wi
0e

2
2 ∈ Im µ1,2 are always nonzero for every i> 0. Hence c(1, 1) = c(1, 2) = 1,

and thus n(1) = 1.

Denote by f1, f2 the standard basis of F2 where deg f1 = 2, deg f2 = 1.

Since TorS2 (S/m2S, E) =H2(F ⊗S S/m
2S), computations show that

(i) TorS2 (S/m2S, E) is generated by xf2, yf2, zf2 ∈ F2 ⊗ (S/m2S);
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(ii) TorS2 (S/mS, E) is generated by f2 ∈ F2 ⊗ (S/mS).

As TorS2 (S/mS, E) is killed by mS, the map TorS2 (S/m2S, E)→
TorS2 (S/mS, E) is zero; this yields n(2) = c(2, 1) =−∞.

Putting everything together, N = max
{
n(0), n(1), n(2)

}
= max{0, 1,

−∞}= 1.

Recall that the saturation of I is Ĩ = {x ∈R : xmd ⊆ I for some d> 1}.
The next example shows that the (graded) analog of Corollary 3.5 for

saturation of powers does not hold.

Example 4.2. Consider the ideal I =
(
x(y3 − z3), y(x3 − z3), z(x3 −

y3)
)
⊆R= C[x, y, z]. The ideal I defines a reduced set of 12 points in P2, the

so-called Fermat configuration (see the proof of [11, Proposition 2.1]). We

show that the saturation ideals Ĩs do not have eventually constant linearity

defect.

For s> 1, denote by I(s) =R ∩
⋂

P∈Ass (I) I
sRP the sth symbolic power of

I. Since I is the defining ideal of a reduced set of points, we get that Ĩs = I(s).

From [11, Proposition 1.1], we deduce that Ĩ3s = (Ĩ3)s. By [14, Theorem 2.4],

ldRĨ3s = 0 for all s> 1. Indeed, computations with Macaulay2 [10] show that

x, y + z, z is a d-sequence with respect to Rees (Ĩ3).

Now we show that ldRĨ3s+1 = 1 for all s> 1. First, since depthR/Ĩ3s+1 >

1, by [6, Proposition 6.3], ldRR/Ĩ3s+1 6 dimR− 1 = 2. Hence ldRĨ3s+1 6 1.

Let H = (x3 − y3)(y3 − z3)(z3 − x3). We show that the minimal nonzero

component of Ĩ3s+1 = I(3s+1) is of degree 9s+ 4 and

I
(3s+1)
〈9s+4〉 = (Hs)I〈4〉 ∼= I(−9s).

If this is the case, then Ĩ3s+1〈9s+4〉 has linearity defect at least 1, as I does.

(For the inequality ldRI > 1, use Römer’s theorem [22, Theorem 3.2.8] and

the fact that I is generated in degree 4 but does not have 4-linear resolution.)

Hence ldRĨ3s+1 > 1 for every s> 1. All in all, we obtain ldRĨ3s+1 = 1 for

every s> 1.

Now for our purpose, it suffices to prove the following claim:

I
(3s+1)
〈d〉 = (Hs)I〈d−9s〉(4.3)

holds for all d6 9s+ 4. We are grateful to Alexandra Seceleanu for providing

us the following nice argument.
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We proceed by induction on s; the starting case s = 0 is trivial. Assume

that s > 0.

Let G be a homogeneous element of I(3s+1) of degree d. Here the geometry

of the Fermat configuration comes into play. We have a decomposition H =∏9
i=1 hi, where each hi is a linear form and no two of them are proportional.

According to [11, Section 1.1], for each i, hi passes through exactly 4 points

(among the 12 points of the configuration). Moreover, each point of the

configuration lies on 3 of the 9 lines defined by the his.

Now as G lies in I(3s+1), G passes through each point of the configuration

with multiplicity at least 3s+ 1. Thus the curves (G) and (hi) intersect with

multiplicity at least 4(3s+ 1), which is strictly larger than d= (deg G) ·
(deg hi). From that, Bezout’s theorem forces G to be divisible by hi for all

1 6 i6 9. In particular, G is divisible by H. Writing G=HG′, then as H

vanishes exactly 3 times at each of the points, we must have G′ ∈ I(3s+1−3)
〈d−9〉 =

I
(3(s−1)+1)
〈d−9〉 . Finally, the induction hypothesis gives us the claim.

So we conclude that the sequence ldRĨs is not eventually constant when

s goes to infinity.

Remark 4.3. More generally than Theorem 1.2, one can prove the

following: if S is a Noetherian R-algebra which is generated by elements

of positive degrees, and C is a finitely generated graded S-module, then the

sequence (ldRCn)n is quasiperiodic, namely there exist a number p> 1 and

integral constants `0, . . . , `p−1 such that for all n� 0, we have ldRC̃n = `i
if n is congruent to i ∈ {0, . . . , p− 1} modulo p.

The proof uses the fact that any high enough Veronese subring of S

is standard graded (after normalizing the grading), and Theorem 1.2. We

leave the details to the interested reader (see an analogous statement in [7,

Theorem 4.3]).

By [20, Theorem 4.3], for the ideal I in Example 4.2, the graded R-

algebra R⊕ Ĩ ⊕ Ĩ2 ⊕ · · · is finitely generated. This fact and the above

general version of Theorem 1.2 guarantee the quasiperiodic behavior of the

sequence (ldRĨn)n in the example.

We do not know any example where the sequence (ldRĨn)n is not

quasiperiodic. In view of [7, Example 4.4] on bad behavior of regularity

for saturations of powers, it is desirable to seek for one.

Remark 4.4. The theory in Section 2 (the linear part, linearity defect)

works also for standard graded algebras and finitely generated graded
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modules over them. Furthermore, there are obvious analogues of our results

in that setting.
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