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Abstract The purpose of this work is to establish a priori C 2 ' a estimates for mesh function solutions
of nonlinear positive difference equations in fully nonlinear form on a uniform mesh, where the fully
nonlinear finite-difference operator Th, is concave in the second-order variables. The estimate is an
analogue of the corresponding estimate for solutions of concave fully nonlinear elliptic partial differential
equations. We deal here with the special case that the operator does not depend explicitly upon the
independent variables. We do this by discretizing the approach of Evans for fully nonlinear elliptic
partial differential equations using the discrete linear theory of Kuo and Trudinger. The result in this
special case forms the basis for a more general result in part II. We also derive the discrete interpolation
inequalities needed to obtain estimates for the interior C2'a semi-norm in terms of the C° norm.

Keywords: fully nonlinear difference equations; discrete a priori Holder estimates; discrete seminorms;
discrete interpolation inequalities

AMS 1991 Mathematics subject classification: Primary 35J60; 35J15; 39A12
Secondary 39A70; 39A10; 65N06; 65N22; 65N12

1. Introduction

The purpose of this work is to use results for linear finite-difference equations to derive
certain Holder estimates for centred second-order difference quotients of solutions of fully
nonlinear positive finite-difference equations. Following [14], let E be an arbitrary set,
which is called a mesh. A linear difference operator L acting on M(E), the set of real
mesh functions, is given by

for any mesh function u, where A is a real-valued function on E x E, which is non-zero
for only a finite number of z values for each x 6 E. The operator L is monotone if

A{x,z)^0, V(i,z)e Ex E, x^z,

and positive if, in addition, for all x 6 E,
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If D is a subset of E, then the interior of D, relative to L, is defined by (cf. Definition 1.3)

intL(D) = {xe D\ A(x, z) = 0, Vz # D),

and the boundary of D, relative to L, is defined by bdyL(D) = D \ int/, D. With these
definitions a simple maximum principle follows.

If L is positive (monotone) and Lu{x) > 0 for all x e intL(D), then u cannot
have a positive (zero) maximum in D at an interior point.

On a uniform mesh, we may write certain positive difference operators in a more familiar
form. Let h be a positive parameter and let

denote the orthogonal lattice or mesh, with mesh length h, in Euclidean ra-space Rn. A
real-valued function u on Z£ is called a mesh function, and for fixed y(^ 0) € ZJJ we
define the following difference operators acting on the linear space of mesh functions M:

6~u(x) =

6yu(x) = K<5+ + s-)u(x) =

Mz) - u(x - y)},

M 1 + y) - u(x -

{u(x + y)- 2u(x) + u(x - y)},

(1.1)

where \\y\\2 is the Euclidean norm of y. Then we may consider second-order difference
operators of the form

Lhu{x) = ] P a(x, y)5lu(x) + ̂  b(x, y)Syu(x) + c(x)u(x),
yjiO

with real coefficients. This may be written as

If we think of Lh in the form L^u(x) = £2 ^4(x, Z)U(Z), then we see that

a(x,y)-±\\y\\2\b(x,y)\>0, Vx,yeZn
h, y jk 0,

is a sufficient condition for monotonicity of Lh- Letting u = 1, we see that
if, in addition to (1.2),

c(x) ^ 0 , Vx € Zh.

(1.2)

is positive

(1.3)
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Under assumptions including that the real coefficients a, b and c satisfy (1.2) and (1.3)
for all x, y S Z£ and that a(x, y) has compact support in y, and motivated by the desire
for the approximation of viscosity solutions of nonlinear elliptic equations, Kuo and
Trudinger began, in 1990, to establish analogues for the above positive difference opera-
tors of certain pointwise estimates for linear elliptic differential operators with bounded
measurable coefficients [12]. They derived discrete versions of the Aleksandrov and
Bakel'man maximum principle [1,2], the Holder estimates and Harnack inequality of
Krylov and Safonov [9], and the local maximum principle and weak Harnack inequali-
ties of Trudinger [18]. These results constitute sufficient linear theory for our study of
difference equations in fully nonlinear form.

Following [13], consider a general nonlinear difference operator acting on mesh func-
tions u : Z£ —> R, written in the form

Fh[u){x) = Fh{x,u{x),Tu{x)),

where, letting E = 1%, Tu(x) = {u(x + y) \ y € E' = E \ {0}} is the set of non-trivial
translates of u(x), and Fh is a given real-valued function on I * x 1 x M.E>. We will
assume that Fh[u] is independent of u(x + y) for \\y\\x = sup, \yi\ > Nh for some fixed
N € N. We may then replace E' with the stencil [8]

YN = {y € E' | HJ/IIOO ^ Nh}.

We adopt the following definition of positivity of general nonlinear difference operators
from Kuo and Trudinger [13].

Definition 1.1. The operator Fh is positive if

Fh{x, Z,q+ <!])> Fh(x, Z, q) > Fh(x, Z + T,q + T]), (1.4)

for all x e Rn, z, r € R, q, r\ e RY" satisfying 0 < r}y < r for each y €YN.

When Fh is differentiate with respect to z and q (which we henceforth assume), (1.4)
may be written

pointwise. Notice that the first assumption here corresponds in the linear case to mono-
tonicity A(x,z) > 0, Vz ^ x, and the second inequality corresponds to the additional
assumption ^ A(x, z) ^ 0 for positivity. If F is a fully nonlinear second-order differential
operator of the general form

F[v](x) = F(x,v(x),Dv(x),D2v(x)), (1-6)

in a bounded domain Q C Rn, where F is a given real-valued function on the set
r = flxlxR"x5" (<Sn being the linear space of real symmetric matrices), and v €
C2(fi), then we have the following definition.
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Definition 1.2. The family of difference operators {Fh : R " x R x RYN -* R, 0 < h ^
ho}, where ho is a positive constant, is called consistent with the second-order differential
operator F on the domain Q C W1 if for each v € C2(Q)

Fh[v]{x) -> F[v](x), as / i ->0,

uniformly on compact subsets of fi.

We are interested in difference operators Fh defined in terms of the standard first- and
second-order difference operators in (1.1). Writing

8u(x) = {6yu(x) | y e YN}, 52u{x) = {62
yu(x) | y 6 YN},

Fh[u](x) = Fh(x,u(x),6u(x),82u(x)), (1.7)

where Fh is a given function on F = En x R x M.YN X RYN . Denote points in F by
(x, z, q, s). We assume that Th is symmetric with respect to s±y (since 62u = ^yU) and
with respect to ±q±y (since Syu = —6-yu). One can show, then, that the conditions (1.5)
are equivalent to

Uvb dqy osv
YN, (1.8)

In [13], Kuo and Trudinger exhibit various families of nonlinear positive difference
operators which are consistent with the operator (1.6) under appropriate conditions.
They find that if the fully nonlinear second-order differential operator F = F(x,z,p,r)
is locally uniformly Lipschitz continuous in F, with respect to z, p, r, and satisfies the
structure conditions

AQI, \F(x,0,0,0)\ (1.9)

where Ao, Ao, n\, no and k\ are fixed positive constants, then there exists an N 6 N and
a consistent family Fh, h ^ ho, of the form (1.7) satisfying, in addition to the conditions
of positivity (1.8), the stronger condition

dsv
- h \ \ v h (1.10)

for y — yx = he^ i = 1 , . . . , n, and some positive constant A.
(The assumptions in (1.9) are modelled on linear uniformly elliptic equations. If L[u] =

cfiDij + blDiU + cu — f, then these assumptions correspond to

V

and there exist difference operators
with L (see [8,12,15]).)

satisfying (1.2) and (1.3) which are consistent
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The family Fh can be chosen to satisfy the additional conditions

8Sy
Th(x,0,0,0) ^ ku (1.11)

where A, go, So are constants depending on Ao, Pi, (to, respectively, as well as the dimen-
sion n. The constant N (the size of the stencil) will depend upon n and /lo/Ao, while ho
depends in addition upon H\/\o (see [8,12,13,15]).

Now we set up the Dirichlet problem for the nonlinear difference operator of the form
(1.7). To do so we need the following definition.

Definition 1.3. If Q is a subset of W1, then we let Qh = Q n Z£ denote the subset of
mesh points in Q. We distinguish the interior of Qh and the boundary of Qh, relative to
Th- The interior set, mtjrh(Qh), consists of those points x € Qh such that for any mesh
function u, Fh[u\(x) depends only upon values of u at points in Qh- The boundary set,

Qh), is then defined by Qh \ intjrh(Qh).

Letting tpbe & continuous function on Q, we may then consider the discrete Dirichlet
problem

Fh[u](x) = 0, \/xewtrh(nh), u{x) = ip{x), Vz e bdy^(/?,,). (1.12)

Prom Kuo and Trudinger [13] we have the following theorem.

Theorem 1.4 (see Lemma 3.2 in [13]). Assuming (1.10) and (1.11) of ^Fh, prob-
lem (1.12) is uniquely solvable when Q is bounded.

The proof is by the method of continuity (see [13, §4.1]; see also [5, §§5.2, 17.2]) and
relies upon the discrete maximum principle [12, Theorem 2.1].

Our purpose is to derive a discrete a priori C2'a estimate for solutions u of (1-12) when
Th depends only upon {sy}—that is, Fh is of the form Fh[u] = Th(62u) (we address the
case of explicit dependence upon x in the next paper)—and there is Y' C Yjv such that
{he\,..., hen} C Y' and Th satisfies

¥ ^ 0 , VyeYN\Y',0<A<^^J1, Vyer, ¥ =
OSy OSy

for some positive constants A, A. Our major assumption in addition to the above is
that Th is concave in the second-order variables, {sy}, analogous to the situation for
partial differential equations, where the existence of classical solutions to boundary-
value problems for fully nonlinear elliptic equations is only known, in more than two
dimensions, when the function F is concave or convex with respect to the second-order
partial derivatives of u. In fact, Nadirashvili has shown recently that for dimensions
12 and greater, solutions do not in general exist unless the operator is concave in the
second-order variables [16].

We adopt an approach to finite-difference equations of the form Th(S2u) = 0 somewhat
like the approach generally taken for fully nonlinear elliptic partial differential equations,
using the discrete linear theory referred to above. Our main result is Theorem 3.2.
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We have noted that the proof of existence for difference equations in fully nonlinear
form is comparatively straightforward, relying only upon a discrete maximum principle.
The C2'a estimate is not essential for existence as in the case of elliptic partial differential
equations. We are motivated to derive such primarily by the analogous partial differential
equation theory. However, the estimate is expected to feature in future attempts at
establishing error bounds for convergence.

The only such estimate known to the author is for the two-dimensional case by Hack-
busch in [6].

1.1. Semi-norms

Assume that Q is an open or closed domain in K". Define

fi\ = {x E nh | x + y G Qh, My € Yi}, Qb
h = Qh\ Q{,

noting that these are independent of Th- Let u : f2h —> R be a mesh function. Let a 6
(0,1). We define the following quantities, analogous to Holder semi-norms of continuous
functions:

|u|0;r?h = sup \u(x)\;
xenh

N[u]i;Qh — sup |<5^u(x)|, + throughout or — throughout;
n Y

JVM2;% = sup \62
zu{x)\;

xenh, Z&YN
x±zenh

\5lu{x) - 6lu{y)\
N[u\2,a-nh = sup T r - .

x,yefih, x^y, zeYN \\x ~ Vh
x±z, y±n

When Q is properly contained in W1 and x € i? we reserve the symbol dx for the
quantity dist(x, df2), and define dxy = min{dx, dy}. We use an underscore to indicate
distances to the discrete boundary. For x € f2z

h, define the distance from x to the discrete
boundary, Q\, by dx = dist(x, ,!?£), and let dxy = min{dx,dy}. Then, for u : J?^ -> E, let
us set

N[u]*llf2h =
 SUP dx\Sfu(x)\;

,i+a\Stu(x)-6fu(y)\
S U P 3LXV I T T — - 7 ^ >

x±z, y±zen'h

in both cases taking '+' throughout or ' —' throughout; and define

N[u]2-nh = SUP ^ I ^ W h
x€STh, z€YN

https://doi.org/10.1017/S0013091500021155 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500021155


Higher-order estimates for fully nonlinear difference equations. I 491

ixy n _
y, z€YN IF

x±z,

Notice that these quantities are defined to be independent of u\nb. If [•] is one of the
quantities above, then we will denote the corresponding quantity with YN replaced with
{±hei}?=1 by +[•]; Y^ replaced with Y' will be denoted by *[•]. The '+ ' is to be suggestive
of the fact that the quantity involves only the coordinate directions.

For p > 0, if S C Z£ and u : S -¥ R, then define

Let v : Q -* R be a real-valued function where Q is an open or closed domain properly
contained in Rn. We shall need the following semi-norms:

\v\0-a = |
xen

[v]*2.n = sup dl\D%(x)\;
xen, | | /3| |2

* - supka'n ~ JnP

Here ft is a multi-index. If, for example, /? = (1 ,1 ,0 , . . . ,0), then D^u — d'2u/dx\dx2-

2. The diagonal case, essentially

For t > 0 define Bt{y) = {x e TRn | ||x - y\\2 < t}, the open ball in Kn of radius t, and
then, of course, Bt{y)h = Bt{y) n ZJJ. Recall that

oscu= sup \u(y) — u(z)\.
v v,zev

Theorem 2.1. Let h > 0. Assume that {hex,... ,hen} C Y' C V}v. Assume that
Jv, : Ry —>• K is concave, and assume that for all s € RY and for all y eY',
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for some positive constants A, A, and

dsy

for all y e YN \Y'. Assume that Q is an open or closed domain in Rn. Let v : Qh -> K
and rjj : Qh —> M. be mesh functions. Suppose that

Fh(6
2v(x)) = V'(x), Vx £ mtFh{Qh). (2.1)

If T 6 (0,1), Ro > ^/nNh/{\ - T) and x0 € intjrh(int^(^)) axe such that BR0(x0)h C
/2^)), then for any y 6 Y' and any R such that y/nNh/(l — r) < R ^ i?o,

osc

R \

R^J
where C = C(n, N, A, A, r) is positive and a 6 (0,1) with the same dependence.

Proof. Here we emulate the continuous theory in [5, §17.4]. In order to effectively
differentiate the equation twice in an arbitrary direction Y € Y/v, we use an idea from
the proof of [19, Theorem 2.1] (that of adding the two inequalities below). Since Th is
concave, we have

v{x ± Y)) < Th{52v{x)) + £ dTh{fv{x))[5lv{x ± Y) - 62
yv{x)},

for all x € int^-h(intjrh(i7/l)), and all Y 6 Y}v. We restrict to x € intjrh(int^(i?^)) here
so that 6yU(x ± Y) is defined in Qh- Add the two inequalities represented here to find
that

{x))Kv(x + Y)- 262
yv(x) + 82

yv(x - Y)].

Upon division by ||y||2 this becomes

»ey °Sy

Defining
Lhw = ^ a(x,y)82

yw{x),
y€Y'

where
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and w(x) = 6Yu(x), the above inequality may be written

Lkw(x) ^ 6Ytp{x),

for all x £ int^h(intjrh(Oh)), for all Y £ YN.
We now apply the discrete weak Harnack inequality [12, Theorem 4.3]. Suppose

T € (0,1), x0 € Qh and RQ > 0 are such that RQ > ^/nNh/{l - T) and BRo(xo)h C
intjrh(int^h(i?h)). Choose R such that y/nNh/(l - T) < R ^ RQ.

For cr ^ 1 set
Ma = sup it;, mCT = inf w.

B a B ( x 0 ) h B<,R(xo)h

Applying [12, Theorem 4.3] to M\ — w (which satisfies Lh(Mi — w) < — Sytpix) and
Mi — to ^ 0 in Bfi(a;o)/i)! we obtain a weak Harnack inequality; that is, there exists a
positive number p (independent of r) depending on n, TV, A and A, such that

{ ( T f E (Mi-wyY^^cl min (Ml - w) + ^\\S2
YrP\\n;BR{xo)h\

(2.2)

where C = C(n,N,X,A,r). We emphasize that by definition [A;BR+^Nk(i0)k is inde-
pendent of ip(x) for x £ BR+^Nh{xa)h- The treatment here of ||<5yV>|U;jgR(I0)h follows
from the fact that

l/n

sup |4<Ky)l-/i-( E l)

sup

since

Following [5, § 17.4], to conclude a Holder estimate for w from (2.2) we need a corre-
sponding inequality for -w, which we obtain by considering (2.1) as a functional rela-
tionship between second-order difference quotients of v. In fact, it is a functional relation-
ship between pure second-order difference quotients of v, and thus a discrete equivalent
of [5, Lemma 17.13] is not necessary, although this is only because of our rather strong
assumption dTh/dsy = 0 for all y e Yjv \ Y'. (In fact, the formulation of an assumption
for the quantities {d!Fh/dsy \ y 6 Yjv}, analogous in some sense to the assumption of
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positive definiteness of the coefficient matrix in the continuous case, may well allow our
assumptions to be weakened; we do not pursue this here.)

Using the concavity of Th again, we have, for any x, z g ir

E
y€Y'

that is,

E U-rhK:~JKZ)> [wy(z) - wy(x)} < V(z) - i>{x), (2.3)

where wy{x) = SyV(x). Now set

Muy = sup wy, maz = inf wy, 0 < a < 1, y € Y'.
BaR(x0)h BaR{x0)h

Each of the functions wy satisfies (2.2), so that by summation over y e Y', y ^ Y for
some fixed Y € Y',

I / P

^ (Mly-WyA
i / p

by (2.2), where the first inequality follows by the Minkowski inequality, whether 0 < p <
1, or p ̂  1. For p ^ 1 the constant is, of course, 1. For 0 < p < 1, || • \\p;s is not a norm,
but

H/l + /2 + • • • + / M | | P ; 5 ^ M ^ d l / i l ^ s + ||/2||P;5 + • • • + II /MILS),

and the number of non-zero directions in Y' other than Y is at most (2N + l)n - 2. Since
Miy - MTy ^ oscBR(xo)h wy ~ oscBTR(x0)h wy, it follows that

«.y> r _ IP-,I /P

STK(i0)h LV?Y

(2.4)

where, for 0 < T < 1,

o s c wv =)
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Rewriting (2.3) with x € Bn(xo)h, z 6 BTii(xo)h, and singling out Y € Y', we obtain

d?h{52v{z))
[wY(z)-wY(x)] ^ xp(z) - ip{x) + 2^ — [wy{x) - wy(z)],

so that with 0 < A < dFn/dsy ^ yl for all y e y , we have

wY(z) - m1Y < \hnR[il>]1.iBll(xo)h + A ^ ( M l y - «/„(*))}. (2.5)

The fact that

is a result of it being no more than 2nR steps of size h in the coordinate directions from
x to z.

Applying Minkowski with M = 2 to (2.5) we have

h

BK(xo)JP |

- W(TR) +

I/P

I/P

by (2.4). It follows that

K h\n v ^

^ C{W{R) - W(TR) + /?[V']I;BB(XO)H + R2Wh;BR+yKNh(xo)J, (2-6)

where C depends on n, TV, A, A and r . Also, setting w = WY in (2.2), we have

K t \ n -v 1/p

fl \ r—^ I 2r l
' B (x ) '

Add (2.7) to (2.6), using the Minkowski inequality, to obtain

J2 (M1Y-m1Yr\
BTR(x0)h '

^ C{W{R) - W(TR)
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Summing over Y 6 Y' leads to

W(R) < C{W(R) - W{TR)

and, hence,

W(jR) ^ >yW(R)

for 7 = 1 — 1/C The following modified version of [5, Lemma 8.23] then gives us a
Holder estimate for centred second-order difference quotients. The proof follows that
of [5, Lemma 8.23] very closely.

Lemma 2.2. Let W be a non-decreasing non-negative function on an interval (0, RQ\.
Suppose there exist 7, T € (0,1) and a positive number r\ such that for all R such that
0 < n < R ^ RQ, W satisfies the inequality

W(TR) < 7>V(i?) + a(R),

where a is also non-decreasing and non-negative. Then, for any /x 6 (0,1) and R such
that 77 < R < Ro,

JW(R) < C^^-Jw(Ro) + WRf

where C = C(y) and a = (1 — n) log 7/log r are positive constants.

Note that if n = Iog7/(logr + log7), then (i = a. Making this choice in Lemma 2.2
applied to W gives C = C{^) such that

)J,

for Ro ^ R > 77 = y/nNh/(l - r) . The result now follows. •

For Q c Kn define Q{t) = {x € Q \ dist(x,9/?) ^ t}, the subset of Q consisting
of all points whose Euclidean distance from the boundary of /? is at least t. Of course,
n{t)h = n(t) n zj .

Theorem 2.3. Assume Th • KK' —»• ]R is as in Theorem 2.1. Let Q be an open or closed
domain properly contained in Kn, and let v : Qh -»• K be a mesh function. Let M > 0 be
such that Q(Mh)h C int^-h(/?/j) (so M > \/nN is sufficient; M > N is sufficient when
Q is the Cartesian product of n closed (not necessarily finite) intervals such that the
corners of Q are themselves lattice points). If

Th{82v{x)) = 0 , Vx6 n(Mh)h,

then
*lv]2,cr,nh <C\v\Ointh,

where C = C(n, N, M, A, A) > 0, and a £ (0,1) has the same dependence. In particular,
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Proof. Let us first prove that

*M2,a;flh < C(n, N, M, X, AUv]*2.nh. (2.8)

Note that the choice of M ensures that va.tj:h{Q{Mh)h) C int^-h(int^h(/?/i)) (the left-
hand set may be empty). If x e Qh and dx > Mh + y/nNh, then x € int rh(f2(Mh)h)-
Choose distinct x,z 6 Ql

h, and y € Y' such that x±y, 2±y € fil
h. Suppose, without loss

of generality, that dx < dz. We discretize a standard argument as, for example, in the
proof of [5, Theorem 4.8]. Let T = \ in Theorem 2.1, and let a = a(n, N, A, A) € (0,1) be
the associated constant in that theorem. Let Ri = dx/(6y/nN + M), RQ = Ri + 2y/nNh,
R = \\x — z||2(^ h), and 1Z = R + 2^/nNh. Consider two cases:

(i) z e BRl(x)h, and

(ii) ziBRl{x)h.

Case (i). Note that dx < (6^/nN + M)h would imply that Ri < h, and BRl(x)h =
{x}, contradicting x ^ z. Hence, we may assume for now that dxz > (6\/nN + M)h.
Consequently, for any p € BRo{x)h,

M-l)h- 2y/nNh = 4y/n~Nh + Mh-h> (VnN + M)h.

Hence, BRo(x)h C mtph(Q(Mh)h), and

M)flo)
2+°

since, with h ^ R, we have TZ = R + 2y/nNh ^ 3^/nNR. Now RQ>TZ> 2y/nNh, so
Theorem 2.1 with ^ = 0 implies that

|

^ CR°
sup sup \8lv{jp)\.

Now, with

we have
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Then, for any p € Bno(x)h, we have dp > dx — Ro ^ 2Ro — Ro = Ro- It now follows from
above that

The final inequality relies upon the fact that p ± y € Ql
h for all p G BR0(x)h and all

y € y ' because BRo(x)h C i

Case (ii). When ||x — z\\2 ^ Ri, we have

C ^ ' - W < (((wavr +
||X z||

z)|) ^ C*[v]l,nh-

The final inequality follows since x, z and y were chosen to satisfy x ± y,z ± ?/ € i?^.
Combining the two cases and taking the supremum on the left-hand side over distinct
x,z € f2l

h, and y € 1" satisfying x ± y,z ± y € i?^, we have (2.8). Interpolation via
Lemma A 2 gives the result, since a depends only upon n, N, X and A. O

3. A Poisson promise and the main result

Theorem 3.1. Let Q = Or=ila*'l'^*'l]» w^sre a,i,bi € Z and aj < bi for each i =
1, . . . , n. Let .Fh be as in Theorem 2.1. If u : Qh -> R satisfies

til en

where C = C(n, AT, A, yl) > 0 and a = a(n, JV, A, A) £ (0,1).

Any second-order difference quotient SyU(x) with y eY^ may be expressed as a linear
combination of difference quotients {6yu(x') \ Y € Yi, x' in a mesh neighbourhood of x},
with the size of the mesh neighbourhood uniform in x € i?h. It follows that it is sufficient
to estimate \\u\2 anh

 m order to establish Theorem 3.1. We defer the proof to the next
section.

From Theorem 3.1 we now derive the key theorem of this paper, which will be used
in our discretization of Safonov's derivation of a C2'a estimate in the general case that
the difference operator depends explicitly upon the independent variables, to appear in
a subsequent paper. We denote the closed n-cube in Mn with centre x, side length 2R
and edges parallel to the coordinate axes by

and, of course, Kn(x)h = KR(X) D
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Theorem 3.2. With x0 € Z)J, assume that R ^ (2N + l)h, and let fih = KR(x0)h-
Let u : Qh -> R satisfy

Fh[u}(x) = Th(6
2u{x)) = 0, Vx e i n t ^ ( / 2 h ) ,

where J ^ is as in Theorem 2.1. It is further assumed that Fh[0] = 0. Then

N[U}2I01.K {xo)h ^ CR-2~a max |u|,
bdy-F(KR(xo)h)

where a = a{n, N, X, A) e (0,1) and C = C(n, N, X, A) > 0.

Proof. By Theorem 3.1 we have a 6 (0,1) and positive C such that

Choose distinct x, z € Kn/2{xo)h> V G ̂ Ni such that x ±y and z ± y € -K f̂t/2(2;o)h- It
follows that

Now
il 2./V — 1

so we have
'(2N-l)R\2+a\62

yu(x)-6lu(z)

and, hence,

NM2,a;KR/2(x0), ^ C i ? - 2 - a | U | 0 ; X R ( l o ) , h . (3.1)

In order to estimate the right-hand side we apply the discrete maximum principle to the
linearization for arbitrary mesh functions v\, V2,

Fh[Vl]{x) - Fh[v2](x) = Lh{vx - v2)(x), Vx e (2h,

where

V€YN

a(x,y) = /
Jo

and
wt(x)

Taking vi = u, the solution, and v2 = 0, we have

Lh(u){x) = 0, Vx e

Using the 'discrete maximum principle' [12, Theorem 2.1], we have

max |u| < max |u|.
\ntrh(i7h) bdyrh(nh)

This together with (3.1) gives the result. D
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4. A promise fulfilled

In this section we fulfil our promise of proving Theorem 3.1. We do this using the continu-
ous theory for Poisson's equation (a suggestion of Neil Trudinger) applied to a continuous
extension of u, due to Kunkle [10].

To present Kunkle's result, consider the closed n-cube of side length h given by the
Cartesian product of n intervals: [0, h]n = [0, h] x • • • x [0, h]. This lies at the centre of
the n-cube of side length 3/i: [—h,2h]n = [—h,2h] x • • • x [—h,2h], and, of course, the
set of mesh points in this cube is [—h, 2h]n DZJJ. This set could be thought of as a
mesh neighbourhood of [0, h]n. For a multi-index /3 = (/Ji, /?2> • • • > Pn) we use the notation
5PU = (6%ei )

0 1 (8£e2)
02 • • • {&hen)

l3nu- W e denote the set of points used in the definition of
a difference quotient by supp, the support of the difference quotient. Then, for any set
of mesh points S C Z£, we define

l^ulojs = sup \&u(x)\.
x£S, supp<5"u(x)cS

With these understandings we may quote a result of Kunkle's.

Theorem 4.1 (see Theorem 13.2 in [11]). Let Q be the Cartesian product of n
closed (not necessarily finite) intervals such that the corners of Q are themselves lattice
points, and assume that in each of the orthogonal directions ej, ft has diameter at least
3h. With Qh = ft n Z£, let u : Qh —» K be a mesh function on fih- Then there exists an
interpolant ue e C°°(Rn) (so ue(x) = u(x) for all x £ Qh) and a constant C depending
only upon n and the choice of a particular compactly supported function ip : R —> K (we
fix a choice for the duration of this paper) such that for all (3 satisfying 0 ^ /3i ^ 3 for
each i — 1 , . . . , n, we have

In fact, if z € Qh and dist(z, dQ) > 2h, then

Ifd@u is not bounded (for instance if Q is not compact), then for every compact subset
K of Q there is a compact K' C Q such that

(This is a straightforward modification of Kunkle's result, which has an important
consequence for the proof of the general estimate for Th depending explicitly upon x,
to feature in a subsequent paper. See [7] for an exposition of Kunkle's construction and
details of the modification. Kunkle's work generalizes that of Favard [4] and DeBoor [3]
from mesh functions of one variable to mesh functions of several variables.) We will also
need the following two Lemmas.

Lemma 4.2. Let fl be as in the statement of Theorem 3.1. There exists C dependent
only upon n such that for all a £ (0,1) and, for all f 6 C2(f2):
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Lemma 4.3. Let ft be as in the statement of Theorem 3.1. Define

a closed domain 2h greater in diameter than Q in each direction. We have, for example,
fi+{h) = fi. Denote Q+ DZ£ by Q^.Letv.Q^^Rbea mesh function on /?£, and let
ve be the extension of V\QH to Q provided by Theorem 4.1. Let a € (0,1). There exists
a positive constant C dependent only upon n and a such that

where Ave is the Laplacian ofve.

These will be proved at the end of this section.

Proof of Theorem 3.1. As noted after the statement of Theorem 3.1, it suffices
to estimate i[ix]2 anh- Let c* be as provided by Theorem 2.3. Define the mesh function
v : fi£ -»• K by

v(x) = /"(*)' x e Q l
\o, xenb

hu(f2+)».

Then, since v coincides with u on fi\, we have iH2]Q;fih = lMji.aj/v Note that we
can only be sure v satisfies the difference equation on Q((N + l)h)h = O+({N + 2)h)h-
However, Theorem 2.3 addresses just such a predicament, and so, applied to v on J?^, it
yields

since (rt+)< = Qh.
Let ve be the C3 interpolant of v on Q provided by Theorem 4.1. Then, by Lemma 4.2,

Mt,a;nh = M'2,ainh < C\v^a.n. (4.2)

We estimate the right-hand side using the continuous theory for Poisson's equation. In
particular, Theorem 4.8 from [5] gives us

WY2,a;n < C{n,a)(\ve\0;n + \Ave$a.n)

= C(n,a)(\ve\0]n + [Avejg, + [Ave)^n)

^ C(n, a)(|we|o:fl + [ve\i,n + l^el^a)-

Interpolating the second summand on the right-hand side, for example using [5, inequality
(6.8)], this becomes

[ve)la.n < C(n, a)(\ve\0-n + [Ave]
l&.a). (4.3)
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This together with (4.2) allows us to proceed. We use, in turn, (4.3), Theorem 4.1,
Lemma 4.3 and (4.1) to conclude:

^Ck|0;fih =C\u\o.nih.

a

To conclude this section, we must, of course, prove Lemmas 4.2 and 4.3.

Proof of Lemma 4.2. Note that for all x G Ql
h we have dx = dx, so we dispense with

the underscore notation for this proof. Choose distinct x, y G Q\ and z G Y\ such that
x±z, y±z G fi%

h and 5^f(x) ^ 5%f(y). Since Q is convex, the mean value theorem implies
that there exist s,t G (—1,1) such that with x' = x + sz, y' = y + tz and z = z/||z||2,

\Dzif{x') - D-Zif{y')\
•*y \\x-y\\% xy \\x-y\\2

< dltan
I I * -

for P with ||/3||i = 2 giving the maximum of \D^f(x') — D^f(y')\ over all such multi-
indices, and using the fact that ||z||i ^ y/n. Note that

II it ^ ^ II II ^ i l ^-

Prom above we then have

If c?x = h, then z is parallel to the boundary and dxi = h = dx. If dx ^ 2/i, then
dx> ̂  dx — h ^ dx — dx/2 = dx/2, and hence dx ^ 2dx>. So, in either case, dx ^ 2dx,.
Likewise, d̂  < 2dy', and hence dxy ^ 2dx>y>. Continuing from above, then, we have

xy

Taking the supremum on the left-hand side over distinct x,y £ Q\ and z £Y\ such that
x ± z , j / ± z G i ? ^ establishes the lemma. •

Proof of Lemma 4.3. Choose i G {1, . . . ,n}, and distinct x, y G ft. Consider two
cases:

(i) ||x - y||oo < 2h, and
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(ii) ||x - ylloo > 2h.

Case (i). ||x — y||oo ^ 2ft. By the mean value theorem, for some £ = tx + (1 — t)y,
where t G (0,1), and z — (x — y)/\\x — y\\2, we have

,2+a \DiMx) - DiiVe(y)\ _ .2+g|
dxy \\x-y\\a ~ XV *

* - v\\\~a-

By Theorem 4.1 there is a constant C > 0 such that for any i, j , k G { 1 , . . . , n},

\Dijkve(0\ < C\6+eiS+e.8+ekv{xh)\,

for some x/, G i?^ such that supp6^e.6^e.6^ekv(xh) C i?ft. In addition, Theorem 4.1 gives
us that if dist(£, dfi) ^ 2h, then

i k (4.5)

We now consider two subcases:

(i)(a) ds = dist(f,0.f?) ^ 2ft, and

(i)(b) dg < 2ft;

and show that in either subcase, defining +dx = dist(x, (i^^)6) = dist(x, dQ+), we have
that for all zh G

dxy^2+dZh. (4.6)

Subcsise (i)(a). d̂  ^ 2ft. If z^ € suppS£e.S£e S^ekv(xh), then we have by (4.5) that

+dZh ^ dist(^,dn+) - 2ft = dist(^,dQ) + ft - 2ft > diy - ft ^ dxy - +dZh,

since 2/j G /?/, and d̂  ^ dxy, and (4.6) follows.

Subcase (i)(b). d̂  < 2ft. We must have dxy < 2ft, and ft ^ +d2fc for all

zh G 5 j 5

since we still have

Inequality (4.6) is now obvious.

Now
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where Zh € suppS^e.6^e.S'f[eiv(xh) C Oh, and satisfies (4.6). Continuing from (4.4) we
have

Case (ii). ||a; — 2/||oo > 2/i. Choose mesh neighbours x ^ , ^ e (/%)* of £ and y, respec-
tively, so that \\xh — x||oo < 2h and \\yh - y\\oo < 2h. We have dXh ^ 2h, and, therefore,
using the geometry of Q we have dXh ^ dx — 2h ̂  dx — dXh, and so dx ^ 2(iXh. Likewise,
dy < 2 ^ . It is not difficult to show that \\xh - yh\\2 ^ (2y/n+ l)\\x — y||2. Set w = he^
and then write by the triangle inequality

,,2+q \DiiVe{x) ~ DjiVe(y)\

( ^v\Diive(x) ~ DiiVe(xh)\
Wn) I, | |Q '

IF xh\
||Q ' \\Z Tii

F xh\\2 \\x~y\\
2

^a\
6lv(xh) - Slv{yh)\ , \8lv{yh) -

i) jj | j — 1 [j

( 4 7 )

We address the summands on the right-hand side in turn, reducing the first, second,
fourth and fifth to case (i) \\x — y\\oo ̂  2h addressed above. If Xh ̂  x, then we have for
the first summand on the right-hand side that dxy ̂  dx ^ 2dx,Xh, since dx ^ 2dXh, and

j2+a\DiiVe(x) - DiiVe(Xh)\ o2+aJ2+q \DiiMx) ~ DijVe{xh)\

||x 2 d

by case (i), since \\x — x/i||oo ^ 2h. The last summand on the right-hand side of (4.7) is
dealt with similarly.

With w = hei, the second summand on the right-hand side of (4.7) satisfies

,2 + a \DjiVe{xh) - 6lv(xh)\ = 2+
xy I I 1 1 ? XV=
xy I I * - 2 / 1 1 ? XV \\x-v\\?

by the mean value theorem, where x' = Xh + thei, t £ (—1,1), and, hence, ||x^ — x'\\2 <
h < \\x-y\\oo ^ ||x — 2/J|2- Also, since we have restricted Xh to (Ol

h)', we have dx> > h and
dxy ^ dx ^ dxi + 3h ^ 4dx>. Therefore, if x' ^ x/,, then, remembering that dx ^ 2dXfc,
we have

2+a\Duve{xh) - Slv(xh)\ 2 + a 2 + a \DiiVe(xh)- DjiVe{x')\
\\x-y\\% " 4 d — ' \\xh-x>\\%
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the final step following again by reduction to case (i), since \\xh — x'||oo ^ 2/i. The fourth
summand on the right-hand side of (4.7) is dealt with similarly.

Finally, for the third summand on the right-hand side of (4.7), by choice of x^ and yh,

dxy ^ 2dXh>Vh < 2+dXhtVh,

and then, if Xh ^Vh, we have

92+a ,2+a \6leMX^ ~ ^ e ^ ( ^ ) l < 92+a
+Xh'Vh l l * y | | ? *< 9

" II**-toll? * +Xh'Vh ll*fc-yfc||? i
by definition.

The arbitrariness of i, x and y allows us to infer the result. •

Appendix A. Interpolation inequalities

Lemma A 1 . Let Qh = {a, a + h, a + 2h,..., b - 2h, b - h,b} C Z£. We define the
boundary Q\ = {a,b}, and the interior Q%

h = {a + h,... ,b — h}. Let u : Qh —> K be a
mesh function on O^. Assume that b — a ^ 5/i, ensuring the existence of at least two
distinct points x, y £ Ol

h such that x± h,y ±h E. Qh, so that i[u]2 a.Qh > —oo. Suppose
1 ^ j ^ k ^ 2, where j , k £ N and 0 < a < 1. Then, for any e > 0, there exists a constant
C = C(e,a,j,k) > 0 such that

IH;12H < CMoifli +ei[u]fc,ainh) (A 1)

where i[u]£ Oj?h
 JS defined to be I M J ; . ^ . Note that each term in this inequality is inde-

pendent of the values ofu on the boundary Qb
h.

Proof. For notational convenience we omit the presubscript T , and the subscript Qh,
the set Qh being implicitly understood, except that |u|o will denote |u|o;r?< • We loosely
trace the proof of [5, Lemma 6.32], and consider several cases.

Case (1). j = 1, k = 2; a = 0. We wish to show that

[«K<CHo + e[u];, (A 2)

for any e > 0. Let x be any point in Ql
h, dx its distance from Q\, and /i ^ \ a positive

constant to be specified later. Set d = fj.dx and K = Kd{x)h = {y S Qh \ \y — x\ ^ d). If
d < h and x ± h £ Qh, then

i ir± / M h \u(x ± h) - u(x)\ ^ 2,
4l*fc«WI<TT— T — <-Mo- (A3)

If, however, d ^ h, then let di = [d//i]/i, the largest integer multiple of h less than
or equal to d. (Here, \z\ denotes the 'greatest integer function'.) Note, then, that di >
d — h*^ d — d\, since d\ ^ h, which implies that 2d\ > d, so

dx ^ d < 2dx (A 4)
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and

T<1*T- (A5)

Ox & &1

Instead of the differential calculus used in [5] at this point, we use the following identity
from [17, p. 638]:

M - l

u(x + Mh) = u(x) + Mh5~^u{x) + h 2_\ [&hu(x + k^) ~ $hu(x)]> (A6)

for x,x + Mh € Qh, M € N, where the sum on the right-hand side is equal to zero if
M — 1. By symmetry we also have

M - l

u(x - Mh) = u(x) - Mh8^u(x) - h ^P [<5̂ u(x - kh) - S^u(x)}, (A7)
fc=i

for x,x - Mh 6 Qh. Then (A 6) and (A 7) imply that

6± = ±[u(x ± Mh) - «(»)] _ J_ y * 1 , ^ . ± kh) _ d±,x)] ( A g )

Mh ^ h
/ M - M — 1 k

/ c = l i = l

Let M be such that Mh = di. To show that the right-hand side of (A 8) depends only
on values of u on Q%

h, it will suffice to show that x ± Mh € fi\. By definition of d, d\ and
M, we have dx±Mh ^ dx - d = dx — \i,dx ^ \dx. Then, since d ̂  h, we have d,. ^ 2/i,
and hence dx±Mh > /i; that is, x ± M/i € Ql

h- In fact (noting that M/i ^ d < (M + l)/i),
x ± Mh € -K" C Q\. In particular, x ± h £ K, which is to say, a; 6 /C\ It follows, using
(A 4) and (A 5), that

i r + / M \U(X ± Mh) — U(X)\ 1

M fc=i i=i

2|«|0 , h (M-l)M . .2

M 2

i sup
y±h€K

s u p

^ -—- + \d sup d 2 sup d2|^u(2/)|.
y±hSK yi/HEK
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Since dy'^dx-d = (l- ii)dx ^ dx/2 for all y € K, it follows that

sup a sup a

2

sup ( ^

< - |u | 0 + 2|i[u]5,

since d /̂rfy ^ 4. Hence, considering (A3),

4
[«K = sup dx\6£u{x)\ ^ -\u\0

Choosing /x = n(e) less than e/2, we conclude (A 2) with C — 4 ^ - 1 .

Case (2). j = 2, k = 2; a > 0. As before let x 6 Ql
h, 0 < /J, ^ §, d = /xdx, /C = Kd{x)h,

and di = [d//i]/i. If d < /i and x ± /» € /?^, then

d /l ,7 / ( / 7*l l ^* ^ — — ^ ^ . — ^ — ^ — ^ Ĉ ill In I A Ql
T "n **\ / o i o *^ o I^IU* \^^ ^I
x i it \ / i 2 ^ 2 nZ ' ' v 7

If, however, d^ h, then d\ ^ h and (A 4) and (A 5) hold. Again using the identity (A 6)
with M e N chosen such that Mh = d\, this time applied to 5£u, we obtain

M - l

6+u(x + Mh) = 6+u{x) + Mh{S+)2u(x) + hJ2 l(6h)2u(x + kh) ~ tfh)Mx)}
k=l

M - l

= S£u(x) + Mhb^uix + h) + h ^ [<^u(z + (k + l)h) — <5̂ u(a; 4- h)].

fc=i

It follows, since M ^ 1, that replacing x with x — h,

M - l

<#u(z + (M - l)h) = (5̂ "u(x - /i) + M/i^u(x) + /i ^
fc=i

in which case

-'~ + (M — l)h) — 6tu(x - h) 1 V^rr2
Mft M ^ [6hU{x •
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As in the paragraph after (A 8), one can show that x ± Mh G K C Q\, and therefore the
left-hand side of (A 10) depends only on the values of u on fij. Therefore,

2 1 M~l

\6+- sup \6+{y)\ £

sup d'1 sup dy\6+u(y)\ + ^ - ^ sup d^-adl+a\6lu(y)-6lu(x)\
" V,y+h€K " y,y+h€K " M y±h€K

<£ sup C »P d,l^«(y)H-d« sup £,»- sup # ^ f
" V,y+h€K " y,y+h€K " V,y±h€K " y±h€K * \X y\

y^tx

As in case (1), dy (and therefore dxy) is greater than dx/2 for all y € /f. It follows that

^ | « 2 « ( a : ) | ^ ^ - ^ - sup d'1 sup ^,|5+«
M«x y,y+h€K y,y+h€K

sup d- - Q sup

^2 sup 4 | ^ « ( » ) | + M°2»+- sup

Hence, considering (A 9),

&\82{)\ ^ 4[u]3 = sup &\82
hu{x)\ ^ 4l«lo + "Mi +

Now, if /i = MC^)1^) is chosen so that 8^Q ^ e/2, then, with C" = 8//i and C" = 4//i2,
we have

By (A 2) there exists C" such that

and so finally we arrive at

as desired.
If instead of (A 10) we use (A 8) in the argument of case (2), modifying the details

accordingly, then we obtain (A 1) for j = 1, k = 1, a > 0.
Finally, the case j = 1, k = 2, a > 0 follows from cases (1) and (2). •
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Lemma A 2. Let fi be an open or closed domain properly contained in R". Let h > 0
be sufficiently small that Q\ ̂  0, and such that there exist x 6 Ql

h and z € Y' such
that x ± z € Qz

h. Let u : Qh -» K be a mesh function on /?/,. Suppose 1 ^ j ^ A; ̂  2,
where j , fc e N, and 0 ^ a < 1. Then for any e > 0 there exists a constant C =
C(e, a, j , fc, N, n) > 0 such that

Proof. Let e > 0. Let x e O^.
If dx < Zy/nNh and z e f such that x±zeQ{, then

and, similarly,
dx\6fu(x)\ ^ C\u\0.nih.

However, if dx > Zs/nNh and z € Y', then consider Bh = Bdx(x) D ZJJ, the 'closed'
mesh ball of radius dx centred at x. Let

S = {x±kz\k£N}r\Bfl.

Note that 5 consists of at least seven points. We will apply Lemma A1 to 5. With this
in mind, define Si = {x e S \ x + z, x - z e S} and Sb = S\Si (so Sb consists of the two
endpoints of 5), and for y £ Sl, let sdy = dist(j/, Sb). We have, for example, that for all
y e S, sdy ^ dx. Note that dx - ^/nNh ^ sdx ̂  dx- Since dx ^ 3y/nNh, we have

Application of Lemma A1 gives

x\5fu{x)\, £\52
zu(x)\}

where k = 1 or 2 accordingly, 0 ^ a < 1, and the semi-norm 2[u]* is the same as *[«]*.
except that z is fixed in its definition. It follows that

max{dx\Sfu(x)\, d2
x\6

2
zu(x)\} ̂  C\u\0.nfi + e t[u]liO.nh,

since, for any x G Sl, sdx ^ d£. In the light of the first part of the proof, this is true for
all x G Q%

h and all z G Y' satisfying x ± z € J?^, and the result follows. •
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