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Abstract

The distorted Born iterative method (DBIM) is a widely used quantitative reconstruction algo-
rithm to solve the inverse scattering problems of microwave imaging. The major mathematical
challenges in solving such problems are non-uniqueness, non-linearity, and ill-posedness. Due
to these issues, the optimization algorithm converges to a local minimum. This drawback can
be overcome by selecting the correct initial guess solution, which helps to escape local minima
and thus guides the inversion algorithm to a satisfactory result. This study uses a back-propa-
gation algorithm to calculate the initial estimate, which significantly accelerates the rate of
convergence and improves the accuracy of the standard DBIM approach. The results of this
method are compared with zero initialization and Born-approximated initialization. For com-
parison, weak as well as strong scattering profiles of synthetic and experimental dataset are
considered. The results suggest that the proposed method provides a significant improvement
in terms of computing cost and efficiency. Furthermore, the proposed technique has the
potential to successfully push the limits of reconstructible contrast.

Introduction

Microwave imaging (MWI) technique uses electromagnetic waves to reconstruct the objects
located in the region of investigation. It is an evolving technology with many applications
in the fields of medical imaging [1], tree health monitoring [2], hidden weapon detection
[3], remote sensing [4], and more. MWI is an ill-posed, non-linear inverse problem. The
new integral method [5] is one of the most recent methods for reducing the non-linearity
of the problem, but the reconstruction in this work is highly dependent on a hyperparameter
that changes with the object being reconstructed. In an inverse scattering problem, a total elec-
tric field is required to find the exact solution, which is impossible to obtain. Therefore, no
exact solution has yet been formulated [6]. However, we can get an approximate inverse solu-
tion by using different inversion strategies. They are mainly divided into two categories: linear
and non-linear approaches. For strong scattering targets, the linear approaches produce
inaccurate reconstructions. As a result, non-linear solutions are important to solve such pro-
blems. The two types of non-linear approaches are deterministic and stochastic inversion.
Genetic algorithm [7], ant colony optimization [8], simulated annealing [1], differential evo-
lution [9], and particle swarm optimization [10] are examples of stochastic inversion methods
that search for the optimal solution of the objective function without requiring a priori knowl-
edge of the target. These approaches, however, have a very high computational cost.

In particular, the contrast source inversion [11], inexact Newton method [12], modified
gradient method [13], Born iterative method [14], subspace optimization method [15], and
the distorted Born iterative method (DBIM) [16, 17] are the most popular deterministic algo-
rithms. Among them, DBIM is a widely used regularized iterative algorithm because of its abil-
ity to reconstruct high-resolution images with a faster rate of convergence. It requires three
main procedures to solve the problem: the initial guess distribution, the estimation of the
next iterate, and the stopping condition. It is advantageous to begin the inversion procedure
with an initial guess solution that incorporates some a priori data [18]. The calculation of a
good initial approximation leads to a better solution in terms of convergence rate and accuracy
[19]. A frequency hopping technique is utilized in [20], which makes an excellent initial pre-
diction from lower frequencies. This prevents an algorithm from becoming stuck in local min-
ima. However, this increases the system complexity and data acquisition time. The algebraic
reconstruction technique [19, 21] also acts as a good initial guess. However, it starts to become
unstable as permittivity value increases. In [22], the initial guess is chosen as the objects of
arbitrary numbers and shapes. This approach, however, is unable to reconstruct all structures.

To our knowledge, previous research has not reported the effect of the best initial guess on
the reconstructed solution of DBIM. Therefore, to address this issue, we conducted a detailed
study to find a better initial estimate for DBIM. Several methods are available in the literature
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to find an appropriate initial estimate. This paper reports on two
widely used non-iterative inversion methods of initial estimation:
Born approximation and back-propagation. The performance of
these methods is compared using relative error (RE). Also, the
effect of the regularization parameter on the reconstructed solu-
tion is studied. To investigate the reconstruction performance of
the proposed approach, numerical examples of synthetic and
experimental data [23, 24] are considered. In addition, we have
tested the proposed method on the standard Austria profile for
various contrasts. The results suggest that the proposed method
increases the convergence speed and range of validity of the
standard DBIM.

This paper is structured as follows. Section “Formulation” for-
mulates the inverse scattering problem, which explains the math-
ematical basis of inversion methods, and a detailed description of
a proposed algorithm. Numerical simulations and results are pre-
sented in Section “Simulation results.” The discussion and brief
conclusion of the work is drawn at the end in Section
“Conclusion.”

Formulation

The geometrical setup for this problem is shown in Fig. 1. In this
configuration, the observation (measurement) domain is denoted
by Π, and the investigation domain is denoted by Θ. The
unknown scatterer is non-magnetic and dielectric with permittivity
of εr and permeability of μ0. The background medium is homoge-
neous with dielectric permittivity of ε0 and permeability of μ0. The
scatterer under investigation is illuminated with Np incidences using
the time-harmonic electromagnetic waves. The incident electric
field can be represented as uip(r), p = 1, 2, . . . , Np, r [ Q.
The scattered electric field usp(r), r [ P is measured in the circular
observation domain for all illuminations.

In MWI, the forward problem mainly concerns the relation
between the incident field and the scattered field. It consists of
the following two integral equations [4]:

ut r( ) = ui r( ) + k20

∫
Q

g r, r′
( )

J r′
( )

dr′, r [ Q (1)

us r( ) = k20

∫
P

g r, r′
( )

J r′
( )

dr′, r [ P (2)

where J(r) = [εr(r)− 1] ut(r) is a contrast current density, and
k0 = v

������
10m0

√
denotes the wavenumber of the background

medium. For simplicity, we introduce the scalar Green’s function
g(r, r′) as

k20

∫
Q

g r, r′
( )

J r′
( )

dr′ = GP J( ), r [ P
GQ J( ), r [ Q

{
(3)

where GΠ and GΘ are referred as external and internal radiation
operators, respectively. Consequently, equations (1) and (2) can
be discretized and written in the form of fields as

ut r( ) = ui r( ) + GQu
tj, r [ Q (4)

us r( ) = GPu
tj, r [ P (5)

Here, ξ denotes the contrast function, which can be defined as
ξ = (εr/εbac− 1), where εbac is the background permittivity. This
is a non-linear equation because contrast function (ξ) and total
electric field (ut) are both unknown variables. In addition, the
operator matrix is severely ill-posed in this case. As a result,
such problems are often referred to as non-linear, ill-posed
problems.

In the inverse scattering problem, the scattered fields
usp(r), r [ P for all incidences Np are measured in a region of
measurement Π (usually disjoint from Θ), and the aim is then
to reconstruct ξ(r), r∈Θ. These problems can be effectively
solved using the DBIM [16]. This algorithm is an extension of
the Born iterative method (BIM). Here, the optimization problem
consists of evaluating the difference in contrast function δξ. The
cost function is selected as the Euclidean norm of mismatch of
the collected and estimated scattered field. To stabilize the opti-
mization, a regularization term is included. Consequently, the
cost function can be expressed as

O dj( ) =
∑Np

p=1

usp − GP j ubacp − Gbs dj ubacp

∥∥∥ ∥∥∥2+a dj‖ ‖2 (6)

where ‖ · ‖ represents the Euclidean vector norm, and α denotes
the non-negative regularization parameter. This cost function is
minimized to estimate δξ. Thereafter the contrast function is
updated as

jn+1 = jn + djn (7)

The initial guess distribution (ξn=0) is required to start
this iterative scheme. A proper selection of an initial guess
plays a vital role in obtaining the convergent solution.
Generally, it is chosen as zero or the results obtained by non-
iterative inversion algorithms [4]. In this work, two such ini-
tial guess methods have studied, namely, Born approximation
and back-propagation. These methods are easy to implement
and produce good reconstruction under certain validity
conditions.

After initial guess solution, the total electric field and the sys-
tem matrix (kernel) are calculated at each iteration. TheFig. 1. Basic geometrical configuration of MWI.
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reconstruction profile of the last step acts as the inhomogeneous
background medium, and Green’s function for this background
is updated as

Gbs
n = Gs I − jn GQ

( )−1 (8)

where Gbs denotes the inhomogeneous background Green’s func-
tion operator. Also, the total electric field inside Θ is approxi-
mated by the incident field in the presence of a background,
which is called the secondary incident field:

ubacp,n = I − GQ jn
( )−1

uip (9)

After this, the cost function O is estimated and the procedure is
repeated until the convergence of the solution is reached.

Initial guess estimation

We solve an under-determined set of equations to obtain a
sequence of updates in inverse microwave imaging. Because
there are many false minima, convergence to the correct solution
is not assured. We employ prior information of contrast, which is
available in many real scenarios, to improve the chances of calcu-
lating the true contrast. By doing so, we force the solution to have
certain predefined properties. In this context, an initial guess solu-
tion can be extremely useful in escaping the local minima. As a
result, we used two commonly used non-iterative techniques to
start the DBIM inversion process in this study.

Born approximation
This model-based approximation is applicable when the scatterer
under investigation is weak compared to the background medium
[1]. In this case, the scattered field is much weaker than the inci-
dent field. Therefore the total field can be replaced by the incident
field only, which results in

us r( ) � GPu
i

( )
j, r [ P (10)

Now the problem of retrieving ξ is ill-posed and linear. Since the
scattered field is contaminated by noise, direct inversion produces
incorrect results [4]. Therefore, to obtain stable solutions, a regu-
larization strategy must be introduced. If the Tikhonov regulariza-
tion is applied, the actual linear problem transforms into an
optimization problem:

f j( ) =
∑Np

p=1

GPu
i

( )
j− usp

∥∥∥ ∥∥∥2
P
+l j‖ ‖2Q (11)

This cost function can be minimized with the help of the singular
value decomposition. It decomposes the system matrix as (GΠ ui)
= LSR*, where L and R represent the left and right singular matri-
ces, and S denotes the singular value matrix. After simplification,
we obtain the contrast function vector as [25]

j =
∑r
k=1

sk

s2
k + l

lk, u
s〈 〉rk (12)

where 〈 · , · 〉 represents the inner product, ρ is the rank of the

system matrix, σk denotes the kth singular value, lk is the kth
left singular vector, and rk is the kth right singular vector.

Back-propagation
It is a fast non-iterative inversion method, which can provide
quantitative information [26]. In Born approximation, the ori-
ginal non-linear problem becomes a linear problem, which results
in limited applicability. However, in back-propagation, the mea-
sured scattered field depends non-linearly on unknowns, and
the inverse problem decomposes into numerous linear equations,
each of which is solved without iteration [4]. This inverse scheme
consists of three steps. The first step involves the determination of
the induced current J, which can be expressed as [4]

J = k G†
P us (13)

where † denotes the adjoint operator, and κ is the complex par-
ameter used to minimize the objective function

F k( ) = us − GP k G†
P us

∥∥∥ ∥∥∥2 (14)

This function can be minimized by taking derivative with
respect to κ, which results in [4]

k =
us, GP G†

Pu
s

( )〈 〉

GP G†
Pu

s
( )∥∥∥ ∥∥∥ (15)

From this value of κ, the induced current can be obtained. The
next step is to compute the total field ut in Θ,

ut = ui + GQJ (16)

Finally, the solution ξ(r) can be calculated as [4]

j r( ) =
∑Np

p=1 J p r( ) utp r( )
( )∗

utp r( )
∣∣∣ ∣∣∣2

(17)

In this work, a hybrid method is proposed to produce fast and
accurate reconstructions by combining the effectiveness of the

Fig. 2. Permittivity distribution for Austria profile.
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Fig. 3. Permittivity reconstruction for Austria profile with different permittivities: εr = 1.5 (first row), εr = 2 (second row), εr = 2.5 (third row), εr = 2.6 (fourth row), εr = 3
(fifth row).

Fig. 4. Effect of α on microwave image reconstruction. Fig. 5. Permittivity distribution for MNIST test image (εr = 2.75).
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back-propagation method in escaping from local minima with the
ability of standard DBIM in iteratively finding a solution. Also,
this method has the potential to successfully push the limits of
reconstructible contrast. The simulation results for this method

are produced using various examples, and the corresponding
reconstruction results are reported in the following section.

Simulation results

In this section, numerical simulations are performed to evaluate
the performance of the proposed algorithm. Here, Θ is a square
of a side of 20 cm. The background is a free space with εbac = 1.
The simulations are performed at a frequency of 3 GHz. The algo-
rithms with an initial guess as zero, BA, and BP are referred to as
O-DBIM, BA-DBIM, and BP-DBIM, respectively. Here, O-DBIM
symbolize ordinary DBIM, with ε(r) = 0, r∈Θ as the initial
guess.

To quantify the efficiency of the stated algorithms, RE is calcu-
lated, which is defined as [4]

RE = 1r − 1̂r‖ ‖
1r‖ ‖ (18)

where εr and 1̂r represent the actual and the reconstructed per-
mittivity, respectively. For describing convergence, the logarith-
mic scale is more useful. As a result, the plotting of this error
parameter is done using this scale.

Synthetic data

In this section, we present some synthetic data (Austria and
MNIST test image) results. Here, the investigation domain is

Fig. 6. Permittivity reconstruction for MNIST test image after 30 iterations: (a)
O-DBIM, (b) BA-DBIM, (c) BP-DBIM, and (d) RE.

Fig. 7. Permittivity reconstruction for experimental data: (a) original profile of single
dielectric cylinder from the Fresnel dataset 2001, (b) O-DBIM, (c) BA-DBIM,
(d) BP-DBIM, (e) 1D plot along y-axis (x = 0), and (f) RE.

Fig. 8. Permittivity reconstruction for experimental data: (a) original profile of
FoamDielExtTM from the Fresnel dataset 2005, (b) O-DBIM, (c) BA-DBIM,
(d) BP-DBIM, (e) 1D plot along x-axis (y = 0), and (f) RE.
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surrounded by 36 receivers, located equidistantly in a circular
fashion, at a distance of 60 cm from the center. The imaging
domain is discretized to 961 (31 × 31) square cells.

Austria profile
In the first example, the Austria profile is considered, which is one
of the commonly used and challenging configurations. It consists
of one ring structure and two disks, as shown in Fig. 2. The thick-
ness of the ring is 3 cm, with the outer and inner radii equal 6 and
3 cm, respectively. It is centered at (0, − 2) cm. The disks of radius
2 cm are centered at (− 3, 6) cm and (3, 6) cm. The permittivity
distribution on this target is uniform.

To test the effectiveness of the proposed method, it is evaluated
on the Austria profile for various contrasts (εr = 1.5, 2, 2.5, 2.6, 3).
The permittivity value of 1.5 represents the weak scatterer, and the
object becomes the strong scatterer as the permittivity value
increases. The simulation results after 30 iterations are reported in
Fig. 3. Also, the behavior of RE with respect to iteration number
is reported. According to the results, all of the approaches can effi-
ciently reconstruct weak and moderate scattering objects. However,
as the contrast increases, the O-DBIM and BA-DBIM techniques
begin to converge more slowly. They also do not acquire conver-
gence for highly contrasting objects. The BP-DBIM, on the other
hand, can converge faster than the other approaches under all con-
ditions. As a result, it can be concluded that the proposed technique
can effectively push the boundaries of reconstructible contrast.

The performance of the BP-DBIM is further evaluated by
checking the effect of regularization parameter (α) on the recon-
struction. The trajectories of RE for different α values are reported
in Fig. 4. It has been observed that a reasonable variation in the
value of α does not affect the solution. As iterations progress,
RE converges at the same point for all the values of α. This avoids
the selection of optimum regularization parameter, making
BP-DBIM the robust reconstruction algorithm.

MNIST test image
In this example, the unknown scatterer is modeled using a test
image from the MNIST database [27], which contains handwrit-
ten digits. As shown in Fig. 5, the permittivity distribution of the
object is homogeneous with εr = 2.75 (ξ = 1.75). As a result, it can
be considered a strong scattering profile.

Simulation results using the above-mentioned methods are
displayed in Fig. 6. The results show a close match between the
original and reconstructed profiles for the BP-DBIM method.
For this case, the RE values for O-DBIM, BA-DBIM, and
BP-DBIM after 30 iterations are 0.4211, 0.3748, and 0.1946,
respectively.

Experimental data

To examine the performance of the BP-DBIM algorithm under
realistic conditions, experimental data (made available by the
Institute of Fresnel, France) are also considered. The measure-
ment setup consists of linearly polarized horn antennas. Here,
the simulation is performed on two examples. The first example
consists of a simple homogeneous, circular cylinder from the
Fresnel dataset 2001 [23]. Similarly, the second example consists
of two circular dielectric cylinders from Fresnel dataset 2005 [24].

Single dielectric cylinder
The scatterer is illuminated at an angle of 0, 10, …, 350°, and the
scattered fields are collected at an angle of 60, 65, …, 300° with

respect to the corresponding emitter. The scatterer profile consists
of a single circular, homogeneous, dielectric cylinder of permittiv-
ity 3 ± 0.3. The cylinder has a radius of 1.5 cm and is kept at a dis-
tance of 3 cm from the origin. The reconstructed permittivity
distributions at a frequency of 3 GHz are presented in Fig. 7. It
can be observed that O-DBIM and BA-DBIM provide less accur-
ate results, whereas the quality of the reconstruction obtained
using BP-DBIM is quite good.

Foam and plastic cylinder
In this example, the scatterer is illuminated at an angle of 0, 45,
…, 315°, and the scattered fields are collected at an angle of 60,
61, …, 300° with respect to the corresponding emitter. As
shown in Fig. 8(a), the scatterer profile consists of two dielectric
cylinders. The first one consists of a centered foam cylinder
with a radius of 4 cm and permittivity of 1.45 ± 0.15. Another tar-
get consists of a plastic cylinder of radius 1.55 cm, permittivity
3 ± 0.3, placed at a distance of 5.55 cm from the origin. The recon-
structed permittivity distributions at a frequency of 3 GHz are dis-
played in Fig. 8. Here again, results indicate that the BP-DBIM
provides superior results as compared to O-DBIM and BA-DBIM.

Conclusion

In this work, a back-propagation-based initial guess estimation
method is reported for the non-linear model of the DBIM.
Initially, this method (BP-DBIM) is tested on the synthetic data,
which consists of complicated scattering objects that are both weakly
and strongly contrasting. The reconstruction results are compared
with zero initial guess (O-DBIM) and Born-approximated initial
guess (BA-DBIM). In addition, the effect of the regularization par-
ameter (α) on the RE is also studied. It has been observed that a rea-
sonable variation in the value of α does not affect the solution.
Results show improved reconstruction in terms of accuracy, and
convergence rate. Thereafter, the algorithm is tested on the realistic
data provided by the Institute of Fresnel, France. Here also, the
superior reconstruction results are obtained.
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