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Abstract

We study an optimal reinsurance problem for a diffusion model, in which the drift of
the claim follows an Ornstein–Uhlenbeck process. The aim of the insurer is to maxi-
mize the expected exponential utility of its terminal wealth. We consider two cases: full
information and partial information. Full information occurs when the insurer directly
observes the drift; partial information occurs when the insurer observes only its claims.
By applying stochastic control and by solving the corresponding Hamilton–Jacobi–
Bellman equations, we find the value function and the optimal reinsurance strategy under
both full and partial information. We determine a relationship between the value function
and reinsurance strategy under full information with the value function and reinsurance
strategy under partial information.
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reinsurance
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1. Introduction

Research on applying stochastic control theory to analyze insurance problems has long
attracted a great deal of interest among actuaries because optimal control provides both theo-
retical and practical solutions to optimization problems in insurance. There are many research
papers studying optimal insurance problems involving reinsurance and investment, which help
the insurer to increase profits and to reduce the claim risk. For example, [8] considered two
optimal investment problems for an insurer under a diffusion risk model, namely, maximizing
expected exponential utility of terminal wealth and minimizing the probability of ruin. The
probability of ruin for a diffusion risk model was minimized via reinsurance and investment
in [26]; [28] studied a similar problem for a compound Poisson risk model; [17] incorporated
proportional and excess-of-loss reinsurance into a jump-diffusion model with investment to
maximize the expected utility of terminal wealth; [22] explored an optimal proportional rein-
surance and investment model in a stock market driven by an Ornstein–Uhlenbeck process; and
[20] studied an optimal investment and reinsurance problem under the mean-variance criterion.
See also [3, 15, 29, 32], to name just a few.
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Optimal proportional reinsurance under unobservable drift 875

In most of above-referenced research, the insurer has complete knowledge of the model and
of the values of the processes in that model, i.e. the problems are considered under full infor-
mation. However, in reality, the insurance company generally only has partial information,
which generally assumes knowledge of the model but not of the values of all the processes
in that model. Portfolio optimization problems with unobservable information has been an
active topic in mathematical finance. However, results related to insurance models are rela-
tively few. Research on portfolio optimization generally assumes the drift of the traded stock
unobservable; see, for example, [6, 7]. Also, [18, 19] investigated a similar problem by using
the martingale-duality approach; [2] assumed that the dynamic of the stock price follows a geo-
metric Brownian motion with Poisson jumps, in which the jump intensity is unobservable; and
[21] considered an optimal reinsurance and investment problem by maximizing the expected
exponential utility of the insurer’s terminal wealth in a Black–Scholes financial market. The
claim process is a compound Poisson process in which the claim intensity and the jump-size
distribution depend on the state of a non-observable Markov chain. See also [1, 4, 5, 14, 16,
25, 30].

In this paper we find the optimal reinsurance strategy for an insurer to maximize the
expected exponential utility of its terminal wealth. We use a diffusion model to describe the
dynamics of the claim, in which the drift of the claims follows a mean-reverting Ornstein–
Uhlenbeck process. We consider two cases: full information and partial information. Full
information occurs when the insurer directly observes the drift; partial information occurs
when the insurer observes only its claims. We use the filtering technique to transfer the
unobservable problem into an observable one; then, by applying the dynamic programming
approach, we derive explicit expressions for the value function and the corresponding optimal
reinsurance strategy. We also determine a relationship between the value function and rein-
surance strategy under full information with the value function and reinsurance strategy under
partial information. Finally, we present numerical examples to illustrate possible outcomes of
the model.

The rest of this paper is organized as follows. In Section 2, we describe the insurance model
in both full and partial information frameworks. In Section 3, we use a dynamic Hamilton–
Jacobi–Bellman (HJB) equation approach to find the value function and optimal reinsurance
strategy under complete information. In Section 4, we consider the problem with unobservable
information. Moreover, we discuss how to handle a constraint on the proportion reinsured,
and we provide numerical simulation results to compute the probability that the reinsurance
proportion lies outside of the interval [0, 1] for some values of the parameters. Finally, in
Section 5 we compare the value function and the optimal reinsurance strategy under partial
observation with the ones under full observation. We also provide numerical examples to show
the difference between the two optimal reinsurance proportions at the end of this section.

2. Problem formulation

In this section we describe the claim process of the insurer, and we formulate the problem
of maximizing the insurer’s expected exponential utility of terminal wealth. Let (�,F , P) be
a probability space that supports two correlated standard Brownian motions W1 and W2, with
constant coefficient of correlation ρ ∈ [−1, 1]. As in [26], assume that the claim process S =
{St}0≤t≤T follows Brownian motion with drift, in which St equals the cumulative claims paid
by the insurer during the time interval [0, t]. However, unlike [26], the drift follows a random
process. Specifically, dSt = μtdt − σdW1,t, in which S0 = 0 and σ is a positive constant, and

dμt = −a(μt − μ̄)dt + b dW2,t, (2.1)
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in which a, b, and μ̄ are positive constants, i.e. {μt}0≤t≤T follows a mean-reverting Ornstein–
Uhlenbeck process. We loosely interpret μ̄ as a long-run value of μt, and a measures the
‘speed’ at which μt moves towards μ̄. This model was explored in [12] as the diffusion
approximation of a Cox process with a shot-noise process as the claim intensity.

The insurer collects premium at the constant rate c = (1 + θ )μ̄, in which θ ≥ 0 is the con-
stant proportional risk loading. The insurer is able to purchase proportional reinsurance with
constant proportional risk loading η ≥ θ . Let qt denote the proportional amount of business
retained at time t ∈ [0, T]; thus, the controlled surplus X = {Xt}0≤t≤T follows the stochastic
differential equation (SDE)

dXt = (cdt − dSt) − (1 − qt)(1 + η)μ̄ dt + (1 − qt)dSt

= (qt((1 + η)μ̄ − μt) − (η − θ )μ̄)dt + qtσdW1,t, (2.2)

with X0 = x. If 0 ≤ qt ≤ 1, then qt is the usual proportional reinsurance. In Examples 4.1 and
4.2 we calculate the probability that the optimal qt lies outside the interval [0, 1].

The insurer chooses a retention strategy q = {qt}0≤t≤T based on the available information,
and we consider two cases in this paper:

Full information In this case, the insurer observes both {St} and {μt}. A retention strat-
egy q is admissible in this case if (i) q is adapted to the filtration F= {Ft}0≤t≤T , in
which Ft = σ (Ss, μs : 0 ≤ s ≤ t) for all t ∈ [0, T]; (ii) q is conditional L2-integrable,
i.e. E

[ ∫ T
t q2

u du |Ft
]
< ∞ for any 0 ≤ t ≤ T; and (iii) the SDE (2.2) has a pathwise

unique solution {Xq
t }t∈[0,T]. Let Af denote the set of admissible strategies in the full

information case.

Partial information In this case, the insurer observes only {St} and does not know the drift
of its claim process, although the insurer knows the conditional expectation and vari-
ance of μ0. A retention strategy q is admissible in this case if (i) q is adapted to
the filtration G= {Gt}0≤t≤T , in which Gt = σ (Ss : 0 ≤ s ≤ t) for all t ∈ [0, T]; (ii) if
E

[ ∫ T
t q2

u du | Gt
]
< ∞ for any 0 ≤ t ≤ T; and (iii) the SDE of the controlled surplus

under Gt has a pathwise unique solution. Let Ap denote the set of admissible strate-
gies in the partial information case. Note that Gt ⊂Ft for all t ∈ [0, T], i.e. G is a
subfiltration of F; we also assume that F and G are augmented to satisfy the usual
conditions of completeness and right continuity.

In both cases, the insurer chooses q to maximize the expectation of exponential utility of
wealth at time T . Let Vf denote the maximum expected exponential utility of terminal wealth
under full information, i.e.

Vf (t, x, μ) = sup
q∈Af

E
(−e−γ XT | Xt = x, μt = μ

)
, (2.3)

in which γ > 0 is the (constant) coefficient of absolute risk aversion.
For the partial information case, as in [4, 6, 7], we first project the drift process μt onto

the observable filtration G, in order to reduce the partially observable problem to an equivalent
problem with full information. Define mt =E(μt | Gt), 0 ≤ t ≤ T; then, [23, Theorem 10.3]
shows us that {mt}0≤t≤T follows the SDE

dmt = −a(mt − μ̄)dt +
(

ρb − Var(μt | Gt)

σ

)
dW̄1,t, (2.4)
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in which W̄1 = {W̄1,t}0≤t≤T is the so-called innovations process given by

W̄1,t = W1,t + 1

σ

∫ t

0
(ms − μs) ds, (2.5)

and W̄1 is a (P,G)-standard Brownian motion. In other words, {mt}0≤t≤T follows a G-
Ornstein–Uhlenbeck process with non-constant volatility.

If we define v(t) = Var(μt | Gt) for t ∈ [0, T], then v = v(t) satisfies the Riccati equation

dv(t)

dt
= b2 − 2av(t) −

(
σρb − v(t)

σ

)2

, (2.6)

with initial value v(0) = Var(μ0 | G0). See Appendix A for a derivation of (2.6) and the
following solution:

v(t) = σ 2� · Re2�·t − 1

Re2�·t + 1
− σ (σa − ρb),

in which

� = 1

σ

√
(σa − ρb)2 + b2(1 − ρ2), (2.7)

and

R = σ 2� + σ (σa − ρb) + v(0)

σ 2� − σ (σa − ρb) − v(0)
. (2.8)

Moreover, by substituting for W1 in terms of W̄1 in (2.2), we obtain that X follows the dynamics

dXt = (qt((1 + η)μ̄ − mt) − (η − θ )μ̄)dt + qtσdW̄1,t,

which is G-adapted in the partial information case because q is G-adapted in that case. Let Vp

denote the maximum expected exponential utility of terminal wealth under partial information,
i.e.

Vp(t, x, m) = sup
q∈Ap

E
(−e−γ XT | Xt = x, mt = m

)
. (2.9)

3. Full information case

We begin by stating a relevant verification theorem without proof because the proof
is standard in the actuarial and financial mathematics literature; see, for example, [26,
Theorem 2.1].

Theorem 3.1. Suppose vf ∈ C1,2,2([0, T] ×R×R) takes values in R
−, is non-decreasing and

concave in x, and satisfies the HJB equation

0 = vf
t − (η − θ )μ̄vf

x − a(μ − μ̄)vf
μ + 1

2 b2vf
μμ

+ sup
q

[
q((1 + η)μ̄ − μ)vf

x + qσρbvf
xμ + 1

2 q2σ 2vf
xx

]
, (3.1)

with terminal condition vf (T, x, μ) = −e−γ x. The maximizer of (3.1) is

q∗(t, x, μ) = − ((1 + η)μ̄ − μ)vf
x(t, x, μ) + σρbvf

xμ(t, x, μ)

σ 2vf
xx(t, x, μ)

.
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If the retention strategy qf given in feedback form by qf
t = q∗(t, X∗

t , μt) for all 0 ≤ t ≤ T is
admissible, then the value function Vf defined by (2.3) equals vf . Here, X∗

t is the optimally
controlled surplus at time t.

In the following theorem, we solve the HJB equation in (3.1) with boundary condition
vf (T, x, μ) = −e−γ x. Theorem 3.1 then allows us to deduce that the solution equals the value
function Vf in (2.3).

Theorem 3.2. The maximum expected exponential utility of terminal wealth under full infor-
mation is Vf (t, x, μ) = −e−γ x exp{A(t)μ2 + B(t)μ + C(t)}, in which

A(t) = − e2�·(T−t) − 1

α1e2�·(T−t) + α2
, (3.2)

B(t) = 2μ̄

�
· e�·(T−t) − 1

α1e2�·(T−t) + α2

{
(1 + η)�(e�·(T−t) + 1) + ηa(e�·(T−t) − 1)

}
, (3.3)

C(t) =
∫ T

t

{
b2(1 − ρ2)

2
B2(s) +

(
a − (1 + η)bρ

σ

)
μ̄B(s) + b2A(s)

}
ds

+
{

(η − θ )μ̄γ − (1 + η)2μ̄2

2σ 2

}
(T − t), (3.4)

with � given in (2.7), and we define α1 > 0 and α2 > 0 as α1 = 2σ
(
σ� + (σa − ρb)

)
, α2 =

2σ
(
σ� − (σa − ρb)

)
. Moreover, the optimal retention strategy qf is given in feedback form by

qf
t = 1

σ 2γ
{(2σρbA(t) − 1)μt + σρbB(t) + (1 + η)μ̄}. (3.5)

Proof. See Appendix B for a proof of this theorem. �

Remark 3.1. We derive explicit expressions for A and B in (3.2) and (3.3), respectively,
because qf in (3.5) relies on A and B. However, for the sake of space, we do not present an
explicit expression for C.

Remark 3.2. Because A(t) ≤ 0 for all 0 ≤ t ≤ T , as μt increases the proportion retained,
namely qf

t , decreases. This monotonicity makes sense because, as the drift of claims increases,
we expect the insurance company to retain less of its risk, especially given a fixed premium
rate (1 + η)μ̄. Also, note that, when μt = 0, qf

t > 0 because B(t) ≥ 0 for all 0 ≤ t ≤ T .

In the following corollary we show how A and B change with time. We omit the calculations
because they are straightforward from (3.2) and (3.3).

Corollary 3.1. The derivative of A(t) is

A′(t) = 8σ 2�2e2�·(T−t)

(α1e2�·(T−t) + α2)2
,

which is positive for 0 ≤ t ≤ T, and the derivative of B(t) is

B′(t) = − 4μ̄e�·(T−t)

(α1e2�·(T−t) + α2)2

× {
(1 + η)4σ 2�2e�·(T−t) + ηa(e�·(T−t) − 1)(α1e�·(T−t) + α2)

}
,
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which is negative for 0 ≤ t ≤ T. Thus, the slope of qf
t as a linear function of μt, namely

(1/(σ 2γ ))(2σρbA(t) − 1), becomes less negative over time (specifically, it increases to
−1/(σ 2γ ) as t increases to T), and the intercept, namely (1/(σ 2γ ))(σρbB(t) + (1 + η)μ̄),
becomes less positive over time (specifically, it decreases to (1 + η)μ̄/(σ 2γ ) as t increases
to T).

Remark 3.3. Corollary 3.1 shows us that, over time, the proportion of retained risk, as a linear
function of μt, flattens. This flattening is consistent with the risk aversion of the insurer. As
time approaches the horizon T , the insurer will not wish to change its retention as much (as a
function of μt) as when further from the horizon. Intuitively, the closer time is to the horizon,
the less time the insurer has to maximize its expected utility and, therefore, the insurer reacts
less strongly to changes in the drift of the surplus. We see a similar phenomenon in the optimal
investment strategy of [6]; namely, the closer time is to T , the less the investor changes their
investment in reaction to changes in the drift of the risky asset.

4. Partial information case

In this section we analyze the problem under partial information. The corresponding
verification theorem and its solution parallel the results in Section 3.

Theorem 4.1. Suppose vp ∈ C1,2,2([0, T] ×R×R) takes values in R
−, is non-decreasing and

concave in x, and satisfies the HJB equation

0 = vp
t − (η − θ )μ̄vp

x − a(m − μ̄)vp
m + 1

2

(
ρb − v(t)

σ

)2

vp
mm

+ sup
q

[
q((1 + η)μ̄ − m)vp

x + qσ

(
ρb − v(t)

σ

)
vp

xm + 1

2
q2σ 2vp

xx

]
, (4.1)

with terminal condition vp(T, x, μ) = −e−γ x. The maximizer of (4.1) is

q∗(t, x, m) = − ((1 + η)μ̄ − m)vp
x(t, x, m) + σρbvp

xm(t, x, m)

σ 2vp
xx(t, x, m)

.

If the retention strategy qp given in feedback form by qp
t = q∗(t, X∗

t , mt) for all 0 ≤ t ≤ T is
admissible, then the value function Vp defined by (2.9) equals vp. Here, X∗

t is the optimally
controlled surplus at time t.

In the following theorem we solve the HJB equation in (4.1) with boundary condition
vp(T, x, μ) = −e−γ x. Theorem 4.1 then allows us to deduce that the solution equals the value
function Vp in (2.9).

Theorem 4.2. The maximum expected exponential utility of terminal wealth under partial
information is Vp(t, x, m) = −e−γ x exp{̂A(t)m2 + B̂(t)m + Ĉ(t)}, in which

Â(t) = − 1

4σ 2�
· (Re2�·t + 1)(e2�·(T−t) − 1)

Re2�·T + 1
, (4.2)

B̂(t) = μ̄

2σ 2�2
· (Re2�·t + 1)(e�·(T−t) − 1)

Re2�·T + 1
× {

(1 + η)�(e�·(T−t) + 1) + ηa(e�·(T−t) − 1)
}
, (4.3)
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Ĉ(t) =
∫ T

t

{(
a − (1 + η)

σρb − v(t)

σ 2

)
μ̄B̂(s) +

(
ρb − v(s)

σ

)2

Â(s)

}
ds

+
{

(η − θ )μ̄γ − (1 + η)2μ̄2

2σ 2

}
(T − t), (4.4)

in which R is given in (2.8).
Moreover, the optimal retention strategy qp is given in feedback form by

qp
t = 1

σ 2γ
{(2(σρb − v(t))̂A(t) − 1)mt + (σρb − v(t))̂B(t) + (1 + η)μ̄}. (4.5)

Proof. See Appendix C for a proof of this theorem. �

Remark 4.1. As in Section 3, we derive explicit expressions for Â and B̂ in (4.2) and (4.3),
respectively, because qp in (4.5) relies on Â and B̂. However, for the sake of space, we do not
present an explicit expression for Ĉ.

Because σρb − v(t) can be negative, it is not clear whether the slope of qp
t as a function of

mt is negative, as in the case for qp
t as a function of μt. The following corollary tells us that the

slope of qp
t is, indeed, negative.

Corollary 4.1. The slope of qp
t as a linear function of mt is negative, i.e.

1

σ 2γ
(2(σρb − v(t))̂A(t) − 1) < 0, (4.6)

for all 0 ≤ t ≤ T.

Proof. By substituting for Â and v from (4.2) and (2.6), respectively, and by simplifying the
result, we can show that inequality (4.6) is equivalent to

1

2�
· ((� + a)e2�·(T−t) + (� − a))(Re2�·t + 1)

Re2�·T + 1
> 0,

or
Re2�·t + 1

Re2�·T + 1
> 0. (4.7)

By substituting for R from (2.8), we find that inequality (4.7) is equivalent to

σ 2�(e2�·t + 1) + σ (σa − ρb)(e2�·t − 1) + v(0)(e2�·t − 1)

σ 2�(e2�·T + 1) + σ (σa − ρb)(e2�·T − 1) + v(0)(e2�·T − 1)
> 0,

which is true because σ� > ±(σa − ρb). �

As in Corollary 3.1, we show how Â and B̂ change with time in the following corollary.

Corollary 4.2. The derivative of Â(t) is

Â′(t) = 1

2σ 2
· Re2�·t + e2�·(T−t)

Re2�·T + 1
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FIGURE 1. Left: Sample paths of μt when T is small. Right: Sample paths of qf
t when T is small.

for 0 ≤ t ≤ T, and the derivative of B̂(t) is

B̂′(t) = − μ̄

σ 2�
· (1 + η)�(Re2�·t + e2�·(T−t)) + ηa(Re2�·t + e�·(T−t))(e�·(T−t) − 1)

Re2�·T + 1
,

for 0 ≤ t ≤ T.

Remark 4.2. Unlike Corollary 3.1, we cannot assert that Â′(t) ≥ 0 and B̂′(t) ≤ 0 because these
inequalities might not hold if R is negative enough, which occurs, for example, when v(0) is
relatively large. On the other hand, if R > 0, then it is clear that Â′(t) ≥ 0 and B̂′(t) ≤ 0.

In the following, we present two numerical examples to further explore the reinsurance
strategies in both full and partial information cases. For each example, we set a = 1, b = 2.5,
θ = 0.4, η = 0.8, ρ = 0.4, σ = 3, γ = 1.2, μ̄ = 2, and μ0 ∼ N(0, 1).

Example 4.1. In Figure 1 we set T = 1 and used a Monte Carlo approach to simulate the
sample paths of μt and qf

t under full information. We present three sample paths in these two
figures.

To compute the probability that qf
t < 0, qf

t > 1, or μt < 0, we worked with 3000 sample
paths, each discretized into 2000 time intervals. Let i denote a sample path, and let j denote a
time instance. For i = 1, 2, . . . , 3000 and j = 1, 2, . . . , 2000, we counted the number of points
for which qf (i, j) < 0, and computed the proportion of that number divided by the total number
of observations, namely, 3000 × 2000. That proportion is our estimate of the probability of
qf

t < 0. Similarly, we estimated the probabilities of qf
t > 1 and μt < 0. For our parameter val-

ues, we computed that the probability of qf
t < 0 equals 0.0682, the probability of qf

t > 1 equals
0, and the probability of μt < 0 equals 0.1081.

In Figure 2 we set T = 50, and we present one sample path of the mean-reverting process
μt and the reinsurance proportion qf

t . In this case, we estimated, via 3000 discretized sample
paths, that the probability of qf

t < 0 equals 0.1461, and the probability of μt < 0 equals 0.1323.
Thus, as the terminal time T increases, the probabilities of qf

t < 0 and μt < 0 also increase.
As an aside, if b is relatively small and if T is large, say, 50, then the value of μt is close

to μ̄ for a good portion of the interval [0, T]; thus, the probability of μt < 0 is small. If T = 1,
then because μ0 might be very different from μ̄, we cannot say that the probability of μt < 0
is small.
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FIGURE 2. Left: Sample path of μt when T is large. Right: Sample path of qf
t when T is large.

FIGURE 3. Left: Sample paths of mt when T is small. Right: Sample paths of qp
t when T is small.

We also observed (in work not shown here) that, as μ̄ decreases, the probability of qf
t < 0

increases, and as μ̄ increases, the probability of qf
t > 1 increases. Moreover, as μ̄ increases,

then the probability of μt < 0 decreases.

Example 4.2. In Figure 3 we simulate the sample paths of mt and qp
t under partial informa-

tion. We set T = 1, m0 = 1.6, and v(0) = 0.5. As in Example 4.1, we plot three sample paths
of qp

t and mt. In this example, among 3000 discretized sample paths, we find that the opti-
mal reinsurance proportion qp

t always lies in [0, 1], and the filtered drift process mt is always
positive.

In Figure 4 we set T = 50 and plot one sample path. As in the case for T = 1, among 3000
discretized sample paths, the optimal reinsurance proportion qp

t always lies in [0, 1], and the
filtered drift process mt is always positive.

For the optimization problem with the reinsurance constraint, that is, 0 ≤ qt ≤ 1 for all
0 ≤ t ≤ T , as in the discussion before, the value function under full information (or partial infor-
mation) satisfies the HJB equation in (3.1) (or (4.1)) for Vf (or Vp), except that q is constrained
to lie in [0, 1]. Indeed, from [10, 31], we know that a value function for a constrained problem
is the unique viscosity solution of its HJB equation subject to the constraint. However, due to
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FIGURE 4. Left: Sample path of mt when T is large. Right: Sample path of qp
t when T is large.

the reinsurance constraint, we cannot derive further explicit results by following the classical
HJB equation approach. Motivated by the convex-duality approach, as in [11, 27], we need to
introduce an auxiliary unconstrained optimization problem by modifying the original problem
with an auxiliary stochastic parameter, then find the relationship between the value function of
the auxiliary problem and that of the original problem. Due to the randomness of the auxiliary
parameter process, the corresponding value function satisfies a stochastic HJB equation, which
is a special backward stochastic partial differential equation or infinite-dimensional BSDE. The
solvability of the stochastic HJB equation was studied in [24], which provided an existence and
uniqueness theorem for the case in which the volatility coefficient of the state process does not
contain the control variable. In the finance and insurance literature, the BSDE approach is
becoming an efficient technique to solve utility maximization problems with stochastic coef-
ficients. A stochastic Stackelberg differential game between an insurer and a reinsurer was
considered in [9] by applying the BSDE approach. See also [13] for more details about the
applications in actuarial and financial models with the BSDE approach. Because the convex-
duality-plus-BSDE approach differs greatly from the HJB equation approach in this paper, we
will leave that work for future research.

5. The relationship between Vf and Vp

In this section we adapt the technique in [7] to show the link between the value function Vf

under full observation and the value function Vp under partial observation.

Theorem 5.1. The following relationships hold among A, B, C and Â, B̂, Ĉ:

Â(t) = A(t)

1 − 2v(t)A(t)
, (5.1)

B̂(t) = B(t)

1 − 2v(t)A(t)
, (5.2)

Ĉ(t) = C(t) + B2(t)v(t)

2(1 − 2v(t)A(t))
− 1

2
ln (1 − 2v(t)A(t)) + N(t)v(t)

2(1 − 2v(t)A(t))
+ Q(t), (5.3)
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in which N and Q satisfy the following differential equations:

dN(t)

dt
= − 1

σ 2
(1 − 2σρbA(t))2 − 4b2(1 − ρ2)A(t)N(t) + 2

σ
(σa − ρb)N(t),

dQ(t)

dt
= −1

2
b2(1 − ρ2)N(t),

with boundary conditions N(T) = Q(T) = 0. Moreover, the value functions Vf and Vp satisfy

E
[
Vf (t, Xt, μt) | Gt

] = Vp(t, Xt, mt)e
−P̂(t), (5.4)

in which

P̂(t) = N(t)v(t)

2(1 − 2v(t)A(t))
+ Q(t).

Finally, the optimal retention strategies qf and qp satisfy

E
[
qf

t | Gt
] = (1 − 2v(t)A(t))qp

t + v(t)

σ 2γ
{2(1 + η)μ̄A(t) + B(t)}.

Proof. The validity of (5.1)–(5.3) can be checked directly by differentiating terms on the
right-hand sides and comparing them with the existing differential equations satisfied by the
left-hand sides.

We next prove (5.4). Because the distribution of μt conditional on Gt is Gaussian with mean
mt and variance v(t), we have

E
[

exp (A(t)μ2
t + B(t)μt) | Gt

] = 1√
2πv(t)

∫
R

eA(t)x2+B(t)x exp

{
− (x − mt)2

2v(t)

}
dx

= 1√
2πv(t)

∫
R

exp

{
−1 − 2v(t)A(t)

2v(t)

(
x − mt + v(t)B(t)

1 − 2v(t)A(t)

)2

+ (B(t)v(t) + mt)2 − m2
t (1 − 2v(t)A(t))

2(1 − 2v(t)A(t))v(t)

}
dx

= 1√
1 − 2v(t)A(t)

exp

{
B2(t)v(t) + 2B(t)mt

2(1 − 2v(t)A(t))
+ A(t)m2

t

1 − 2v(t)A(t)

}

= exp

{
A(t)

1 − 2v(t)A(t)
m2

t + B(t)

1 − 2v(t)A(t)
mt + B2(t)v(t)

2(1 − 2v(t)A(t))

− 1

2
ln (1 − 2v(t)A(t))

}
.

Hence, we obtain

E
[

exp (A(t)μ2
t + B(t)μt + C(t)) | Gt

] = exp (̂A(t)m2
t + B̂(t)mt + Ĉ(t))e−P̂(t).
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FIGURE 5. Left: Optimal proportional retention under full and partial information when v(0) is small.
Right: Optimal proportional retention under full and partial information when v(0) is large.

Finally, from the expressions of qf
t and qp

t in (3.5) and (4.5), respectively, we derive

(1−2v(t)A(t))qp
t + v(t)

σ 2γ
{2(1 + η)μ̄A(t) + B(t)}

= 1

σ 2γ
{(2(σρb − v(t))A(t) − (1 − 2v(t)A(t)))mt + (σρb − v(t))B(t)}

+ 1

σ 2γ
(1 + η)(1 − 2v(t)A(t))μ̄ + v(t)

σ 2γ
{2(1 + η)μ̄A(t) + B(t)}

= 1

σ 2γ
{(2σρbA(t) − 1)mt + σρbB(t) + (1 + η)μ̄} =E

[
qf

t | Gt
]
,

which completes our proof. �

Note that the slopes of both qf
t and qp

t as functions of μt and mt, respectively, are negative for
0 ≤ t ≤ T . Also, the vertical intercept of qf

t thought of as a function of μt is positive, although
the corresponding statement for the vertical intercept of qp

t is not necessarily true; see, for
example, the right panel of Figure 5. A natural question is how these slopes and intercepts
compare to each other, and the following corollary answers this query.

Corollary 5.1. For all 0 ≤ t ≤ T,

1

σ 2γ
{2σρbA(t) − 1} ≤ 1

σ 2γ
{2(σρb − v(t))̂A(t) − 1} < 0 (5.5)

and
1

σ 2γ
{σρbB(t) + (1 + η)μ̄} >

1

σ 2γ
{(σρb − v(t))̂B(t) + (1 + η)μ̄}, (5.6)

with strict inequalities when 0 ≤ t < T.

Proof. If t = T , then the first inequality in (5.5) is an equality because A(T) = Â(T) = 0.
For 0 ≤ t < T , the first inequality in (5.5) holds strictly if and only if the following string of
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FIGURE 6. Left: The slope of qp
t divided by the ratio 1/(σ 2γ ) when v(0) is small. Right: The intercept of

qp
t divided by the ratio 1/(σ 2γ ) when v(0) is small.

implications holds:

2σρbA(t) < 2(σρb − v(t))̂A(t) ⇐⇒ σρbA(t) < (σρb − v(t))
A(t)

1 − 2v(t)A(t)
A(t)<0⇐⇒ σρb >

σρb − v(t)

1 − 2v(t)A(t)
,

which is true because A(t) < 0 and v(t) > 0 for all 0 ≤ t < T . The proof of (5.6) is similar (using
B(t) > 0 when 0 ≤ t < T), so we omit it. �

It is intuitively pleasing that qp
t reacts less strongly to changes in mt than qf

t reacts to μt.
Indeed, in the partial information case, the risk-averse insurer has less information and, there-
fore, is more cautious in changing the proportion of retained risk. Similarly, inequality (5.6)
implies that the insurer retains less risk when mt = 0 in the partial information case than when
μt = 0 in the full information case. See Figure 5 for an illustration of Corollary 5.1.

In the following, we present three numerical examples to further explore the difference
between qf

t and qp
t . For each example, we choose b = 2.5, θ = 0.4, η = 0.8, ρ = 0.4, σ = 3,

γ = 1.2, μ̄ = 2, and T = 2.

Example 5.1. In the left panel of Figure 5, we set a = 1 and v(0) = 0.5. We plot the graphs of
qf

t and qp
t at time t = 0.5 as functions of μt and mt by assuming that mt = μt at this time. We

observe that both qf
t and qp

t are linear functions of μt = mt, as we expect from Theorems 3.2
and 4.2, but the slope of qf

t is steeper than that of qp
t , as we expect from Corollary 5.1. From our

algebraic work, we also note that limt→T− qf
t = qp

t when μt = mt, which our numerical work
(not shown here) confirms.

Next, in the right panel of Figure 5 we enlarge the value of v(0) by setting v(0) = 100,
and we plot the graphs of qf

t and qp
t at time t = 0. We observe that, unlike the full information

case, for which the vertical intercept of qf
t is positive (see Remark 3.2), the intercept of qp

t as a
function of mt can be negative.

Example 5.2. From Corollary 3.1, we know that the slope of qf
t increases with t, and the inter-

cept of qf
t decreases with t. Motivated by this corollary, in this example, we investigate the

https://doi.org/10.1017/jpr.2022.106 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2022.106


Optimal proportional reinsurance under unobservable drift 887

FIGURE 7. Left: The slope of qp
t divided by the ratio 1/(σ 2γ ) when v(0) is large. Right: The intercept of

qp
t divided by the ratio 1/(σ 2γ ) when v(0) is large.

FIGURE 8. Optimal proportional retention under full and partial information when a is large.

changes of the slope and the intercept of qp
t with t. In the left panel of Figure 6 we set a = 1

and v(0) = 0.5. We plot the graph of the slope of qp
t divided by the ratio 1/(σ 2γ ) as a function

of t ∈ [0, T]. In the right panel of Figure 6 we plot the graph of the intercept of qp
t divided by

the ratio 1/(σ 2γ ) as a function of t ∈ [0, T]. In these graphs, when v(0) is relatively small, we
see that the slope and intercept of qp

t increase and decrease with t, respectively, as is true for qf
t .

In Figure 7 we plot the slope and intercept of qp
t divided by the ratio 1/(σ 2γ ) when v(0)

is relatively large, that is, v(0) = 100. We find that both the slopes and intercepts of qp
t are

monotonic with time t, but the monotonicity is the opposite of that when v(0) is relatively
small, that is, v(0) = 0.5.

Example 5.3. In Figure 8 we plot the graph of the optimal proportional retention qf
t and qp

t
when the parameter a is large. We set a = 3 and v(0) = 0.5. This graph shows that the values
of qf

t and qp
t are close to each other when the parameter a is large.
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FIGURE 9. Left: The slope of qp
t divided by the ratio 1/(σ 2γ ) when a is large. Right: The intercept of qp

t
divided by the ratio 1/(σ 2γ ) when a is large.

FIGURE 10. Left: The slope of qp
t divided by the ratio 1/(σ 2γ ) when both a and v(0) are large. Right:

The intercept of qp
t divided by the ratio 1/(σ 2γ ) when both a and v(0) are large.

In Figure 9 we plot the slope and intercept of qp
t divided by the ratio 1/(σ 2γ ) in this case;

we see that they are monotonic with respect to t, with the same monotonicity that the slope
and intercept of qf

t possess. Furthermore, when we take a larger value of v(0), such as v(0) = 5,
Figure 10 shows that they both lose monotonicity with t.

Appendix A. Derivation and solution of the Riccati equation (2.6)

First, [23, Section 10.2.1] proved that v(t) =E((μt − mt)2), i.e. the conditional variance of
μt equals the unconditional variance.

Define the process {δt}0≤t≤T by δt = μt − mt. Then, by (2.1) and (2.4), we have

dδt = −aδtdt + bdW2,t − σρb − v(t)

σ
dW̄1,t.
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Use (2.5) to replace dW̄1,t with dW1,t − (δt/σ )dt,

dδt = δt

(
−a + σρb − v(t)

σ 2

)
dt + bdW2,t − σρb − v(t)

σ
dW1,t,

and Itô’s formula gives us

δ2
t = δ2

0 + 2
∫ t

0
δs

((
− a + σρb − v(s)

σ 2

)
δs ds + b dW2,s − σρb − v(s)

σ
dW1,s

)

+
∫ t

0

(
b2 − 2ρb

σρb − v(s)

σ
+

(
σρb − v(s)

σ

)2)
ds. (A.1)

Because W1 and W2 are F-standard Brownian motions, and because v(t) and E(δ2
t ) are

continuous with respect to t and, thus, are bounded on [0, T], we have

E

( ∫ t

0
δs

σρb − v(s)

σ
dW1,s

)
= 0 =E

( ∫ t

0
δsb dW2,s

)
.

By taking (unconditional) expectation of both sides of (A.1), we obtain

v(t) = v(0) +
∫ t

0

(
2

(
−a + σρb − v(s)

σ 2

)
v(s) + b2 − 2ρb

σρb − v(s)

σ

+
(

σρb − v(s)

σ

)2)
ds

= v(0) +
∫ t

0

(
b2 − 2av(s) −

(
σρb − v(s)

σ

)2)
ds,

which gives us the Riccati equation (2.6).
To solve this equation (see [19, Remark 4.2], which also provides an explicit solution for

the constant-coefficient, one-dimensional Riccati equation), first define the function y by

y(t) = σρb − v(t)

σ 2
; (A.2)

(2.6) gives us the following Riccati equation for y:

dy(t)

dt
= 2σaρb − b2

σ 2
− 2ay(t) + y2(t). (A.3)

Next, define the function u by

y(t) = −u′(t)
u(t)

,

or equivalently,

u(t) = exp

{
−

∫
y(t) dt

}
; (A.4)

then, (A.3) gives us the following second-order ordinary differential equation (ODE) for u:

2σaρb − b2

σ 2
u(t) + 2au′(t) + u′′(t) = 0. (A.5)
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The ODE in (A.5) has the general solution u(t) = A1er1t + A2er2t, in which A1 and A2 are con-
stants to be determined, r1 = −a + �, and r2 = −a − �, with � given in (2.7). By reversing
(A.2) and (A.4), we obtain the following general expression for v:

v(t) = σ 2� · A1e2�·t − A2

A1e2�·t + A2
− σ (σa − ρb),

or equivalently,

v(t) = σ 2� · Re2�·t − 1

Re2�·t + 1
− σ (σa − ρb),

in which R = A1/A2. By using the given initial condition v(0), we determine R:

v(0) = σ 2� · R − 1

R + 1
− σ (σa − ρb),

which gives us R as in (2.8).

Appendix B. Proof of Theorem 3.2

From related work with exponential utility (e.g. [6]), we hypothesize that the value function
is of the form

Vf (t, x, μ) = −e−γ x exp{A(t)μ2 + B(t)μ + C(t)} (B.1)

for some functions of time A, B, and C, with A(T) = B(T) = C(T) = 0. The terminal conditions
follow from Vf (T, x, μ) = −e−γ x.

Because Vf in (B.1) is concave with respect to x, the first-order necessary condition in (3.1)
is sufficient, and we obtain the optimal retention in feedback form as

qf (t, x, μ) = − ((1 + η)μ̄ − μt)V
f
x (t, x, μ) + σρbVf

xμ(t, x, μ)

σ 2Vf
xx(t, x, μ)

= 1

σ 2γ
{(2σbρA(t) − 1)μt + (1 + η)μ̄ + σbρB(t)}, (B.2)

in which we abuse notation slightly by using qf to refer both to the optimal retention strategy
(as in qf = {qf

t }0≤t≤T ) and to the deterministic function qf in (B.2). Note that qf in (B.2) is
independent of the surplus.

By substituting (B.1) and (B.2) into (3.1) and rearranging terms, we obtain{
A′(t) + 2b2(1 − ρ2)A2(t) − 2

σ
(σa − ρb)A(t) − 1

2σ 2

}
μ2

+
{

B′(t) +
(

2b2(1 − ρ2)A(t) − 1

σ
(σa − ρb)

)
B(t) + 2μ̄

(
a − ρb(1 + η)

σ

)
A(t)

+ (1 + η)μ̄

σ 2

}
μ +

{
C′(t) + 1

2
b2(1 − ρ2)B2(t) +

(
a − ρb(1 + η)

σ

)
μ̄B(t)

+ b2A(t) + (η − θ )μ̄γ − (1 + η)2μ̄2

2σ 2

}
= 0.

Thus, we have the following three differential equations for A, B, and C:

A′(t) + 2b2(1 − ρ2)A2(t) − 2

σ
(σa − ρb)A(t) − 1

2σ 2
= 0, (B.3)
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B′(t) +
(

2b2(1 − ρ2)A(t) − 1

σ
(σa − ρb)

)
B(t) + 2μ̄

(
a − ρb(1 + η)

σ

)
A(t) + (1 + η)μ̄

σ 2
= 0,

(B.4)

C′(t) + 1

2
b2(1 − ρ2)B2(t) +

(
a − ρb(1 + η)

σ

)
μ̄B(t) + b2A(t) + (η − θ )μ̄γ − (1 + η)2μ̄2

2σ 2
= 0,

(B.5)

with terminal conditions A(T) = 0, B(T) = 0, and C(T) = 0.
Equation (B.3) is a constant-coefficient Riccati equation, which we can solve explicitly by

using the same method as in Appendix A, although we are given A(T) = 0 instead of v(0); by
doing so, we obtain the expression for A in (3.2).

Equation (B.4) is a linear differential equation, which, by substituting for A from (3.2), we
can rewrite as

0 = d

dt

[{
α1e�·(T−t) + α2e−�·(T−t)

}
B(t)

]
+ 2μ̄

{
((1 + η)� + ηa)e�·(T−t) + ((1 + η)� − ηa)e−�·(T−t)

}
.

By integrating this from t to T and using B(T) = 0, we obtain the expression for B in (3.3).
Finally, by integrating (B.5) from t to T and by using C(T) = 0, we obtain the integral

representation for C in (3.4).
It remains to show that Vf and qf satisfy the conditions of Theorem 3.1. By construction, Vf

satisfies the HJB equation (3.1) with boundary condition Vf (T, x, μ) = −e−γ x. To show that
the retention strategy qf in (3.5) is admissible, we check the three conditions in the definition
of admissibility. First, note that qf is adapted to the filtration F by its definition. Second, qf is
conditional L2-integrable because A(t) and B(t) are bounded functions on [0, T], and μ = {μt}
is conditional L2-integrable. Third, the SDE (2.2) has a pathwise unique solution, which is easy
to see because qf is independent of the surplus X. Thus, qf is admissible.

From Theorem 3.1, we deduce that Vf and qf as stated in Theorem 3.2 equal the value
function and optimal retention strategy, respectively.

Appendix C. Proof of Theorem 4.2

As in Appendix B, we hypothesize that the value function is of the form

Vp(t, x, m) = −e−γ x exp
{
Â(t)m2 + B̂(t)m + Ĉ(t)

}
(C.1)

for some functions of time Â, B̂, and Ĉ, with Â(T) = B̂(T) = Ĉ(T) = 0. The terminal conditions
follow from Vp(T, x, μ) = −e−γ x.

Because Vp in (C.1) is concave with respect to x, the first-order necessary condition in (4.1)
is sufficient, and we obtain the optimal retention in feedback form as

qp(t, x, m) = − ((1 + η)μ̄ − m)Vp
x (t, x, m) + (ρσb − v(t))Vp

xm(t, x, m)

σ 2Vp
xx(t, x, m)

= 1

σ 2γ
{(2(σρb − v(t))̂A(t) − 1)m + (σρb − v(t))̂B(t) + (1 + η)μ̄}, (C.2)
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in which we abuse notation slightly by using qp to refer both to the optimal retention strategy
and to the deterministic function qp in (C.2).

By substituting (C.1) and (C.2) into (4.1) and rearranging terms, we obtain{
Â′(t) − 2

σ

(
(σa − ρb) + v(t)

σ

)
Â(t) − 1

2σ 2

}
m2

+
{

B̂′(t) − 1

σ

(
(σa − ρb) + v(t)

σ

)
B̂(t) + 2μ̄

(
a − (1 + η)

σρb − v(t)

σ 2

)
Â(t)

+ (1 + η)μ̄

σ 2

}
m +

{
Ĉ′(t) +

(
a − (1 + η)

σρb − v(t)

σ 2

)
μ̄B̂(t) +

(
ρb − v(t)

σ

)2

Â(t)

+ (η − θ )μ̄γ − (1 + η)2μ̄2

2σ 2

}
= 0.

Thus, we have the following three differential equations for Â(t), B̂(t), and Ĉ(t):

Â′(t) − 2

σ

(
(σa − ρb) + v(t)

σ

)
Â(t) − 1

2σ 2
= 0, (C.3)

B̂′(t) − 1

σ

(
(σa − ρb) + v(t)

σ

)
B̂(t) + 2μ̄

(
a − (1 + η)

σρb − v(t)

σ 2

)
Â(t) + (1 + η)μ̄

σ 2
= 0,

(C.4)

Ĉ′(t) +
(

a − (1 + η)
σρb − v(t)

σ 2

)
μ̄B̂(t) +

(
ρb − v(t)

σ

)2

Â(t) + (η − θ )μ̄γ

− (1 + η)2μ̄2

2σ 2
= 0, (C.5)

with terminal conditions Â(T) = 0, B̂(T) = 0, and Ĉ(T) = 0.
We can rewrite (C.3) as

0 = d

dt

[
Â(t)

(Re�·t + e−�·t)2

]
− 1

2σ 2
· 1

(Re�·t + e−�·t)2
.

and by integrating this from t to T and using Â(T) = 0, we obtain the expression for Â in (4.2).
Equation (C.4) is a linear differential equation, which, by substituting for Â from (4.2), we

rewrite as

0 = d

dt

[
B̂(t)

Re�·t + e−�·t

]
+ μ̄

2σ 2�
· e�·t

Re2�·T + 1

{
(1 + η)�(e2�·(T−t) + 1) + ηa(e2�·(T−t) − 1)

}
,

and by integrating this from t to T and using B̂(T) = 0, we obtain the expression for B̂ in (4.3).
Finally, by integrating (C.5) from t to T and using Ĉ(T) = 0, we obtain the integral

representation of Ĉ in (4.4).
It remains to show that Vp and qp satisfy the conditions of Theorem 4.1. The argument is

similar to the one in the proof of Theorem 3.2, so we omit it. Thus, Vp and qp as stated in
Theorem 4.2 equal the value function and optimal retention strategy, respectively.
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