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T0P0L06ICAL VITALI MEASURE SPACES

D.N, SARKHEL AND T. CHAKRABORTI

The properties of Lebesgue outer measures embodied in the Vitali

covering theorem, the Vitali-Caratheodory theorem, the Lusin

theorem, the density theorem, outer regularity and inner regularity,

and the relation between measurability and approximate continuity

are studied in a general abstract space, called a topological

Vitali measure space. The main theme is the mutual equivalence

of these properties.

1. Introduction

The properties of Lebesgue outer measures embodied in the Vitali

covering theorem (Saks [77]; p. 109), the Lusin theorem (Saks 111]; p. 72),

the density theorem (Saks [7 7]; p. 129), outer regularity and inner

regularity, and the relation between measurability and approximate

continuity (Saks [7 7]; Theorem 10.6, p. 132) have been studied by many

authors (see the references, except for Kelley [8]) in various abstract

spaces, but in a somewhat isolated manner. The Vitali covering property

is an almost indispensable tool for the study of differentiation. Some

authors actually prove it under suitable conditions, and others assume it

in some form or other.

In this paper, assuming a very weak Vitali property (Definition 2.6)

we introduce the notion of a topological Vitali measure space (Definition

3.2), which seems to be the most general structure suitable for a

systematic study of the above mentioned properties and of differentiation

and integration, simultaneously. Our main results are (Theorem 3.2) the
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mutual equivalence of the above mentioned properties and the property

embodied in the Vitali-Caratheodory theorem (Saks [71]; P- 75), (Theorem

4.2) the equivalence of measurability and approximate continuity a.e.

(which extends a result of Sion [74]), and (Theorem 4.3) separability of

the range of an approximately continuous function (which extends a result

of Goffman and Waterman [4]). Various aspects of the present theory are

i l lus t ra ted by appropriate examples. The theory of differentiation will

be considered at length in a subsequent paper.

2. Preliminaries

Let X be a topological space (Kelley [S]) endowed with an outer

measure (Halmos [6]) y defined on the power set of X . Given E C X ,

E wi l l denote the closure, and 5 the in te r io r , of E . The set E i s

cal led measurable (p) i f

\i(A) = \i(AftE) + \i(A\ E) for every A C X .

If for every A C X there is a measurable set E O A with y (E) = VI(J4) ,

then u i s called regular.

A function / from a subset E of X to an arbitrary topological

space Y i s called measurable if, for every open set G in Y , the set

f (G) i s measurable. This i s equivalent to saying that f (B) i s

measurable for every Borel set B in Y . For, the family of sets C C y

with f (C) measurable is a a-ring , and the Borel family in Y i s the

smallest a-ring containing a l l the open sets in Y .

We now give some new definitions and lemmas.

DEFINITION 2 .1 . A family H , of arbitrary subsets of a topological

space Y , is called a pseudo base for Y if every open set in Y i s the

union of members of H . The space Y i s called pseudo countable if

there i s a countable pseudo base H for Y ; if, further, the members of

H are Borel sets of Y , then Y is called Borel countable.

A second countable space is clearly Borel countable, and, hence,

pseudo countable, but not conversely (see the examples below).

Given a subset T of the set J? of real numbers, we denote by T*

the topology where open sets are all subsets G CJR with the following
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property: For every x 6 G there i s an open in te rva l J containing x ,

such tha t T n I C G and | j \ G| = 0 i f x e 21 , and ICG i f x ? T .

( \E\ denotes the Lebesgue outer measure of a subset E CJR .)

We observe that the space (J?,T*) i s always pseudo countable, since

the open in te rva ls with ra t iona l end points together with t he i r i n t e r -

sect ions with T evidently form a countable pseudo base for the space.

Further, every ordinary open set of the rea l l ine i s open in th i s space,

and, hence, every ordinary Borel se t i s also a Borel set in th i s space.

Consequently, i f T i s an ordinary Borel s e t , then the space {H,T ) i s

necessar i ly Borel countable.

EXAMPLE 2 . 1 . Fix I " C J ! with \T\ > 0 and inner measure equal t o 0

(compare Halmos [6] ; Theorem D, p . 69). In the space OR,T ) , every open

s e t , and, hence, every Borel se t i s c lear ly measurable. Consider now any

sequence {B } of Borel se ts of t h i s space covering Jf . Let A denote

the s e t of points x e B such tha t \B n (x,y) \ - 0 for some y > x ;

then \A I = 0 . Noting that |T| > 0 , we fix any point e e T \ ^>{A }

and se t

I = (c+(n+l)~1,c+n X) , B, = Bv n I \ T, (k <n)
Yl K.YI K. yt

We form a countable set F by selecting just one point from each nonvoid

set B, , k < n , n = 1,2,3,... . Clearly M \ F is open, and c e M\ F.

Now, consider any B^ 3 o . Since c ̂  A-, , we must have \B, n J | > o

for some n > k . But, B, n J is measurable, and T has inner

measure 0 . Therefore, the set B, is nonvoid, and, hence, by the

construction of F , we do not have B, C J?\ F . This shows that the

space (JR,T*) is not Borel countable, although it is pseudo countable

as noted above.

EXAMPLE 2.2. Fix an ordinary nonvoid Borel set T of the real line

R , such that \l \ T\ > 0 for every open interval J . In the space

(R,T ) , there does not exist any countable base at any point c € T , as

can be easily seen by constructing a set like F of the preceding

example. So the space is not second countable, nor even first countable,

although it is Borel countable as noted above.
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DEFINITION 2.2. A subset E C X is called y-open if y (ff \ E°) = 0,

y-closed if y (E \ E) = 0 , and y-proper if 0 < y (E) < °° .

I t i s easy to verify that a set i s y-open if and only if i t s

complement is y-closed. Also, finite intersection and countable union

of y-open sets are y-open, and finite union and countable intersection

of y-closed sets are y-closed. We shall employ y-open sets and y-closed

sets in several places, where i t is usual to take open sets and closed sets ,

respectively. This is a nontrivial generalization, the necessity of which

is shown in Example 3.1.

DEFINITION 2.3. A family V of nonvoid subsets of X is said to

converge to a point x £ X , or, to be x-convergent, if every neighborhood

of X contains some member of V .

DEFINITION 2.4. Let D be a function which assigns to each point

x £ X a nonvoid collection D(x) of x-convergent families of y-proper

y-closed subsets of X , such that if B belongs to D (x) , so does

every x-convergent subfamily of B . Then D is called a Vitali covering

function on X . A sequence of Vitali covering functions D on X is

called increasing if D (x) C D (x) for al l n,x .

In what follows, D will denote an arbitrary Vitali covering function

on X . For any G C X , we set

DIG] = {V | VE (J UD(x), V C G] .

DEFINITION 2.5. A family V C D[x] is called a Vitali D-covering

of a subset E C X if, for every x e E , there is a B S D(x) such that

B C V . The covering V is called measurable if every member of V is

measurable.

DEFINITION 2.6. D is said to have the weak Vitali property on a

subset E C X , if, for every e > 0 , there are a sequence of subsets

En C E with y(£ \ U{£ }) < e and a sequence of real numbers p G (0,1)

such that , for every A C E and for every measurable Vitali D-covering

V of A , there is a finite family V- of paiiwise disjoint members of

V s u c h t h a t \i(A \ UV ) < p '\i{A) .
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DEFINITION 2.7. D is said to have the finite covering property on a
subset G C X if, for every E C G and every measurable Vitali D-covering
V of E and every E > 0 , there is a finite family V of pairwise

disjoint members of V such that y(E \ UV ) < e .

LEMMA 2 . 1 . Let G c x , y(G) < °> , and p £ (0,1) . Suppose, for

every A c G and for every measurable Vitali D-aovering V of A , there
is a finite family V of pairwise disjoint members of V such that

\}{A \ UVQ) < p'v(A) . Then D has the finite covering property on G .

Proof. Given a measurable Vitali D-covering V of a subset E C G ,
let i. denote the infimum of the numbers u (E \ UV ) for al l finite

families V. of pairwise disjoint members of V . Then 0 < i. < °° , since

p > 0 and p(E) < y(G) < » . So, for any e > 0 , there is a finite

family V of pairwise disjoint members of V such that

(1) \i(E \ F) < I + e where F = UV .

Let V denote the family of se ts K£ V such tha t l / n ? = p . Then

V i s evidently a measurable Vi ta l i D-covering of E \ F . So, by

hypothesis, there i s a f i n i t e family V of pairwise d i s jo in t members of

V such tha t

(2) \i((E \ F) \ W) < p-v(E \ F) w h e r e V = UV2 .

Now, V = V U V i s a f i n i t e family of pairwise d is jo in t members

of V , and, since the members of V are y-closed, i t follows readi ly

from (1) and (2) tha t y {E \ UVQ) <p-(S .+e) . Therefore 0 < SL < p-(SL + z) .

Since e > 0 i s a rb i t ra ry and p < 1 , i t follows tha t 9L = 0 , which in

fact proves the lemma.

LEMMA 2.2. Let G C x , p(C) < » , and let D have the weak Vitali

property on G . Then D has the finite covering property on G.

Proof. Clearly D has the weak Vitali property on every E C G .
Given e > 0 , then let {E } , {p } be the sequences as furnished by

Definition 2.6. Then
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V(E \

for a suitable sequence of positive numbers e , and, for each n ,

Lemma 2.1 applies to any F^ C E with p = p

Now, let V be a measurable Vitali D-covering of E . We define,

recursively, a sequence of families U C V as follows. Let W = f> ,

and W denote the union of the members of U , whenever defined. We

set

n

n • i~\

n
and note that V is a measurable Vitali D-covering of F = E \ J W. ,

n n n • , t-—1
i=l

and, by Lemma 2.1, D has the finite covering property on F . Then we

select a finite family U of pairwise disjoint members of V such that

\i(F \ W ) < e , that is,n n n

p(E \ (J W.) < e
n i=i % n

Then, taking U = U{U } and noting that the sets W. are y-closed.

we have

\ UUQ) + \i{E \

v(En X .U "i] + e " E z
ni1

< j e + e - y e = e .

Since U i s a countable family of pairwise disjoint measurable sets , and

since p (27) < v (G) < °° , i t follows that there is a finite subfamily

V C U satisfying p(E \ UVQ) < e . This proves the lemma.

LEMMA 2.3. Let {A } be an increasing sequence of subsets of X ,
n

and let D(x) = [J D (x) for all x G X , where {D } is an increasing

sequence of Vitali covering functions on X such that, for each n , D̂
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has the finite covering property on A . Then, for every measurable

Vitali D-covering V of E = ^>{A } , there is a countable family VQ of

pairwise disjoint members of V such that \i{E \ UVQ) = 0.

Proof. Let E denote the set of points x € A for which there isn n

a B G D (x) such tha t B C V . Then, by the monotonicity of {4 } and

{D } , we have

E = WE } and En C E^+1 for a l l n .

Now we define, recurs ively , a sequence of families U c V as

follows. Let W = 0 , and W denote the union of the members of U ,

whenever defined. We set

n
V = ( F e V n D [X] | V n \} w. = (*} ,n n i=1 % 1

and note that V is a measurable Vitali D -covering of
n

F = E \ \i W. C. A , and that D has the finite covering property
ft fir • _ 1* X. Yl Yt

^=l

on F . Then we select a finite family U of pairwise disjoint members
of V^ such that \i(F \ W ) < 1/n , that is,

n
viE\ U W.) < 1/n .

i=l

Then the proof i s completed by taking V- = U {V} , and by noting that

V(E \ UV ) < I V(E \ UV ) = 0, s ince , the se ts W^ being y-closed, for

every n and every k > n we have

k k
V(E\ UVQ) < V(Ek \ U WJ = v(Ek\ U Wt) < l/k .

3. Vitali measure space

Henceforth, we shall be dealing with a fixed space (XtV, {X } )

where X is a topological space, p is an outer measure defined on the
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power set of X , and {X } is an increasing sequence of p-proper

p-open sets with V{X } = X (Thus, p i s a-finite.)- This will simply

be called the measure space X .

DEFINITION 3.1. If every open set (and, hence, every Borel set) in
X i s measurable (u) , then p is called topological; and then X is
called a topological measure space.

DEFINITION 3.2. Let {C^} be an increasing sequence of Vitali

covering functions defined on X , such that, for each n , C has the

weak Vital i property on X . Then the space (X, p, {X } , {C }) is

called a Vitali measure space; if, further, p i s topological, then i t is
called a topological Vitali measure space.

DEFINITION 3.3. Let (X, P, U^} , {Cn}) be a Vitali measure space.

We define the increasing sequence of Vitali covering functions C on X ,

by le t t ing C*(x) be the collection of the families V of p-closed

subsets of X for which there is a B S C (a;) such that, for every B 6 B

there i s a P£ V , and conversely, with V C B and p(B) < n'v(V) . We
also define the Vitali covering functions C, C on X , by setting

CO CO

Z(x) = U C (x) , C*(x) = I) zUx) .
n=l n=l

Note. C^tx) C C*(x) and Z{x) C C*(x) for a l l n,x .

In the sequel, whenever we speak of X as a Vi ta l i measure space, we

s h a l l mean the space in Definition 3.2.

THEOREM 3.1 (Vi ta l i covering theorem). Let X be a Vitali measure

space, and let V be a measurable Vitali Z-covering of a subset E C x .
Then there is a countable family V of paiiuise disjoint members of V

such that u(E \ UV ) = 0.

Proof. By Lemma 2.2, every C has the finite covering property on

X . Then the theorem follows from Lemma 2.3, by noting that E = V{E n X }

and E n X C E n X for all n .
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DEFINITION 3.4. Let X be a Vital i measure space, and l e t E C X

and x £ X . The supremum [infimum] of the numbers i. , tor which there is

a V e C*(x) such that y (£" n V) > l-v(V) [y(£ n V) < i-\i(V)] for every

V G V , is called the upper [lower] density, d(E,x) [d_(E,x)] , of E at

x . if d(E,x) = d_(E,x) , then this common equal value is called the

density, d(E,x) , of E at x .

Note. 0 < d[E,x) < d(E,x) < 1 , since when every V belongs to

C (x) , so does every x-convergent subfamily of V .

Our primary interest l ies in the following eight properties in a

Vitali measure space X , with special attention to the last four in the

general measure space X .

(y ) (Outer regularity property). For every E C X and e > 0 ,

there is a jj-open set G 3 E with y (G) < \i (E) + e .

(y ) (Vitali covering property). If V is a Vitali C -covering

of a subset E C X , then for every £ > 0 there is a countable family

V of pairwise disjoint members of V such that

£y(VQ) < y(£) + e and y(£ \ UVQ) = 0 .

(By £y(\M we mean the sum of a l l M(F), V e V )

(y ) (Density property). Every E C X has density 1 a.e. on E .

(y ) (Basic Vitali covering property). If V is a Vitali C -

covering of a subset E C X , for some n , then for every E > 0 there

is a finite family V of pairwise disjoint members of V such that

£p(VQ) < y(£) + e and y(E \ UVQ) < e .

(y ) (Inner regularity property). For every measurable E C X and

e > 0 , there i s a u-closed set F C E with p(E \ F) < e .

(y&) (Lusin property). If f : E -> Y i s measurable, where E C X

and Y i s a Borel countable space, then for every e > 0 there i s a

U-closed set F C E with y(E \ F) < e , such that f\F i s continuous.

(y ) (Basic Vitali-Caratheodory property). If / : X •* [0,°°] i s
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measurable and fini te a.e. , then for every e > 0 there is a measurable

lower semi continuous function h : X -*• [0,°°] , such that h > / a.e. and

{h-f)dv < e .

(yo) (Vitali-Caratheodory property) . If / : X •*• [-00,00] is
8

measurable and finite a . e . , then there exist two sequences of measurable

functions I , u : X •*• [-»,<»] satisfying the following conditions:

(i) for every n, t is lower semicontinuous and u is upper

semicontinuous;

(ii) I , < 1. and u , > U for a l l n ;

n+1 n n+1 n

( i i i ) for every n , inf % > -<= and sup u < «> ;

(iv) for every n , I > / > u a . e . ;
(v) lim SL (x) = f(x) = lim u (x) a . e . on X ;

n n n n

(vi) if / is integrable (y) on a measurable set E C X , so are

the functions X. and u , and, further,

f
l imim I d\i = fd\i = lim u dv

n >En h n >En

We prove below a series of propositions, which by successive

implications lead us to the following main results.

THEOREM 3.2. (a) In a topological Vitali measure space X in which

u is regular, the properties (y ) through (y ) are mutually equivalent.
1 o

(b) In a topological measure space X , the properties (y ) through

(yo) are mutually equivalent.
o

(c) A Vitali measure space X has all the properties (y ) through

(vo) if an<^ onT-y if P is topological and (y ) holds.

(d) If a Vitali measure space X has the property (y ) , then y is

topological and regular, and all the properties (y ) through (y ) hold.
1 8

Part (a) follows from Propositions 3.3 through 3.11, and (b) from

Propositions 3.7 through 3.10; both (c) and (d) follow from (a) and

Propositions 3.1, 3.2.
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The following examples i l l u s t r a t e the above resu l t s .

EXAMPLE 3.1 . Let X denote the Lebesgue outer measure on the real

line J? . Fix M C J? with inner measure equal to 0 , such that

X{A n M) = X{A) for every X-measurable set A (see Halmos [6]; Theorem

E, p . 70). Define

y (E) = X (E n M) for: every E C R .

Then y i s an outer measure in JR , and every X-measurable set i s

y-measurable with equal value of the measure. In par t icular , y i s

topological. Given any E C JJ and e > 0 , there i s an open set

G D E n M with X{G) < X{E n M) + e . Since \i(E \ M) = 0 , the set

G = G V {E \ M) is y-open, G 1 E , and we have y(G) = y(G) = \(G) <

y(G) + e , which verifies the property (y ) . If, for each n , we define

J = (-n,n) and C (£) to be the collection of a l l x-convergent families

of closed intervals containing x , then the classical Vitali covering

theorem t r iv i a l ly implies the weak Vitali property of C on J under y

Thus (J?,_y_,{-T },{C }) becomes a topological Vitali measure space

satisfying (y ) , and, hence, also every (y.) . We note, however, that

there i s an abundance of subsets E C ]R \ M with X{E) > 0 , and for

every such E we have y(E) = 0 , while y(#) = X(H) > X(E) > 0 for every

open set H 3 E . This shows that we cannot, in general, replace 'y-open'

by 'open' in (y ) . Also, for any X-measurable set A with X(A) > 0 ,

the set A n M i s u-measurable and y (A n M) = X (i4) > 0 , while

y(.F) = X(F) = 0 for every closed set F C A <^ M , since M has inner

X-measure 0 . This shows that we cannot, in general, replace 'y-closed'

by 'closed' in (y ) and (y ) .
5 6

EXAMPLE 3.2. With Jf, X, M, {I } and {C } as in the preceding

example, we now define

y (£) = X (E) + X (£" n tf) for every £ C J? .

Then y is an outer measure in ]R , and a set is y-measurable if and only

if i t is X-measurable. In particular, y is topological. Given any

measurable set A and e > 0 , there is a closed set F C A with
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X(4 \ F) < e/2 . Then y {A \ F) = X(A \ F) + X ( {A \ F) n M) < e , which

verif ies (y ) . Also, as before, C has the weak Vitali property on
D ft

I under y • Thus (i?, y, {I }, {C }) becomes a topological Vitali

measure space satisfying (y ) , and, hence also (\ir) , (y_) and (y_) .
J b / o

We note, however, that (y ) does not hold, since, for any E C J?\ M and

any y-open set G 3 E , we have p{G) = 2-\(G) > 2-\(E) = 2-\i(E) . So

also, y is not regular and (^4) does not hold.

PROPOSITION 3.1 . If y i s topological and (y ) holds, then y i s

regular; specifically, for every E c x there is a measurable set A 3 E
with v(A) = v(E) , such that A is the union of a G -set and a set of

measure zero.

Proof. By (y ) , there is a sequence of y-open sets G D E such

that v(Gn) < y(£) = 1/n . Setting G = <~\{(f} , we have y(G) < y (E) , and

\i(E \ G) = 0 since E \ G C U{G \ G°} . since y is topological, the

proof finishes by taking A = G U (E \ (7) .

PROPOSITION 3.2. If (y4) fcoZds, t^ew y is topological and
regular.

such

Proof. We first show that, if A, B are any two subsets of some X

that there are open sets G 3 A with (?1 n S = j? and C 3 B with

G n i4 = (? , then y(i4) + y (B) = y (4 U B) .

Since V = ^[G^ U Cn[(?2] i s a V i t a l i ( ^ - c o v e r i n g of / l U J

g iven e > 0 t h e r e i s , by (y ) , a subfamily V C V such t h a t

£y(V0) < vlA U B) + E and M ( W U B ) \ UVQ) < e

I f Vx = {V 6 VQ I V O >4 ^ 0} and V2 = {K G VQ | V n B ^ 0} , then

y ( j4 \ UV^ = y U \ M/o) < vUA u B) \ UVQ) < e ,

p(B \ UV2) = y(B \ UVQ) < y((A U B) \ UV ) < e .

A l s o , V1 n V2 = (2 by t h e c h o i c e s of G , G and V. So,
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> B) + e .

It follows, therefore, that

p(A) + p(B) < y(4 n UV^ + y(A \ UV^

+ y(B n uv2) + u(B \ UV2)

< EpfV^ + e + Ep(V2) + e

< v(A U B) + 3e .

Since e > 0 i s a r b i t r a r y , and since p i s subaddi t ive , i t follows t h a t

y(4) + u(B) = v(A U B) .

Next we show t h a t , i f G i s any p-open subset of some X , then

]i(A \ G) + p(-4 n G) = ^04) for every A C X .

Since y(G \ u ) = 0 , we may and do suppose here t h a t G i s open.

Then C [G] i s a V i t a l i C -cover ing of A n G C # . so , given e > 0 ,

by (p ) there i s a f i n i t e subfamily VC C [G] such t h a t

V (A n G \ F) < e where F = UV C ff .

Now n b ( i \ ff)\ F and (X \ F) n (yj n F) = (? ; a lso C ^ P F

and G n ( (/} \ G) \ F) = (2f . So, by the preceding r e s u l t ,

\i((A \ G)\ F) + v(A n F) = y(((/l \ G) \ F) U (>} n F)) < y(/5) .

But, F i s p-c losed, G 3 F and pM n ff) < y ( ^ OF) + \i(A n B \ F) <

V(A n F) + e . Hence i t follows t h a t y (A \ G) + \i (A <~> G) - e < p (4) .

This impl ies , as before , the des i red r e s u l t .

Now we show t h a t , for every A C X , p (A ) -»• p(4) where /4 = A n f̂

Since X = U{X } , we have A = U{B } where B = 4 \AT . , Z = ( 2 .
n n n n n-l o

Also, since X._ i s a p-open subset of X. , by the above we have

n x. ) + pU. \ X. )

n
Therefore £ p(B.) = p(A) , whence lim p W ) = Ey({B.}) > p(U{B.}) = u{A)

i=l w " *" t-

Since i4 C A for all w , the desired result follows at once.
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Finally, consider any open set ffCf . Since G n X^ is y-open,

by the above results we have, for every A C X ,

y (A) = lim u(/ in X-n)
n

= l i m [ y ( W n xn) n (G n xn)) + v((A n xn) \ (G n ; y ) ]
n

= l i m [ n w n c n ^ ) + p ( M \ C) n xj]
n

= p(A n o + \x(A \ G) .

Hence G i s measurable, showing that y is topological.

Next, consider any E C X and any e > 0 . We define, recursively,

a sequence of f inite families U of y-closed sets as follows. Let

W = $ , and W denote the union of the members of U , whenever

defined. We set

n
Vn = { V e Cn[X] I V n U W. = 0} ,n n i = 1 % l

n
and note that V i s a Vitali C -covering o£ F = E \ II W. C Xn n * n n . , t -1 n^=l

where £• = E r\ X . Then, applying (y ) , we select a finite family

U C V such t h a tn n

2~n-e,

Now, since y is topological, the y-closed sets W are clearly

measurable; also, they are pairwise disjoint. Therefore, setting W = U{(/ },

we have

\i{W) = I y ( i y < ~"

Ey(£ n w ) + I 2~n-e + e

V(E) + 2e .

Further, as in the last part of the proof of Lemma 2.3, we have y {E \ W) =0.

Thus, we have a measurable set A = W U (E \ W) such that A ̂ > E and
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\i(A) = v(W) < y(£) + 2e . This clearly implies that y is regular;

which completes the proof.

PROPOSITION 3 .3 . For topological y , (y.^ implies (y2) .

Proof. We f i r s t observe tha t , since y i s topological, every Vital i

covering i s measurable. Now, for any n and any A C X , consider any

Vitali C*-covering V of A . Recalling Definition 3.3, we can find a

Vitali C -covering W of A such tha t , for every W 6 W there i s a

V G V with V C W and y(J/) < n#u(l0 . By (y ) , there is a y-open set

G O A such that

(1) v(G) < yM) + r

zn

where we take G = A if y(A) = 0 . Let W denote the family of sets

W e W such that 1/ C G . Then W is a Vitali C -covering of A n G .

Since, by Lemma 2.2, C has the finite covering property on X , there

is a finite family {W.} of pairwise disjoint members of W such that
u -L

\i(A'<~) G° \ U{(/.}) < \i(A)/(2n) , that is,

(2) v(A u {(/ }) < (i/2n)-vW)

since A C G and G is y-open. For each i , we select a V. €E V such
If

that 7. C {/. and y(V.) < n«u(7.) . Then, noting that the sets W. , K.
%> If Is Is If "%r

are measurable, we have
v(A \ U { K . } ) = y ( 4 n u{^ / .} \ U { F . } ) + y((yi \ u { v . } ) \ u { y . } )

^ i % % v

< Ey((/. \ F.) + (l /2«)«y(i4) by (2)

- V(V.)] + a/2n)-\x(A)
Is

< (l-l/2n2)-p(4) by (1) .

Hence, by Lemma 2.1, C has the finite covering property on X .

https://doi.org/10.1017/S0004972700009928 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700009928


240 D.N. S a r k h e l and T. C h a k r a b o r t i

Let now V be a Vi ta l i C -covering of a subset E C X , and e > 0 .

By (y ) , there i s a u-open set G 3 E such that y(G) < y (£) + e . Let

V denote the family of sets P S V such that V C G . Then V i s a

Vi t a l i C*-covering of E n G . Since E n G i s the union of the

increasing sequence of se ts E n X n C , and since every C has the

f i n i t e covering property on X , so, by Lemma 2 .3 , there i s a countable

subfamily V C V of pairwise disjoint measurable sets such that

p(ff n G° \ UVQ) = 0 . Since UVQ C G° and G i s y-open, we have

Zy(VQ) < \i(G) < \i{E) + e and y (£ \ UVQ) = 0 . This verif ies (p2) and

completes the proof.

PROPOSITION 3.4. For-any y , (y ) implies (y ) .

Proof. Given E C X , l e t E denote the set of points x e fi1 n X

at which d(ff,a;) < n/i.n+1) . If £ i s the set of points of E at which

E has density 1 , then we have E \ E = U{E } . I t is therefore enough

to show that y(E ) = 0 for each n.

Now, for every x G £" there is a V £ C (l) such that

y(£ n V) < (n/(n+l))'V{V) for every V G V . The family of all such 7

constitutes a Vitali C -covering of E . So, by (y ) , for any e > 0
Tl 2.

there is a countable family of sets V. such that
If

l-V(V.) < V\E ) + e and V(E \ V{V.}) = 0 ,
u U Tl Y\ U

where p ( £ n y . ) < (n/(n+l) ) . y (y.) for every i . Then

n v.) < z.\i(E n y . )

•[p(S

Since y(ff
n) < ^ ^ ^ j 5 * °° s"3 e > ° i s arbitrary, i t follows that

p(S^) = 0 , which completes the proof.
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PROPOSITION 3 . 5 . For topological y , (\xj implies (v^) •

Proof. For any n , let V ve a Vitali C -covering of a subset

E C X , and le t e > 0 . Let E denote the set of points of E at

which E has density 1 . For every x S E , there is a Be C (x)

such that B C V , and, since d_(E,x) = 1 , there must exist an x-

convergent subfamily B of B such that, for every B
,

V{E r\ V) > a/H/p))-v(V) where p = e/(l+y(£)) .

So, the subfamily V C V of a l l such V cons t i tu tes a Vi t a l i C -covering

of E . Also, the members of V are measurable, since y i s

topological . Therefore, by Lemma 2 .2 , there i s a f i n i t e subfamily

{V.} C V of pairwise d i s jo in t measurable se ts such tha t y{E \ ^{V.}) <e.
1 - 1 -L I*

Since by (y ) , \i(E \ E ) = 0 , i t fol lows t h a t y (E \ U{7.}) < e ;

f u r t h e r , we have Z\i{V.) < (l+p)'Z\i(E n F.) < (l+p)«y(ff) < y (£) + e .

This v e r i f i e s (y ) and completes the proof.

PROPOSITION 3 . 6 . For any y , (y ) implies (y ) .

Proof. Let E1 be any measurable subset of X , and e > 0 . F i r s t

suppose E i s contained in some X . Consider any p G (0,e) and any _

q 6 (0,p) . Since C [X] i s a Vi t a l i C -covering of E , by (y ) there

i s a f i n i t e family V of y-closed se t s such tha t y(E \ UV) < q and

£y(V) < y(£) + q . Then V = UV i s y-closed, y(£ \ 10 < q and, since

£ i s measurable and y (£") < y (X ) < <*> , we have

E) = y(I0

«S y(V) - [y(ff) - g(£ \

Hence, there is a sequence of y-closed sets V with

y(£ \ VM) < p-2~" and (V^ \ £) < p-2~" , n - 1,2,... .

I f W = n (V n } , then V i s y - c l o s e d , and obviously p{W \ E) = 0 .

Therefore F = W n E i s y - c l o s e d , F C E and, f u r t h e r ,
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\x(E \ F) = y(ff \ W) < Z\i(.E \ V ) < T.p'2~H p < e .

In the general case, we set

n n n-X' 0 » » • • • •

Then E C X and, since by Proposition 3.2 y i s topological, E i s

measurable. Hence, by above, there is a y-closed set F C E with

y (£ \ F ) < e-2 . Now the set F = V{F } i s y-closed. To see t h i s ,n n n

i t is enough to note that y (X \ *J{X }) = o and that, for each n ,

n
E = U F. i s y-closed and ( ? \ F ) n # C # \ # , since F \ H i sn • , t n n w w^=l

contained in the closed se t X \ X° . Also, we have F C U{£ } = S and

y (£ \ F) < EytS1 \ F ) < e*2 = e . This ver i f i es (y ) and completes

the proof.

PROPOSITION 3.7. For topologiaal y , (y5) implies (y6) .

Proof. The proof wi l l be done by a simple modification of the

ingenious method of Sion {[14], Theorem 3.5 , page 470). We f i r s t observe

t h a t , i f E i s any measurable subset of X and e > 0 , then there i s an

open s e t G such tha t y(G A E) < e . In fac t , by (y ) , there i s a

y-closed se t F C X\ E with y ( ( Z \ E) \ F) < e . Then, i t suffices to

take G = X \ F .

Now, l e t f : E -*• Y be measurable, where E C X and Y i s a Borel

countable space. We f ix a countable pseudo base {B } for Y , where each

B i s a Borel se t in Y . Since f (B ) i s measurable, by the above

there i s an open s e t G in X such tha t y (G A f (B )) < e-2

Se t t i ng A = E \ U{G A /'~1(B ) , we have

y(£ \ A) < Zv(G A f'1(B )) < Ee-2~""2 = e/2 .

Also, consider any a & A . If ff is any neighborhood of /(a) in J ,

then /(a) G B C B for some w . Since a e 4 n ^f"1 (S ) , so a e 4 n G ;

further, /(£) ̂  B C H for every X e <4 O £ . Hence / | -4 is
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continuous. But, since y is topological and E = f (Y) is measurable,

clearly A is measurable. So, by (y5) , there is a y-closed set

F C A with y(4 \ F) < e/2 . Then y (E \ F) = \i(E \ A) + u (A \ F) < e/2

+ e/2 = e , and f \ F is obviously continuous. This verifies (y,.)

and completes the proof.

PROPOSITION 3.8. For topological y , (y&) implies (y?) .

Proof. Let / : X -»• [0,°°] be measurable and finite a.e. , and e > 0 .

Here the space [0,°°] is assumed to have the usual order topology, so

that it is second countable, and, hence, Borel countable. Now, first

suppose M = sup f < <*• . By (y ) , there is a y-closed set F with

\ F) < z/M such that / | F is continuous. We define h{x) = fix)

if x S F , h(x) = M if x e X \ F , and h(x) = lim inf (/ | F)(y) if

x S F \ F . Then it can be easily seen that h fulfills all the conditions

in (y ) (semicontinuity implies measurability, since y is topological).

In the general case, we note that f = I / a.e. on X , where

f ix) = fix) if n - 1 < fix) < n and f (x) = 0 otherwise. By above,

there is a sequence of nonnegative measurable lower semicontinuous

functions h , such that h > f a.e. on X and ih - / )d\x < e#2
ft fi Tl j „ ft ft

Then the function h = Z h evidently fulfills all the conditions in (y ),

and this completes the proof.

PROPOSITION 3.9. For any y , (y ) implies (yD) .

The proof is similar to that of the Vitali Carathe"odory theorem (Saks

[77J; p. 75), (y ) serving for the Lemma used therein.

PROPOSITION 3.10. For topological y , (yo) implies (y ) .
8 5

Proof. Let E be a measurable subset of some X , and e > 0 . Let

m

fix) = 1 if x £ E , and f (x) = 3 if x £ X \ E . Then f is clearly

measurable. Let {£ } denote the sequence of lower semicontinuous
measurable functions furnished by (y ) , corresponding to this f . Set
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Fn = {x G X | SLn (x) < 2} , n = 1 , 2 , . . . .

Then F is measurable and closed. Also, the condition ^n+1 ** &n gives

F C F , the condition lim £ = / a.e. gives y (E \ u{?}) = 0 , and
Yt ?2T-L ft '*•

the condition I > f a.e. gives y (F \ E) = 0 .
?2 it

Now, {£ n F } i s an increasing sequence of measurable s e t s , and,

hence, lim \i{E r> F ) = y (E n U{F }) = y (E) , since \i(E \ ulF }) = 0 .

Since \i(E) < \i(X ) < •» , i t follows tha t \i(E n F.) > y (E) - e for

s u f f i c i e n t l y large k . Since F, i s closed and V(F^ \ E) = 0 , so

F = E n Fk i s p-closed; a l so , ? C £ and we have \x(E \ F) = y (E \ Ffe)

y(E) - y(E n F, ) < e . This ver i f ies (y ) for the set E C X .

The general case now follows by the l a s t pa r t of the proof of

Proposi t ion 3.6.

PROPOSITION 3.11 . For regular y , (yg) implies (y.^ .

Proof. Since y i s regu la r , for any E C X there i s a measurable

s e t A ^ E with \i{A) = y (E) . Since X \ i4 i s measurable, by (y )

the re i s a y-closed se t F C X \ A such tha t y ((X \ A) \ F) < e . Then

G = X \ F i s y-open, G ^> A ^> E and we have y (G) = y(/l) + y(G \ /4) =

\i{E) + \i((X\ A) \ F) < y(E) + e . This ve r i f i e s (y ) and completes the

proof.

4. Approximate continuity

In this section, we assume that X is a Vitali measure space

satisfying (u ) , so that, by Theorem 3.2, y is topological and regular

and all the properties (y ) through (y ) hold. The symbol Y will
1 o

denote an arbitrary topological space. We shall study measurability of

subsets of X and of functions from X to Y in terms of density and

approximate continuity.

We first observe that, since y is o-finite and regular, for every

E C X there is (Halmos [6] ; Theorem C, p. 50) a mesaurable set A ,

called a measurable cover of E , such that A 3 E , v (A) = y (E) and
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\i{F) = 0 for every measurable set F C A \ E .

LEMMA 4 . 1 . If A is any measurable cover of a subset E c X , then

d(A,x) = dAE,x) and d(A,x) = d(E,x) for all ' x e X .

Proof. Given any measurable se t V , c lear ly we can find a measurable

cover B of E H V such tha t B C A O V. Then, since A n V \ B i s a

measurable subset of A \ E , we have \i(A n y \ B) = o , and, hence,

U (4 n F) = y(B) = \i(E n 7) .

Now, since y i s topological , every p-closed set i s measurable.

Hence, by above, \i(A n V) = V(E n V) for every V & C* [X] , whence the

lemma follows at once.

THEOREM 4 . 1 . A subset E c X is measurable if and only if E has

density 0 a.e. on X \ E .

Proof. By density property (y ) , X \ E has density 1 a . e . on

i t s e l f . Also, when E i s measurable, then \i(V) = \i(V n E) + ]i(V n (X\ E))

for every V S C [X] . From t h i s the 'only i f par t follows qui te readi ly .

Next, suppose E has density 0 a .e . on X \ E . Then, choosing a

measurable cover A of E , by Lemma 4.1 A has density 0 a . e . on A \ E ,

which by density property implies tha t y(A \ E) = 0 . Since A i s a

measurable superset of E , i t follows that 2? i s measurable, and the

proof ends.

DEFINITION 4 . 1 . A function f : X -*• Y i s said to be approximately

continuous a t a point x £ X i f , for every neighborhood H of f(x) in

Y , X\ /~1(ff) has density 0 a t X.

The following theorem extends a r e s u l t of Sion [14] (Corollary 3.10,

p . 473) , mainly by relaxing his hypothesis that Y has a countable base.

Sion's proof of the only i f par t involves, as usual , the Lusin property ,

which i s not available in our general case. However, a more d i r ec t proof

appl ies .

THEOREM 4.2. Let Y be a pseudo countable space, then a function

f •. X -*• Y is measurable if and only if it is approximately continuous a.e.

on X . (The restriction on Y is unnecessary for the 'if part.)

Proof. Suppose f is approximately continuous a.e. on X . Then,

for any open set H in Y, X \ f1 (ff) has density 0 a.e. on f'1 (fl) .
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Therefore, by Theorem 4 . 1 , X\ f (B) i s measurable, and, hence, f {H)

i s measurable. Thus f i s measurable, proving the ' i f part .

To prove the 'only i f pa r t , l e t {H } denote a countable pseudo

base for Y . By the density property (V>,) , f (H ) has density 1 at

each point of f1 (H ) \ An for some A C f ' 1 (H ) with v(A ) = 0 .

Let E = X \ UM } , then clearly y {X \ E) = 0 . Also, consider any

x G E . If H i s any open neighborhood of /(£) in 7 , then

f(x) e # C ff for some n . But x ? A since x G ff . So

x e f1 (H ) \ A , and, hence, / (ff ) has density 1 at x . Since

f1 {H ) C f1 (H) , and since measurability of / implies that f"1 {H) is

measurable, i t readily follows that x \ f (H) has density 0 at x .

Thus f i s approximately continuous at each point of E , which completes

the proof.

Goffman and Waterman [4] (Theorem 1, p. 117) showed that the range of

an approximately continuous function from an euclidean space to a metric

space is separable. In our final theorem, following the definitions below,

we prove a much wider and stronger result .

DEFINITION 4.2. A family of nonvoid subsets of a subset Y C ¥ is

said to be dense in Y if every neighborhood of every point of Y

contains a member of the family.

DEFINITION 4.3. A function f : X -*• Y is called y-positive at a

point x G X if y ( / (#)) > 0 for every neighborhood H of fix) in

Y .

DEFINITION 4.4. A sequence {H } of open coverings of the space Y

i s called a contraction for Y if, for every y G Y and every

neighborhood H of y , there is a k such that y G H G H, implies

H C H . The space Y i s called contractive if there i s a contraction for

Y .

Every pseudo metrizable space is contractive. For, if p is a

pseudo metric compatible with the topology of Y , let H denote the
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family of open spheres of p-radius 1/n . Then each Ĥ  is an open

covering of Y . Also, given any neighborhood H of any point y G Y ,

there is a k such that H contains the open sphere of p-radius 2/k

about y . Using triangle inequality, we readily obtain that y G # G H,

implies H C H . Hence {H } is a contraction for Y , and Y is

contractive.

On the other hand, consider the set J = [0,1] endowed with the

topology consisting of a l l subsets E C J such that E n {0,1} ? 0

implies (0,x) C E for some x £ (0,1) . Since {0} and {1} are

disjoint closed sets having no disjoint neighborhoods, the space is not

normal, and, hence, not pseudo metrizable (Kelley [S]; Theorem 10, p. 120).

In connection with our proposed theorem, i t may also be noted that the

space J is not separable ({x} i s open for every x G (0,1)). But, l e t

A denote the family of the sets [0,1/n), {l} U (0,1/n) and al l

singletons {x} with x G (0,1) . Then i t can be readily verified that

{A } is a contraction for the space I , so that J is contractive.

THEOREM 4.3. Let Y be contractive, and let f -. X + Y be

\x~positive everywhere and approximately continuous a.e. on X . Then,

for every e e (0,1/2) , there is a countable family I) of y-closed

subsets of X such that for every FE U there is a B G C [X] with

F C B and v(F) > (1 - e)u(B) , and such that the countable family

if{F) | f e l l } is dense in f{X).

Proof. Let {H } denote a contraction for Y , and l e t A denoten o

the se t of points of X a t which f i s not approximately continuous, we

note tha t v(A ) = 0 , and by Theorem 4.2 / i s measurable.

Consider any H , any S 6 H , and any x e E \ A where E = f (H) .

Since H i s open, c lear ly E has density 1 a t the point x . So, there

i s a B e C (x) such tha t \i(E n S) > (1 - e)-y(B) for every B G B .

Since E n B i s measurable, by inner regular i ty property (u ) there is a

u-closed se t B* C E n B with p (£ n B \ B*) < \i(E n B) - ( l - e)u(B) .

Then, we have \i(B*) > (1 - e)-u(B) > (1/2)-u(B) . Since C^x) C Z^ (x) ,
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i t follows that {B* | B e B} e C*(x) .

Now, l e t V denote the family of y-closed sets F 6 C [X] for

which there are a set S £ H and a set B € C. [X] such that

FC f~X(H) n B and \\(F) > (1 - e)-y(B) . Then, since H covers Y ,

the above demonstration shows that V i s a Vital i C -covering of X \ A .

Therefore, by Vi ta l i covering property (u ) , there i s a countable

subfamily U C V such that

\i(A ) = 0 where A = {X \ A ) \ MJ .n n o n

Let U denote the countable family I-J{U } of y-closed sets thus

obtained. Then, by construction, for every F £ 1) there i s a B £ C [X]

such tha t F C B and u (F) > (1 - e)*y(5) . Also, consider any x e X

and any open neighborhood H of f(x ) in Y . Since f i s y-positive

at x , we have y ( f (H ) ) > 0 . But, y(4) = 0 where A = U{4 } .
o o n-1

Therefore, there is at least one point u £ f (H ) \ A . Then, since

H i s a neighborhood of f{u ) , and since {H } is a contraction for Y ,

there i s a k such that H OH whenever f(u ) S H G H, . Now,
^ O K .

u ? A U 4 since M ^ 4 . So, u G F for some F 6 U , , and, by

construction, there is an ff 6 H, such that F C f (H) . Then

/ ( M ) e H e H , and, hence, 5 C ff . Therefore /(F) C H C H . This

shows that {/(F) | F e U} is dense in f{X) and the proof ends.
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