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Abstract
The present paper explores a connection between two concepts arising from different fields of mathematics. The
first concept, called vine, is a graphical model for dependent random variables. This concept first appeared in a
work of Joe (1994), and the formal definition was given later by Cooke (1997). Vines have nowadays become an
active research area whose applications can be found in probability theory and uncertainty analysis. The second
concept, called MAT-freeness, is a combinatorial property in the theory of freeness of logarithmic derivation
modules of hyperplane arrangements. This concept was first studied by Abe-Barakat-Cuntz-Hoge-Terao (2016),
and soon afterwards investigated further by Cuntz-Mücksch (2020).

In the particular case of graphic arrangements, the last two authors (2023) recently proved that the MAT-freeness
is completely characterized by the existence of certain edge-labeled graphs, called MAT-labeled graphs. In this
paper, we first introduce a poset characterization of a vine. Then we show that, interestingly, there exists an explicit
equivalence between the categories of locally regular vines and MAT-labeled graphs. In particular, we obtain an
equivalence between the categories of regular vines and MAT-labeled complete graphs.

Several applications will be mentioned to illustrate the interaction between the two concepts. Notably, we give
an affirmative answer to a question of Cuntz-Mücksch that MAT-freeness can be characterized by a generalization
of the root poset in the case of graphic arrangements.
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1. Introduction

1.1. Motivation

The starting point of our paper is a question of Cuntz-Mücksch [10] (Question 1.3) in the theory of free
hyperplane arrangements.

Let V be a finite dimensional vector space. A hyperplane in V is a 1-codimensional linear subspace
of V. Let {𝑥1, . . . , 𝑥ℓ } be a basis for the dual space𝑉∗. Any hyperplane in V can be described by a linear
equation of the form 𝑎1𝑥1 + · · · + 𝑎ℓ𝑥ℓ = 0 where at least one of the 𝑎𝑖’s is nonzero.

A hyperplane arrangement A is a finite set of hyperplanes in V. The intersection lattice of A is
the set of all intersections of hyperplanes in A, which is often referred to as the combinatorics of A.
An arrangement is said to be free if its module of logarithmic derivations is a free module. For basic
definitions and properties of free arrangements, we refer the interested reader to [22, 26]. Freeness is
an algebraic property of hyperplane arrangements which has been a major topic of research since the
1970s. A central question in the theory is to study the freeness of an arrangement by combinatorial
structures, especially by the intersection lattice of the arrangement.

Among others, MAT-freeness is an important concept which was first used by Abe-Barakat-Cuntz-
Hoge-Terao [1] to settle the conjecture of Sommers-Tymoczko [24] on the freeness of ideal subarrange-
ments of Weyl arrangements. This concept is formally defined later by Cuntz-Mücksch [10], and we will
use their definition throughout. For a hyperplane 𝐻 ∈ A, define the restriction A𝐻 of A to H by

A𝐻 := {𝐾 ∩ 𝐻 | 𝐾 ∈ A \ {𝐻}}.

Definition 1.1 (MAT-partition and MAT-free arrangement [10]). Let A be a nonempty arrangement.
An ordered partition (disjoint union of nonempty subsets) 𝜋 = (𝜋1, . . . , 𝜋𝑛) of A is called an MAT-
partition if the following three conditions hold for every 1 ≤ 𝑘 ≤ 𝑛.

(MP1) The hyperplanes in 𝜋𝑘 are linearly independent.
(MP2) There does not exist 𝐻 ′ ∈ A𝑘−1 such that

⋂
𝐻 ∈𝜋𝑘 𝐻 ⊆ 𝐻 ′, where A𝑘−1 := 𝜋1 � · · · � 𝜋𝑘−1

(disjoint union) and A0 := ∅ is the empty arrangement.
(MP3) For each 𝐻 ∈ 𝜋𝑘 , |A𝑘−1 | − |(A𝑘−1 ∪ {𝐻})𝐻 | = 𝑘 − 1.

An arrangement is called MAT-free if it is empty or admits an MAT-partition.
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As the name suggests, any MAT-free arrangement is a free arrangement. This follows from the
remarkable Multiple Addition Theorem by Abe-Barakat-Cuntz-Hoge-Terao [1, Theorem 3.1] (justifying
the abbreviation MAT). MAT-freeness is a helpful combinatorial tool (as it depends only on the
intersection lattice) to examine the freeness of arrangements. One of its most famous applications we
mentioned earlier is a proof that the ideal subarrangements of Weyl arrangements are free. The MAT-
freeness has received increasing attention in recent years; see [2, 3, 9, 20] for some other applications.

Let 𝑉 = Rℓ with the standard inner product (·, ·). Let Φ be an irreducible (crystallographic) root
system in V, with a fixed positive system Φ+ ⊆ Φ and the associated set of simple roots Δ :=
{𝛼1, . . . , 𝛼ℓ }. For 𝛼 ∈ Φ, define 𝐻𝛼 := {𝑥 ∈ 𝑉 | (𝛼, 𝑥) = 0}. For Σ ⊆ Φ+, the Weyl subarrangement
AΣ is defined by AΣ := {𝐻𝛼 | 𝛼 ∈ Σ}. In particular, AΦ+ is called the Weyl arrangement.

We can make Φ+ into a poset (partially ordered set) by defining a partial order ≤ on Φ+ as follows:
𝛽1 ≤ 𝛽2 if 𝛽2 − 𝛽1 ∈

∑ℓ
𝑖=1 Z≥0𝛼𝑖 . The poset (Φ+, ≤) is called the root poset of Φ. For an ideal I

(Definition 3.4) of the root poset Φ+, the corresponding Weyl subarrangement AI is called the ideal
subarrangement.
Theorem 1.2 [1, Theorem 1.1]. Any ideal subarrangement AI is MAT-free, and hence free.

The ideal subarrangements form a significant subclass of MAT-free arrangements. However, there
are many MAT-free arrangements (or MAT-partitions of a given MAT-free arrangement) that do not
arise from ideal subarrangements (Example 7.2). One may wonder if the hyperplanes in an arbitrary
MAT-free arrangement satisfy some poset structure similar to the root poset? This question was asked
by Cuntz-Mücksch [10] and is the main motivation of our work.

Question 1.3 [10, Problem 47]. Given an MAT-free arrangement A, can we characterize all possible
MAT-partitions of A by a poset structure generalizing the classical root poset?

Cuntz-Mücksch’s question is difficult in general as the number of different MAT-partitions of a given
MAT-free arrangement might be very large. Also, the definition of an MAT-partition itself does not
reveal a natural choice of the desirable partial order. In the present paper, we pursue this question along
graphic arrangements, a well-behaved class of arrangements in which both freeness and MAT-freeness
are completely characterized by combinatorial properties of graphs.

Let G be a simple graph (i.e., no loops and no multiple edges) with vertex (or node) set 𝑁𝐺 =
{𝑣1, . . . , 𝑣ℓ } and edge set 𝐸𝐺 . The graphic arrangement A𝐺 is an arrangement in an ℓ-dimensional
vector space V defined by

A𝐺 := {𝑥𝑖 − 𝑥 𝑗 = 0 | {𝑣𝑖 , 𝑣 𝑗 } ∈ 𝐸𝐺}.

A graph is chordal if it does not contain an induced cycle of length greater than three. A chordal
graph is strongly chordal if it does not contain a sun graph as an induced subgraph (Definition 2.2).

Theorem 1.4 [25], [12, Theorem 3.3]. The graphic arrangement A𝐺 is free if and only if G is chordal.

Theorem 1.5 [27, Theorem 2.10]. The graphic arrangement A𝐺 is MAT-free if and only if G is strongly
chordal.

While the definition of an MAT-free arrangement may seem technical at first glance, Theorem 1.5
enables us to view MAT-freeness as a rather natural property. Furthermore, the correspondence between
MAT-freeness and strong chordality establishes a nice analog1 of the classical correspondence between
freeness and chordality.

The good thing about graphs is that MAT-partition of a graphic arrangement can be rephrased in terms
of a special edge-labeling of graphs, the so-called MAT-labeling (Definition 2.4). A graph together with
such a labeling is called an MAT-labeled graph. To approach Question 1.3 for graphic arrangements,
the first question would be how many non-isomorphic MAT-labelings can a (strongly chordal) graph

1Many important concepts in the classical theory such as simplicial vertex and perfect elimination ordering of chordal graphs
have their analogs in MAT-labeled graphs (see Remark 2.18).
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Table 1. Correspondence between concepts in vine and graph theories..

Vine theory Graph theory

R-vine MAT-labeled complete graph

LR-vine MAT-labeled graph
(= m-vine, or ideal of R-vine) (= MAT-free graphic arrangement)

have? A computation aided by computer for complete graphs on up to 8 vertices gives us the sequence
1, 1, 1, 2, 6, 40, 560, 17024. Surprisingly, we found out that this sequence coincides with the number of
equivalence classes of (graphical) regular vines (or R-vines) in dimension up to 8 given in [17, Table
10.4]. This observation is indeed compelling as it leads us to the notion of the node poset of a graphical
vine (Definitions 3.6 and 3.7), which is a perfect candidate for the poset structure we are looking for.

1.2. Main result

In this paper, we first introduce a poset realization of graphical (R-)vines (Definitions 3.12 and 3.14).
Our aim is to convert the important terms and properties of graphical vines into the language of posets in
which considerable power and development of poset theory would be brought to bear. We also introduce
the notion of a locally regular vine (or LR-vine) (Definition 3.16). Roughly speaking, an LR-vine is a
vine that ‘locally’ looks like an R-vine. It is worth mentioning that any ideal of an R-vine, or m-vine
(Definition 3.19), gets characterized by an LR-vine (Theorem 6.13).

Having introduced the concepts, we define the category MG of MAT-labeled graphs and the category
LRV of LR-vines (Definitions 6.2 and 6.3). Our main result is that these categories are equivalent
(Theorem 6.10). In particular, we obtain the equivalence between the category of MAT-labeled complete
graphs and the category of R-vines (Corollary 6.11). The correspondences are summarized in Table 1.

To prove the equivalence between MG and LRV, we construct two functors Ψ : MG −→ LRV and
Ω : LRV −→ MG. The former amounts to constructing an LR-vine from a given MAT-labeled graph
which will be presented in Definition 4.11 and Theorem 4.13. The proof is direct and largely dependent
upon the notion of MAT-perfect elimination ordering (Definition 2.16) developed in an earlier work of
the last two authors [27]. The argument on the functor Ω is, however, more complicated. We need to
show some new properties of LR-vines in §5.1 before giving the construction in Definition 5.16 and
Theorem 5.17.

It is known that graphic arrangements are equivalent to Weyl subarrangements when the root system
is of type A. It would be interesting to extend our main result to the root systems of other types. However,
it is quite challenging since a complete characterization of either MAT-freeness or freeness of Weyl
subarrangements is unknown except for type A.

1.3. Applications

From the view point of category theory, the equivalence establishes a strong similarity between the
categories and allows many properties and structures to be translated from one to the other. We obtain
three main applications from LR-vines to MAT-labeled graphs. First, our main theorem 6.10 gives a
new poset characterization of the MAT-free graphic arrangements compared with the characterization
by strong chordality in Theorem 1.5. In particular, LR-vine is an answer for Question 1.3 in the
case of graphic arrangements (see §7.1.1). We find it interesting that although the class of MAT-
free arrangements strictly contains that of ideal subarrangements in general, any MAT-free graphic
arrangement is characterized by being an ideal of a poset structure. Second, an explicit formula for the
number of non-isomorphic MAT-labelings of complete graphs is obtained as it equals the number of
equivalence classes of regular vines (see §7.1.2). Third, the notion of upper truncation (Definition 4.9)
of an LR-vine gives rise to a nontrivial graph operation which produces a new MAT-labeled graph from
a given one (see §7.1.3).
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A vine is a graphical tool for representing the joint distribution of random variables. The first
construction of a vine was given by Joe [14], and the formal definition was given and refined further by
Cooke, Bedford and Kurowicka [7, 5, 15]. Vines have been studied extensively and proved to have various
applications in probability theory and related areas. We refer the reader to [17] for a comprehensive
handbook of vines. Our main result gives a new appearance and applications of vines in the arrangement
theory. In the present paper, we do not pursue the probabilistic or applied aspects of vines (neither does
the proof of the main result) but emphasize and develop more on the theoretical aspects. There are
several new combinatorial properties of vines presented throughout, and we hope that they will be
useful for the future research on vines. For instance, we give an alternative way to associate an m-vine
to a strongly chordal graph compared with the work of Zhu-Kurowicka [28] (see §7.2.1), an extension
of the notion of sampling order [8] from R-vine to LR-vine (see §7.2.2), and a conjectural formula for
the number of ideals in a C-vine (see §7.2.3).

2. MAT-labelings of graphs

2.1. Graphs

In this subsection, we recall some basic definitions and notions of graphs. All graphs in this paper are
undirected, finite and simple. Let𝐺 = (𝑁𝐺 , 𝐸𝐺) be a graph with the set 𝑁𝐺 of vertices (or nodes) and the
set 𝐸𝐺 of edges (unordered pairs of vertices). In this paper, a vertex and a node in a graph are synonyms.
The former will be used more often for graphs, while the latter will be used for an element in a poset.

For 𝑆 ⊆ 𝑁𝐺 , denote by 𝐺 [𝑆] = (𝑆, 𝐸𝐺 [𝑆 ] ) where 𝐸𝐺 [𝑆 ] = {{𝑢, 𝑣} ∈ 𝐸𝐺 | 𝑢, 𝑣 ∈ 𝑆} the (vertex-)
induced subgraph of S. Denote by 𝐺 \𝑆 the induced subgraph 𝐺 [𝑁𝐺 \𝑆]. In particular, 𝐺 \𝑣 := 𝐺 \{𝑣}
when v is a vertex of G. For 𝐹 ⊆ 𝐸𝐺 , define the subgraph 𝐺 \ 𝐹 := (𝑁𝐺 , 𝐸𝐺 \ 𝐹). In particular,
𝐺 \ 𝑒 := 𝐺 \ {𝑒} when e is an edge of G.

A complete graph 𝐾𝑛 (𝑛 ≥ 0) is a graph with vertex set 𝑁𝐾𝑛 = {𝑢1, . . . , 𝑢𝑛} and edge set

𝐸𝐾𝑛 = {{𝑢𝑖 , 𝑢 𝑗 } | 1 ≤ 𝑖 < 𝑗 ≤ 𝑛}.

In other words, a complete graph is a graph such that each pair of vertices is an edge. Here, the
order-zero graph 𝐾0 (i.e., the graph having no vertices is also considered to be a complete graph). A
clique C of G is a subset of 𝑁𝐺 such that the induced subgraph 𝐺 [𝐶] is a complete graph.

For each 𝑣 ∈ 𝑁𝐺 , the neighborhood Nbd𝐺 (𝑣) of v in G is defined by Nbd𝐺 (𝑣) := {𝑢 ∈ 𝑁𝐺 |

{𝑢, 𝑣} ∈ 𝐸𝐺}. The degree of 𝑣 in 𝐺 is defined by deg𝐺 (𝑣) := | Nbd𝐺 (𝑣) |. A leaf is a vertex of degree 1.
A vertex is called simplicial if its neighborhood is a clique. An ordering (𝑣1, . . . , 𝑣ℓ) of vertices of a
graph 𝐺 is called a perfect elimination ordering (PEO) if 𝑣𝑖 is simplicial in the induced subgraph
𝐺 [{𝑣1, . . . , 𝑣𝑖}] for each 1 ≤ 𝑖 ≤ ℓ.

A maximal clique is a clique that it is not a subset of any other clique. A largest clique is a clique
that has the largest possible number of vertices. Denote by K(𝐺) the set of all maximal cliques of G.
In particular, |K(𝐺) | = 0 or 1 if and only if G is a complete graph. The clique number of G, denoted
𝜔(𝐺), is the number of vertices in a largest clique of 𝐺.

A walk W in a graph G is a sequence of edges (𝑒1, 𝑒2, . . . , 𝑒𝑝) of G for which there is a sequence
of vertices (𝑣1, 𝑣2, . . . , 𝑣𝑝+1) of G such that 𝑒𝑖 = {𝑣𝑖 , 𝑣𝑖+1} for 1 ≤ 𝑖 ≤ 𝑝. The vertices 𝑣1 and 𝑣𝑝+1 are
said to be connected by the walk W, called the initial and final vertices of W, respectively. The length
of a walk is the number of edges in the walk (hence, the length of W is 𝑝 ≥ 0). Throughout the paper,
a walk W is denoted by its vertex sequence 𝑊 = (𝑣1, 𝑣2, . . . , 𝑣𝑝+1). If 𝑊1 = (𝑣1, 𝑣2, . . . , 𝑣𝑝+1) and
𝑊2 = (𝑣𝑝+1, 𝑣𝑝+2, . . . , 𝑣𝑛) are walks, then the concatenation of 𝑊1 and 𝑊2 is the walk (𝑣1, 𝑣2, . . . , 𝑣𝑛).

A path 𝑃 = (𝑣1, 𝑣2, . . . , 𝑣𝑝+1) is a walk with no repeated vertices except possibly the initial and
final vertex. A subpath of P is a path of the form (𝑣𝑖 , 𝑣𝑖+1, . . . , 𝑣 𝑗 ) for some 1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑝 + 1. The
following fact is well-known.
Lemma 2.1. Given two vertices 𝑎, 𝑏 in a graph G, every walk connecting a and 𝑏 contains a path
connecting a and 𝑏.
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A graph G is called connected if any two vertices are connected by a walk (hence by a path by
Lemma 2.1 above).

A p-cycle 𝐶𝑝 = (𝑣1, 𝑣2, . . . , 𝑣𝑝) for 𝑝 ≥ 3 is a path with 𝑣𝑝 = 𝑣1. The 3-cycle is also called a
triangle. A chord of a cycle is an edge connecting two non-consecutive vertices of the cycle. A forest
is a graph containing no cycles. A tree is a connected forest. In a forest (resp. tree), any two distinct
vertices are connected by at most (resp. exactly) one path.

An n-sun 𝑆𝑛 (𝑛 ≥ 3) is a graph with vertex set 𝑁𝑆𝑛 = {𝑢1, . . . , 𝑢𝑛} ∪ {𝑣1, . . . , 𝑣𝑛} and edge set

𝐸𝑆𝑛 = {{𝑢𝑖 , 𝑢 𝑗 } | 1 ≤ 𝑖 < 𝑗 ≤ 𝑛} ∪ {{𝑣𝑖 , 𝑢 𝑗 } | 1 ≤ 𝑖 ≤ 𝑛, 𝑗 ∈ {𝑖, 𝑖 + 1}},

where we let 𝑢𝑛+1 = 𝑢1.
Definition 2.2 (Strongly chordal graph). A simple graph is strongly chordal if it is 𝐶𝑝-free2 for 𝑝 ≥ 4
and 𝑆𝑛-free for 𝑛 ≥ 3.

The following property of a strongly chordal graph is a special case of [27, Lemma 5.9].
Lemma 2.3. Let 𝐺 be a strongly chordal graph with |K(𝐺) | ≥ 2. Then there exist distinct maximal
cliques 𝑋0, 𝑌0 ∈ K(𝐺) such that 𝑋0 ∩ 𝑌0 ⊇ 𝑋0 ∩ 𝑌 for all 𝑌 ∈ K(𝐺) \ {𝑋0}.

2.2. MAT-labeled graphs

In this subsection, we recall some preliminary definitions and facts of MAT-labeled graphs following
[27]. An edge-labeled graph is pair (𝐺, 𝜆), where 𝐺 is a simple graph and 𝜆 : 𝐸𝐺 −→ Z>0 is a map,
called (edge-)labeling. The following definition of an MAT-labeling is equivalent to the original one in
[27, Definition 4.2].
Definition 2.4 (MAT-labeling). Let (𝐺, 𝜆) be an edge-labeled graph. For 𝑘 ∈ Z>0, let 𝜋𝑘 := 𝜆−1(𝑘) ⊆
𝐸𝐺 denote the set of edges of label k. Define 𝜋≤𝑘 := 𝜋1 � · · · � 𝜋𝑘 and 𝜋<1 := ∅. The labeling 𝜆 is an
MAT-labeling if the following two conditions hold for every 𝑘 ∈ Z>0.
(ML1) Any edge 𝑒 ∈ 𝜋≤𝑘 does not form a cycle with edges in 𝜋𝑘 .
(ML2) Every edge 𝑒 ∈ 𝜋𝑘 forms exactly 𝑘 − 1 triangles with edges in 𝜋<𝑘 .

Given an edge 𝑒 ∈ 𝜋𝑘 , a conditioning vertex of e is a vertex that together with the endvertices of e
forms two edges both of label < 𝑘 . Condition (ML2) above can be rephrased as every edge 𝑒 of label k
has exactly 𝑘 − 1 conditioning vertices.
Definition 2.5 (MAT-labeled (complete) graph). An edge-labeled graph (𝐺, 𝜆) is an MAT-labeled
graph if 𝜆 is an MAT-labeling of G. In particular, an MAT-labeled graph (𝐺, 𝜆) is an MAT-labeled
complete graph if G is a complete graph.

MAT-partition of a graphic arrangement is nothing but MAT-labeling of the underlying graph
[27, Proposition 4.3]. Thus, MAT-free graphic arrangement and MAT-labeled graph are essentially the
same object. The following properties of an MAT-labeled graph are deduced thanks to the relation with
freeness.
Lemma 2.6 [27, Proposition 4.8]. Let (𝐺, 𝜆) be an MAT-labeled graph with clique number 𝜔(𝐺). Then
the following statements hold.
(1) The largest label of edges in (𝐺, 𝜆) is equal to 𝜔(𝐺) − 1.
(2) There exists a bijection between the set of largest cliques of 𝐺 and 𝜋𝑛, where 𝑛 = 𝜔(𝐺) − 1 via the

relation: For each 𝑒 ∈ 𝜋𝑛, there exists a unique largest clique of G containing the endvertices of e.
Lemma 2.7 [27, Proposition 4.4]. If 𝜆 is an MAT-labeling of the complete graph 𝐾ℓ , then |𝜋𝑘 | = ℓ − 𝑘
for all 1 ≤ 𝑘 ≤ ℓ − 1.

2In general, a graph is called H-free if it does not contain H as an induced subgraph. It is not to be confused with ‘MAT-free
arrangement’.
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Now we present some results on the restrictions of MAT-labelings.

Definition 2.8 (MAT-labeled subgraph). Let (𝐺, 𝜆) be an MAT-labeled graph. An edge-labeled graph
(𝐺 ′, 𝜆′) is an MAT-labeled subgraph of (𝐺, 𝜆), written (𝐺 ′, 𝜆′) ≤ (𝐺, 𝜆), if 𝐺 ′ is a subgraph of G,
𝜆′ = 𝜆 |𝐸𝐺′ (i.e., 𝜆′ is the restriction of 𝜆 on 𝐸𝐺′), and (𝐺 ′, 𝜆′) itself is an MAT-labeled graph.

Lemma 2.9 [27, Lemma 4.7]. Let (𝐺, 𝜆) be an MAT-labeled graph and let 𝐹1, 𝐹2 ⊆ 𝐸𝐺 . If 𝜆 |𝐹1 and
𝜆 |𝐹2 are MAT-labelings of the subgraphs (𝑁𝐺 , 𝐹1) and (𝑁𝐺 , 𝐹2), respectively, then 𝜆 |𝐹1∪𝐹2 is an MAT-
labeling of (𝑁𝐺 , 𝐹1 ∪ 𝐹2).

Lemma 2.10 [27, Lemma 4.9]. Let (𝐺, 𝜆) be an MAT-labeled graph. Let X denote the intersection of
some maximal cliques of G. Then (𝐺 [𝑋], 𝜆 |𝐸𝐺 [𝑋 ]

) ≤ (𝐺, 𝜆).

The following is an immediate consequence of Lemmas 2.9 and 2.10 above.

Corollary 2.11. Let (𝐺, 𝜆) be an MAT-labeled graph. Let B ⊆ K(𝐺) be a set of some maximal cliques
of G. Let 𝐺B be the subgraph of 𝐺 with vertex set 𝑁𝐺B := ∪𝑌 ∈B𝑌 and edge set 𝐸𝐺B := ∪𝑌 ∈B𝐸𝐺 [𝑌 ] .
Then (𝐺B, 𝜆 |𝐸𝐺B

) ≤ (𝐺, 𝜆).

Notation 2.12. For simplicity of notation, if 𝜆 : 𝐸𝐺 −→ Z>0 is a labeling and {𝑢, 𝑣} ∈ 𝐸𝐺 is an edge,
we write 𝜆(𝑢, 𝑣) := 𝜆({𝑢, 𝑣}) for the label of {𝑢, 𝑣}.

The following analogs of simplicial vertex and perfect elimination ordering of chordal graphs are
important concepts in the study of MAT-labeled graphs.

Definition 2.13 (MAT-simplicial vertex). Given an edge-labeled graph (𝐺, 𝜆), a vertex 𝑣 ∈ 𝑁𝐺 is
MAT-simplicial if the following conditions hold.

(MS1) 𝑣 is a simplicial vertex of 𝐺.
(MS2) The edges of G incident on v are labeled by labels from 1 to deg𝐺 (𝑣) (i.e. {𝜆(𝑢, 𝑣) ∈ Z>0 | 𝑢 ∈

Nbd𝐺 (𝑣)} = {1, 2, . . . , deg𝐺 (𝑣)}).
(MS3) For any distinct vertices 𝑢1, 𝑢2 ∈ Nbd𝐺 (𝑣), 𝜆(𝑢1, 𝑢2) < max{𝜆(𝑢1, 𝑣), 𝜆(𝑢2, 𝑣)}.

Lemma 2.14 [27, Lemma 5.2]. If (𝐺, 𝜆) is an MAT-labeled complete graph, then the endvertices of the
edge of largest label are MAT-simplicial.

Lemma 2.15 [27, Proposition 5.3]. Let (𝐺, 𝜆) be an edge-labeled graph having at least 2 vertices.
Suppose that 𝑣 is an MAT-simplicial vertex of (𝐺, 𝜆). Then 𝜆 is an MAT-labeling of 𝐺 if and only if
𝜆 |𝐸𝐺\𝑣

is an MAT-labeling of 𝐺 \ 𝑣.

Definition 2.16 (MAT-PEO). Let (𝐺, 𝜆) be an edge-labeled graph on ℓ vertices. An ordering (𝑣1, . . . , 𝑣ℓ)
of vertices in𝐺 is an MAT-perfect elimination ordering (MAT-PEO) of (𝐺, 𝜆) if 𝑣𝑖 is MAT-simplicial
in (𝐺𝑖 , 𝜆𝑖) for each 1 ≤ 𝑖 ≤ ℓ, where 𝐺𝑖 := 𝐺 [{𝑣1, . . . , 𝑣𝑖}] and 𝜆𝑖 := 𝜆 |𝐸𝐺𝑖 .

Theorem 2.17 [27, Theorem 5.5]. An edge-labeled graph (𝐺, 𝜆) is an MAT-labeled graph if and only
if there exists an MAT-PEO of (𝐺, 𝜆).

Remark 2.18. It is known that a graph is chordal if and only if it has a perfect elimination ordering
[13]. Theorem 2.17 is an analog of this classical result for MAT-labeled graphs.

The method of merging regular vines was given in [8, 28]. We have a very similar3 method for
merging MAT-labeled complete graphs.

Lemma 2.19 (Merging MAT-labeled complete graphs [27, Lemma 5.7]). Let (𝐺1, 𝜆1) and (𝐺2, 𝜆2) be
MAT-labeled complete graphs. Denote the common complete graph 𝐺1 [𝑁𝐺1 ∩ 𝑁𝐺2 ] = 𝐺2 [𝑁𝐺1 ∩ 𝑁𝐺2 ]

by 𝐺 ′. Assume that there exists an MAT-labeling 𝜆′ of 𝐺 ′ such that (𝐺 ′, 𝜆′) ≤ (𝐺1, 𝜆1) and (𝐺 ′, 𝜆′) ≤

(𝐺2, 𝜆2). Let G denote the complete graph with vertex set 𝑁𝐺1 ∪𝑁𝐺2 . Then there exists an MAT-labeling
𝜆 of 𝐺 such that (𝐺1, 𝜆1) ≤ (𝐺, 𝜆) and (𝐺2, 𝜆2) ≤ (𝐺, 𝜆).

3These methods are actually equivalent in the sense that they produce the same output as a consequence of our Corollary 6.11.
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Proposition 2.20. Let (𝐺, 𝜆) be an MAT-labeled graph and K be the complete graph with vertex set
𝑁𝐺 . Then there exists an MAT-labeling 𝜆 of K such that (𝐺, 𝜆) ≤ (𝐾, 𝜆).

Proof. We argue by induction on the number |K(𝐺) | of maximal cliques of G. If |K(𝐺) | = 0 or 1, then
the assertion follows since G is a complete graph. Suppose |K(𝐺) | ≥ 2.

Note that by Theorem 1.5, G is a strongly chordal graph. By Lemma 2.3, there exist distinct
𝑋0, 𝑌0 ∈ K(𝐺) such that 𝑋0 ∩𝑌0 ⊇ 𝑋0 ∩𝑌 for all 𝑌 ∈ K(𝐺) \ {𝑋0}. Denote B := K(𝐺) \ {𝑋0}. Let 𝐺B
be the subgraph of 𝐺 with vertex set 𝑁𝐺B := ∪𝑌 ∈B𝑌 and edge set 𝐸𝐺B := ∪𝑌 ∈B𝐸𝐺 [𝑌 ] . Thus, 𝐺B has
|K(𝐺) | − 1 maximal cliques. Moreover, (𝐺B, 𝜆 |𝐸𝐺B

) and (𝐺 [𝑋0], 𝜆 |𝐸𝐺 [𝑋0 ]
) are MAT-labeled graphs

by Corollary 2.11. By the induction hypothesis, there exists an MAT-labeling 𝜆B of the complete graph
𝐾B with vertex set 𝑁𝐺B such that (𝐺B, 𝜆 |𝐸𝐺B

) ≤ (𝐾B, 𝜆B).
Now we are in the setting of Lemma 2.19 with (𝐺1, 𝜆1) = (𝐺 [𝑋0], 𝜆 |𝐸𝐺 [𝑋0 ]

) and (𝐺2, 𝜆2) = (𝐾B, 𝜆B).
Indeed, first note that

𝑁𝐺1 ∩ 𝑁𝐺2 = 𝑋0 ∩

(⋃
𝑌 ∈B

𝑌

)
=

⋃
𝑌 ∈B

(𝑋0 ∩ 𝑌 ) = 𝑋0 ∩ 𝑌0.

Hence, 𝐺1 [𝑁𝐺1 ∩ 𝑁𝐺2] = 𝐺2 [𝑁𝐺1 ∩ 𝑁𝐺2] = 𝐺 [𝑋0 ∩𝑌0]. Denote this common complete graph by 𝐺 ′.
By Lemma 2.10, the restriction 𝜆′ := 𝜆 |𝐸𝐺′ is an MAT-labeling 𝐺 ′. Hence, (𝐺 ′, 𝜆′) ≤ (𝐺1, 𝜆1) and
(𝐺 ′, 𝜆′) ≤ (𝐺2, 𝜆2).

Therefore, by Lemma 2.19, there exists an MAT-labeling 𝜆 of the complete graph K with vertex set
𝑁𝐺1 ∪𝑁𝐺2 = 𝑁𝐺 such that (𝐺1, 𝜆1) ≤ (𝐾, 𝜆) and (𝐺2, 𝜆2) ≤ (𝐾, 𝜆). In particular, (𝐺, 𝜆) ≤ (𝐾, 𝜆). �

The following ‘gluing trick’ plays an important role in the construction of an MAT-labeling for a
given strongly chordal graph in [27, §5.2].

Lemma 2.21 (Gluing MAT-labeled graphs [27, Theorem 5.8]). Let (𝐺1, 𝜆1) and (𝐺2, 𝜆2) be MAT-
labeled graphs such that 𝐺1 [𝑁𝐺1 ∩ 𝑁𝐺2 ] = 𝐺2 [𝑁𝐺1 ∩ 𝑁𝐺2]. Suppose that this common subgraph,
denoted 𝐺 ′, is a complete graph. Suppose further that there exists an MAT-labeling 𝜆′ of 𝐺 ′ such that
(𝐺 ′, 𝜆′) ≤ (𝐺1, 𝜆1) and (𝐺 ′, 𝜆′) ≤ (𝐺2, 𝜆2). Define an edge-labeled graph (𝐺, 𝜆) by 𝑁𝐺 = 𝑁𝐺1 ∪𝑁𝐺2 ,
𝐸𝐺 = 𝐸𝐺1 ∪ 𝐸𝐺2 , 𝜆 |𝐸𝐺1

= 𝜆1, 𝜆 |𝐸𝐺2
= 𝜆2. Then (𝐺, 𝜆) is an MAT-labeled graph.

We close this subsection by introducing the notion of principal cliques in an MAT-labeled graph.
This notion will be useful for the construction of an LR-vine from a given MAT-labeled graph in
Definition 4.11.

Lemma 2.22 (Principal clique). Let (𝐺, 𝜆) be an MAT-labeled graph. Let 𝑒 = {𝑖, 𝑗} ∈ 𝜋𝑘 be an edge in
G of label k and ℎ1, . . . , ℎ𝑘−1 be the conditioning vertices of e. Then the set 𝐾𝑒 := {𝑖, 𝑗 , ℎ1, . . . , ℎ𝑘−1}
is a clique of G. Moreover, (𝐺 [𝐾𝑒], 𝜆 |𝐸𝐺 [𝐾𝑒 ]

) ≤ (𝐺, 𝜆), and all the edges in 𝐺 [𝐾𝑒] \ 𝑒 have label < 𝑘 .
We call 𝐾𝑒 the principal clique generated by e.

Proof. Let 𝐺 ′ denote the graph obtained from G by removing all edges of labels > 𝑘 . By definition,
(𝐺 ′, 𝜆′) ≤ (𝐺, 𝜆), where 𝜆′ := 𝜆 |𝐸𝐺′ . Since e is an edge of largest label in (𝐺 ′, 𝜆′), by Lemma 2.6, there
exists a unique largest clique C of𝐺 ′ containing the endvertices of e. Note also that C does not contain the
endvertices of any edge of label k apart from e. Moreover, (𝐺 [𝐶], 𝜆 |𝐸𝐺 [𝐶 ]

) ≤ (𝐺 ′, 𝜆′) by Lemma 2.10.
Thus, the number of conditioning vertices of e is 𝑘 − 1 in both G and 𝐺 [𝐶]. Hence, 𝐶 = 𝐾𝑒. �

The converse of Lemma 2.22 is also true.

Lemma 2.23. If C is a clique in an MAT-labeled graph (𝐺, 𝜆) such that (𝐺 [𝐶], 𝜆 |𝐸𝐺 [𝐶 ]
) ≤ (𝐺, 𝜆), then

C is a principal clique. In particular, any maximal clique is principal.

Proof. Let 𝐺 ′ := 𝐺 [𝐶] and 𝜆′ := 𝜆 |𝐸𝐺 [𝐶 ]
. By the assumption, (𝐺 ′, 𝜆′) is an MAT-labeled complete

graph. Thus, (𝐺 ′, 𝜆′) has a unique edge of maximal label by Lemma 2.7. Hence, C is a principal clique
in (𝐺 ′, 𝜆′) (generated by this unique edge) and hence in (𝐺, 𝜆). The consequence follows directly from
Lemma 2.10. �
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Lemma 2.24. Let (𝐺, 𝜆) be an MAT-labeled graph. Let 𝑒 = {𝑖, 𝑗} be an edge in G and 𝐾𝑒 the principal
clique generated by e. Then both 𝐶1 := 𝐾𝑒 \ {𝑖} and 𝐶2 := 𝐾𝑒 \ { 𝑗} are principal cliques in (𝐺, 𝜆).
Moreover, if C is a principal clique in (𝐺, 𝜆) such that 𝐶 � 𝐾𝑒, then either 𝐶 ⊆ 𝐶1 or 𝐶 ⊆ 𝐶2.
Proof. Let 𝐺 ′ := 𝐺 [𝐾𝑒] and 𝜆′ := 𝜆 |𝐸𝐺 [𝐾𝑒 ]

. By Lemma 2.22, (𝐺 ′, 𝜆′) is an MAT-labeled complete
graph in which e is the unique edge of largest label. By Lemma 2.14, the endvertices i and j of e
are MAT-simplicial. By Lemma 2.15, (𝐺 ′ [𝐶1], 𝜆

′|𝐸𝐺′ [𝐶1 ]
) and (𝐺 ′ [𝐶2], 𝜆

′|𝐸𝐺′ [𝐶2 ]
) are MAT-labeled

complete graphs. By Lemma 2.23, 𝐶1 and 𝐶2 are principal cliques in (𝐺, 𝜆).
Let C be a principal clique in (𝐺, 𝜆) such that 𝐶 � 𝐾𝑒. Then 𝐶 = 𝐾 𝑓 for some edge f in 𝐺 [𝐾𝑒].

Moreover, 𝜆( 𝑓 ) = |𝐶 | − 1 < |𝐾𝑒 | − 1 = 𝜆(𝑒). Thus, e is not an edge of 𝐺 [𝐶] by Lemma 2.22. Hence,
C cannot contain both i and j. It follows that either 𝐶 ⊆ 𝐶1 or 𝐶 ⊆ 𝐶2. �

3. Vines: graphical and poset definitions

3.1. Posets

In this subsection, we recall some basic definitions and notions of posets. All posets P = (P , ≤P ) in
this paper are finite. For a poset P , an element 𝑎 ∈ P is called maximal (resp. minimal) if there is no
other element 𝑏 ∈ P such that 𝑎 < 𝑏 (resp. 𝑎 > 𝑏). Denote by max(P) (resp. min(P)) the set of all
maximal (resp. minimal) elements in P .
Definition 3.1 (Join). Let P be a poset and let 𝑥, 𝑦 ∈ P . An element 𝑣 ∈ P is called the join of x and y,
denoted 𝑥 ∨ 𝑦, if the following two conditions are satisfied:
(1) 𝑥 ≤ 𝑣 and 𝑦 ≤ 𝑣.
(2) For any 𝑤 ∈ P , if 𝑥 ≤ 𝑤 and 𝑦 ≤ 𝑤, then 𝑣 ≤ 𝑤.
The join 𝑥 ∨ 𝑦 is unique if it exists.
Definition 3.2 (Induced subposet). A poset (Q, ≤Q) is an induced subposet of a poset (P , ≤P ) if
Q ⊆ P and for any 𝑎, 𝑏 ∈ Q, it holds that 𝑎 ≤Q 𝑏 if and only if 𝑎 ≤P 𝑏.

For 𝑥, 𝑦 ∈ P , by y covers x, we mean 𝑥 < 𝑦 and 𝑥 ≤ 𝑧 < 𝑦 implies 𝑥 = 𝑧.
Definition 3.3 (Graded poset). A finite poset P is graded if there exists a rank function rk = rkP :
P −→ Z≥0 satisfying the following three properties:
(1) For any 𝑥, 𝑦 ∈ P , if 𝑥 < 𝑦, then rk(𝑥) < rk(𝑦).
(2) If y covers x, then rk(𝑥) = rk(𝑦) − 1.
(3) All minimal elements of P have the same rank. In this paper, we assume4 rk(𝑥) = 1 for all

𝑥 ∈ min(P).
Equivalently, for every 𝑥 ∈ P , all maximal chains among those with x as greatest element have the same
length.

The dimension5 dim(P) of P is defined as dim(P) := | min(P) |. The rank rk(P) of a graded poset
P with rank function rk is defined as

rk(P) := max{rk(𝑥) | 𝑥 ∈ P}.

Definition 3.4 (Ideal, principal ideal). Let P be a poset. An (order) ideal I of P is a downward-closed
subset (i.e., for every 𝑥 ∈ P and 𝑦 ∈ I, 𝑥 ≤ 𝑦 implies that 𝑥 ∈ I). For 𝑎 ∈ P , the ideal

P≤𝑎 := {𝑥 ∈ P | 𝑥 ≤ 𝑎}

is called the principal ideal of P generated by a.

4A motivation for this assumption is the equivalence between D-vine and root poset of type A (Remark 4.16). The latter is
graded by heights of positive roots, and all the minimal elements (simple roots) have rank (height) 1.

5The term ‘dimension’ of a poset may have a different meaning in the other context. The present definition is to make a
compatibility for dimensions of a vine (Remark 3.8) and the ambient space of graphic arrangements.
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Definition 3.5 (Poset homomorphism). Let P and P ′ be posets. A (poset) homomorphism 𝜑 : P −→

P ′ is an order-preserving map, i.e. 𝑥 ≤ 𝑦 implies 𝜑(𝑥) ≤ 𝜑(𝑦) for all 𝑥, 𝑦 ∈ P .
We call 𝜑 a join-preserving homomorphism if for any 𝑥, 𝑦 ∈ P such that the join 𝑥 ∨ 𝑦 exists, then

𝜑(𝑥) ∨ 𝜑(𝑦) exists and 𝜑(𝑥 ∨ 𝑦) = 𝜑(𝑥) ∨ 𝜑(𝑦).
We call 𝜑 an isomorphism if 𝜑 is bijective and its inverse is a homomorphism. The posets P and P ′

are said to be isomorphic, written P � P ′ if there exists an isomorphism 𝜑 : P −→ P ′.
When P = (P , rk) and P ′ = (P ′, rk′) are graded posets, a homomorphism 𝜑 : P −→ P ′ is called

rank-preserving if rk′(𝜑(𝑥)) = rk(𝑥) for all 𝑥 ∈ P .

A rank-preserving homomorphism 𝜑 : P −→ P ′ sends a minimal element to a minimal element (i.e.,
𝜑(min(P)) ⊆ min(P ′)). Any isomorphism between two graded posets is a homomorphism preserving
rank and join.

3.2. Vines (graphical definition)

First we recall the graphical definition of a vine following [5, Definition 4.1].

Definition 3.6 (Graphical definition of vine). Let 1 ≤ 𝑛 ≤ ℓ be positive integers. A (graphical) vine V
on ℓ elements [ℓ] = {1, . . . , ℓ} (or more generally, on an ℓ-element set called 𝑁1) is an ordered n-tuple
V = (𝐹1, 𝐹2, . . . , 𝐹𝑛) such that

(1) 𝐹1 is a forest with nodes 𝑁1 = [ℓ] and a set of edges denoted 𝐸1,
(2) for 2 ≤ 𝑖 ≤ 𝑛, 𝐹𝑖 is a forest with nodes 𝑁𝑖 = 𝐸𝑖−1 and edge set 𝐸𝑖 .

We call 𝐹𝑖 the i-th associated forest of V . A graphical vine is uniquely determined by its associated
forests. Denote by 𝑁 (V) = 𝑁1 ∪ · · · ∪ 𝑁𝑛 the set of nodes (of the associated forests) of V . We call the
numbers n and ℓ the rank and dimension of V , respectively.

If node u is an element of node v (i.e., 𝑢 ∈ 𝑣), we say that u is a child of v. If v is reachable from u
via the membership relation: 𝑢 ∈ 𝑢1 ∈ · · · ∈ 𝑣, we say that u is a descendant of v.

Definition 3.7 (Node poset). Let V be a graphical vine with node set 𝑁 (V). The node poset P = P (V)
of V is the poset (𝑁 (V), ≤) defined as follows: For any 𝑢, 𝑣 ∈ 𝑁 (V),

𝑢 ≤ 𝑣 if 𝑢 is a descendant of 𝑣.

Remark 3.8. We emphasize that a graphical vine is uniquely determined by its node poset. The
terminology ‘rank’ of a vine has motivation from poset theory. If a vine V is an ordered n-tuple, then
P = P (V) is a graded poset with rank function rk(𝑣) = 𝑖 for 𝑣 ∈ 𝑁𝑖 (1 ≤ 𝑖 ≤ 𝑛). Thus, this number n
equals the rank of P . In addition, the dimension of V equals the number of minimal elements in P , or
the dimension of P .

Now we introduce the notion of an induced subvine, or more generally, a subvine of a vine following
[8, §5], [28, §2.2.1].

Definition 3.9 (Subvine, induced subvine). Let V = (𝐹1, 𝐹2, . . . , 𝐹𝑛) be a graphical vine.

1. An ordered p-tuple V ′ = (𝐹 ′
1, 𝐹

′
2, . . . , 𝐹

′
𝑝) for 𝑝 ≤ 𝑛 is called a subvine of V if 𝐹 ′

𝑖 is a subgraph of
𝐹𝑖 for each 1 ≤ 𝑖 ≤ 𝑝 and V ′ itself is a vine.

2. Given a subset 𝑆 ⊆ 𝑁1, define a vine V [𝑆] = (𝐹 ′
1, 𝐹

′
2, . . . , 𝐹

′
𝑝) on the set S as follows:

(1) 𝐹 ′
1 = 𝐹1 [𝑆] with the edge set 𝐸 ′

1 ⊆ 𝐸1 = 𝑁2,
(2) for 2 ≤ 𝑖 ≤ 𝑝, 𝐹 ′

𝑖 = 𝐹𝑖 [𝐸
′
𝑖−1] with the edge set 𝐸 ′

𝑖 ⊆ 𝐸𝑖 = 𝑁𝑖+1.
We call V [𝑆] the subvine of V induced by S.

Remark 3.10. Any induced subvine is obviously a subvine, but the converse is not necessarily true. For
example, let V = (𝐹1, 𝐹2) be a vine of dimension 2 with 𝑁1 = {1, 2}, 𝑁2 = 𝐸1 = {{1, 2}}, 𝐸2 = ∅. The
subvine V ′ = (𝐹 ′

1) defined by 𝑁 ′
1 = {1, 2}, 𝐸 ′

1 = ∅ is not an induced subvine of V .
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3.3. Vines (poset definition)

Assumption & Notation 3.11. From now on, unless otherwise stated, we assume that P is a finite
graded poset with a rank function rk : P −→ Z>0. Denote 𝑛 := rk(P) and ℓ := dim(P). For 𝑣 ∈ P ,
denote by E (𝑣) the set of elements covered by v. For 𝑖 ≥ 0, define P𝑖 := {𝑣 ∈ P | rk(𝑣) = 𝑖} and
E (P𝑖) := {E (𝑣) | 𝑣 ∈ P𝑖}. If P is an ℓ-dimensional poset, we assume P1 = min(P) = [ℓ].

As noted earlier in Remark 3.8, we may think of a graphical vine and its node poset essentially as the
same object. It is thus natural to look for a characterization of the node poset of a vine. We give below
such a characterization obtained immediately from Definition 3.6.

Definition & Proposition 3.12 (Poset definition of vine). A finite graded poset P is the node poset of
a graphical vine if and only if P satisfies the following conditions:

(1) Every non-minimal node covers exactly two other nodes.
(2) For each 1 ≤ 𝑖 ≤ 𝑛 = rk(P), the graph 𝐹𝑖 = (𝑁𝑖 , 𝐸𝑖) with node set 𝑁𝑖 := P𝑖 and edge set

𝐸𝑖 := E (P𝑖+1) is a forest.

Assumption & Notation 3.13. From now on, unless otherwise stated, by a vine P we mean a finite
graded poset satisfying the two conditions in 3.12. We will also retain the notion i-th associated forest
𝐹𝑖 = (P𝑖 , E (P𝑖+1)) (1 ≤ 𝑖 ≤ 𝑛) of P . If v is a node in a vine P and E (𝑣) = {𝑎, 𝑏}, we will often
abuse notation and write 𝑣 = {𝑎, 𝑏}. This notation is compatible with the notation of node/edge in the
graphical definition of a vine.

The main reason why we choose the poset definition of a vine is because many terms and properties
of a (graphical) vine have natural meanings in the language of posets. For example, subvine corresponds
to ideal (Lemma 3.18), conditioned set corresponds to join (Lemma 5.1), and m-vine corresponds to
LR-vine or local regularity of vine (Theorem 6.13).

Under this consideration, the following poset definition of a regular vine is equivalent to the well-
known graphical definition of it in the literature (e.g., [5, Definition 4.1]).

Definition 3.14 (R-vine). A vine P is a regular vine, or an R-vine for short, if P satisfies the following
conditions:

(1) rk(P) = dim(P) (i.e., 𝑛 = ℓ).
(2) Each associated forest 𝐹𝑖 = (P𝑖 , E (P𝑖+1)) is a tree (1 ≤ 𝑖 ≤ 𝑛).
(3) Proximity: For any distinct nodes 𝑎, 𝑏 ∈ P𝑖 for 𝑖 ≥ 2, if a and b are covered by a common node,

then a and b cover a common node.

Remark 3.15. If P is an R-vine of rank n, then |P𝑖 | = 𝑛 + 1 − 𝑖 for each 1 ≤ 𝑖 ≤ 𝑛. In particular,
|P | = 𝑛(𝑛 + 1)/2.

Next, we introduce the notion of a locally regular vine.

Definition 3.16 (LR-vine). A vine P is a locally regular vine, or an LR-vine for short, if every principal
ideal of P is an R-vine.

Remark 3.17. Intuitively, an LR-vine is a vine that ‘locally’ looks like an R-vine. In particular, any
R-vine is an LR-vine (see Proposition 4.4). Any ideal of a vine (resp. an LR-vine) is itself a vine (resp.
an LR-vine).

Lemma 3.18. Let V be a graphical vine with the node poset P (V). A subset I is an ideal of P (V) if
and only if I = P (V ′) where V ′ is a subvine of V uniquely determined by I.

As a result, there is a one-to-one correspondence between the subvines of a graphical vine and the
ideals of its node poset.

Proof. Let V ′ be a subvine of V . Since V ′ itself is a vine, if v is a node in P (V ′), then both children,
hence all descendants of v, are also nodes in P (V ′). Hence, P (V ′) is an ideal of P (V). Conversely, let I
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be an ideal of the vine P (V). By Remark 3.17, I itself is a vine. By Remark 3.8, I uniquely determines
a vine V ′ which is a subvine of V and satisfies I = P (V ′). �

We close this section by recalling the definition of an m-saturated vine from [16, Definition 4.2].

Definition 3.19 (M-vine). A vine P is called an m-saturated vine, or an m-vine for short, if P is an
ideal of an R-vine.

By Remark 3.17, any m-vine is an LR-vine. We will see in Theorem 6.13 that the converse also holds
true.

4. From MAT-labeled graphs to LR-vines

4.1. Some known properties of vines

We begin by defining some statistics on the nodes of a vine. They play an important role in probabilistic
applications of vines (e.g., [4, Theorem 3]).

Definition 4.1 (k-fold union, complete union). LetP be a vine of rank n. For any node 𝑣𝑖 ∈ P𝑖 (1 ≤ 𝑖 ≤ 𝑛)
and integer k with 0 ≤ 𝑘 ≤ 𝑖 − 1, the k-fold union of 𝑣𝑖 is the subset 𝑈𝑣𝑖 (𝑘) ⊆ P𝑖−𝑘 defined by

𝑈𝑣𝑖 (𝑘) := {𝑥 ∈ P𝑖−𝑘 | 𝑥 ≤ 𝑣𝑖}.

The complete union 𝑈𝑣𝑖 of 𝑣𝑖 ∈ P𝑖 is defined as the (𝑖 − 1)-fold union of 𝑣𝑖; that is,

𝑈𝑣𝑖 := 𝑈𝑣𝑖 (𝑖 − 1) ⊆ P1.

Definition 4.2 (Conditioned set, conditioning set). Let P be a vine of rank n. Let 𝑣𝑖 = {𝑎, 𝑏} ∈ P𝑖
(2 ≤ 𝑖 ≤ 𝑛) with 𝑎, 𝑏 ∈ P𝑖−1 (see notation in 3.13). The conditioning set 𝐷𝑣𝑖 associated with 𝑣𝑖 is
defined by

𝐷𝑣𝑖 := 𝑈𝑎 ∩𝑈𝑏 ,

and the conditioned set 𝐶𝑣𝑖 associated with 𝑣𝑖 is defined by

𝐶𝑣𝑖 := 𝑈𝑎 �𝑈𝑏 ,

where � denotes the symmetric difference.

It is easily seen that the nodes of an LR-vine satisfy the proximity condition. The following properties
were proved for an R-vine in [5, 15, 16]. The arguments therein apply to a vine satisfying proximity
condition as well since we only need the proximity of principal ideals.

Lemma 4.3. Let P be a vine of rank n and 𝑣𝑖 ∈ P𝑖 (2 ≤ 𝑖 ≤ 𝑛). Suppose that the proximity condition
holds. The following hold:

(a) |𝑈𝑣𝑖 (𝑘) | = 𝑘 + 1 for 0 ≤ 𝑘 ≤ 𝑖 − 1. In particular, |𝑈𝑣𝑖 | = 𝑖 = rk(𝑣𝑖).
(b) |𝐷𝑣𝑖 | = 𝑖 − 2 and |𝐶𝑣𝑖 | = 2.

We show below that local regularity and proximity of a vine are actually equivalent.

Proposition 4.4. A vine P is locally regular if and only if the proximity condition holds for the nodes
of P .

Proof. It remains to show proximity implies local regularity. Let 𝑣 ∈ P . We need to show that the
principal ideal P≤𝑣 itself is an R-vine. Write P≤𝑣 = (𝑇1, 𝑇2, . . . , 𝑇𝑝), where 𝑝 = rk(𝑣) ≤ 𝑛. By Lemma
4.3(a), the rank p and dimension |𝑈𝑣 | of P≤𝑣 are equal. Also by Lemma 4.3(a), each forest 𝑇𝑝−𝑘
(0 ≤ 𝑘 ≤ 𝑝 − 1) has 𝑘 + 1 nodes and k edges. Thus, these forests must be trees. Clearly, proximity of a
vine is preserved under taking ideals. It follows that P≤𝑣 is an R-vine. �
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Lemma 4.5. Let P = (𝐹1, . . . , 𝐹𝑛) be an LR-vine and V be the graphical vine defined by P . Then for
every 𝑎 ∈ P , the ideal P≤𝑎 coincides with the node poset of the induced subvine V [𝑈𝑎].

Proof. Write V [𝑈𝑎] = (𝐹 ′
1, . . . , 𝐹

′
𝑞) and P≤𝑎 = (𝑇1, . . . , 𝑇𝑝), where 𝑇𝑖’s all are trees. Note that

𝐹 ′
1 = 𝐹1 [𝑈𝑎] is a forest with at most |𝑈𝑎 | − 1 edges. However, the tree 𝑇1 is a subgraph of 𝐹1 with node

set 𝑈𝑎 that has exactly |𝑈𝑎 | − 1 edges. Hence, 𝐹 ′
1 = 𝑇1. A repeated application of this argument yields

𝑝 = 𝑞 and 𝐹 ′
𝑘 = 𝑇𝑘 for all 1 ≤ 𝑘 ≤ 𝑝. Therefore, P≤𝑎 is the node poset of V [𝑈𝑎]. �

Corollary 4.6. Let P be an LR-vine and 𝑎, 𝑏 be nodes in P . If 𝑈𝑎 ⊆ 𝑈𝑏 , then 𝑎 ≤ 𝑏. In particular, if
𝑈𝑎 = 𝑈𝑏 , then 𝑎 = 𝑏.

Proof. Let V be the graphical vine defined by P . If 𝑈𝑎 ⊆ 𝑈𝑏 , then V [𝑈𝑎] is a subvine of V [𝑈𝑏]. By
Lemma 4.5, P≤𝑎 ⊆ P≤𝑏 . Hence, 𝑎 ≤ 𝑏. If 𝑈𝑎 = 𝑈𝑏 , then by the first assertion, 𝑎 ≤ 𝑏 and 𝑏 ≤ 𝑎. Thus,
𝑎 = 𝑏. �

Remark 4.7. By definition, an R-vine has a unique maximal element. Thus, an ideal I of an LR-vine
P is regular if and only if I is a principal ideal.

If two posets P and P ′ are isomorphic and P is an (L)R-vine, then P ′ is also an (L)R-vine. The result
below enables us to represent a node in an LR-vine by its complete union (see 4.17 for an example).

Proposition 4.8. Let P be an LR-vine. Let P̂ be the poset consisting of the complete unions of the nodes
in P (i.e., P̂ = {𝑈𝑎 | 𝑎 ∈ P} with partial order given by set inclusion). Define a map

𝜂P : P −→ P̂ via 𝑎 ↦→ 𝑈𝑎 .

Then 𝜂P is a poset isomorphism; hence, P � P̂ .

Proof. Clearly, 𝜂P is a surjective homomorphism. By Corollary 4.6, for any 𝑎, 𝑏 ∈ P , if 𝑈𝑎 = 𝑈𝑏 , then
𝑎 = 𝑏. Thus, 𝜂P is injective and hence bijective. Again by Corollary 4.6, for any 𝑎, 𝑏 ∈ P , 𝑈𝑎 ⊆ 𝑈𝑏

if and only if 𝑎 ≤ 𝑏. Thus, the inverse of 𝜂P is a poset homomorphism. We conclude that 𝜂P is an
isomorphism. �

Given a vine, it is important to know which induced subposet is again a vine. This motivates the
following notion of truncation of a vine [6].

Definition 4.9 (Truncation). Let (P , rk) be a finite graded poset of rank n and let 1 ≤ 𝑘 ≤ 𝑛. The
induced subposet P ≤𝑘 := {𝑥 ∈ P | rk(𝑥) ≤ 𝑘} =

⋃𝑘
𝑖=1 P𝑖 with the rank function rk = rk is called the

𝑘-lower truncation of P .
Likewise, the induced subposet P ≥𝑘 := {𝑥 ∈ P | rk(𝑥) ≥ 𝑘} =

⋃𝑛
𝑖=𝑘 P𝑖 with the rank function

rk(𝑣) = rk(𝑣) − 𝑘 + 1 for all 𝑣 ∈ P ≥𝑘 is called the 𝑘-upper truncation of P .
An induced subposet Q of P is called a lower (resp. an upper) truncation if Q = (P ≤𝑘 , rk) (resp.

Q = (P ≥𝑘 , rk)) for some k. A truncation Q of P is called proper if Q ≠ P .

Remark 4.10. Any lower truncation of a vine is an ideal. Hence, by Remark 3.17, any lower truncation
of a vine (resp. an LR-vine) is itself a vine (resp. an LR-vine). However, a proper lower truncation of an
R-vine of rank > 1 is not an R-vine. See Figure 5 for an example of a lower truncation.

A proper upper truncation of a vine of rank > 1 is not an ideal. However, proximity is preserved under
taking either upper or lower truncation. Hence, by Proposition 4.4, any upper truncation of an LR-vine
(resp. a vine) is an LR-vine (resp. a vine). Unlike the lower truncation case, any upper truncation of an
R-vine is an R-vine by Remark 3.15.

The discussion above indicates that LR-vines are closed under either upper or lower truncation, while
R-vines are only closed under upper truncation. We will see in §7.2.2 that these classes are also closed
under ‘vertical’ truncation, or more precisely, marginalization.
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4.2. Construct an LR-vine from a given MAT-labeled graph

Definition 4.11. Let (𝐺, 𝜆) be an MAT-labeled graph with 𝑁𝐺 = [ℓ] and clique number 𝜔(𝐺). Define
a finite graded poset P = (P , ≤P , rkP ) from (𝐺, 𝜆) as follows:

(1) P consists of the sets {𝑖} for 1 ≤ 𝑖 ≤ ℓ and all the principal cliques in (𝐺, 𝜆) (Lemma 2.22).
(2) For 𝑢, 𝑣 ∈ P , 𝑢 ≤P 𝑣 if u is a subset of v.
(3) rkP (𝑣) = |𝑣 | for all 𝑣 ∈ P .

Remark 4.12. It is easily seen that min(P) = {{𝑖} | 1 ≤ 𝑖 ≤ ℓ}. The poset P is graded by rkP because
by Lemma 2.24, for every edge 𝑒 = {𝑖, 𝑗} in G, the principal clique 𝐾𝑒 generated by e covers exactly
two principal cliques 𝐾𝑒 \ {𝑖} and 𝐾𝑒 \ { 𝑗}. Note also that rk(P) = 𝜔(𝐺) by Lemma 2.6.

Theorem 4.13. The poset P = (P , ≤P , rkP ) from Definition 4.11 is an LR-vine. In particular, if (𝐺, 𝜆)
is an MAT-labeled complete graph, then P is an R-vine.

Proof. First we prove the first assertion. We argue by induction on the number ℓ of vertices of G. The
assertion is clearly true when ℓ = 1. Suppose ℓ ≥ 2. By Theorem 2.17, there exists an MAT-PEO
(𝑎1, . . . , 𝑎ℓ) of (𝐺, 𝜆). Denote 𝐺 ′ := 𝐺 \ 𝑎ℓ and 𝜆′ := 𝜆 |𝐸𝐺′ . By Lemma 2.15, (𝐺 ′, 𝜆′) is an MAT-
labeled graph. LetP ′ be the poset defined by (𝐺 ′, 𝜆′) using Definition 4.11. By the induction hypothesis,
P ′ is an LR-vine.

Denote 𝑑 := deg𝐺 (𝑎ℓ ). If 𝑑 = 0 (i.e., 𝑎ℓ is an isolated vertex), then P = P ′ ∪ {{𝑎ℓ }} is clearly an
LR-vine. Suppose 𝑑 ≥ 1. Write Nbd𝐺 (𝑎ℓ) := {𝑏𝑞 | 1 ≤ 𝑞 ≤ 𝑑} ⊆ 𝑁𝐺′ so that {𝑎ℓ , 𝑏𝑞} ∈ 𝜋𝑞 . For
1 ≤ 𝑞 ≤ 𝑑, define the following subgraph 𝐻𝑞 of G:

𝐻𝑞 := 𝐺 \ {{𝑎ℓ , 𝑏𝑞+1}, . . . , {𝑎ℓ , 𝑏𝑑}}.

It is not hard to check that 𝑎ℓ is an MAT-simplicial vertex in (𝐻𝑞 , 𝜆 |𝐸𝐻𝑞 ) for each 1 ≤ 𝑞 ≤ 𝑑. By
Lemma 2.15, each (𝐻𝑞 , 𝜆 |𝐸𝐻𝑞 ) is an MAT-labeled graph since 𝐺 ′ = 𝐻𝑞 \ 𝑎ℓ .

For each 1 ≤ 𝑞 ≤ 𝑑, let R𝑞 be the poset defined by (𝐻𝑞 , 𝜆 |𝐸𝐻𝑞 ) from Definition 4.11. We may write

R𝑞 = P ′ ∪ {𝑣0, . . . , 𝑣𝑞} = P \ {𝑣𝑞+1, . . . , 𝑣𝑑},

where 𝑣0 := {𝑎ℓ } and each 𝑣𝑞 is the principal clique generated by {𝑎ℓ , 𝑏𝑞}. We claim that for each
1 ≤ 𝑞 ≤ 𝑑, the poset R𝑞 is an LR-vine. In particular, the case 𝑞 = 𝑑 whence 𝐻𝑑 = 𝐺 and R𝑑 = P
yields the first assertion of Theorem 4.13.

We argue by induction on q. The case 𝑞 = 1 is simple. The new non-minimal node 𝑣1 = {𝑎ℓ , 𝑏1}
covers exactly two nodes 𝑣0 = {𝑎ℓ } and {𝑏1}. Also, the new minimal node 𝑣0 is only covered by 𝑣1
since 𝑎ℓ ∉ 𝑣 for all 𝑣 ∈ P ′. The first associated forest of R1 is given by that of P ′ with 𝑎ℓ added so that
𝑎ℓ is only connected to 𝑏1. The second associated forest of R1 is given by that of P ′ with an isolated
vertex 𝑣1 added. The remaining associated forests of R1 are the same as those of P ′. The proximity
condition holds trivially. Hence, R1 is an LR-vine by Proposition 4.4.

Suppose that the claim is true for some 1 ≤ 𝑞 < 𝑑. First note that 𝐻𝑞+1 \ {𝑎ℓ , 𝑏𝑞+1} = 𝐻𝑞 and
R𝑞+1 \ {𝑣𝑞+1} = R𝑞 . Since 𝑎ℓ is an MAT-simplicial vertex in (𝐻𝑞 , 𝜆 |𝐸𝐻𝑞 ), by (MS3), the edges in the
complete subgraph 𝐻𝑞 [𝑣𝑞] of 𝐻𝑞 induced by the vertices in 𝑣𝑞 have label ≤ 𝑞−1 except {𝑎ℓ , 𝑏𝑞} ∈ 𝜋𝑞 .
Similarly, any edge of the form {𝑏𝑞+1, ℎ} where h is a vertex in 𝑣𝑞 \ {𝑎ℓ } has label ≤ 𝑞. Therefore,
𝑣𝑞 \ {𝑎ℓ } consists of the q conditioning vertices of {𝑎ℓ , 𝑏𝑞+1} in 𝐻𝑞+1. Hence, 𝑣𝑞+1 = 𝑣𝑞 ∪ {𝑏𝑞+1}.

By Lemma 2.24, 𝑢 := 𝑣𝑞+1 \ {𝑎ℓ } is a principal clique (of cardinality 𝑞 + 1) in (𝐺 ′, 𝜆′) and hence a
vertex in P ′. Let c be the vertex in u such that c is largest with respect to the MAT-PEO (𝑎1, . . . , 𝑎ℓ−1)
of (𝐺 ′, 𝜆′). Since the edges in the complete subgraph 𝐺 ′ [𝑢] have label ≤ 𝑞, by (MS2), there exists
among these edges an edge 𝑒 incident on c of label q. By the preceding paragraph, this edge e must
be {𝑏𝑞+1, ℎ

∗} for some vertex ℎ∗ in 𝑣𝑞 \ {𝑎ℓ }. Moreover, such an edge e is unique which is guaranteed
by (ML1). Therefore, u is generated by e. In particular, u covers 𝑣𝑞 \ {𝑎ℓ } in P ′ by Lemma 2.24. (See
Figure 1 for a pictorial illustration of the proof.)
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Figure 1. A pictorial illustration of the proof of Theorem 4.13.

Now 𝑣𝑞+1 covers exactly two nodes 𝑣𝑞 and u in R𝑞+1. Also, 𝑣𝑞 is covered only by 𝑣𝑞+1 since 𝑎ℓ ∉ 𝑣
for all 𝑣 ∈ P ′. The (𝑞 + 1)-th associated forest of R𝑞+1 is given by that of R𝑞 with 𝑣𝑞 added so that 𝑣𝑞
is only connected to u. The (𝑞 + 2)-th associated forest of R𝑞+1 is given by that of R𝑞 with an isolated
vertex 𝑣𝑞+1 added. The remaining associated forests of R𝑞+1 are the same as those of R𝑞 . This follows
that R𝑞+1 is a vine. Furthermore, both 𝑣𝑞 ∈ R𝑞 and 𝑢 ∈ P ′ cover 𝑣𝑞 \ {𝑎ℓ }. Therefore, the proximity
condition holds in R𝑞+1. Hence, R𝑞+1 is an LR-vine by Proposition 4.4.

Finally, we show the second assertion of Theorem 4.13. If (𝐺, 𝜆) is an MAT-labeled complete graph,
then rk(P) = dim(P) = ℓ. The proofs for the proximity of P and the fact the associated forests of P
are trees run essentially along the same line as the proof of the first assertion. �

Corollary 4.14. Given an MAT-labeled graph (𝐺, 𝜆), let P denote the LR-vine defined by (𝐺, 𝜆) from
Definition 4.11. Then a node 𝑣 ∈ P has complete union 𝑈𝑣 = {{𝑎} | 𝑎 ∈ 𝑣}. Moreover, if 𝑣 = 𝐾𝑒 ∈ P
is a non-minimal node where 𝑒 = {𝑖, 𝑗} ∈ 𝐸𝐺 , then v has conditioned set 𝐶𝑣 = {{𝑖}, { 𝑗}}.

Proof. Use Remark 4.12 and argue by an induction on rk(𝑣). �

We close this section by giving an example to illustrate the construction in Definition 4.11 and
Theorem 4.13. First we need a definition.

Definition 4.15 (D-vine). An R-vine is called a D-Vine if each associated tree has the smallest possible
number of vertices of degree 1. Equivalently, each associated tree is a path graph.

Remark 4.16. Let Φ be an irreducible root system in Rℓ with a fixed positive system Φ+ ⊆ Φ and the
associated set of simple roots Δ = {𝛼1, . . . , 𝛼ℓ }. Suppose that Φ is of type 𝐴ℓ and the Dynkin diagram
of Φ is the path graph 𝛼1 − 𝛼2 − · · · − 𝛼ℓ . Then the positive roots of Φ are given by

Φ+ =
⎧⎪⎨⎪⎩

∑
𝑖≤𝑘≤ 𝑗

𝛼𝑘

������ 1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑚
⎫⎪⎬⎪⎭.

It is not hard to show that the D-vine P with the first associated tree 1 − 2 − · · · − ℓ is isomorphic to
the root poset R(𝐴ℓ) of type 𝐴ℓ under the following isomorphism:

𝜇 : P −→ R(𝐴ℓ) via 𝑣 ↦→
∑
𝑘∈𝑈𝑣

𝛼𝑘 .

Example 4.17. Figure 2 depicts a 4-dimensional D-vine (middle) that can be constructed in three ways.
First, it is the node poset of a graphical vine on [4] (left) under the isomorphism in Proposition 4.8.
Second, it is the poset defined an MAT-labeled complete graph (right) using Definition 4.11. Third, it
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Figure 2. An MAT-labeled complete graph on 4 vertices (right), the D-vine (middle) (= type A root
poset) defined by the graph using Definition 4.11, and the corresponding graphical vine (left).

is the root poset of type 𝐴4 by Remark 4.16. The elements in the poset are written without set symbol
for simplicity. The conditioned set of a non-minimal node is given to the left of the ‘|’ sign, while
the conditioning set appears on the right. For example, the top node {1, 2, 3, 4} (or the largest clique
generated by {𝑣1, 𝑣4}) is written by 14|23.

Remark 4.18. Max Wakefield let us know an interesting observation that the D-vine is isomorphic to
the intersection lattice (with bottom element removed) of the Pascal arrangement introduced in [19].
We leave a possible generalization of the main result in [19] to an R-vine for future research.

5. From LR-vines to MAT-labeled graphs

Constructing an MAT-labeled graph from a given LR-vine needs more effort.

5.1. Some new properties of LR-vines

The following lemma provides the key ingredient of our construction.

Lemma 5.1 (Joining path). Let P = (𝐹1, . . . , 𝐹𝑛) be an ℓ-dimensional LR-vine. Let 𝑖, 𝑗 ∈ min(P) = [ℓ]
be distinct minimal nodes. Let 𝑣 ∈ P𝑟 be a non-minimal node (2 ≤ 𝑟 ≤ 𝑛). The following are equivalent:

(1) 𝑣 = 𝑖 ∨ 𝑗 (i.e., v is the join of i and j).
(2) 𝐶𝑣 = {𝑖, 𝑗} (i.e., {𝑖, 𝑗} is the conditioned set of v).
(3) There exist r paths (uniquely determined by i and j) 𝑃𝑘 = 𝑃𝑘 (𝑖, 𝑗) ∈ 𝐸𝑘 in the forests 𝐹𝑘 (1 ≤ 𝑘 ≤ 𝑟)

satisfying the following three conditions:
(a) 𝑃1 = (𝑎1,1, 𝑎1,2, . . . , 𝑎1, 𝑝1 ), 𝑝1 ≥ 2 is a (unique) path connecting nodes 𝑎1,1 := 𝑖 and 𝑎1, 𝑝1 := 𝑗

in 𝐹1.
(b) For 2 ≤ 𝑘 ≤ 𝑟 , 𝑃𝑘 = (𝑎𝑘,1, 𝑎𝑘,2, . . . , 𝑎𝑘, 𝑝𝑘 ), 𝑝𝑘 ≥ 1 is a (unique) path connecting nodes

𝑎𝑘,1 := {𝑎𝑘−1,1, 𝑎𝑘−1,2} and 𝑎𝑘, 𝑝𝑘 := {𝑎𝑘−1, 𝑝𝑘−1−1, 𝑎𝑘−1, 𝑝𝑘−1 } in 𝐹𝑘 .
(c) 𝑃𝑟 = 𝑣.

In this case, we call the path 𝑃𝑘 (𝑖, 𝑗) ∈ 𝐸𝑘 (1 ≤ 𝑘 ≤ 𝑟) the k-joining path of the pair {𝑖, 𝑗} (or 𝑃𝑘 (𝑣)
the k-joining path of v).

Before giving the proof of Lemma 5.1, we address some remarks.

Remark 5.2. If P = (𝑇1, . . . , 𝑇ℓ ) is an R-vine, then for any distinct 𝑖, 𝑗 ∈ [ℓ], the joining paths of {𝑖, 𝑗}
always exist since 𝑇𝑘 is a tree for each 1 ≤ 𝑘 ≤ ℓ and 𝑇ℓ has only one node.

The implication (2) ⇐ (3) was stated in the proof of [11, Lemma 3.9] for R-vines. Unfortunately,
the proof was not complete. We give below a complete proof that works for an arbitrary LR-vine.
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Proof of Lemma 5.1. First we prove (2) ⇐ (3). By definition, 𝑃𝑟−1 = {𝑎𝑟−1,1, 𝑎𝑟−1, 𝑝𝑟−1 } = 𝑣. We need
to show 𝐶𝑣 = 𝑈𝑎𝑟−1,1 �𝑈𝑎𝑟−1, 𝑝𝑟−1

= {𝑖, 𝑗}. Since |𝐶𝑣 | = 2 by Lemma 4.3(b), it is enough to show
that 𝑖 ≤ 𝑎𝑟−1,1, 𝑖 �≤ 𝑎𝑟−1, 𝑝𝑟−1 and 𝑗 ≤ 𝑎𝑟−1, 𝑝𝑟−1 , 𝑗 �≤ 𝑎𝑟−1,1. This follows once we prove that for each
1 ≤ 𝑘 ≤ 𝑟 , the following two statements hold:

(S1) 𝑖 ≤ 𝑎𝑘,1 and 𝑖 �≤ 𝑏, where b is any node in 𝐹𝑘 such that there exists a (unique) path in 𝐹𝑘 connecting
b and some non-initial node 𝑎𝑘,𝑡 (2 ≤ 𝑡 ≤ 𝑝𝑘 ) of 𝑃𝑘 but not passing through its initial node 𝑎𝑘,1.

(S2) 𝑗 ≤ 𝑎𝑘, 𝑝𝑘 and 𝑗 �≤ 𝑐, where c is any node in 𝐹𝑘 such that there exists a (unique) path in 𝐹𝑘
connecting c and some non-final node 𝑎𝑘,𝑡 (1 ≤ 𝑡 ≤ 𝑝𝑘 − 1) of 𝑃𝑘 but not passing through its final
node 𝑎𝑘, 𝑝𝑘 .

Since the roles of i and j are symmetric, it suffices to prove Statement (S1). First we need the following
crucial property of the paths 𝑃𝑘 ’s.

Claim 5.3. Fix 1 ≤ 𝑘 ≤ 𝑟 − 1. Suppose 𝑃𝑘 is given by 𝑃𝑘 = (𝛼1, 𝛼2, . . . , 𝛼𝑝) for 𝑝 ≥ 1 in terms of its
node sequence. Then the node set of 𝑃𝑘+1 consists of all the edges {𝛼𝑡 , 𝛼𝑡+1} for 1 ≤ 𝑡 ≤ 𝑝 − 1 of 𝑃𝑘 ,
and some edges of the form {𝛼𝑠+1, 𝜇} for 1 ≤ 𝑠 ≤ 𝑝 − 2 and 𝜇 ∈ Nbd𝐹𝑘 (𝛼𝑠+1) \ {𝛼𝑠 , 𝛼𝑠+2}.

Proof of Claim 5.3. By definition, the initial and final nodes in 𝑃𝑘+1 are {𝛼1, 𝛼2} and {𝛼𝑝−1, 𝛼𝑝},
respectively. The claim is clearly true for 𝑝 ≤ 3. Suppose 𝑝 ≥ 4. By the proximity condition, the length
of 𝑃𝑘+1 is at least two. Again by the proximity, the node adjacent to the initial node in 𝑃𝑘+1 must have
the form either {𝛼1, 𝛽}, where 𝛽 ∈ Nbd𝐹𝑘 (𝛼1) \ {𝛼2}, or {𝛼2, 𝛾}, where 𝛾 ∈ Nbd𝐹𝑘 (𝛼2) \ {𝛼1}.

The former cannot occur; otherwise, arguing on the proximity yields two different paths in 𝐹𝑘
connecting 𝛼1 and 𝛼𝑝; one is 𝑃𝑘 passing through 𝛼2, the other passing through some 𝛽′ ∈ Nbd𝐹𝑘 (𝛼1) \
{𝛼2}. Thus, the latter occurs, and 𝑃𝑘+1 possibly continues to pass through some node of the same form
as {𝛼2, 𝛾}. The following two conditions hold: The path 𝑃𝑘+1 must (i) reach the node {𝛼2, 𝛼3}, and after
that, (ii) does not pass through any further node of this form. If either (i) or (ii) fails, then there are two
different paths in 𝐹𝑘 connecting 𝛼2 and 𝛼𝑝 . Hence, 𝑃𝑘+1 passes through some node of the form {𝛼3, 𝛿},
where 𝛿 ∈ Nbd𝐹𝑘 (𝛼3) \ {𝛼2} until it reaches {𝛼3, 𝛼4} and so on.

A repeated application of the argument above completes the proof of the claim.

𝑃𝑘 :𝛼1 → 𝛼2 → 𝛼3 → · · · → 𝛼𝑝 ,

𝑃𝑘+1 : {𝛼1, 𝛼2} → {𝛼2, 𝛾} → · · · → {𝛼2, 𝛼3} → · · · → {𝛼3, 𝛼4} → · · · → {𝛼𝑝−1, 𝛼𝑝}. �

Now we return to the proof of (S1). The first part is easy since by definition, 𝑎1,1 = 𝑖 and 𝑎𝑘,1 ≤ 𝑎𝑘+1,1
for all 1 ≤ 𝑘 ≤ 𝑟 −1. We argue the second part by induction on k. The statement is clearly true for 𝑘 = 1.
Suppose it is true for any 1 ≤ 𝑘 < 𝑟 . Let 𝑏 = {𝑏1, 𝑏2} be an arbitrary node in 𝐹𝑘+1 such that there exists
a path in 𝐹𝑘+1 connecting b and some non-initial node of 𝑃𝑘+1 but not passing through its initial node.
By the relation of the paths 𝑃𝑘 and 𝑃𝑘+1 proved in Claim 5.3, there exists a path in 𝐹𝑘 connecting 𝑏𝑠
(𝑠 = 1 or 2) and some non-initial node of 𝑃𝑘 but not passing through its initial node. By the induction
hypothesis, we must have 𝑖 �≤ 𝑏1 and 𝑖 �≤ 𝑏2. It follows that 𝑖 �≤ 𝑏. This completes the proof of (S1) and
hence the proof of (2) ⇐ (3).

To prove (2) ⇒ (3), the following fact is useful.

Remark 5.4. Suppose P is an R-vine. By Remark 5.2, for any 1 ≤ 𝑖 ≠ 𝑗 ≤ ℓ, the joining paths of
{𝑖, 𝑗} always exist. Thus, by (2) ⇐ (3), there exists a non-minimal node 𝑣 ∈ P such that 𝐶𝑣 = {𝑖, 𝑗}.
Moreover, by Remark 3.15, the number of non-minimal nodes in P is equal to ℓ(ℓ − 1)/2. Therefore,
every pair of distinct elements in [ℓ] occurs exactly once as the conditioned set of a non-minimal node.

Now we give the proof of (2) ⇒ (3). Write P≤𝑣 = (𝑇1, 𝑇2, . . . , 𝑇𝑟 ). By definition, P≤𝑣 is an R-vine.
If 𝐶𝑣 = {𝑖, 𝑗}, then i and j are nodes in 𝑇1. By Remark 5.2 and (2) ⇐ (3), there exist 𝑟 ′ joining paths of
{𝑖, 𝑗} and hence a node 𝑣′ in P≤𝑣 such that 𝐶𝑣′ = {𝑖, 𝑗} = 𝐶𝑣 . Hence, by Remark 5.4, 𝑣 = 𝑣′ and 𝑟 = 𝑟 ′.

Next, we show (1) ⇐ (3). By Statements (S1) and (S2), 𝑖 ≤ 𝑣 and 𝑗 ≤ 𝑣. Let 𝑢 ∈ P𝑠 for 1 ≤ 𝑠 ≤ 𝑛
be a node such that 𝑖 ≤ 𝑢 and 𝑗 ≤ 𝑢. In particular, i and j are minimal nodes in the R-vine P≤𝑢 . By
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Remark 5.2, there exist s joining paths of {𝑖, 𝑗} in P≤𝑢 . By the uniqueness of the paths in the associated
forests 𝐹𝑘 ’s, the joining paths of {𝑖, 𝑗} in P≤𝑢 and P≤𝑣 must be the same. Thus, 𝑟 = 𝑠 and 𝑣 ≤ 𝑢. Hence,
v is the join of i and j.

Finally, we show (1) ⇒ (3). Suppose 𝑣 = 𝑖 ∨ 𝑗 . Hence, there exist 𝑠′ joining paths of {𝑖, 𝑗} and
hence a node 𝑢′ in P≤𝑣 such that 𝑖 ≤ 𝑢′ and 𝑗 ≤ 𝑢′. By the definition of a join, we must have 𝑣 = 𝑢′ and
𝑠′ = 𝑟 . �

Remark 5.5. The missing piece of the proof of [11, Lemma 3.9] is the fact that 𝑖 �≤ 𝑎 for any non-initial
node a in 𝑃𝑘 does not automatically imply that 𝑖 �≤ 𝑏 for any non-initial node b in 𝑃𝑘+1.

Example 5.6. LetP be the 4-dimensional D-vine in Figure 2. Let 𝑖 = 1 and 𝑗 = 4 be minimal nodes. The
joining paths of 1 and 4 are given by 𝑃1 = (1, 2, 3, 4), 𝑃2 = (12, 23, 34), 𝑃3 = (13|2, 24|3), 𝑃4 = 14|23.
The join of 1 and 4 is 14|23. The conditioned set of 14|23 is {1, 4}. These calculations are consistent
with Lemma 5.1.

The first two corollaries below are immediate consequences of Lemma 5.1 and Claim 5.3, respectively.

Corollary 5.7. Let 𝑢, 𝑣 be two non-minimal nodes in an LR-vine P . If 𝐶𝑢 = 𝐶𝑣 , then 𝑢 = 𝑣.

Corollary 5.8. Let v be a non-minimal node in an LR-vine P . Then all the nodes of the joining paths of
v are in P≤𝑣 .

Corollary 5.9. Let P be an LR-vine. Let v be a non-minimal node in P with conditioned set 𝐶𝑣 = {𝑖, 𝑗}
for 𝑖, 𝑗 ∈ [ℓ]. If k is in the conditioning set of v, then the joins 𝑢 = 𝑖 ∨ 𝑘 and 𝑤 = 𝑗 ∨ 𝑘 exist in P .
Moreover, 𝑣 > 𝑢 and 𝑣 > 𝑤.

Proof. If 𝑘 ∈ 𝐷𝑣 , then k is a minimal node of the R-vine P≤𝑣 . By Remark 5.2, the joining paths of
{𝑖, 𝑘} and {𝑘, 𝑗} always exist. Thus, by Lemma 5.1, the joins 𝑢 = 𝑖 ∨ 𝑘 and 𝑤 = 𝑗 ∨ 𝑘 exist in P≤𝑣 and
hence in P . Note that 𝑣 ≠ 𝑢 and 𝑣 ≠ 𝑤 since 𝐶𝑣 ≠ 𝐶𝑢 and 𝐶𝑣 ≠ 𝐶𝑤 . Thus, 𝑣 > 𝑢 and 𝑣 > 𝑤. �

We give some further properties of the joining paths of a non-minimal node in an LR-vine.

Lemma 5.10. Let P = (𝐹1, . . . , 𝐹𝑛) be an LR-vine and let 𝑢, 𝑣 be two distinct non-minimal nodes in P .
Suppose that there exists a number k (1 ≤ 𝑘 ≤ rk(𝑢)) such that the k-joining path 𝑃𝑘 (𝑢) is a proper
subpath of the k-joining path 𝑃𝑘 (𝑣). Then 𝑃𝑞 (𝑢) is a proper subpath of 𝑃𝑞 (𝑣) for all 𝑘 ≤ 𝑞 ≤ rk(𝑢). In
particular, 𝑣 > 𝑢.

Proof. Write 𝑃𝑘 (𝑣) = (𝑎𝑘,1, 𝑎𝑘,2, . . . , 𝑎𝑘, 𝑝𝑘 ), 𝑝𝑘 ≥ 2. Since 𝑃𝑘 (𝑢) is a proper subpath of 𝑃𝑘 (𝑣), we
may write 𝑃𝑘 (𝑢) = (𝑎𝑘,𝑠 , . . . , 𝑎𝑘,𝑡 ), where 1 ≤ 𝑠 ≤ 𝑡 ≤ 𝑝𝑘 and (𝑠, 𝑡) ≠ (1, 𝑝𝑘 ). Note that 𝑃𝑘+1 (𝑢) is
the unique path connecting {𝑎𝑘,𝑠 , 𝑎𝑘,𝑠+1} and {𝑎𝑘,𝑡−1, 𝑎𝑘,𝑡 } in the forest 𝐹𝑘+1. Moreover, by Claim 5.3,
𝑃𝑘+1 (𝑣) passes through {𝑎𝑘,𝑠 , 𝑎𝑘,𝑠+1} and {𝑎𝑘,𝑡−1, 𝑎𝑘,𝑡 }. Therefore, 𝑃𝑘+1(𝑢) must be a proper subpath
of 𝑃𝑘+1(𝑣). Applying this argument repeatedly, we may show that 𝑃𝑞 (𝑢) is a proper subpath of 𝑃𝑞 (𝑣)
for all 𝑘 ≤ 𝑞 ≤ rk(𝑢). In particular, the case 𝑞 = rk(𝑢) yields 𝑣 > 𝑢. �

Before giving the next property in Lemma 5.13, we need a technical lemma on paths in a forest.

Lemma 5.11. Let F be a forest. Let 𝑖1, 𝑖2, . . . , 𝑖𝑚 for 𝑚 ≥ 3 be mutually distinct nodes in F. For each
1 ≤ 𝑠 ≤ 𝑚, suppose that there exists a (unique) path 𝑃𝑠,𝑠+1 in F connecting 𝑖𝑠 and 𝑖𝑠+1. Here, we take
the index modulo m. Denote by 𝑒′𝑠,𝑠+1 and 𝑒′′𝑠,𝑠+1 the edges in 𝑃𝑠,𝑠+1 incident on 𝑖𝑠 and 𝑖𝑠+1, respectively.
Suppose that there exists 1 ≤ 𝑡 ≤ 𝑚 such that 𝑒′′𝑡 ,𝑡+1 ≠ 𝑒′𝑡+1,𝑡+2. Then among the paths 𝑃𝑠,𝑠+1’s for
𝑠 ∉ {𝑡, 𝑡 + 1} there exist two paths 𝑃𝑎,𝑎+1 and 𝑃𝑏,𝑏+1 (not necessarily distinct) both of length ≥ 2
containing 𝑒′′𝑡 ,𝑡+1 and 𝑒′𝑡+1,𝑡+2, respectively.

Proof. Let T denote the subgraph of F induced by the vertices of the paths 𝑃𝑠,𝑠+1’s for all 1 ≤ 𝑠 ≤ 𝑚.
Note that T is a connected subgraph of F; hence, T is a tree.

If 𝑚 = 3, then the path 𝑃𝑡 ,𝑡+2 of length ≥ 2 contains both 𝑒′′𝑡 ,𝑡+1 and 𝑒′𝑡+1,𝑡+2. Suppose 𝑚 > 3. By the
assumption, the concatenation of 𝑃𝑡 ,𝑡+1 and 𝑃𝑡+1,𝑡+2, denoted P, is the unique path in T connecting 𝑖𝑡
and 𝑖𝑡+2. Moreover, there exists a walk in T connecting 𝑖𝑡 and 𝑖𝑡+2 whose edge set is the union of the edge
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sets of 𝑃𝑡+2,𝑡+3, 𝑃𝑡+3,𝑡+4, . . . , 𝑃𝑡−1,𝑡 . By Lemma 2.1, this walk must contain the path P. In particular, the
edge 𝑒′′𝑡 ,𝑡+1 (resp. 𝑒′𝑡+1,𝑡+2) is contained in a path 𝑃𝑎,𝑎+1 (resp. 𝑃𝑏,𝑏+1) for some 𝑎, 𝑏 ∉ {𝑡, 𝑡 + 1}. Clearly,
both 𝑃𝑎,𝑎+1 and 𝑃𝑏,𝑏+1 have lengths ≥ 2. �

Notation 5.12. Let P be an LR-vine. In what follows, for two distinct minimal nodes 𝑖, 𝑗 ∈ min(P), if
the join 𝑖 ∨ 𝑗 exists in P , we denote 𝑣𝑖, 𝑗 := 𝑖 ∨ 𝑗 ∈ P . Sometimes, two minimal nodes in P are denoted
by 𝑖𝑠 , 𝑖𝑡 , in which case, we write 𝑣𝑠,𝑡 := 𝑣𝑖𝑠 ,𝑖𝑡 . Note that by Lemma 5.1, the nodes 𝑣𝑖, 𝑗 ’s are mutually
distinct (i.e., if {𝑖, 𝑗} ≠ {𝑖′, 𝑗 ′}, then 𝑣𝑖, 𝑗 ≠ 𝑣𝑖′, 𝑗′).

Lemma 5.13. Let P = (𝐹1, . . . , 𝐹𝑛) be an LR-vine of rank n. Let 𝑖1, 𝑖2, . . . , 𝑖𝑚 ∈ min(P) for 𝑚 ≥ 3 be
mutually distinct minimal nodes in P . Suppose that the join 𝑣𝑠,𝑠+1 exists in P for each 1 ≤ 𝑠 ≤ 𝑚. Here
again, we take the index modulo m. Then there exist a node 𝑖𝑡 and a join 𝑣𝑎,𝑎+1 for 𝑎, 𝑡 ∈ [𝑚] such that
𝑎 ∉ {𝑡 − 1, 𝑡} and 𝑖𝑡 belongs to the conditioning set of 𝑣𝑎,𝑎+1.

Proof. By Lemma 5.1, for each 1 ≤ 𝑠 ≤ 𝑚, there exist the k-joining paths 𝑃𝑘 (𝑣𝑠,𝑠+1)’s of 𝑣𝑠,𝑠+1 for
1 ≤ 𝑘 ≤ rk(𝑣𝑠,𝑠+1). In particular, 𝑃1 (𝑣𝑠,𝑠+1) is the unique path in 𝐹1 connecting 𝑖𝑠 and 𝑖𝑠+1. For each
1 ≤ 𝑠 ≤ 𝑚, denote by 𝑒′𝑠,𝑠+1 and 𝑒′′𝑠,𝑠+1 the edges in 𝑃1(𝑣𝑠,𝑠+1) incident on 𝑖𝑠 and 𝑖𝑠+1, respectively.
If there exists 𝑡 ∈ [𝑚] such that 𝑒′′𝑡 ,𝑡+1 ≠ 𝑒′𝑡+1,𝑡+2, then by Lemma 5.11, 𝑒′′𝑡 ,𝑡+1 is an edge of a path
𝑃1 (𝑣𝑎,𝑎+1) of length ≥ 2 for some 𝑎 ∈ [𝑚] \ {𝑡, 𝑡 + 1}. By Claim 5.3, 𝑒′′𝑡 ,𝑡+1 is a node in 𝑃2 (𝑣𝑎,𝑎+1). By
Corollary 5.8, 𝑖𝑡+1 < 𝑒′′𝑡 ,𝑡+1 ≤ 𝑣𝑎,𝑎+1. Hence, 𝑖𝑡+1 belongs to the conditioning set of 𝑣𝑎,𝑎+1.

Now consider the case 𝑒′′𝑠−1,𝑠 = 𝑒′𝑠,𝑠+1 for each 1 ≤ 𝑠 ≤ 𝑚. Denote this common edge by 𝑗𝑠 . Note
that these edges become nodes in 𝐹2. By definition, 𝑃2 (𝑣𝑠,𝑠+1) is the path in 𝐹2 connecting 𝑗𝑠 and
𝑗𝑠+1 for each 1 ≤ 𝑠 ≤ 𝑚. Denote by 𝑓 ′𝑠,𝑠+1 and 𝑓 ′′𝑠,𝑠+1 the edges in 𝑃2 (𝑣𝑠,𝑠+1) incident on 𝑗𝑠 and 𝑗𝑠+1,
respectively. By a similar argument as in the preceding paragraph with the aid of Lemma 5.11, we only
need to consider the case 𝑓 ′′𝑠−1,𝑠 = 𝑓 ′𝑠,𝑠+1 for all 1 ≤ 𝑠 ≤ 𝑚.

A repeated application of this argument leads us to the situation that for every k, there exist mutually
distinct nodes ℎ1, ℎ2, . . . , ℎ𝑚 in 𝐹𝑘 such that the k-joining path 𝑃𝑘 (𝑣𝑠,𝑠+1) connects ℎ𝑠 and ℎ𝑠+1 for
each 1 ≤ 𝑠 ≤ 𝑚. Furthermore, if 𝑔′𝑠,𝑠+1 and 𝑔′′𝑠,𝑠+1 are the edges in 𝑃𝑘 (𝑣𝑠,𝑠+1) incident on ℎ𝑠 and ℎ𝑠+1,
respectively, then 𝑔′′𝑠−1,𝑠 = 𝑔′𝑠,𝑠+1 for each 1 ≤ 𝑠 ≤ 𝑚.

However, let 𝑞 ∈ [𝑚] such that rk(𝑣𝑞,𝑞+1) = min{rk(𝑣𝑠,𝑠+1) | 1 ≤ 𝑠 ≤ 𝑚} and let 𝑘 = rk(𝑣𝑞,𝑞+1) −1.
Then the path 𝑃𝑘 (𝑣𝑞,𝑞+1) has length 1 (or simply an edge in 𝐹𝑘 ). The situation in the paragraph above
implies that 𝑃𝑘 (𝑣𝑞,𝑞+1) is a proper subpath of 𝑃𝑘 (𝑣𝑞−1,𝑞). By Lemma 5.10, 𝑖𝑞+1 < 𝑃𝑘 (𝑣𝑞,𝑞+1) ≤ 𝑣𝑞−1,𝑞 .
Hence, 𝑖𝑞+1 belongs to the conditioning set of 𝑣𝑞−1,𝑞 . �

We have a stronger statement when 𝑚 = 3 in Lemma 5.13. First we address a remark.

Remark 5.14. Let F be a forest. Let 𝑖1, 𝑖2 and 𝑖3 be three mutually distinct nodes in F. Suppose there
exist the paths 𝑃1,2, 𝑃2,3, 𝑃3,1 in F connecting 𝑖1 and 𝑖2, 𝑖2 and 𝑖3, 𝑖3 and 𝑖1, respectively. Let T denote
the subgraph (tree) of F induced by the vertices of the paths 𝑃1,2, 𝑃2,3, 𝑃3,1. One may show that there
does not exist a path among 𝑃1,2, 𝑃2,3 and 𝑃3,1 being the concatenation of the other two paths if and
only if 𝑖1, 𝑖2, 𝑖3 are leaves in T. In particular, it is not the case if one of the paths has length 1.

Lemma 5.15. Let P = (𝐹1, . . . , 𝐹𝑛) be an LR-vine of rank n. Let 𝑎1, 𝑏1, 𝑐1 ∈ min(P) be mutually
distinct minimal nodes in P . Suppose that the joins 𝑢 = 𝑎1 ∨ 𝑏1, 𝑣 = 𝑏1 ∨ 𝑐1 and 𝑤 = 𝑎1 ∨ 𝑐1 exist in
P . Then there exists a number 𝑘 (1 ≤ 𝑘 ≤ 𝑛) such that one of the three k-joining paths 𝑃𝑘 (𝑢), 𝑃𝑘 (𝑣)
and 𝑃𝑘 (𝑤) is the concatenation of the other two paths.

As a consequence, there exists a node among three nodes 𝑢, 𝑣 and w strictly greater than the other two.

Proof. The proof of the first assertion is similar to the proof of Lemma 5.13 with the use of Remark 5.14
in place of Lemma 5.11. The second assertion follows from the first and Lemma 5.10. �

5.2. Construct an MAT-labeled graph from a given LR-vine

Definition 5.16. Let P be an LR-vine of dimension ℓ and rank n. Define an edge-labeled graph (𝐺, 𝜆)
from P as follows:
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(1) The vertex set 𝑁𝐺 is given by the set of minimal nodes (i.e., 𝑁𝐺 := min(P) = [ℓ]).
(2) The edge set 𝐸𝐺 is given by the conditioned sets of non-minimal nodes; that is,

𝐸𝐺 := {𝐶𝑣 | 𝑣 ∈ P \ min(P)}

= {{𝑖, 𝑗} ⊆ [ℓ] | 𝑖 ≠ 𝑗 and the join𝑣𝑖, 𝑗 = 𝑖 ∨ 𝑗 exists in P}.

(The second expression of 𝐸𝐺 above follows from Lemma 5.1.)
(3) The labeling 𝜆 : 𝐸𝐺 −→ Z>0 is defined by

𝜆(𝑖, 𝑗) := rkP (𝑣𝑖, 𝑗 ) − 1.

Theorem 5.17. The edge-labeled graph (𝐺, 𝜆) from Definition 5.16 is an MAT-labeled graph. In
particular, if P is an R-vine, then (𝐺, 𝜆) is an MAT-labeled complete graph.

Proof. The first assertion follows from Lemmas 5.18 and 5.19 below. The second assertion follows
from the first and Remark 5.4. �

Lemma 5.18. (𝐺, 𝜆) satisfies (ML1).

Proof. Suppose to the contrary that there exist 1 ≤ 𝑘 ≤ 𝑛 − 1 and an m-cycle 𝐶𝑚 for 𝑚 ≥ 3 with edges
{𝑖1, 𝑖2}, {𝑖2, 𝑖3}, . . . , {𝑖𝑚, 𝑖1} such that 𝜆(𝑖1, 𝑖2) < 𝑘 and 𝜆(𝑖𝑠 , 𝑖𝑠+1) = 𝑘 for 2 ≤ 𝑠 ≤ 𝑚. Here, we take the
index modulo m. We choose the smallest such m.

If 𝑚 = 3, then by Lemma 5.15, there exists a node among the nodes 𝑣1,2, 𝑣2,3, 𝑣3,1 strictly greater
than the other two. This is a contradiction since there are two nodes of the same rank 𝑘 + 1, while the
remaining node has rank < 𝑘 + 1. We may assume 𝑚 > 3.

By Lemma 5.13, there exist a minimal node 𝑖𝑡 and a join 𝑣𝑎,𝑎+1 = 𝑖𝑎 ∨ 𝑖𝑎+1 in P for 𝑎, 𝑡 ∈ [𝑚] such
that 𝑡 ∉ {𝑎, 𝑎 + 1} and 𝑖𝑡 belongs to the conditioning set of 𝑣𝑎,𝑎+1. By Corollary 5.9, the joins 𝑣𝑎,𝑡 ,
𝑣𝑡 ,𝑎+1 exist in P , and both are strictly smaller than 𝑣𝑎,𝑎+1. Hence, the edges {𝑖𝑎, 𝑖𝑡 }, {𝑖𝑡 , 𝑖𝑎+1} exist in
(𝐺, 𝜆) and both have labels < 𝑘 . Therefore, there exists a cycle in (𝐺, 𝜆) of length < 𝑚 with one edge
of label < 𝑘 and the other edges of the same label k. This contradicts the minimality of m. Thus, for
every 𝑘 ∈ Z>0, an edge 𝑒 ∈ 𝜋<𝑘 does not form a cycle with edges in 𝜋𝑘 .

Now suppose (𝐺, 𝜆) contains an m-cycle 𝐶𝑚 for 𝑚 ≥ 3 with all edges of the same label k for some
1 ≤ 𝑘 ≤ 𝑛 − 1. By Lemma 5.15, we may assume 𝑚 > 3. By a similar argument as in the preceding
paragraph with the aid of Lemma 5.13, the cycle 𝐶𝑚 has a chord of label < 𝑘 . This contradicts the
conclusion of the preceding paragraph. �

Lemma 5.19. Fix 1 ≤ 𝑘 ≤ 𝑛 − 1 and let {𝑖, 𝑗} ∈ 𝜋𝑘 . Then the conditioning set of 𝑣𝑖, 𝑗 = 𝑖 ∨ 𝑗 coincides
with the set of conditioning vertices of {𝑖, 𝑗}. In particular, (𝐺, 𝜆) satisfies (ML2).

Proof. Note that 𝑣𝑖, 𝑗 ∈ P𝑘+1. By Lemma 4.3(b), the conditioning set 𝐷𝑣𝑖, 𝑗 of 𝑣𝑖, 𝑗 contains 𝑘 − 1
elements. We may write it as 𝐷𝑣𝑖, 𝑗 = {ℎ𝑡 | 1 ≤ 𝑡 ≤ 𝑘 − 1}. By Corollary 5.9, the joins 𝑣𝑖,ℎ𝑡 , 𝑣ℎ𝑡 , 𝑗 for
1 ≤ ℎ𝑡 ≤ 𝑘 − 1 exist in P , and all are strictly smaller than 𝑣𝑖, 𝑗 . In particular, the edges {𝑖, ℎ𝑡 }, {ℎ𝑡 , 𝑗}
have label < 𝑘 for all ℎ𝑡 . This implies that 𝐷𝑣𝑖, 𝑗 is contained in the set of conditioning vertices of {𝑖, 𝑗}.

Now let ℎ ∈ [ℓ] \𝑈𝑣𝑖, 𝑗 (i.e., ℎ �≤ 𝑣𝑖, 𝑗 ). We show that if the joins 𝑣𝑖,ℎ and 𝑣ℎ, 𝑗 both exist, then either
{𝑖, ℎ} or {ℎ, 𝑗} has label > 𝑘 . It cannot happen that 𝑣𝑖,ℎ < 𝑣𝑖, 𝑗 or 𝑣ℎ, 𝑗 < 𝑣𝑖, 𝑗 ; otherwise, ℎ ≤ 𝑣𝑖, 𝑗 .
Hence, by Lemma 5.15, either 𝑣𝑖,ℎ > 𝑣𝑖, 𝑗 or 𝑣ℎ, 𝑗 > 𝑣𝑖, 𝑗 .

Thus, the conditioning set of 𝑣𝑖, 𝑗 coincides with the set of conditioning vertices of {𝑖, 𝑗} ∈ 𝜋𝑘 . Since
this is true for every k, we conclude that (𝐺, 𝜆) satisfies (ML2). �

6. Equivalences of categories

For basic definitions and notations of category theory, we refer the reader to [18, Chapter 1]. In this
section, we will define the categories of MAT-labeled graphs and LR-vines, and construct an explicit
equivalence between these two categories.
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6.1. Equivalence of MAT-labeled graphs and LR-vines

Definition 6.1 (Label-preserving homomorphism). Let (𝐺, 𝜆) and (𝐺 ′, 𝜆′) be edge-labeled graphs.
A label-preserving homomorphism from (𝐺, 𝜆) to (𝐺 ′, 𝜆′), written 𝜎 : (𝐺, 𝜆) −→ (𝐺 ′, 𝜆′), is a
map 𝜎 : 𝑁𝐺 −→ 𝑁𝐺′ such that for all 𝑢, 𝑣 ∈ 𝑁𝐺 , {𝑢, 𝑣} ∈ 𝐸𝐺 implies {𝜎(𝑢), 𝜎(𝑣)} ∈ 𝐸𝐺′ and
𝜆(𝑢, 𝑣) = 𝜆′(𝜎(𝑢), 𝜎(𝑣)).

We call 𝜎 an isomorphism if 𝜎 is bijective and its inverse is a label-preserving homomorphism. The
edge-labeled graphs (𝐺, 𝜆) and (𝐺 ′, 𝜆′) are said to be isomorphic, written (𝐺, 𝜆) � (𝐺 ′, 𝜆′) if there
exists an isomorphism 𝜎 : (𝐺, 𝜆) −→ (𝐺 ′, 𝜆′). If (𝐺, 𝜆) � (𝐺, 𝜆′), we say that two labelings 𝜆 and 𝜆′

are the same (or isomorphic).

If (𝐺, 𝜆) � (𝐺 ′, 𝜆′) and (𝐺, 𝜆) is an MAT-labeled graph, then (𝐺 ′, 𝜆′) is also an MAT-labeled graph.

Definition 6.2 (Category of MAT-labeled (complete) graphs). The category MG of MAT-labeled
graphs is the category whose objects are the MAT-labeled graphs and whose morphisms are the label-
preserving homomorphisms. The category MCG of MAT-labeled complete graphs is a full subcategory
of MG whose objects are the MAT-labeled complete graphs.

Recall the definition of rank and join-preserving homomorphisms of graded posets from Defini-
tion 3.5.

Definition 6.3 (Category of (L)R-vines). The category LRV of LR-vines is the category whose objects
are the LR-vines and whose morphisms are the homomorphisms preserving rank and join. The category
RV of R-vines is a full subcategory of LRV whose objects are the R-vines.

First we need some lemmas.

Lemma 6.4. Let 𝜑 : P −→ P ′ be a rank-preserving homomorphism of LR-vines. Suppose 𝜑 preserves
join of minimal pairs (i.e., if 𝑥, 𝑦 ∈ min(P) such that the join 𝑥 ∨ 𝑦 exists, then 𝜑(𝑥) ∨ 𝜑(𝑦) exists and
𝜑(𝑥 ∨ 𝑦) = 𝜑(𝑥) ∨ 𝜑(𝑦)). Then 𝜑 induces an isomorphism P≤𝑣 � P ′

≤𝜑 (𝑣)
for every 𝑣 ∈ P .

Proof. Clearly, 𝜑 induces a homomorphism 𝜑|P≤𝑣 : P≤𝑣 −→ P ′
≤𝜑 (𝑣)

. In particular, 𝜑(𝑈𝑣 ) ⊆ 𝑈𝜑 (𝑣) .
Note that for any distinct 𝑖, 𝑗 ∈ 𝑈𝑣 , the join 𝑖 ∨ 𝑗 exists in the R-vine P≤𝑣 by Remark 5.4. Since 𝜑
preserves rank, rk′(𝜑(𝑖 ∨ 𝑗)) = rk(𝑖 ∨ 𝑗) > rk(𝑖). Since 𝜑 preserves join of minimal pairs, 𝜑(𝑖) ∨ 𝜑( 𝑗)
exists and 𝜑(𝑖∨ 𝑗) = 𝜑(𝑖) ∨𝜑( 𝑗). In particular, 𝜑(𝑖) ≠ 𝜑( 𝑗). Hence, the elements in 𝜑(𝑈𝑣 ) are pairwise
distinct. Thus, 𝜑(𝑈𝑣 ) = 𝑈𝜑 (𝑣) since |𝜑(𝑈𝑣 ) | = |𝑈𝑣 | = rk(𝑣) = rk′(𝜑(𝑣)) = |𝑈𝜑 (𝑣) |.

Let 𝑎, 𝑎′ ∈ P≤𝑣 be such that 𝜑(𝑎) = 𝜑(𝑎′). We may write 𝑎 = 𝑖∨ 𝑗 and 𝑎′ = 𝑖′ ∨ 𝑗 ′ for minimal nodes
𝑖 ≠ 𝑗 , 𝑖′ ≠ 𝑗 ′. Thus, 𝜑(𝑖) ∨ 𝜑( 𝑗) = 𝜑(𝑖′) ∨ 𝜑( 𝑗 ′). Again by Remark 5.4, {𝜑(𝑖), 𝜑( 𝑗)} = {𝜑(𝑖′), 𝜑( 𝑗 ′)}.
Since the elements in 𝜑(𝑈𝑣 ) are pairwise distinct, {𝑖, 𝑗} = {𝑖′, 𝑗 ′}. Hence, 𝑎 = 𝑎′. This implies that
𝜑|P≤𝑣 is injective. Moreover, |P≤𝑣 | =

���P ′
≤𝜑 (𝑣)

��� by Remark 3.15. Hence, 𝜑|P≤𝑣 is bijective.
Now let 𝑎, 𝑏 ∈ P≤𝑣 be such that 𝜑(𝑎) ≤ 𝜑(𝑏). Therefore, 𝑈𝜑 (𝑎) ⊆ 𝑈𝜑 (𝑏) ; hence, 𝜑(𝑈𝑎) ⊆ 𝜑(𝑈𝑏).

It follows that 𝑈𝑎 ⊆ 𝑈𝑏 . By Corollary 4.6, 𝑎 ≤ 𝑏. Thus, the inverse of 𝜑|P≤𝑣 is a homomorphism. We
conclude that 𝜑|P≤𝑣 is an isomorphism. �

Lemma 6.5. Let 𝜑 : P −→ P ′ be a rank-preserving homomorphism of LR-vines such that 𝜑 preserves
join of minimal pairs (Lemma 6.4). Then 𝜑 is join-preserving.

Proof. Let 𝑎, 𝑏 ∈ P and suppose the join 𝑎 ∨ 𝑏 exists in P . Write 𝑣 = 𝑎 ∨ 𝑏. Note that 𝜑(𝑎), 𝜑(𝑏) ∈
P ′

≤𝜑 (𝑣)
. By Lemma 6.4, 𝜑|P≤𝑣 : P≤𝑣 −→ P ′

≤𝜑 (𝑣)
is a poset isomorphism. It follows that 𝜑|P≤𝑣 is join-

preserving. Therefore, 𝜑(𝑎) ∨ 𝜑(𝑏) exists in P ′
≤𝜑 (𝑣)

and hence in P ′ and 𝜑(𝑎 ∨ 𝑏) = 𝜑(𝑎) ∨ 𝜑(𝑏).
Thus, 𝜑 is join-preserving. �

Lemma 6.6. Let P and P ′ be LR-vines and suppose there is a homomorphism 𝜑 : P −→ P ′ preserving
rank and join. Let (𝐺, 𝜆) (resp. (𝐺 ′, 𝜆′)) denote the MAT-labeled graph defined by P (resp. P ′) from
Definition 5.16 and Theorem 5.17. Define a map Ω(𝜑) : 𝑁𝐺 −→ 𝑁𝐺′ by sending each node i in G to a
node 𝜑(𝑖) in 𝐺 ′ for 1 ≤ 𝑖 ≤ ℓ. Then Ω(𝜑) is a label-preserving homomorphism from (𝐺, 𝜆) to (𝐺 ′, 𝜆′).

https://doi.org/10.1017/fms.2024.124 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2024.124


22 H. M. Tran, T. N. Tran and S. Tsujie

Proof. Let {𝑖, 𝑗} ∈ 𝐸𝐺 be an edge in G for distinct nodes 𝑖, 𝑗 ∈ 𝑁𝐺 . Then the join 𝑖 ∨ 𝑗 exists in P .
Since 𝜑 is join-preserving, 𝜑(𝑖) ∨ 𝜑( 𝑗) exists and 𝜑(𝑖 ∨ 𝑗) = 𝜑(𝑖) ∨ 𝜑( 𝑗). Since 𝜑 is rank-preserving,
𝜑(𝑖) ≠ 𝜑( 𝑗). Therefore, {𝜑(𝑖), 𝜑( 𝑗)} ∈ 𝐸𝐺′ . Furthermore,

𝜆′(𝜑(𝑖), 𝜑( 𝑗)) = rk′(𝜑(𝑖) ∨ 𝜑( 𝑗)) − 1 = rk(𝑖 ∨ 𝑗) − 1 = 𝜆(𝑖, 𝑗).

Thus, Ω(𝜑) is a label-preserving homomorphism. �

Lemma 6.7. Let (𝐺, 𝜆) and (𝐺 ′, 𝜆′) be MAT-labeled graphs and suppose there is a label-preserving
homomorphism 𝜎 : (𝐺, 𝜆) −→ (𝐺 ′, 𝜆′). Let P (resp. P ′) denote the LR-vine defined by (𝐺, 𝜆) (resp.
(𝐺 ′, 𝜆′)) from Definition 4.11 and Theorem 4.13. Define a map Ψ(𝜎) : P −→ P ′ by sending 𝑣 ∈ P to
{𝜎(𝑎) | 𝑎 ∈ 𝑣} ∈ P ′. Then Ψ(𝜎) is a homomorphism preserving rank and join between P and P ′.

Proof. Let 𝜑 = Ψ(𝜎). Note that since 𝜑 is label-preserving, if 𝑣 = 𝐾𝑒 ∈ P where 𝐾𝑒 is a principal
clique in (𝐺, 𝜆) for 𝑒 ∈ 𝐸𝐺 , then 𝜎(𝐾𝑒) = {𝜎(𝑎) | 𝑎 ∈ 𝐾𝑒} = 𝐾𝜎 (𝑒) is a principal clique in (𝐺 ′, 𝜆′).
Hence, 𝜑 is indeed well-defined. It is also easily seen that 𝜑 is a rank-preserving homomorphism since
𝜆(𝑒) = |𝐾𝑒 | − 1. Let {𝑖}, { 𝑗} ∈ P be distinct minimal nodes in P such that {𝑖} ∨ { 𝑗} exists in P . By
Corollary 4.14, we may write 𝐾𝑒 = {𝑖} ∨ { 𝑗} ∈ P for 𝑒 = {𝑖, 𝑗} ∈ 𝐸𝐺 . Also by Corollary 4.14, 𝐾𝜎 (𝑒) =
{𝜎(𝑖)} ∨ {𝜎( 𝑗)} ∈ P ′ since 𝜎(𝑒) = {𝜎(𝑖), 𝜎( 𝑗)} ∈ 𝐸𝐺′ . Therefore, 𝜑({𝑖} ∨ { 𝑗}) = 𝜑({𝑖}) ∨ 𝜑({ 𝑗}).
Thus, 𝜑 preserves join of minimal pairs. By Lemma 6.5, 𝜑 is join-preserving. �

The following two lemmas give a construction of functors between MG and LRV. The proofs are
routine.

Lemma 6.8. Define a mapping Ω : LRV −→ MG by associating

(1) each object P in LRV to an object Ω(P) = (𝐺, 𝜆) in MG, where (𝐺, 𝜆) is the MAT-labeled graph
defined by P from Definition 5.16 and Theorem 5.17, and

(2) each morphism 𝜑 : P −→ P ′ in LRV to a morphism Ω(𝜑) : Ω(P) −→ Ω(P ′) in MG, where Ω(𝜑)
is the label-preserving homomorphism from Lemma 6.6.

Then Ω is a functor from LRV to MG.

Lemma 6.9. Define a mapping Ψ : MG −→ LRV by associating

(1) each object (𝐺, 𝜆) in MG to an object Ψ(𝐺, 𝜆) = P in LRV, where P is the LR-vine defined by
(𝐺, 𝜆) from Definition 4.11 and Theorem 4.13, and

(2) each morphism 𝜎 : (𝐺, 𝜆) −→ (𝐺 ′, 𝜆′) in MG to a morphism Ψ(𝜎) : Ψ(𝐺, 𝜆) −→ Ψ(𝐺 ′, 𝜆′) in
LRV, where Ψ(𝜎) is the homomorphism preserving rank and join from Lemma 6.7.

Then Ψ is a functor from MG to LRV.

We are now ready to prove the main result of the paper.

Theorem 6.10. The composite functor ΨΩ (resp. ΩΨ) is naturally isomorphic to the identity functor
1LRV (resp. 1MG). As a result, the categories MG and LRV are equivalent.

Proof. For every LR-vine P , recall from Proposition 4.8 the LR-vine P̂ = {𝑈𝑣 | 𝑣 ∈ P} and the
isomorphism

𝜂P : P −→ P̂ via 𝑣 ↦→ 𝑈𝑣 .

By Lemmas 6.9 and 6.8, the functor ΨΩ : LRV −→ LRV assigns

(1) each LR-vine P to the LR-vine ΨΩ(P) = P̂ , and
(2) each morphism 𝜑 : P −→ P ′ in LRV to a morphism ΨΩ(𝜑) : P̂ −→ P̂ ′ in LRV defined by sending

𝑈𝑣 ∈ P̂ to 𝜑(𝑈𝑣 ) = 𝑈𝜑 (𝑣) ∈ P̂ ′ for every 𝑣 ∈ P . The equality holds by Lemma 6.4.

Similarly, the functor ΩΨ : MG −→ MG assigns
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Figure 3. Commutative diagram that shows ΨΩ � 1LRV.

(1’) each MAT-labeled graph (𝐺, 𝜆) to an MAT-labeled graph ΩΨ(𝐺, 𝜆) = (𝐺, 𝜆), where 𝑁𝐺 = {{𝑖} |

𝑖 ∈ 𝑁𝐺}, 𝐸𝐺 = {{{𝑖}, { 𝑗}} | {𝑖, 𝑗} ∈ 𝐸𝐺} and 𝜆({𝑖}, { 𝑗}) = 𝜆(𝑖, 𝑗) (see also Corollary 4.14), and
(2’) each morphism 𝜎 : (𝐺, 𝜆) −→ (𝐺 ′, 𝜆′) in MG to a morphism ΩΨ(𝜎) : (𝐺, 𝜆) −→ (𝐺 ′, 𝜆′) in MG

defined by sending {𝑖} ∈ 𝑁𝐺 to {𝜎(𝑖)} ∈ 𝑁𝐺′ for every 𝑖 ∈ 𝑁𝐺 .

First we prove ΨΩ � 1LRV (i.e., ΨΩ is naturally isomorphic to 1LRV). For every morphism 𝜑 : P −→

P ′ in LRV, we have a commutative diagram in Figure 3.
This follows that 𝜂 : 1LRV −→ ΨΩ with component 𝜂P at P is a natural isomorphism. Thus, ΨΩ is

naturally isomorphic to 1LRV.
The proof for ΩΨ � 1MG is similar and easier. For every object (𝐺, 𝜆) in MG, the following map is

an isomorphism:

𝜖 (𝐺,𝜆) : (𝐺, 𝜆) −→ (𝐺, 𝜆) via 𝑁𝐺 � 𝑖 ↦→ {𝑖} ∈ 𝑁𝐺 .

Furthermore, ΩΨ is naturally isomorphic to 1MG via the natural isomorphism 𝜖 : 1MG −→ ΩΨ with
component 𝜖 (𝐺,𝜆) at (𝐺, 𝜆). �

The following corollary is straightforward from Theorem 6.10.

Corollary 6.11. The restriction Ψ|MCG (resp. Ω|RV) is a functor from MCG (resp. RV) to RV (resp.
MCG). Furthermore, the composite functor Ψ|MCGΩ|RV (resp. Ω|RVΨ|MCG) is naturally isomorphic to
the identity functor 1RV (resp. 1MCG). As a result, the categories MCG and RV are equivalent.

Another interesting consequence is the existence of a pushout in the category MG and hence in LRV
owing to the gluing method in Lemma 2.21.

Corollary 6.12. Suppose we are in the situation of Lemma 2.21. Denote by 𝜇1 : (𝐺 ′, 𝜆′) ↩−→ (𝐺1, 𝜆1),
𝜇2 : (𝐺 ′, 𝜆′) ↩−→ (𝐺2, 𝜆2), 𝜎1 : (𝐺1, 𝜆1) ↩−→ (𝐺, 𝜆) and 𝜎2 : (𝐺2, 𝜆2) ↩−→ (𝐺, 𝜆) the embeddings (in
particular, morphisms in MG) of the MAT-labeled graphs. Then ((𝐺, 𝜆), 𝜎1, 𝜎2) is a pushout of 𝜇1 and
𝜇2.

Proof. It is easily seen that 𝜎1𝜇1 = 𝜎2𝜇2. Hence, the square diagram commutes. Now given another
triple ((𝐺3, 𝜆3), 𝜎

′
1, 𝜎

′
2) with 𝜎′

1𝜇1 = 𝜎′
2𝜇2, let 𝜃 : (𝐺, 𝜆) −→ (𝐺3, 𝜆3) be defined by 𝜃 (𝑢) = 𝜎′

1(𝑢) for
𝑢 ∈ 𝑁𝐺1 , 𝜃 (𝑢) = 𝜎′

2(𝑢) for 𝑢 ∈ 𝑁𝐺2 . Thus, 𝜃𝜎1 = 𝜎′
1 and 𝜃𝜎2 = 𝜎′

2. It is also easy to see that 𝜃 is the
unique morphism making the diagram commute.

(𝐺 ′, 𝜆′) (𝐺1, 𝜆1)

(𝐺2, 𝜆2) (𝐺, 𝜆)

(𝐺3, 𝜆3)

𝜇1

𝜇2 𝜎1 𝜎′
1

𝜎2

𝜎′
2

∃! 𝜃

We conclude that ((𝐺, 𝜆), 𝜎1, 𝜎2) is a pushout of 𝜇1 and 𝜇2. �
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6.2. Equivalence of LR-vines and m-vines

Theorem 6.13. Let P be a vine. The following are equivalent:
(1) P is an m-vine (i.e., by definition, P is an ideal of an R-vine).
(2) P satisfies the proximity condition.
(3) P is an LR-vine.
Proof. (2) ⇔ (3) is shown in Proposition 4.4. (1) ⇒ (3) is straightforward from Remark 3.17. It
remains to show (1) ⇐ (3). The proof is based on the following diagram:

P̂

P (𝐺, 𝜆)

R̂

R (𝐾, 𝜆)

𝜄′

𝜂P

Ω

𝜄′ 𝜄

Ψ

𝜂−1
R Ψ

First, given an LR-vine P , let (𝐺, 𝜆) = Ω(P) be the MAT-labeled graph associated to P via the
functor Ω from Lemma 6.8. Next, let (𝐾, 𝜆) be the MAT-labeled complete graph such that (𝐺, 𝜆) ≤

(𝐾, 𝜆) from Proposition 2.20. In particular, there exists an embedding 𝜄 : (𝐺, 𝜆) ↩−→ (𝐾, 𝜆). Then let
Ψ|MCG(𝐾, 𝜆) = R̂ be the R-vine associated to (𝐾, 𝜆) via the functor Ψ|MCG from Corollary 6.11. Finally,
let R be the R-vine isomorphic to R̂ via the (inverse of) poset isomorphism 𝜂R from Proposition 4.8.

(1) ⇐ (3) is proved once we show that P is an ideal of R. Indeed, by the construction, P is an
induced subposet of R. (One may see this via the sequence P −→ P̂ ↩−→ R̂ −→ R in the diagram.)
Note also that P and R have the same set of minimal nodes. Let 𝑤, 𝑣 ∈ R be two nodes with 𝑤 ≤ 𝑣
and 𝑣 ∈ P . We need to show that 𝑤 ∈ P . The assertion follows easily if either w or v is a minimal node.
We may assume that both w and v are not minimal. Since 𝐶𝑤 ⊆ 𝑈𝑤 ⊆ 𝑈𝑣 in R, and 𝑈𝑣 in P is the
same as 𝑈𝑣 in R, we have 𝐶𝑤 ⊆ 𝑈𝑣 in P . By Remark 5.4, there exists a non-minimal node 𝑤′ in the
R-vine P≤𝑣 such that 𝐶𝑤 = 𝐶𝑤′ . Applying Corollary 5.7 for two non-minimal nodes 𝑤, 𝑤′ in R, we
have 𝑤 = 𝑤′. Hence, 𝑤 is an element in P , as desired. �

7. Applications

7.1. From LR-vines to MAT-labeled graphs

7.1.1. A poset characterization of MAT-free graphic arrangements
The most important application of our main result (Theorem 6.10) is an affirmative answer for the
question of Cuntz-Mücksch (Question 1.3) in the case of graphic arrangements: MAT-free graphic
arrangements have a poset characterization by LR-vines. (Note that LR-vines generalize the root poset
of type A by Remark 4.16.) We give below two examples to illustrate the correspondence. First we need
a definition.
Definition 7.1 (C-vine). An R-vine is called a C-Vine if each associated tree has the largest possible
number of vertices of degree 1. Equivalently, each associated tree is a star graph.

D-vine and C-vine can be regarded as the ‘extreme’ cases of R-vines.
Example 7.2. In dimension 4, there are exactly two non-isomorphic R-vine structures: D-vine and
C-vine. Likewise, there are exactly two non-isomorphic MAT-labeled complete graphs on 4 vertices.
Figure 4 depicts a C-vine on [4] (top right), the associated forests (top left), the associated MAT-labeled
complete graph (bottom right) via the functor Ω from Lemma 6.8, and the MAT-partition (bottom left)
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Figure 4. C-vine on 4 elements, the associated trees, MAT-labeled complete graph and MAT-partition
from Example 7.2.

Figure 5. An MAT-labeled graph on 5 vertices (right) and the LR-vine P = Ψ(𝐺, 𝜆) (left) from Lemma
6.9 with its 3-lower truncation.

of the corresponding graphic arrangement. The C-vine in dimension ≥ 4 is not an ideal of any D-vine;
hence, the corresponding MAT-partition is not obtained from an ideal of the type A root poset.

Example 7.3. Figure 5 depicts on the right an MAT-labeled graph (𝐺, 𝜆) on 5 vertices and an MAT-
labeled complete graph (𝐾, 𝜆) such that (𝐺, 𝜆) ≤ (𝐾, 𝜆). The complementary edges are shown in dashed
lines. The graphs (𝐺, 𝜆) and (𝐾, 𝜆) correspond (via the functor Ψ from Lemma 6.9) to the LR-vine P
and R-vine R on the left, respectively. In this case, P is the 3-lower truncation of R.

7.1.2. Number of non-isomorphic MAT-labelings of complete graphs
The number of equivalence classes of R-vines in dimension ℓ is given in [17, §10.3]. By our Corollary
6.11, this number is equal to the number of non-isomorphic MAT-labelings of the complete graph on ℓ
vertices. We immediately have the following:
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Figure 6. An MAT-labeled graph on 7 vertices (top left), the LR-vineP = Ψ(𝐺, 𝜆) (bottom) from Lemma
6.9 and its 1-upper truncation P ≥1, and the MAT-labeled graph Ω(P ≥1) (top right) from Lemma 6.8.

Theorem 7.4. The number 𝐸ℓ of non-isomorphic MAT-labelings of the complete graph 𝐾ℓ for ℓ ≥ 1 is
given by 𝐸1 = 𝐸2 = 𝐸3 = 1 and 𝐸ℓ = (𝐴ℓ + 𝐵ℓ)/2 for ℓ ≥ 4, where

𝐴ℓ = 2(ℓ−2) (ℓ−3)/2, 𝐵ℓ =
�ℓ/2�−1∑
𝑘=1

𝐴ℓ𝑐𝑘2−𝑘+
∑𝑘−1
𝑖=0 (ℓ−4−2𝑖) ,

and 𝑐𝑘 = 1 for all k except 𝑐 �ℓ/2�−1 = 2.

The first 8 elements of the sequence (𝐸ℓ) are 1, 1, 1, 2, 6, 40, 560, 17024 mentioned in §1.1. In
particular, 𝐸4 = 2 and these MAT-labelings are given in Figures 2 and 4.

7.1.3. Upper truncation of MAT-labeled graphs
In Remark 4.10, we discussed two ways to obtain a new LR-vine from a given LR-vine by upper or lower
truncation. From our main result 6.10, the lower truncation simply corresponds to deleting the edges of
high label in the associated MAT-labeled graph (Figure 5). The upper truncation, however, gives rise
to a nontrivial graph operation which produces an MAT-labeled graph from a given one. We shall not
give an explicit formulation of the operation but instead illustrate it by an example in Figure 6.

In terms of hyperplane arrangement, any upper truncation of an MAT-free graphic arrangement is
again MAT-free. This fact is not true in general. For example, the Weyl subarrangement defined by
the 1-upper truncation of the root poset of type 𝐵3 is not free, and hence not MAT-free. It would be
interesting to find for which MAT-free arrangement or for which upper truncation of a given MAT-free
arrangement this property holds true.

7.2. From MAT-labeled graphs to LR-vines

7.2.1. Strongly chordal graphs and m-vines
Given a strongly chordal graph G, Zhu-Kurowicka [28, §3.4] showed that there exists an m-vine,
equivalently, an LR-vine P (by our Theorem 6.13) such that the principal ideals generated by the
maximal elements of P are in one-to-one correspondence with the maximal cliques of G. Their method
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is based on the existence of a strong clique tree of G. We give below a different construction of such an
LR-vine thanks to the equivalence between the LR-vines and MAT-labeled graphs from Theorem 6.10.

Theorem 7.5. Given a strongly chordal graph G, there exists an LR-vine P such that the principal ideals
generated by the maximal elements of P are in one-to-one correspondence with the maximal cliques
of G.

Proof. By Theorem 1.5, there exists an MAT-labeling 𝜆 of G. The construction of such a 𝜆 can be
found in [27, Theorem 5.12] based on the notion of clique intersection poset of G first appeared in [21].
Let P = Ψ(𝐺, 𝜆) (Lemma 6.9). Theorem 7.5 is proved once we prove that the set max(P) of maximal
elements of P coincides with the set K(𝐺) of maximal cliques of G. By Lemma 2.23, any maximal
clique C in G is principal and hence an element in P . Moreover, 𝐶 ∈ max(P). Otherwise, there exists a
clique 𝐶 ′ ∈ max(P) such that 𝐶 � 𝐶 ′. This contradicts the maximality of C. Hence, K(𝐺) ⊆ max(P).
The reserve inclusion is proved similarly. Thus, P is a desired LR-vine. �

7.2.2. Marginalization and sampling order
The notions of marginalization and sampling order of an R-vine were introduced in [8, §3]. We give
below an extension of these notions to an LR-vine.

Definition 7.6 (Marginalization). Let (P , ≤P , rkP ) be an LR-vine. Let 𝑣 ∈ min(P) be a minimal node.
The marginalization (P ‖ 𝑣, ≤P ) of P by v is the induced subposet of P obtained by removing v and
the nodes whose conditioned sets contain v; that is,

P ‖ 𝑣 := P \ ({𝑣} ∪ {𝑥 ∈ P | 𝑣 ∈ 𝐶𝑥}).

Let Q be an induced subposet of a finite graded poset (P , ≤P , rkP ). We say that Q is graded by
rkP if the restriction rkP |Q is a rank function on Q. The marginalization of P by a minimal node is not
necessarily graded by rkP in general. For example, let P be the C-vine with 4 minimal elements 1, 2, 3, 4
in Figure 4. Then the marginalization Q := (P ‖ 2, ≤P ) is not graded by rkP since rkP (34|12) = 4
while 34|12 cannot have rank 4 in Q.

Definition 7.7 (Sampling order). Let (P , ≤P , rkP ) be an ℓ-dimensional (L)R-vine. An ordering
(𝑣1, . . . , 𝑣ℓ) of minimal nodes in P is a sampling order if the marginalization P𝑖 := P𝑖+1 ‖ 𝑣𝑖+1 is
an (L)R-vine graded by rkP for each 1 ≤ 𝑖 ≤ ℓ − 1. Here, we let P = Pℓ .

It is shown in [8, Theorem 5.1] that an R-vine always has a sampling order. Now we generalize this
result to LR-vines.

Theorem 7.8. Let P be an ℓ-dimensional LR-vine and let (𝐺, 𝜆) = Ω(P) (Lemma 6.8). If (𝑣1, . . . , 𝑣ℓ)
is an MAT-PEO of (𝐺, 𝜆), then (𝑣1, . . . , 𝑣ℓ) is a sampling order of P . As a consequence, an LR-vine
always has a sampling order.

Proof. The assertion is clearly true when ℓ ≤ 1. Suppose that ℓ ≥ 2 and (𝑣1, . . . , 𝑣ℓ) is an MAT-
PEO of (𝐺, 𝜆). By Lemma 2.15, (𝐺𝑖 , 𝜆𝑖) is an MAT-labeled graph for each 1 ≤ 𝑖 ≤ ℓ − 1, where
𝐺𝑖 := 𝐺 [{𝑣1, . . . , 𝑣𝑖}] and 𝜆𝑖 := 𝜆 |𝐸𝐺𝑖 . By the proof of Theorem 4.13, for each i, Ψ(𝐺𝑖 , 𝜆𝑖) = P̂𝑖
where P𝑖 := P𝑖+1 ‖ 𝑣𝑖+1, Pℓ := P and P̂𝑖 is the poset isomorphic to P𝑖 in Proposition 4.8. Thus, each
P𝑖 is an LR-vine graded by rkP . Hence, (𝑣1, . . . , 𝑣ℓ) is a sampling order of P . The consequence is
straightforward since an MAT-labeled graph always has an MAT-PEO by Theorem 2.17. �

Remark 7.9. The converse of the main assertion in Theorem 7.8 is not true in general. Namely,
a sampling order of P is not necessarily an MAT-PEO of (𝐺, 𝜆). The reason is that even if the
marginalization P ‖ 𝑣 for some 𝑣 ∈ min(P) is an LR-vine graded by rkP , the node v is not necessarily
an MAT-simplicial vertex of (𝐺, 𝜆). For example, let P be the 3-lower truncation of the C-vine in
Figure 4 (see Figure 7 below). The associated MAT-labeled graph (𝐺, 𝜆) = Ω(P) is the graph obtained
from the corresponding complete graph by removing the edge {𝑣3, 𝑣4}. Then the marginalization P ‖ 2
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Figure 7. An LR-vine and its marginalization by the node 4 visualized as ‘vertical’ truncation.

is an LR-vine graded by rkP , but the vertex 𝑣2 is not (MAT-)simplicial in (𝐺, 𝜆) since its neighborhood
does not form a clique. In addition, (1, 3, 4, 2) is a sampling order of P , but (𝑣1, 𝑣3, 𝑣4, 𝑣2) is not an
MAT-PEO of (𝐺, 𝜆).

While upper or lower truncation of an LR-vine can be visualized as ‘horizontal’ truncation, the
marginalization is a ‘vertical’ truncation. Figure 7 depicts the 3-lower truncation P of the C-vine in
Figure 4 and the marginalization P ‖ 4. We may continue marginalizing and get the sampling order
(1, 2, 3, 4) of P . Furthermore, (𝑣1, 𝑣2, 𝑣3, 𝑣4) is an MAT-PEO of the MAT-labeled graph associated
to P .

7.2.3. Number of ideals in a D-vine
Given an arbitrary R-vine P , a natural question is to find the number of m-vines or ideals in P . This
question is still open in general (see, for example, [28, §4]). However, in the particular case of D-vine, we
have an explicit answer owing to a classical result of Shi [23] in the theory of hyperplane arrangements.

Theorem 7.10. The number of ideals in the D-vine of dimension ℓ − 1 for ℓ ≥ 2 is given by the ℓ-th

Catalan number Catℓ = 1
ℓ+1

(2ℓ
ℓ

)
=

ℓ∏
𝑘=2

ℓ+𝑘
𝑘 .

Proof. By Remark 4.16, the D-vine of dimension ℓ − 1 is isomorphic to the type 𝐴ℓ−1 root poset. It is
known that the number of ideals in the latter is given by the ℓ-th Catalan number Catℓ [23, Theorem
1.4]. �

Some calculation on C-vines suggests us the following conjecture:

Conjecture 7.11. The number of ideals in the C-vine of rank ℓ ≥ 1 is given by
∑ℓ+1
𝑖=0 ((𝑖+1)ℓ+1−𝑖−𝑖ℓ+1−𝑖),

the (ℓ + 1)-th number in the OEIS sequence A047970.
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