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Abstract
This work investigates the use of a fuzzy logic controller (FLC) for two-wheeled differential drive mobile robot
trajectory tracking control. Due to the inherent complexity associated with tuning the membership functions of an
FLC, this work employs a particle swarm optimization algorithm to optimize the parameters of these functions. In
order to automate and reduce the number of rule bases, the genetic algorithm is also employed for this study. The
effectiveness of the proposed approach is validated through MATLAB simulations involving diverse path tracking
scenarios. The performance of the FLC is compared against established controllers, including minimum norm
solution, closed-loop inverse kinematics, and Jacobian transpose-based controllers. The results demonstrate that the
FLC offers accurate trajectory tracking with reduced root mean square error and controller effort. An experimental,
hardware-based investigation is also performed for further verification of the proposed system. In addition, the
simulation is conducted for various paths in the presence of noise in order to assess the proposed controller’s
robustness. The proposed method is resilient against noise and disturbances, according to the simulation outcomes.

1. Introduction
The autonomous two-wheeled differential drive (DD) mobile robot’s popularity has significantly
increased over time. This is due to the wide range of real-world applications of the mobile robotics.
Autonomous mobile robotics applications have become increasingly important in recent years in fields
like agriculture, industry, space exploration, and road inspection [1–5].

As a result of recent advancements in artificial intelligence (AI), robots are currently used to carry out
from basic human needs to complicated and autonomous actions to execute various tasks on a large scale
[3, 6, 7]. Autonomous mobile robots can be employed in many household tasks like food delivery, floor
cleaning, item placement, etc., because of technological improvements [8–10]. Thus, a different methods
are employed in order to carry out these various activities without the need for human intervention. These
techniques include fuzzy logic controllers (FLCs) [1, 2], neural network (NN) technique [11], hybrid
fuzzy controller [12], genetic algorithm (GA) [13], algorithm of simulated annealing (SA) [14], particle
swarm optimization (PSO) [15], adaptive neuro-fuzzy (ANFIS) [16], model-predictive control (MPC)
techniques [17], etc.

Path tracking control is primarily used to steer the robot along predefined trajectories based on their
position, acceleration, and speed as functions of time. This path tracking can be represented by a variety
of shapes, such as curves, straight lines, and segments of circles. One of the biggest challenges of the
autonomous mobile robot navigation is trajectory tracking [18, 19].
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According to the reviewed literature, many researchers have tracked the motion of mobile robots using
different types of controllers. The most commonly used methods for path tracking include model-based
control, fuzzy logic control, NNs control, and GA approach [19]. In ref. [20], the tracking-error learning
control (TELC) technique is introduced for accurate mobile robot path tracking. However, this tracking
error is limited to steady-state behavior control. The model-based predictive system is employed for path
tracking and steering control of the mobile robot in ref. [21]. However, predictive control is computa-
tionally challenging and sensitive to model errors. In ref. [22], adaptive sliding mode control (SMC)
was applied for path tracking of two-wheeled mobile robots to overcome external forces and inertia
uncertainty. The SMC reduces disturbances, but there are certain problems with the controller, such as
complexity and tuning issues. The problem of accurately tracking the control of a two-wheel mobile
robot following a path using a backstepping control strategy is addressed in ref. [23]. Backstepping con-
trol’s shortcomings include the model’s complexity, sensitivity to errors, and difficulties with real-time
implementation.

The model-based control strategy requires the mathematical models of the system being controlled
to track the desired trajectories. One of the most popular model-based techniques is the Jacobian
pseudo-inverse technique, which is especially well known for its efficiency in certain trajectory track-
ing tasks. However, this method may suffer from certain limitations related to singularity, convergence,
accumulation of errors, and computational complexity [18, 24, 25].

Fuzzy and NN controllers are static, nonlinear systems that may be precisely designed to meet system
needs and function according to the principles of human reasoning. The selection between fuzzy logic
and NN controllers depends on factors such as system complexity, availability of data, interpretability
requirements, and computational complexity [19, 26]. A variety of research studies have been presented
regarding NN-based trajectory tracking of mobile robots. These methods commonly use input variables,
such as wheel angles to determine the position and orientation of mobile robot. Forward kinematics is
used to produce training data. The NN method is highly interested in robotic control systems due to their
ability to effectively approximate nonlinear functions [19, 26]. The network architecture and types of
neurons used in a NN determine the performance of the controlled system. NN-based control is limited
due to computational difficulties arising from complex networks and require large amounts of training
data to guarantee accurate path tracking [18, 19, 27].

On the other hand, fuzzy logic uses human knowledge and experience to provide a non-mathematical
approach to solving control problems [28]. This method makes it easier to process data at a higher level
and integrate rule-based computing effectively. Fuzzy logic has been increasingly used in autonomous
vehicle control in recent decades due to its extensive popularity in a variety of industries [29]. It is
particularly effective in handling nonlinear systems with uncertainties and often avoids the need for
detailed system models. Due to their effective learning capabilities, fuzzy systems are well suited for
developing inference algorithms for real-time motion planning. Fuzzy controllers are more adaptable in
real-time applications as compared to NNs. Significantly, FLC exhibits faster response times than a NN
when both are applied to the same system with identical load conditions [19, 26]. A mobile robot’s local
and global navigation, path planning, steering, and control are all future tasks that could be handled
by fuzzy logic. The advantage of using fuzzy controllers is ability to deal with imprecise input and
uncertaint [1, 29].

FLC algorithm is a promising solution due to its inherent resilience, resilience to input disturbances,
and capacity for handling noise [19, 26, 30]. The fact that FLC has been successfully implemented in
challenging applications demonstrates its outstanding capabilities for handling nonlinearities. In ref.
[30], robustness is defined as the system’s capacity to continue operating in the presence of noise or
disturbances from both the internal and the external. Fault tolerance is also defined as system ability
to continue providing services in the presence of faults that arise during development or operation,
including component damage [30, 31]. In order to achieve fault tolerance and guarantee system stability
and reliability, the reliable controllers are essential [29, 30].

The trajectory tracking of the DD mobile robot is designed using a fuzzy-based proportional integral
derivative (PID) controller in ref. [32]. Selecting the appropriate and optimized number of rules and
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membership functions for a fuzzy-based PID controller is complicated. In ref [33], electric wheelchair
trajectory tracking using FLC control strategy is designed. Fuzzy sliding model-based control is used
for controlling an autonomous DD mobile robot by considering the friction torques in refs. [34, 35]. In
ref. [36], fuzzy sliding mode and backstepping controllers are used to track the motion of a two-wheeled
robot to overcome model errors and external disturbances. The complexity of modeling and potential
overfitting for particular operating conditions are some issues with fuzzy sliding mode controllers, which
can limit the system’s performance. A fuzzy logic approach for efficiently controlling mobile robots
under nonholonomic constraints was described in ref. [37]. In ref. [38], a comparison of the fuzzy-
based PID and traditional PID under various mobile robot dynamics is presented. However, fuzzy logic
performs better than other alternative controllers for nonlinear, complex, and undefined problems.

The FLC is characterized by adaptability, resilience, simplicity, and reliability that make it useful
in a variety of applications have been emphasized in previous studies [2, 30]. However, with the large
number of fuzzy controllers, the membership function parameter design is essentially based on trial
and error [19]. Finding an accurate and effective controller is difficult when using the heuristic-based
method of membership function selection. The large number rules are also another challenge for fuzzy
control because the length of computations increases and slows the response of the system [28, 35].

Tuning the membership function is a major difficulty of the FLC design, which has been addressed
by researchers employing a variety of optimization strategies over the past 10 years [19, 28]. Selecting
parameters for the membership function has a big impact on creating reliable and efficient fuzzy con-
troller. But the majority of the membership function selection is based on a trial-and-error methodology
that lacks autonomy and learning [19, 28, 35]. We have developed optimized membership function
parameters for mobile robot control in response to these relevant problems.

The kinematic model of a two-wheeled mobile robot with FLC-based nonholonomic DD trajectory
tracking is the main objective of this study. This work concentrates on the kinematic model by consid-
ering the position, orientation, and velocities of the mobile robot without including dynamic forces and
torques. For trajectory tracking control of nonholonomic mobile robots, FLC is commonly used due to
its robustness, resilience, and effectiveness in handling uncertainties and nonlinearities. However, design
of the huge number rule and membership functions are common problems for fuzzy controllers, which
increases the length of computation times and decreases efficiency the controller [19, 28].

To address these challenges, we have proposed a novel approach that uses PSO to optimize mem-
bership function parameters and GA to minimize the size of the rule base. PSO approach improve rule
aggregation and feature selection to reduce computing costs and improve system performance. Even
though many strategies have been used to modify FLC membership functions, automating this process
still remains challenging [19]. Here, we have introduced an innovative approach to maximize the tuning
membership function parameters of the proposed method for mobile robot control. To the best of our
knowledge, PSO-based FLC membership function optimization has not been studied in any literature
previously for mobile robot control. Our goal is to improve the performance of controllers in real-world
scenarios.

The study deals with the use of FLC to control and track the trajectory of a two-wheeled DD mobile
robot. Here, we have ensured that the velocity is uniform and the path planning is tracked precisely
using the proposed method. Two inputs and two outputs are presented in the proposed controller. The
mobile robot’s distance error and the orientation angle error are the inputs of controller. Likewise, the
linear and rotational angular velocities of the two-wheeled DD mobile robot are the outputs of FLC.
The initial position and orientation angle, in this case, are considered to be nonzero. For the position
control of mobile robots, self-localization is a notably important feature. It is impossible to navigate the
robot without knowing its location. The robot’s current location can be ascertained using a variety of
different techniques, such as visual-based localization, the dead-reckoning approach, and other methods
[1, 2]. The vision camera is employed in this research work to locate the position and orientation angle
of the mobile robot.

The contributions of this research paper are as follows: (1) design of an optimized FLC for a two-
wheel DD mobile robot that can easily navigate in the plane; (2) design of the PSO approach for
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(a) (b)

Figure 1. (a) Two-wheel differential drive mobile robot. (b) Mobile robot coordinate system.

optimization of membership function parameters; (3) conducting MATLAB-based simulations to eval-
uate the proposed controller performance and comparing it with existing standard kinematic controllers
such as minimum norm solution (MNS), Jacobian transpose-based controllers, and closed-loop inverse
kinematics (CLIK); (4) extensive experimental is performed to test the efficiency of the proposed method
in real-world scenarios; and (5) evaluating the robustness of the proposed controller in the presence of
sensor noise.

The remainder of the paper is organized as follows: in Section II, the kinematic modeling of the
wheeled mobile robot is presented. FLC design is discussed in Section III. Section IV presents the
simulation findings and discussions, and Section V presents the conclusion.

2. Kinematics model
In this work, a two-wheel DD robot is employed to evaluate the proposed controller. The prototype
of the mobile robot with two-wheel DD is shown in Figure 1(a). The coordinate system of proposed
mobile robot is shown Figure 1(b). Two DC motors are used for driving each individual wheel. This
robot can move either in forward or backward but not in the sides. The mobile robot center is assigned
by the coordinate system (C : xC, yC). It is assumed that the mobile robot will travel in a horizontal
plane. We assign the arbitrary coordinate system O : XY to the working plane. The position of the two
wheeled mobile robot C is defined as (x, y, φ), x is the coordinate of C projected on x-axis, y is the
coordinate C projected on y-axis, and φ is the orientation angle of coordinate system C with respect to the
coordinate system O. The two-wheeled mobile robot’s kinematic model is designed at velocity level so
that the wheels side slippage are negligible. The movement of the two-wheeled mobile robot on a curved
trajectory is restricted to having the same instantaneous center of rotation in order to guarantee that the
side slips are zero. The simplified constraints for the mobile robot with zero side slips are given as [39]:

ẏ cos φ − ẋ sin φ = 0 (2a)

ẋ cos φ + ẏ sin φ + b

2
φ̇ = rθ̇R (2b)

ẋ cos φ + ẏ sin φ − b

2
φ̇ = rθ̇L (2c)

where the angular velocity components of the right and left wheels are defined by θ̇R and θ̇L, respec-
tively, while r is the wheel radius. The derived and simplified mobile robot kinematic model with all the
aforementioned constraints is as follows:⎡

⎢⎣
ẋ

ẏ
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⎤
⎥⎦ =

⎡
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r
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cos φ r
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Figure 2. Block diagram of mobile robot control using an FLC.

Figure 3. Structure of fuzzy logic controller.

The wheel servo motors have an optical encoder. Motor encoders are used to measure the wheel
velocities of the mobile robot. The velocities of the mobile robot [ẋ ẏ, φ̇]T are computed using Equation
(2d), and the integral of these velocities provides the position [x, y, φ]T of the mobile robot with respect
to a fixed coordinate system.

Let V = √
ẋ2 + ẏ2 represent the linear velocity of two-wheel mobile robot, while the linear velocity

components of the right and left wheels, respectively, given by VR = rθ̇R and VL = rθ̇L. Therefore, the
equation can be written as: [

V

φ̇

]
=

[
1
2

1
2

1
b

− 1
b

] [
VR

VL

]
(2e)

From Equation (2e), the velocities of the wheels are derived in terms of mobile robot velocity and yaw
rate φ̇ as: [

VR

VL

]
=

[
1 b

2

1 − b
2

] [
V

φ̇

]
(2f)

3. Fuzzy logic controller design
In this section, we are going to design FLC to fuzzify and deduce rules from the inputs and then defuzzify
the outputs. Here, the FLC is designed with two inputs (distance and orientation angle errors) and two
outputs (linear and rotational angular velocities). Figure 2 displays the FLC block diagram proposed to
control two-wheeled DD mobile robots. Figure 3 depicts the FLC’s structure.

There are four steps for designing a fuzzy controller: fuzzification, inference mechanism system, rule
base, and defuzzification.

3.1. Fuzzification
The fuzzy membership function is an essential tool for identifying the fuzziness inherent in the data
and usually transforms the crisp input values supplied to the fuzzy inference system. The first step of
the fuzzy inference system is called fuzzification, which involves transforming exact input values into
fuzzy language variables with membership degrees between 0 and 1. The fuzzy membership function
provides a visual representation of each value’s degree of membership in a specified fuzzy set.
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The two input controllers are the distance error ed (which represents the difference between the desired
position and the robot’s current position) and the orientation angle error eθ (which represents the dif-
ference between the desired orientation angle and the robot’s current orientation angle). The linear and
angular velocities are the outputs of the proposed controller. The values of the two inputs are given by
Equations (3.1a) and (3.1b):

ed = √
(xT − x)2 + (yT − y)2 (3.1a)

eθ = tan−1

(
yT − y

xT − x

)
(3.1b)

where xT and yT are the target positions of mobile robot. The ed and eθ are distance and orientation
errors, respectively. In this study, fuzzification is accomplished by the application of the triangle structure
membership function. The orientation error input employs five linguistic variables. These linguistic
variables are listed as follows:

• ZA → Zero Angle
• PA → Positive angle
• VPA→ Very Positive Angle
• NA → Negative Angle
• VNA → Very Negative Angle

Similarly, the distance error linguistic variables are also given as follows:

• ZA → Zero Distance
• SD → Small Distance
• MD → Medium Distance
• LD →Long Distance
• VLD→ Very Long Distance

The following linguistic variables are used to determine output linear velocity membership functions:

• ZS → Zero Speed
• SS → Slow Speed
• MS → Medium Speed
• FS → Fast Speed
• VFS →Very Fast Speed

The following linguistic variables are also used to determine output angular velocity membership
functions:

• ZAV → Zero Angular Velocity
• MPAV → Medium Positive Angular Velocity
• MNAV → Medium Negative Angular Velocity
• LPAV → Large Positive Angular Velocity
• LNAV → Large Negative Angular Velocity

Different membership functions are used to describe orientation error (eθ ) and distance error (ed).
Figures 4 and 5 show the input membership functions of orientation and distance errors, respectively. The
membership functions for linear and angular velocity outputs are shown in Figure 6a and b, respectively.
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Figure 4. Input membership functions for orientation angle error.

Figure 5. Input membership functions for distance error.
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Figure 6. Membership functions for output angular velocity (ω) and linear velocity (V), respectively.

Tuning the membership function is a major difficulty of the FLC design, which has been addressed
by researchers employing a variety of optimization strategies over the past 10 years [28, 35]. Selecting
parameters for the membership function has a big impact on creating trustworthy and efficient FLC
designs. The majority of the membership function selection are based on a trial-and-error methodology
that lacks autonomy and learning [28].

In this work, the PSO technique has been employed to find the optimal value of all input membership
function’s parameters. Here, root mean square error (RMSE) between actual (x, y) and desired position
(xd, yd) of mobile robot is considered as cost function, which is shown in Equation (3.1c):

Cost function =
√√√√1

n

n∑
i=1

((xd(i) − x(i))2 + (yd(i) − y(i))2) (3.1c)

The objective of this algorithm is to find the optimal value of nine parameters of input membership
function while minimizing the cost value. In this PSO algorithm, nine swarms in total have been taken
into account, and each swarm contains 50 particles. The swarm minimizes the cost function to advance
toward the optimal position depending on the personal best attribute of each particle and the global best
attribute. Velocity and position of the swarm are updated, according to the rules given by Equations
(3.1d) and (3.1e):

Vj(k + 1) = wVj(k) + c1r1(PBest j(k) − Pj(k))

+ c2r2(GBest(k) − Pj(k))
(3.1d)

Pj(k + 1) = Pj(k) + Vj(k + 1) (3.1e)

Here, Pj(k + 1) and Vj(k + 1) are the jth particle’s position and velocity at (k + 1)th iteration, respectively.
PBest j(k) is the personal best position of the jth particle at kth iteration. GBest(k) is the global best of the
swarm at the kth iteration. The variables c1 and c2 are the coefficients of acceleration; w is the inertia
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Figure 7. Results of PSO (optimal values of nine parameters and fitness function profile).

weight; and r1 and r2 are the random integers in the range [0, 1]. Figure 7(a)–(i) illustrate particles’
positions of all swarms at the last iteration and also cost function (Figure 7(j)) profile during the off-
line optimization. From the view point of Fig. 7(a)–(i), optimal values for nine parameters are: (a0 =
0.0532, a1 = 50, a2 = 151, a3 = −80, a4 = −168, b1 = 9.428, b2 = 19.51, b3 = 34.58, b4 = 54.58).

3.2. Rule base and inference system
The fuzzy controller operates by taking precise values as input for the errors in orientation angle and
distance. These values are then fuzzified to provide membership degrees that correspond to appropriate
fuzzy sets. This process is handled by the inference system, which turns the unclear input data into an
output by adjusting the linear velocities of the robot’s left and right wheels based on a rule basis. The rule
base is a set of statements that, utilizing if-then logic to link the inputs and outputs. We have employed
five lingusitic variables for each inputs (orientation angle and distance errors) to simplify the reasoning.

The formation of the rule base for fuzzy controller is also another an essential process that enhances
the system’s control. The complex interactions between input variables and desired output velocities
are represented by the rules. These rules allow the system to follow the desired trajectory effectively by
considering various error scenarios. The performance of the controller is adjusted through incremental
changes to the fuzzy universe of discourse that improve tracking accuracy and robustness in a variety
of operational conditions [28, 40]. Once membership functions have been defined, it is necessary to
formulate fuzzy rule bases. We have developed an expert system with 25 if-then rules. A total of 25
rules base are given as follows for both linear and angular velocities:

1. If ed = ZD and eθ = ZA, then V = SS and ω = ZAV .
2. If ed = ZD and eθ = PA, then V = ZS and ω = MPAV .
3. If ed = SD and eθ = ZA, then V = SS and ω = ZAV .
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Table I. Rule base of the output linear velocity.

ed (cm) / eθ (deg) ZA PA NA VPA VNA
ZD SS ZS ZS ZS ZS
SD SS SS SS SS SS
MD MS MS MS MS MS
LD FS FS FS FS FS
VLD VFS VFS VFS VFS VFS

Table II. Rule base of the output angular velocity.

ed(cm) / eθ (deg) ZA PA NA VPA VNA
ZD ZAV MPAV MNAV LPAV LNAV
SD ZAV MPAV MNAV LPAV LNAV
MD ZAV MPAV MNAV LPAV LNAV
LD ZAV MPAV MNAV LPAV LNAV
VLD ZAV MPAV MNAV LPAV LNAV

4. If ed = SD and eθ = PA, then V = SS and ω = MPAV .
.
.
.

25. If ed = VLD and eθ = VNA, then V = VFS and ω = LNAV .

The rule base for the output linear velocity of two-wheeled DD mobile robots using FLC control is
given in Table I. The FLC rule base for the mobile robot’s output angular velocity is given in Table II.

The two-wheel DD mobile robot under investigation has a maximum linear velocity of 20 cm/s. The
actual velocities of the robot must be taken into account while designing the FLC to satisfy control
objectives. Fuzzy control mechanisms are incorporated at both the input and output stages as part of
this design. The language variable for linear velocity (V) is divided into equal interval in the universe
of discourse [0, 20 cm/s], and this range is defined by five constant membership functions. In a similar
manner, the angular velocity (ω) has five corresponding membership functions and is divided into equal
intervals within the universe discourse [−180, 180 deg/s].

Here, we have presented the GA to automate and simplify the development of fuzzy control rules. GA
uses genetic reduction approaches to find the minimum number of rules required to build fuzzy models
in addition to automatically producing fuzzy rules. Computational complexity is reduced during the
learning phase by removing redundant rules and merging conflicting rules [28, 40]. Fuzzy controller
rule is represented by the following structure:

Ri=If (ed is Ai
1h1

and eθ is Bi
2h2

. . .) Then (V is Cm) and (ω is Dm)
In this case, distance error, orientation error, linear velocity, and angular velocity are represented

by the membership functions A, B, C, and D, respectively. The linguistic variables in the input and
output increase exponentially with the number of fuzzy rules. For each crisp input, h = 1, 2, 3, · · · , n,
the number of linguistic variables for the crisp input is given by h1, h2, h3, . . . , hn and the crisp output
linguistic variable is represented by h1, h2, h3, h4, . . . , hm. The candidate rules r is given as r=h1 × h2 ×
h3 × h4, · · · , hn.

The output of the fuzzy rule in the fuzzy model is either a constant or a linear combination of the
input variables. For FLC, the total candidate rules increase by p = r × hm, if the consequent value is
constant and related to the linguistic variables of output. As a result, in order to determine the proper
control action, developing such a controller requires a large amount of computing time per step. In order
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Table III. Specification of the mobile robot.

Physical parameters l b r m
0.15 m 0.12 m 0.035 m 0.35 kg

Operating conditions Vmin Vmax ωmin ωmax

1.5 V 6.0 V π/2 (rad/s) 4π (rad/s)

to generalize fuzzy control rules, the weight factor wi
m must be included in order to assess whether a rule

should be included in the rule base. The generalized rule base structure is rewritten as:
Ri=If (ed is Ai

1h1
and eθ is Bi

2h2
. . .) Then (V is wi

mCm) and (ω is wi
mDm)

→ If
∑hm

m=1 wi
m = 0, if the ith rule has no consequences and then it should be removed from the candidate

rule base.
→ If

∑hm

m=1 wi
m = 1, if the ith rule has a single consequence and hence it should be included straight into

the rule base.
→ If

∑hm

m=1 wi
m = 2 or more, if the ith rule has two or more consequences, we have applied the following

equation to merge the two or more consequences into one consequence: VN = 1
2

∑n
i=1 ZCi , where the

number of consequences is denoted by n, the center numeric value of each fuzzy rule consequence is
represented by ZCi , and the final numerical value is represented by VN . Several results are produced by
selecting the linguistic variable for VN that has the highest membership value.

3.2.1. Defuzzification
The control system’s inference engine is responsible for making decisions via approximative reasoning.
Fuzzy inference results are obtained by defuzzification, which is the process of obtaining a single num-
ber from the combined fuzzy set output. Defuzzification is essentially accomplished by an algorithm
that chooses the best crisp value from the fuzzy collection. We have used the center of gravity (CoG)
technique for defuzzification in our study. The CoG is located at center of the body and represents the
point at which the majority of an object’s weight is concentrated. Mathematically, CoG is given as
follows:

Zcrisp =
∫

μ(z) z × dz∫
μ(z) dZ

where Zcrisp is represents the crisp (non-fuzzy) output value obtained through defuzzification, while∫
μ(z) is represents the membership function of the fuzzy set at a particular value z. Finally, these

specifications can be executed for fuzzy controller through the running of basic MATLAB code on
suitable computer systems.

4. Results and discussions
To demonstrate the effectiveness of the suggested FLC with optimal membership function parameters,
both the simulation and experimental results are provided and analyzed in this section. The two-wheeled
mobile robot parameters used for simulation and experimental purposes are presented in Table III. The
minimum and maximum active operating conditions of the driving wheels are also presented in Table III.
If the output results are outside these specific operating conditions, the drive wheels will be in the dead
zone or saturation region.

4.1. Simulation results
The proposed method and other control techniques are simulated using MATLAB software. The per-
formance and reliability of the proposed controller for a two-wheel DD mobile robot are assessed using
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Figure 8. Straight-line trajectory tracking simulation results with nonzero initial conditions.

a variety of trajectory tracking approaches, including straight-line, circular, triangular, and Lissajious
paths. Furthermore, different types of controllers are employed for comparative analysis to highlight
the advantages of the proposed approach. This study used three controllers for comparison purposes:
MNS, CLIK, and Jacobian transpose-based controllers. Here, the controller’s performance is evaluated
using the following parameters: RMSE, maximum tracking error, standard deviation error, and con-
troller effort. The position and orientation of the two-wheeled mobile robot are assumed to be nonzero
initially, which are given as x0 = 0.01 m, y0 = 0.01 m, and φ0 = −0.2 rad.

4.1.1. Straight-line path tracking
Figure 8 presents the simulation outcomes for tracking a straight line using different controllers. In the
figure, the desired trajectory represented by Pd, while PJt is the actual path with Jacobian transpose-based
controller, PCLIK is the actual path with CLIK, and PFLC is the actual path with the proposed FLC. The
path tracking result for the MNS controller is not displayed in Figure 8 due to a substantial discrepancy
between the desired path and the actual path. On the other hand, Table V displays the tracking errors for
each controller. The settling time ts of the Jacobian transpose-based controller is equal to 0.1 s, which is
smaller than the other controllers. However, the controller efforts presented in Table IV (ωR = 42.4 rad/s,
ωL = 48.2 rad/s) are much larger than the other controllers and not within the defined practical limits,
which may lead to saturation in a practical scenario. Even though the FLC has the largest settling time of
0.2 s, the controller effort is smaller (ωR = 3.2 rad/s, ωL = 3.2 rad/s) and within the practical limits. The
tracking performance of the controllers is recorded in Table V. FLC has the lowest RMSE as compared
to other controllers. The CLIK controller has the least maximum position error max{exy} = 0.0141 m
and the least standard deviation σ {exy} = 0.0024 m with respect to the desired path.

4.1.2. Circular path tracking
Figure 9 displays the simulation outcomes for a circle path tracking using the proposed and different
other controllers. In this figure, the desired trajectory is represented by Pd, while PJt is the actual path
with Jacobian transpose-based controller, PCLIK is the actual path of the CLIK, and PFLC is the actual path
with the proposed FLC. The performance of the MNS-based controller is given in Table V. In this case,
the MNS RMSE{exy} = 0.3716 m, and it is very high as compared to other controller’s performance.
The circle tracking using a Jacobian transpose-based controller has a shorter settling time (ts) when
compared to the other controllers. However, the controller requires significantly greater effort or higher
angular velocities (ωR = 42.4 rad/s and ωL = 48.2 rad/s), which could lead to saturation in real-world
applications. In circular tracking, even though the FLC’s settling time is longer than listed controllers,
the controller efforts are still within reasonable bounds at ωR = 3.2 rad/s and ωL = 2.8 rad/s. Among the
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Table IV. Controller efforts of various controllers on different paths with nonzero initial
conditions.

max{ωR} max{ωL}
∫ {|ω|}

Methods Path (rad/s) (rad/s) (rad)
Jacobian transpose Straight-line 42.4 48.2 74.5

Circular 42.4 48.2 196.9
Triangular 43.2 48.2 129.4
Lissajous 42.4 48.2 429.4

Closed-loop inverse kinematics Straight-line 2.9 2.8 57.17
Circular 3.5 2.8 177.3
Triangular 53.2 59.0 111.3
Lissajous 3.1 3.3 412.0

Proposed fuzzy controller Straight-line 3.2 3.2 55.66
Circular 3.5 2.8 177.3
Triangular 8.9 4.6 101.9
Lissajous 3.1 3.2 411.0

Table V. Tracking the performance of the different controllers on various paths with
nonzero initial conditions.

RMS{exy} max{exy} σ {exy}
Methods Path (m) (m) (m)
Minimum norm solution Straight -line 0.2988 0.1870 0.0560

Circular 0.3716 0.02168 0.0664
Triangular 0.2691 0.1384 0.0391
Lissajous 0.5061 0.4831 0.1387

Jacobian transpose-based controller Straight-line 0.1188 0.0233 0.0010
Circular 0.1185 0.0232 0.0005
Triangular 0.1190 0.0233 0.0013
Lissajous 0.1184 0.0233 0.0004

Closed-loop inverse kinematics Straight-line 0.0289 0.0141 0.0024
Circular 0.0785 0.0141 0.0006
Triangular 0.0475 0.0141 0.0035
Lissajous 0.0813 0.0141 0.0005

FLC without optimization Straight-line 0.0182 0.0479 0.0076
Circular 0.0172 0.0604 0.0085
Triangular 0.0199 0.0748 0.0128
Lissajous 0.0168 0.0597 0.0058

Proposed optimized FLC Straight-line 0.0168 0.0401 0.0065
Circular 0.0149 0.0508 0.0073
Triangular 0.0163 0.0518 0.0093
Lissajous 0.0146 0.0393 0.0045

listed controllers, FLC has the lowest RMSE value. Regarding the planned path at each instant in time,
the CLIK controller has the lowest standard deviation error σ {exy} = 0.0006 m and the lowest maximum
position error max{exy} = 0.0141 m, when compared to the FLC, Jacobian transpose-based controller,
and MNS.
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Figure 9. Circular path trajectory tracking simulation results with nonzero initial conditions.
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Figure 10. Triangular path trajectory tracking simulation results with nonzero initial conditions.

4.1.3. Triangular path tracking
Here, the simulation outcomes for tracking a triangular path using different controllers, namely Jacobian
transpose-based controller, CLIK, FLC, and MNS, are explained. The desired path is represented by Pd

in the figure, while the actual paths of the proposed FLC, CLIK, and Jacobian transpose-based controller
are represented by PFLC, PCLIK , and PJt, respectively. The simulation results for the Jacobian transpose-
based controller, CLIK, and FLC are displayed in Figure 10, while the MNS simulation result is not
included because there is a significant discrepancy between the desired and actual paths. However,
the performance data of all controllers, including MNS, are presented in Table V. The settling time
(ts) of the Jacobian transpose-based controller is 0.05 s, which is the shortest among all the controllers
tested. However, the controller efforts shown in Table IV (ωR = 43.2 rad/s and ωL = 48.2 rad/s) are sig-
nificantly greater than those of the other controllers, which is practically infeasible. FLC has a longer
settling time compared to other controllers, but the controller effort is within acceptable limits (ωR = 8.9
rad/s and ωL = 4.6 rad/s). The tracking error simulation results are shown in Table V for all controllers,
including MNS. FLC has the lowest RMSE of all the controllers, indicating that it performs better
in terms of overall tracking accuracy. However, the CLIK controller has the least maximum position
error max{exy} = 0.0141 m and the least standard deviation σ {exy} = 0.0035 m compared to the other
controllers for circular path tracking.

4.1.4. Lissajous path tracking
Figure 11 displays the outcomes simulation of the trajectory tracking for the Lissajous path with vari-
ous controllers. The desired trajectory is represented by Pd in the figure, whereas the actual paths are
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Figure 11. Lissajous path trajectory tracking simulation results with nonzero initial conditions.
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Figure 12. Controller efforts velocities of the mobile robot while tracking Lissajous path using FLC
with nonzero initial conditions.

represented by PJt, PCLIK , and PFLC for the Jacobian transpose-based controller, CLIK, and proposed
FLC, respectively. Since the performance of the MNS-based controller is poor, the tracking trajectory
of the MNS is not included in Figure 11. Table V shows the trajectory tracking errors for all controllers,
including MNS. The maximum controller efforts demanded by the Jacobian transpose-based controller
are ωR = 43.2 rad/s and ωL = 48.2 rad/s, which is not in defined practical limits. On the other hand,
FLC has the longest settling time, but its controller effort is within acceptable limits (ωR = 3.1 rad/s and
ωL = 3.2 rad/s). The CLIK controller has the lowest maximum position error max{exy} = 0.0141 m and
lowest standard deviation σ {exy} = 0.0005 m in relation to the planned path at every time, whereas FLC
also has the lowest RMSE of all the controllers. The zoomed view of the trajectory in Figure 11 shows
that there is a steady-state error in the case of the CLIK controller.

The controller efforts of the FLC for Lissajous path tracking is presented in Figure 12. It is clear
that the angular velocities of the wheels are less than 3.5 rad/s, and the orientation rate (yaw rate) of the
mobile robot is also in the range of ±0.4 rad/sec. The trajectory tracking error of the FLC with respect to
time is presented in Figure 13. The position error of the mobile robot in the x-y plane is within the range
of ±0.025 m. Due to the nonzero initial position, the maximum distance error exy is equal to 0.025m. The
orientation error eφ of Lissajous path tracking for FLC with respect to time is also shown in Figure 13.
This figure demonstrates that the error is large at the initial stage because of the initial orientation being
nonzero, and after a few seconds, it is reduced to a small value, which is varied within a range of ±0.05
rad (Figure 14).
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Figure 13. Position errors of the mobile robot while tracking Lissajous path using FLC with nonzero
initial conditions.
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Figure 14. Experimental results of path tracking on a circular path.

4.2. Proposed method simulation results considering the noise
As discussed in the previous section, FLC is proposed for the trajectory tracking of the two-wheeled
DD mobile robot for this study. FLC is preferable because it can handle the uncertainty and inaccurate
data associated with controlling systems compared to other controllers [1, 2, 30]. In particular, this
controller shows the capacity to reduce tracking errors while maintaining task efficiency when sensor
noise or disturbance is added to the system. Several previous studies have demonstrated that a fuzzy
controller performs effectively in nonlinear environments [3–5, 30].

Fuzzy control can also improve the overall robot system’s robustness [30]. In order to verify the
robustness of the proposed system, an investigation is carried out to examine the controller’s actions
when noise affects the robot’s localization system. The purpose of this study is to evaluate the robustness
of controller, particularly with regard to trajectory tracking tasks. Basically, analyzing the controller’s
response to noise in the localization system-induced errors or uncertainty in the robot’s trajectory track-
ing provides important information on the effectiveness and robustness of the control system. This type
of analysis helps to increase the robustness and reliability of the controller in real-world scenarios. Four
different types of trajectory tracking paths are used for simulation purposes to verify the proposed con-
troller in this study. To verify the robustness of the proposed controller, randomly generated sensor noise
is considered and simulated using various trajectory tracking paths.
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Table VI. The proposed conventional FLC, type 3 FLC, FLC-based SMC, optimized
FLC, and FLC in the presence of noise are compared depending on varous criteria.

RMS{exy} Max{exy} σ {exy}
Methods Path (m) (m) (m)
Normal FLC Straight-line 0.0182 0.0679 0.0078

Circular 0.0172 0.0604 00.0065
Triangular 0.0178 0.0546 00.0103
Lissajous 0.0168 0.0499 0.0058

FLC-based SMC [36] Straight-line 0.0173 0.0515 0.0067
Circular 0.0162 0.0521 0.0061
Triangular 0.0169 0.0597 0.0105
Lissajous 0.0159 0.0710 0.0109

Type-3 FLC [31] Straight-line 0.0169 0.0507 0.0064
Circular 0.01537 0.0513 0.0057
Triangular 0.0178 0.538 0.0204
Lissajous 0.0153 0.0399 0.0049

FLC with noise Straight-line 0.0188 0.0864 0.0124
Circular 0.0178 0.0748 0.0125
Triangular 0.0213 0.1196 0.0212
Lissajous 0.0174 0.0710 0.0109

Optimized FLC Straight-line 0.0168 0.0401 0.0065
Circular 0.0149 0.0508 0.0073
Triangular 0.0163 0.0518 0.0093
Lissajous 0.0146 0.0393 0.0045

4.2.1. Straight-line path trajectory tracking simulation results in presence of noise
The simulation results for straight-line trajectory tracking of the proposed FLC method incorporating
presence noise and various controllers are shown in Figure 15. The desired trajectory is denoted by
Pd, while Jacobian transpose-based controllers, CLIK, and FLC represented by PJt, PCLIK , and PFLC are
the actual trajectories for each respective controller. This figure shows when 0.01 randomly generated
noise is simulated with the proposed system. The controller efforts remain within the expected operating
range even the noise is added to system. The comparison of FLCs with and without noise is shown in
Table VI. This outcome highlights the FLC controller’s stability and resilience, as well as demonstrating
its capacity to continue operating even in the case of errors and uncertainties in the system.

4.2.2. Circular path trajectory tracking simulation results in presence of noise
Figure 16 shows the circular trajectory tracking simulation results. This simulation results include the
effect of presence noise along with other controllers, including the proposed FLC technique. In this
approach, Pd represents the desired trajectory. In the meantime, the Jacobian transpose-based con-
troller, CLIK, and FLC represent the actual trajectories, which are represented by PJt, PCLIK , and PFLC,
respectively.

The figure shows when proposed method is simulated with randomly generated sensor in order to
assess the stability and robustness of the proposed approach. The controller’s efforts remain within the
expected operating range even when noise is introduced. The comparison of robust fuzzy and proposed
FLC without noise is presented in Table VI. This demonstrates the FLC controller’s robustness and
stability as well as its capacity to continue operating even when the system is disturbed by uncertainty
and system failures.
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Figure 15. Straight-line path trajectory tracking simulation results with nonzero initial conditions with
presence of noise.
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Figure 16. Circular path trajectory tracking simulation results with nonzero initial conditions with
presence of noise.

4.2.3. Triangular path trajectory tracking simulation results in presence of noise
Figure 17 shows results of the triangular trajectory tracking simulation results in presence of noise. This
comprehensive simulation results explores the effects of presence noise and other types controllers. In
this figure, the desired trajectory tracking is represented by Pd, while the actual trajectories FLC, CLIK,
and Jacobian transpose-based controllers are represented by PFLC, PCLIK , and PJt, respectively.

The proposed method is simulated with random noise for traingular path tracking as shown in
the figure. The controller exhibits remarkable resilience to external disturbances as controller efforts
are effectively remained within the specified working range even in the presence of noise. The per-
formance comparison between the robust fuzzy method and the suggested fuzzy methodology is
shown in Table VI. This result highlights the FLC controller’s effectiveness in practical situations
by demonstrating its ability handling nonlinearities and uncertainties while maintaining stability and
robustness.

4.2.4. Lissajious path trajectory tracking simulation results in presence of noise
The simulation result of the proposed method with noise for Lissajious path trajectory tracking is shown
in Figure 18. This comprehensive simulation study examines the effects of noise presence on the pro-
posed novel optimized FLC method. The desired trajectory tracking is represented by Pd. Concurrently,
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Figure 17. Triangular path trajectory tracking simulation results with nonzero initial conditions with
presence of noise.
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Figure 18. Lissajious path trajectory tracking simulation results with nonzero initial conditions with
presence of noise.

the actual paths FLC, CLIK, and Jacobian transpose-based controllers are represented by PFLC, PCLIK ,
and PJt, respectively.

The controller has exceptional resistance to external disruptions, as it successfully maintains con-
troller efforts within the designated operating range even when noise is present. The robust fuzzy
approach and the proposed fuzzy approach are compared in terms of performance in Table VI. This
result emphasizes the FLC controller’s effectiveness in practical situations by demonstrating its ability
to handle uncertainty and nonlinearities while maintaining stability.

Figure 19 shows the RMSE for orientation and position during Lissajious trajectory tracking using the
FLC technique with system noise. This result shows the stability and robustness of the proposed FLC in
case uncertainties and disturbance by noise. The FLC technique demonstrates its reliability in scenarios
with changing variables and disturbances by maintaining a constant performance when compared to the
classical controller even when noise is applied to the system.

The tracking of a Lissajious path trajectory while simulating noise are shown in Figure 20. The
proposed fuzzy controller maintains the angular velocities of each wheel within the given operating
ranges, even when noise is present. This result is evidence of the FLC controller’s stability and resilience,
demonstrating its effectiveness in unpredictable real-world situations.

Additionally, the constant stability of angular velocities within allowed bounds highlights the relia-
bility of the FLC technique in coordinating accurate and regulated movements of the mobile robot. This
ensures improved trajectory tracking by giving the controller’s performance trust, especially in dealing
with changing external conditions and disturbances.
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Figure 19. Position and orientation errors of mobile robot simulation results while following the
Lissajious path trajectory tracking with nonzero initial conditions with presence of noise.
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Figure 20. Angular velocities of mobile robot simulation results while following the Lissajious path
trajectory tracking with nonzero initial conditions with presence of noise.

4.3. Experimental results
According to the simulation findings from Section 4.1, the FLC-based path tracking controller is effec-
tive performance than other controllers like MNS, CLIK, and Jacobian transpose-based controllers.
Experiments were carried out using circular and Lissajious path tracking trajectories to evaluate the
efficiency of the controllers. Figure 14 shows experimental results of the 0.4 m radius circular path
using FLC and CLIK. The robot’s actual trajectories are represented by PFLC and PCLIK , respectively,
for the proposed FLC and CLIK, whereas the desired trajectory is represented by Pd as shown in the
figure. The maximum distance errors for the proposed PFLC and PCLIK , max{ed} is 0.001 m and 0.003 m,
respectively. Since FLC tracking error is smaller than CLIK, it can be concluded that FLC controller is
capable of tracking the circular path more accurately than CLIK.

Experimental results for the Lissajous path using FLC and CLIK are presented in Figure 21. The
desired trajectory is represented by Pd, while the actual trajectory using a FLC is represented by PFLC,
and the actual trajectory using CLIK is denoted by PCLIK . The maximum distance error max{ed} for
paths PFLC and PCLIK is 0.005 m and 0.007 m, respectively. The tracking error of FLC is less than that
of the CLIK method, demonstrating that the FLC controller can track the complex Lissajous path with
greater accuracy than CLIK controller. Figure 22 shows the two-wheeled mobile robot’s experimental
snapshots while tracking the circular path. The experimental snapshots of the two-wheeled drive robot
while tracking the Lissajious path are also presented in Figure 23.
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Figure 21. Experimental results of path tracking on a Lissajous path using proposed controller and
CLIK.

Figure 22. Experimental snapshots during circular path tracking by the robot.

Figure 23. Experimental snapshots during Lissajous path tracking by the robot.

4.4. Discussions
Mobile robots consist various technologies, including sensors, actuators, electrical components, infor-
mation processing, and communication systems [32]. In recent decades, the mobile robots have
become more widely used in a variety of applications, including the industrial and service sectors
[41]. The increasing application of mobile robots in many engineering fields recent years has led to
an increasing awareness among researchers regarding the significance of investigating and improv-
ing autonomous vehicle technology. The development of efficient controllers is an essential factor in
improving performance mobile robot [1–3, 31].

Among the primary challenges in controlling mobile robots are trajectory tracking and stability [18,
19, 45–47]. The goal of path tracking is to precisely lead the robot along predefined tracks within prede-
termined times by utilizing geometric parameters [48]. Because of its resilience and adaptability, FLC
can be used in a variety of control applications [30].

Fuzzy logic has used in many different fields, including identification of faces, unmanned aerial
aircraft, medical diagnostics, and transportation systems. In several industries, including chemical, auto-
motive, and aerospace, fuzzy logic is used to support decision-making, system control, and optimization
processes [31, 41, 49].
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In recent years, many researchers have used mobile robot trajectory tracking using FLCs [1–3, 19,
28, 31, 35]. However, tuning the membership functions of FLC poses challenges due to its complexity
and time-consuming nature [19, 28, 35]. In this study, we have proposed trajectory tracking using FLC
specifically designed for two-wheeled DD mobile robots. In order to optimize the membership function
parameters and enable effective tuning, we have implemented the PSO algorithm. Here, the proposed
method is validated through MATLAB simulation and experimental results. To assess the effectiveness
of the FLC further, we have tested different path tracking scenarios, such as circular, triangular, straight-
line, and Lissajous paths. Triangular and Lissajous paths are more challenging to track than straight-line
and circular paths, which shows the strength and efficiency of the proposed controller compared to other
related paths.

Moreover, the proposed approach’s resilience is thoroughly assessed by adding randomly generated
sensor noise data using MATLAB simulation. This extensive evaluation covers multiple tracking tra-
jectories and reveals the system’s resilience to external noise. The results of the simulation demonstrate
the effectiveness of the suggested methodology in preserving reliable performance even when there are
external factors that affect the controller.

We have also evaluated our FLC’s performance by comparing it with three alternative controllers
(MNS, CLIK, and Jacobian transpose-based controller) with different trajectory tracking tasks con-
ducted under the same circumstances. Controller effort, maximum tracking error, standard deviation
error, and RMSE are some of the critical metrics used for the evaluation. Controller efficiency and tra-
jectory tracking precision of simulation results show that the FLC performs better than the CLIK, MNS,
and Jacobian transpose-based controllers. The lowest maximum position error and standard deviation
error are shown by the CLIK controller. However, the FLC provides accurate trajectory tracking with
reduced RMSE and controller effort. Even though the FLC requires greater computing time than MNS
and CLIK, it is more flexible and easy to use in a variety of robotic applications [19, 34]. Conversely,
the controller-based Jacobian transpose is limited to specific types of mobile robots and requires exten-
sive computations for inverse kinematics. The trajectory tracking capability of the FLC is different
from other controllers because of its capacity to handle uncertainty, interpolation ability, and inference
systems [42, 50, 51].

A comparative analysis between conventional FLC, type 3 FLC, FLC-based SMC, FLC with noise,
and optimized FLC using PSO-based optimization are presented in Table VI. The comparison is based
on simulation results generated by all controllers and assessed by using performance criteria. The pre-
sented results demonstrate that the optimized FLC approach produced significant improvements in
trajectory tracking performance. Performance parametric evaluations such as RMSE, maximum distance
error, and standard distance error are improved using the optimized FLC. These improvements come as
a result of the membership function parameter tuning using PSO algorithms, which produces optimized
values that are more appropriate for the functioning of the proposed controller. The significant improve-
ments in tracking performance and robustness are also displayed by the type 3 FLC and FLC-based SMC.
SMC has the capacity to overcome external disturbances, model uncertainties, and parameter variations,
making it one of the most practical techniques. However, the chattering phenomenon affects SMC [52].
Adaptive SMC and optimal SMC with a state-dependent Riccati equation are two methods that have been
proposed to mitigate this effect. However, adaptive SMC increases the system response delay, which can
make it challenging for wheeled mobile robot (WMR) to accurately track the trajectory [52].

PSO exhibits superior convergence rates compared to other algorithms, attributed to its direct explo-
ration strategy, which proves advantageous in scenarios prioritizing efficiency. Furthermore, PSO’s
minimal parameter requirements and simplicity make it easier to implement and apply, which appeals
especially to users looking for simple optimization solutions. Moreover, PSO’s ability to achieve a bal-
ance between exploration and exploitation guarantees efficient search space navigation, which adds to
its application in a variety of optimization circumstances.

Table VII presents comparative studies of the proposed FLC in comparison to various alternative con-
trol strategies that have been documented in the literature. The table shows that the proposed controller
performs better than other controllers in terms of tracking error, stability, rate of convergence, and
computational complexity.
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Table VII. Comparing the suggested approaches with other available controllers from various
literature sources.

Position Rate of
tracking Computational Experimentally convergence

References Methodology error (m) complexity verified and stability
Antonelli et al.
[4]

Finite-time global
tracking control
method.

0.0452 High No Converges
and stable.

Zhang et al.
[6]

Adaptive fuzzy
feedback control
method

0.00242 High No Converges
and stable.

Abdelwahab
et al. [42]

Z-number-based
FLC

- High Yes Converges
and stable.

Abubakr et al.
[43]

Adaptive dynamic
approach

0.0485 High Yes Coverges and
stable.

Jang et al. [44] Multiobjective
FLC

0.016 High Yes Converges
and stable.

Proposed
method

FLC 0.0168 Relatively low Yes Converges
and stable.

5. Conclusion and future scope
This paper has proposed an optimized FLC for position control and trajectory tracking of the DD mobile
robot. The effectiveness of the controller was compared with several control strategies, such as CLIK,
MNS, and Jacobian transpose-based controllers, based on the control performance criterion. The per-
formance of each control technique was evaluated based on the controller effort, RMSE, maximum
error, and standard deviation error. The results showed that the FLC-based controller outperformed as
compared to other techniques in terms of controller effort and RMSE. The simulation and experimen-
tal results show the potential of the FLC method for position control and trajectory tracking in mobile
robots.

Future studies may examine how to improve obstacle avoidance capabilities using FLCs. In real-world
applications, this development would greatly increase the flexibility and resilience of mobile robotic
systems. In order to further enhance system performance, future development should take into account
combining advanced FLC with SMC.
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