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Abstract 

The growing use of additive manufacturing (AM) processes pushes research towards studying methods to 

reduce their environmental impact. The part build orientation is a significant process variable, which can be 

chosen through the Energy Performance Assessment (EPA), a straightforward method. The paper presents a 

method for identifying the best part build orientation considering energy consumption. The EPA has been 

adapted for this purpose, resulting in an approach based on four steps. The method was employed to determine 

the best printing direction for three parts and two AM technologies. 

Keywords: ecodesign, sustainable design, energy efficiency, 3D printing, additive manufacturing 

1. Introduction and literature review 
Additive manufacturing (AM) technology has grown rapidly in recent decades due to its many 

advantages over conventional manufacturing techniques (Garzaniti et al., 2018). The peculiarities and 

unique benefits of AM allow designers to realise components in their near-net shape and create 

customised goods with short lead times, contributing significantly to Industry 4.0.  

Given the “non-subtractive” nature inherent in AM processes, they all appear environmentally 

sustainabile at a basic level, resulting in either no waste or at least a reduced amount of scraps. Various 

studies in the literature (Peng et al., 2020) have delved into and compared the environmental impacts of 

additive techniques, such as Laser-Powder Bed Fusion (L-PBF), with traditional manufacturing 

methods. These studies have concluded that AM yields environmental benefits in specific applications, 

particularly concerning indicators associated with resource depletion. The advantages in terms of 

environmental sustainability become even more pronounced, especially in products with highly intricate 

geometries that require customisation. However, sustainability depends on process parameters. If correct 

printing parameters are not chosen, AM’s energy consumption and environmental impacts could be 

higher than those of traditional manufacturing (Ngo et al., 2018).  

One of the main parameters to consider concerning the environmental sustainability of AM is the part-

build orientation, on which this paper is focused. Establishing the part orientation holds significant 

importance in these processes as it directly influences various component properties, including surface 

quality (Wang et al., 2016), the number of support structures required (Ezair et al., 2015), the strength 

(Abdelrhman et al., 2019) and fabrication cost (Solouki et al., 2023), among other factors. 

The best-known tool for environmental analysis is LCA (Life Cycle Assessment). LCA for additive 

manufacturing was used in different works, such as (Yang et al., 2017), (Burkhart and Aurich, 2015) and 

(Bianchi et al., 2022). LCA, however, has some limitations if used during the design phase. First, the 
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LCA implementation can be very complex. Obtaining the inventory data may be exceedingly challenging 

if the system scope is too broad. Furthermore, this type of analysis is carried out only very late in the 

design phases of a product, therefore when most of the decisions have already been made. 

An alternative tool for environmental performance assessment, proposed by (Yi et al., 2020), is the EPA 

(Energy Performance Assessment) model. EPA appears to be simpler to apply than LCA, as it is based 

exclusively on the study of the energy dimension of an object, not considering other aspects. Furthermore, 

unlike LCA, EPA can be applied in the early design phases when the object still needs to be created.  

To demonstrate that the EPA, and therefore the energy assessment, is parallel to the LCA, (Yi et al., 

2020) performed a complete environmental assessment, based on a cradle-to-gate LCA analysis of eight 

different object designs. Then, they compared LCA results with EPA. Primary energy (PE) and 

greenhouse gas (GHG) emissions were chosen as environmental impact indicators for the LCA. Instead, 

energy consumption (E) was selected as an indicator for the EPA. The comparative analysis led to 

determining the same solution using both methods. Therefore, it is possible to deduce that the EPA 

model is valid and comparable with the LCA method, which considers a broader environmental impact 

vision. For the reasons listed above and given that it has been proven useful, the paper presents a method 

to establish the best build part orientation in additive manufacturing by considering environmental 

sustainability through the EPA approach. The approach tackles the energy consumption as a driver to 

find the best print direction. Other criteria (e.g., strength, surface quality, cost, time) are not considered 

but can be integrated with this proposal. To the authors’ knowledge, this is the first adoption of EPA 

within a method for selecting the part build direction.  

After this introduction, Section 2 presents the overall EPA method, which is included in the approach 

for selecting the best part build orientation (Section 3). Section 4 uses the proposed procedure for three 

components and two additive manufacturing technologies. 

2. The Energy Performance Assessment method 
The EPA method is based on EnPIs (energy performance indicators), a quantitative evaluation of energy 

performance (ISO - International Organization for Standardization, 2023) linked to design or process 

parameters. EnPIs are classified in measured energy value (e.g., energy consumption per build task), the 

ratio of calculated value (e.g., energy consumption per volume), statistical model (e.g., the relation 

between mean power and mean temperature), and engineering model (e.g., the ratio between safety 

factor and energy consumption).  

During the design process, an engineer generally has multiple requirements, thus, various EnPIs. Since 

EnPIs have different units of measurement (e.g., J, J/cm3, MPa/J), normalisation is first required to 

subsequently sum their scores (Yi et al., 2020). During the normalisation, it is essential to consider if 

the EnPIs must be maximised (the higher the EnPI, the better the solution). For example, the ratio 

between safety factor and energy consumption is an EnPI to maximise. On the other side, the energy 

consumption per volume must be minimised. For this reason, the value for each EnPI, obtained for each 

analysis (i.e., part build orientation in this study), is obtained by dividing the upper or lower difference 

(i.e., the difference between the EnPI and the maximum or minimum value) by the range of values. 

Second, weighting EnPIs allows engineers to set different importance to each EnPI (so, to each design 

requirement). Pairwise comparison can be employed to establish relative weights. Factors depend on 

weights assigned to design requirements and specifications.  

Third, EnPIs are aggregated by summing the relative value of each one. At last, a single and final 

indicator is obtained. The best part build orientation is that with the higher aggregated EnPI.  

3. The EPA method for part build orientation 
This section explains a systematic and comprehensive methodology to identify the optimal part build 

orientation of 3D printed components that minimises energy consumption. It does not consider other criteria 

(e.g., mechanical strength, surface quality, time, cost) that are outside of this research paper’s scope. Overall, 

the methodology is independent of the AM process. On the contrary, the life cycle inventory (LCI) depends 

on the technology used. The LCI can be defined by directly measuring the 3D printing process or by taking 

data from the literature, which is becoming vast and covers the most relevant technologies.  
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The proposed methodology precedes the nesting phase and is applied to each component of the print job 

individually. The parts can then be positioned on the build plate with optimal orientations. In detail, the 

first step defines the necessary input information for applying the method (§3.1). Then, the primary data 

needed to build the LCI and required for energy assessments are determined and collected into a 

database (§3.2). Subsequently, there is the selection of the energy indicators (§3.3) and the calculation 

of the optimal printing direction (§3.4).   

3.1. Setting of product and process parameters 

The first phase of the methodology starts with providing input data, which are: 

1. Component 3D model: the virtual model prototype is employed to analyse and identify its 

geometric attributes and distinctive features (e.g., volume, bounding box, print height, projected 

area).  

2. AM technology and related printing machine: energy assessments are directly related to the 

printing technology and the printer. For example, selective laser processes use more energy than 

extrusion. Furthermore, different machines can be used with their respective energy 

consumption within the same process. 

3. Component material: information on the material influences energy consumption. The energy 

required for feedstock generation and part manufacturing depends on the material. 

4. Number of orientations analysed: within the printing chamber, the part may be placed on a 

limitless number of orientations. This parameter allows the engineer to limit the number of 

options. A high value allows a low processing load, but the optimal orientation can only be 

found with limited precision. While a large number increases the computational load, it provides 

a more accurate evaluation. The approach might be applied several times around the first sub-

optimal directions detected to speed up the process. 

5. Post-processing operations: depending on the technology and the engineer’s needs, it is 

possible to define which post-processing operations will be performed on the component. 

3.2. Set the Life Cycle Inventory 

The second phase consists of collecting the data necessary for the energy assessment. This phase can be 

divided into two activities. The first aims to create the LCI, which contains the energy information 

related to the feedstock (a), printing phase (b) and post-processing operations (c). The second activity 

aims to collect the geometric data for each orientation. 

3.2.1. Life Cycle Inventory 

a) Feedstock: energy required to transform the raw material (e.g., billet) and produce the feedstock 

(e.g., powder, filament or resin) through specific processes (e.g., atomisation).  

b) Printing phase: machine energy consumption to print a certain amount of material. For example, 

the unitary 3D printing energy consumptions for AISI 316L and Inconel 718 (considering L-PBF - 

technology and the SLM® 280 machine) are 383.13 [MJ/kg] (Guarino et al., 2020) and 427.47 [MJ/kg] 

(Torres-Carrillo et al., 2020) respectively. 

c) Post-processing operation: the energy consumption for post-processing operation (e.g., part 

separation, support removal). These technologies may differ according to the printing technology and 

material. For example, part separation from baseplate (in L-PBF or L-DED - Laser-Directed Energy 

Deposition) can be done through a band saw or wire EDM.   

3.2.2. Geometric information 

The part-related information includes mass [kg], height along the printing direction [mm], smallest 

dimension on the printing plate [mm], largest dimension on the printing plate [mm] and projected area 

on the printing plate [mm2]. Combining the geometric parameters extracted for each orientation and the 

energy consumption information related to the selected input makes it possible to obtain the overall 

energy consumption associated with each printing direction.  
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3.3. Select EnPIs 

The EPA model uses EnPI indicators that provide quantitative information to choose the best 

alternatives corresponding to the printing directions. Depending on the information available and the 

need for which the best orientation is sought, various EnPI indicators can be used (Table 1). 

Table 1. EnPIs overview (Yi et al., 2020) 

EnPI Group Typology 

Measured energy 

value 

Energy consumption per build [J, kWh] 

Daily or weekly energy consumption [J, kWh] 

Energy waste per build [J, kWh] 

Peak power consumption [W] 

Measured value ratio Specific energy consumption [J/cm3 or J/kg] 

Energy consumption per layer [E/layer] 

Ratio of energy required to total energy consumed [%] 

Ratio of heat dissipated to energy consumption [%] 

Relationship between energy consumption and value creation [J/€] or energy cost [€] 

Statistical model Relationship between average power and average temperature [W - °C] 

Relationship between energy consumption and laser beam energy density [J - J/m3] 

Engineering model Relationship between safety factor and energy consumption [1/J] 

Relationship between residual voltage and energy consumption [MPa/J] 

Relationship between energy consumption and thermal deformation [J/mm] 

Ratio of energy consumption to material density [J/%] 

3.4. Calculate orientations 

Once the EnPIs are chosen, it is possible to apply the method and identify the best printing direction. 

The section includes three stages: normalisation of the indicators (§3.4.1), assignment of weights 

(§3.4.2) and definition of the best orientation (§3.4.3). 

3.4.1. Normalisation of the indicators 

The engineer can choose different indicators with which to select the best printing direction. This step 

makes it possible to summarise and consider various indicators under a single value. 

Considering many rows, i, as the number of identified indicators and many columns, j, as the number of 

selected indicators, the first operation involves calculating 𝑅𝑗. It represents the difference between the 

maximum and the minimum value of the same indicator j. 

𝑅𝑗 = max(𝐸𝑛𝑃𝐼𝑖
𝑗
) − min(𝐸𝑛𝑃𝐼𝑖

𝑗
) (1) 

Normalisation is then carried out. Two approaches can be used: Upper Difference (UD) and Lower 

Difference (LD). For example, for indicators in which energy is calculated directly [e.g., J/kg], UD is 

used; LD is used for indicators in which energy is related [e.g., 1/J]. 

𝑈𝐷𝑖
𝑗
= max(𝐸𝑛𝑃𝐼𝑖

𝑗
) − 𝐸𝑛𝑃𝐼𝑖

𝑗
 (2) 

𝐿𝐷𝑖
𝑗
= 𝐸𝑛𝑃𝐼𝑖

𝑗
−min(𝐸𝑛𝑃𝐼𝑖

𝑗
) (3) 

So, the normalised indicators: 

𝐸𝑛𝑃𝐼𝑖
𝑗′
=

𝑈𝐷𝑖
𝑗

𝑅𝑗
=

max(𝐸𝑛𝑃𝐼𝑖
𝑗
)−𝐸𝑛𝑃𝐼𝑖

𝑗

max(𝐸𝑛𝑃𝐼
𝑖
𝑗
)−min(𝐸𝑛𝑃𝐼

𝑖
𝑗
)
 (4) 

𝐸𝑛𝑃𝐼𝑖
𝑗′
=

𝐿𝐷𝑖
𝑗

𝑅𝑗
=

𝐸𝑛𝑃𝐼𝑖
𝑗
−min(𝐸𝑛𝑃𝐼𝑖

𝑗
)

max(𝐸𝑛𝑃𝐼
𝑖
𝑗
)−min(𝐸𝑛𝑃𝐼

𝑖
𝑗
)
 (5) 
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3.4.2. Weights assignment 

Among the chosen indicators, it is possible to decide which is more important and which is less critical 

through the definition of weights (𝑊𝐹𝑗). The weights are calculated through a pairwise comparison. 

Three values can be defined for each comparison (i.e., 1, 3, 6). After that, for each indicator in the row, 

the values expressed by the comparison with each indicator in the column are added up (𝑆𝑗). The 

resulting sum is compared to the total score of all scores (∑ 𝑆𝑗𝑛
𝑗=1 ). 

𝑊𝐹𝑗 =
𝑆𝑗

∑ 𝑆𝑗𝑛
𝑗=1

 (7) 

Finally, the weighted indicator is obtained by multiplying the normalised indicator value with the 

respective weight: 

𝐸𝑛𝑃𝐼𝑖
𝑗′′

= 𝐸𝑛𝑃𝐼𝑖
𝑗′
×𝑊𝐹𝑗 (8) 

3.4.3. Selection of the best orientation 

The last step is to add all the values obtained for each indicator with the same orientation.  

𝑆𝑢𝑚 = ∑ 𝐸𝑛𝑃𝐼𝑖
𝑗
′′𝑚

𝑗=1  (9) 

Then, comparing all the various sums of each orientation, the one with the highest value will be the best. 

4. Case study and results discussion 
The case study involves the application of the methodology on three different components, processed with 

two different technologies and materials. For the present case study, the energy consumption information 

(LCI) for feedstock, printing, and post-processing operations was retrieved from the literature. 

4.1. Component and inventory data 

From an energy point of view, each process is characterised by the AM technology and related printer, 

material and post-processing operation. With Specific Energy Consumption [kWh/kg], it is possible to 

represent the energy consumption of the printer and feedstock, respectively (Table 2). In the first case, 

it means the printer’s energy consumption to print a mass unit of the associated material. The printer’s 

energy consumption can also be expressed with the Energy per Layer parameter [kWh/layer]. In the 

second case, the Specific Energy Consumption represents the energy spent to extract and produce the 

feedstock used for printing.  

Table 2. Life Cycle Inventory. *Values elaborated from (Faludi et al., 2017) 

 L-PBF: Laser-Powder Bed Fusion L-DED: Laser-Directed Energy Deposition 

 Feedstock Printing Post-Proc. Feedstock Printing Post-Proc. 

Specific 

energy 

consumption 

[kWh/kg] 

Inconel 718  

100.4 (Fredriksson, 

2019) (Böckin and 

Tillman, 2019) 

29.4 

(Baumers 

et al., 

2011) 

- 

AISI 316  

7.8 (Guarino 

et al., 2020) 

67.0 

(Baumers et 

al., 2011) 

- 

Energy per 

Layer 

[kWh/layer] 
- 

0.066 

(Baumers 

et al., 

2011) 

- - 

0.059 

(Baumers et 

al., 2011) 

- 

Energy per 

Cutting 

Dimension 

[kWh/mm] 

- - 

Wire EDM 

0.16894 

(Faludi et al., 

2017)* 

- - - 

Energy per 

Cutting 

Surface 

[kWh/mm2] 

- -   - - 

Cutting 

0.000000758 

(Faludi et al., 

2017)* 
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Regarding post-processing, the wire EDM (Electrical Discharge Machining) process was evaluated for 

components A and C. Its energy consumption is related to the Energy per Cutting Dimension 

[kWh/mm]. The cutting machine (band saw) was considered for component B. In this case, it is 

considered the Energy per Cutting Surface [kWh/mm2]. 

Table 3 represents the three components used for the case study, used by the authors in a previous study 

about build part orientation (Sartini et al., 2023). Geometrical information on the components is given 

for each printing direction in Chapter 4.3. The parts are illustrated in the starting configuration. From 

this case study, 14 printing directions were analysed through the proposed method. 

Table 3. Case study components 

Component A Component B Component C 

   

4.2. nPIs selection 

For the present case study, four indicators were considered: 

1. TEC (Total Energy Consumption) [kWh]: obtained by multiplying the Specific Energy 

Consumption (kWh/kg) by the mass (kg) of the object considered as the sum of the mass of the 

piece itself and the mass of the supports, if any. The total mass will vary according to orientation 

because the mass of the supports varies. 

2. EL (Energy Layer) [kWh]: obtained by multiplying the Energy per Layer (kWh/layer) by the 

number of layers. The latter is calculated by dividing the height of the part along the printing 

direction by the thickness of the layer considering each technology. The height of the part varies 

according to orientation. In particular, a layer thickness of 0.03 mm for L-PBF and 0.46 mm for 

L-DED were chosen. 

3. ED (Energy Dimension) [kWh]: represents the energy per mm of machined size. It is obtained 

by multiplying the consumption of the post-process wire EDM - Energy per Cutting Dimenson 

(kWh/mm) by the smaller size of the part in contact with the printing plate. This smaller 

dimension varies depending on the orientation of the part. 

4. ES (Energy Surface) [kWh]: represents the energy per mm2 of the machined surface and is 

obtained by multiplying the post-process band saw consumption - Energy per Cutting Surface 

(kWh/mm2) by the projected area in the printing plate.  

The ED and ES indicators were appropriately created to consider the energy consumption of post-

processing operations. 

4.3. Optimal printing direction calculation 

The first step is the definition of weights. For this study, TEC was considered the most important 

indicator. EL and ED (or ES, depending on the component analysed) were considered less important 

than the TEC indicator and of equal importance, respectively. Therefore, giving a score of 6 to the 
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indicator TEC and a score of 3 to the indicators EL and ED (or ES) results in weighting factors of 0.6 

and 0.2, respectively [equation (7)]. It is to be noted that the weights chosen are arbitrary and for 

illustrative purposes. As L-PBF technology is the most common and widely used technology for printing 

metal components, an example of the calculation procedure considering component B is shown in Table 

4. The method remains the same for the other combinations. 

Table 4 shows the results of the different calculation steps. Starting from the data collected during the 

inventory phase and the geometric information at each orientation step, the selected EnPI values are 

obtained. Then, through equation (1), the difference between each indicator’s maximum and minimum 

value is calculated. A normalisation phase is then applied by equations (2) and (4) at each orientation 

value and indicator. Based on these values and considering previously defined weighting factors, new 

weighted values are obtained through equations (8). Once the weighted values have been prescribed, the 

optimal orientation is evaluated using equation (9). The last column shows that the best printing 

direction is the one with orientation (135°, 45°, 135°). 

Table 4. Optimal build part orientation calculation for L-PBF process and Inconel 718 material 

 
 

Table 5 and Table 6 show the best printing directions for the remaining components and technologies 

analysed and their total consumption, split into the various energy contributions. 

The approach could be repeated around the obtained optimal orientations by increasing the number of 

orientations analysed. Results highlight that energy consumed during the printing phase is always higher 

than energy for feedstock or post-processing operations. However, post-processing is not negligible for 

some orientations (e.g., component C, L-DED technology) because the energy consumption is almost 

the same as for printing. Furthermore, the part build orientation selection cannot be carried out 

considering only the energy consumed during printing. Indeed, the energy related to feedstock and post-

processing is sometimes up to around 30% of the printing energy (e.g., components A and B for the L-

PBF process).  

The part build orientation is carried out considering only one part at a time. The best direction 

calculated for a part does not consider the other parts that could be printed in the same job. Thus, 

optimising the direction for each part of the job does not guarantee minimising the energy consumption 

for the entire build. Indeed, energy consumption depends on the packing density, which is not 

considered in this study.  

 

Sum

X Y Z Mass (kg) N° Layer
Projected 

Area (mm2)
TEC (kWh) EL (kWh) ES (kWh) TEC EL ES TEC EL ES Optimal

0 0 0 1.31 4333 4295.4 169.56 286.00 0.0033 0.450 0.083 1.000 0.270 0.017 0.200 0.487

90 0 0 1.40 2000 11332.0 181.50 132.00 0.0086 0.253 1 0 0.152 0.2 0 0.352

180 0 0 1.45 4333 4295.4 188.15 286.00 0.0033 0.144 0.083 1 0.086 0.017 0.2 0.303

0 90 0 1.52 3000 5457.7 196.91 198.00 0.0041 0 0.607 0.835 0 0.121 0.167 0.288

0 180 0 1.45 4333 4295.4 188.15 286.00 0.0033 0.144 0.083 1.000 0.086 0.017 0.200 0.303

0 0 90 1.31 4333 4295.4 169.56 286.00 0.0033 0.450 0.083 1.000 0.270 0.017 0.200 0.487

0 0 180 1.31 4333 4295.4 169.56 286.00 0.0033 0.450 0.083 1.000 0.270 0.017 0.200 0.487

45 45 45 1.31 4189 10292.0 169.56 276.50 0.0078 0.450 0.139 0.148 0.270 0.028 0.030 0.327

45 45 135 1.06 4189 10292.0 137.75 276.50 0.0078 0.973 0.139 0.148 0.584 0.028 0.030 0.641

45 135 45 1.06 4189 10292.7 137.75 276.50 0.0078 0.973 0.139 0.148 0.584 0.028 0.030 0.641

135 45 45 1.06 4543 9208.2 137.75 299.86 0.0070 0.973 0 0.302 0.584 0 0.060 0.644

45 135 135 1.06 4189 10292.7 137.75 276.50 0.0078 0.973 0.139 0.148 0.584 0.028 0.030 0.641

135 45 135 1.05 4543 9208.3 136.13 299.86 0.0070 1 0 0.302 0.6 0 0.060 0.660

135 135 45 1.05 4543 9211.0 136.15 299.86 0.0070 1.000 0 0.301 0.600 0 0.060 0.660

135 135 135 1.06 4543 9211.0 137.75 299.86 0.0070 0.973 0 0.301 0.584 0 0.060 0.644

Rj 60.79 167.86 0.01

Orientations L-PBF technology - Inconel 718

EnPI Calculation

Normalized EnPI Weighted EnPI
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Table 5. Optimal orientations for each component and technology 

Component Technology X Y Z Feedstock 

production 

[kWh] 

Printing 

process 

[kWh] 

Post-

processing 

[kWh] 

Total energy 

consumed 

[kWh] 

A L-PBF 45 45 45 66.079 224.756 10.838 301.67 

L-DED 0 0 180 5.000 55.873 2.534 63.41 

B L-PBF 135 45 135 105.30 330.683 0.007 435.99 

L-DED 0 90 0 8.072 81.136 0.004 89.21 

C L-PBF 90 0 0 3.415 84.599 6.410 94.42 

L-DED 90 0 0 0.255 7.023 6.410 13.69 

Table 6. Optimal orientations representation 

A 45°,45°,45° 0°,0°,180° 

 
 

B 135°,45°,135° 0°,90°,0° 

  

C 90°,0°,0° 

 

5. Conclusions 
The paper proposed an approach to calculate the optimal build part orientation considering the energy 

consumption. This method is for product and process engineers who want to evaluate and improve 

environmental sustainability for additive manufacturing processes. The methodology, independent of 

process type, considers energy related to feedstock, printing and post-processing operations. This study 

lays the basis for creating a software tool capable of assisting engineers in evaluating the optimal 

orientation from an environmental point of view. The tool has to interact with a 3D geometry (directly 

through a graphic engine or indirectly by employing APIs of commercial CAD systems tools) to extract 
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the information (e.g., print height, projected area, overhang area) required to evaluate the EnPIs for each 

part build orientation. Moreover, the tool must manage a database containing the LCI for the requested 

printing and post-processing technologies.  

The energy indicators selected do not consider product design (e.g., material density, safety factors) and 

process (e.g., productivity) parameters because, in this study, the part and its characteristics (e.g., shape, 

dimensions, material) are predetermined. Nevertheless, considering engineering indicators, the method 

can be extended to select the best design solutions, such as those resulting from generative design and 

topology optimisation. The process should be applied by considering an entire printing job rather than 

a part at a time. Indeed, by considering the packing density and optimising the build part directions of 

all the parts within the build box of a machine, it will be possible to guarantee the minimum energy 

consumption for the entire job. 

The approach can be further developed by considering, for example, social indicators (e.g., powder 

released during post-processing operations). This study can also be included within a broader method 

(Sartini et al., 2023) for the build part optimisation based on other criteria (e.g., cost, productivity, 

surface quality, strength). Since the rapid growth of innovative post-processing operations, the life cycle 

inventory needs to be extended to include such processes. 
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