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Abstract
The emergence of COVID-19 has resulted in a notable rise in mortality rates,
consequently affecting various sectors, including the insurance industry. This paper
analyzes the reflections of a sudden increase in mortality rates on the financial
performance of a survival benefit scenario under the International Financial Reporting
Standard 17. For this purpose, we thoroughly examined a single insurance scenario
under four different states by modifying the interest and jump elements. We use
Poisson-log bilinear Lee–Carter and Vasicek models for mortality and stochastic
interest rate, respectively. Integrating the mortality model with a jump model that
incorporates COVID-19 deaths we constructed a temporary mortality jump model. As
a result, the temporary mortality jump model reflects the effects of the pandemic more
realistically. We observe that even in this case mortality has a minor impact, whereas
interest rates significantly still affect the financial position and performance of
insurance companies.

Keywords: COVID-19; IFRS 17; Poisson log-bilinear Lee–Carter model; temporary mortality jump model;
Vasicek model

JEL classification: G22; J11; M41; C53

1. Introduction

The financial performance of an insurance company depends on the difference between
incomes and costs. With the insurance contract, the insurer undertakes to provide
coverage to the insured in case certain events occur. At the beginning of the
contract, the exact amount and timing of benefits are uncertain. The premium and
benefit during this coverage period may occur at different time points in long-term
intervals. For insurance, when premium and benefit consider as income and cost, it
will be misleading as insurance products in the relevant period will not fully reflect
profit and loss. Assessing how the premium is earned over time and the costs
associated with that premium is complicated. To address this challenge, the
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International Accounting Standards Board (IASB) introduced the novel International
Financial Reporting Standard 17 (IFRS 17) Insurance Contracts standard in 2017,
inspired by Solvency II. IFRS 17 establishes key principles governing the recognition
and measurement of insurance contracts, ensuring a faithful representation of the
financial performance of insurance companies. Implementing these principles will
significantly impact insurance companies’ financial positions, particularly regarding
when profits and losses are recognized. Ultimately, the standard is expected to
enhance the comparability of financial information among insurance companies,
furnishing shareholders and investors with more accurate insights.

From an actuarial perspective, the investigation of IFRS 17 is still in its infancy, primarily
due to the recent implementation of the standard. In their scientific studies, Chevallier et al.
(2018) present a comprehensive framework designed to estimate the probability of actuarial
reserve adequacy under IFRS 17, focusing on life insurance products. Their proposed model
comprehensively addresses two key risks inherent in a life insurance portfolio: interest rate
risk and biometric risk. Hirz and Fleischmann (2018) provide insights into the formulation
of both the block building approach and the variable fee approach. Simultaneously, England
et al. (2019) adopt a dual methodology, integrating analytical and simulation-based
approaches to assess risk margins under Solvency II and risk adjustments under IFRS
17. This research parallels with reserve risk evaluations using analytical formula-based
methods presented by Mack (1993) for the lifetime perspective and Merz and Wüthrich
(2008) for the 1-year view under Solvency II.

Palmborg et al. (2021a) examine the financial position and performance of insurance
companies within the framework of IFRS 17. Their contribution involves the
development of algorithms, coupled with a mathematical interpretation, suggesting a
risk-based methodology for valuing a portfolio of insurance contracts. Collectively,
these studies establish a foundation for a more profound comprehension of the
actuarial implications of IFRS 17, paving the way for subsequent research endeavors
and practical implementations.

In recent years, there have been many actuarial studies regarding the unexpected
jump in mortality. Kwon and Nguyen (2019) emphasize the importance of
considering cause-of-death measurements in actuarial risk management and
monitoring mortality improvement trends. Schnürch et al. (2022) examine the effect
of jumps in death rates on actuarial valuations. Zhang et al. (2021) conclude that the
life insurer’s liability after COVID-19 is higher than before COVID-19 and that
COVID 19 has a negative impact on the financial sustainability of the insurance.

In this article, in addition to examining the financial effects of an unexpected jump
in mortality rates within the framework of IFRS 17, an evaluation of discounted cash
flows over time, an crucial aspect of the standard, is also conducted. The mortality
shock manifests in two forms: permanent and temporary. The decrease in the
probability of death resulting from advances in technology and medical science is
explained by the permanent mortality jump model. This phenomenon is by
commonly employed mortality models such as Lee–Carter, Cairns–Blake–Dowd, etc.
In contrast, the temporary jump model refers to an unexpected increase in mortality
rates, typically triggered by events such as pandemics or natural disasters. It causes a
temporary negative effect on mortality rates and stabilizes over time (Zhang et al.,
2021). This phenomenon results in a logarithmic parallel shift in mortality rates.
Using the Poisson-log bilinear Lee–Carter model, a permanent mortality jump model
(general mortality structure) is estimated for both genders in the United States.
Parameter assumptions and estimations are made for a temporary jump model that
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would induce a parallel shift in this mortality structure, utilizing COVID-19 data.
Starting in 2018, a 10-year simulation is conducted for both models. While no jump
occurs in the permanent mortality jump model, it is assumed that jump occurs 2
years later, in 2020, in the temporary mortality jump model. A survival benefit
portfolio is established based on these simulations, and the cash flows of the liability
are analyzed using both undiscounted and discount rates estimated with the Vasicek
model. By applying IFRS 17 principles, this paper examines the impact of mortality
rate jumps and discounted values on the financial performance of the survival
benefit portfolio that might help insurance companies develop risk management
strategies against such events and improve their financial reporting processes.

The paper is structured as follows: section 2 thoroughly investigates cash flow liabilities,
introducing fresh concepts within the context of IFRS 17. Section 3 discusses the Poisson-log
bilinear Lee–Carter model, the transient mortality jump model, and the Vasicek model used
to calculate the discount factor. Section 4 discusses the parameter estimation results using US
mortality data and simulations are created. The two mortality jump models generated and
valuations are evaluated and compared using the framework specified in IFRS 17. Section 5
summarizes the concluding remarks and general findings.

2. Liability cash flow

Let L(t) denote the value of the outstanding liability cash flow at time t. Consider the set
of time periods T+ : = {t0, t0 + 1, …} where contracts issued during the time t∈ T+ are
in the interval (t − 1, t]. The outstanding liability cash flow comprises two parts: cash
flows corresponding to claims incurred but not yet reported, denoted as L(t)IC , and
remaining liabilities not yet incurred, expressed as L(t)RC . Equation (1) formalizes the
outstanding liability cash flow (Palmborg et al., 2021a):

L(t) = L(t)RC + L(t)IC (1)
As shown in equation (2), L(t)RC is the combination of L(t)SP and L(t)FS . L

(t)
SP denotes liabilities

allocated to services provided between times t and t + 1, whereas L(t)FS denotes the liabilities
for future services allocated at time t (after t + 1) (Palmborg et al., 2021a):

L(t)RC = L(t)SP + L(t)FS (2)
In calculating liability cash flows, it is imperative to consider the time value of

money. From a modeling standpoint, the model’s parameters for short-term interest
rates, corresponding to the money market, should be selected to align with the
model’s discount rates. The discount rates for liability cash flows should mirror the
time value of money and the liquidity characteristics of insurance contracts
(International Accounting Standards Board, 2017a).

In adherence to IFRS 17, companies are obligated to compute the contractual service
margin (CSM) and loss component (LC) each period to depict their financial performance.

2.1. IFRS 17: concepts and principles

2.1.1. Initial recognition: CSM and LC
Consider a group of contracts acknowledged during the reporting period t0. The CSM
constitutes a tack of the asset or liability associated with the group of insurance

Journal of Demographic Economics 3

, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/dem.2024.25
Downloaded from https://www.cambridge.org/core. IP address: 3.143.5.121, on 27 Jan 2025 at 17:01:29, subject to the Cambridge Core terms of use

https://www.cambridge.org/core/terms
https://doi.org/10.1017/dem.2024.25
https://www.cambridge.org/core


contracts, representing the unearned profit that the entity expecting recognizing in
future service provisions. The CSM cannot take a negative value. Hence, if the
insurance liability value exceeds any cash, liabilities from contracts on that date are
considered as an LC incorporated into the liability value rather than contributing to
the CSM (International Accounting Standards Board, 2017a).

Upon recognition of the group of contracts, either the contractual service margin
CSM(t0) or the loss component LC(t0) will be determined. Let P(t0) denote the
premium amount at t0. The following equations define the (initial) recognition at t0
(Palmborg et al., 2021a):

CSM(t0) = P(t0) − L(t0)RC

( )+
(3)

LC(t0) = L(t0)RC − P(t0)
( )+

(4)

It is crucial that the initial recognition does not incorporate the influence of discount
rates and the time value of money. Additionally, during the initial recognition, any
collective unearned profits are not obligatory to be allocated to profit or loss
(International Accounting Standards Board, 2017a). In accordance with the standard,
the CSM remaining at the end of the reporting period is evenly distributed among
the units of coverage provided and the anticipated remaining coverage units
throughout the period (International Accounting Standards Board, 2017b).

2.1.2. The weighting of the contractual service margin (Wt)
The CSM encompasses weights Wt, reflecting the rate of unearned profit for the period
post-t at time t. Wt is a random variable within the range [0, 1], known at time t. Wt

acts as a weighting factor that ensures the profit recognition process is proportional to
the remaining coverage obligations, allowing a more accurate reflection of unearned
profits as they are earned over time. This weighting captures the time-based
progression of profit realization in accordance with the remaining service provided
by the contract. 1−Wt signifies the proportion of unearned profit at period t
allocated to profit or loss at time t.

The quantity of coverage units within an insurance group is determined by the
benefits conferred under a contract and its anticipated coverage period (International
Accounting Standards Board, 2017a). Let B(k)

s , s = t + 1, . . ., t0 + t, represent the
coverage provided under the k-th contract in period s. Additionally, T (k)

t denote the
time remaining from time t to the contract end date. Equation (5) defines the
coverage unit CU(t,k)

s in period s for T ≤ s:

CU(t,k)
s : =B(k)

s I{T(k)
t >s−t−1} (5)

Here, I is an indicator function, and CU(t,k)
s is known at time t. When T (k)

t = 0,
CU(t,k)

t = B(k)
t represents the last unit of coverage provided under the contract, and

CU(t,k)
t is defined for (t− 1, t]. The coverage unit CU(t)

s is the total of the coverage
units CU(t,k)

s summed over the index k (Palmborg et al., 2021a).
Wt is defined as the ratio of the expected number of remaining coverage units at time

t to the total number of coverage units for the group. The coverage unit is described by
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Palmborg et al. (2021a):

ERCU(t) : =Et
∑t0+t

s=t+1

CU(t)
s

[ ]

Wt = ERCU(t)

CU(t)
t + ERCU(t)

(6)

2.1.3. Weighting of the loss component (Ut)
The CSM cannot serve as a representation for unearned losses. Instead, IFRS 17
necessitates an entity to account for the excess of the expected present value of
future cash flows over the expected present value of future cash flows adjusted for
risk, reflecting this in profit or loss (International Accounting Standards Board,
2017b). Ut denotes the distribution of specific changes in the liability value during
period t, differentiating between the LC of the remaining liability and the coverage
liability value excluding the LC. Following the accounting for an impaired group of
insurance contracts, this distribution is allocated based on weighting. The weight is
defined as LC(t−1)/L(t−1)

RC (Palmborg et al., 2021a).

2.1.4. Contractual service margin and loss component
At the conclusion of the reporting period, the carrying amount of the CSM for a group
of contracts encompasses the impact of several factors. These factors include the effects
from newly initiated contracts, the interest incorporated into the CSM throughout the
period, alterations in fulfillment cash flows, and the influence of currency exchange
differences on the CSM (International Accounting Standards Board, 2017a). Let’s
consider (Wt)t∈T and (Ut)t∈T.

If CSM(t−1) ≥ 0 and LC(t−1) : = 0, are,

D1 = dt0,t−1

dt0,t
CSM(t−1) + dt0,t−1

dt0,t
L(t−1)
FS,t0 − L(t)RC,t0 + P(t) (7)

becomes CSM(t) : = WtD
+
1 and LC(t) : = D−

1 for the next period.
If CSM(t−1) = 0 and LC(t−1) > 0, are,

D2 = −LC(t−1) − Ut L(t)RC − L(t−1)
RC + dt0,t−1

dt0,t
L(t−1)
FS,t0 − L(t)RC,t0

( )
(8)

D3 = −D−
2 + dt0,t−1

dt0,t
L(t−1)
FS,t0 − L(t)RC,t0 + P(t) (9)

calculate with CSM(t) : = WtD
+
3 and LC(t) : = D−

3 for the next period (Palmborg et al.,
2021a).

L(t−1)
FS,t0 represents the liability value at t− 1 allocated to cash flows occurring after

time t measured with initial discount rates at t0. (L(t0)RC,t0 = L(t0)RC , L(t0)FS,t0 = L(t0)FS ).
(dt0,t−1/dt0,t)L

(t−1)
FS,t0 is the adjustment for the liability measured with the initial

discount rate (at time t0). dt0,t is the discount factor between t0 and t, known at time
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t0 (dt0,t0 = 1). (dt0,t−1/dt0,t)L
(t−1)
FS,t0 − L(t)RC,t0 is the change in the value of the future service

liability during the period, measured at the discount rates determined at the initial
recognition of contracts. P(t) and L(t−1) − L(t) denote premiums in period t and the
change in total liability value, respectively. It is needed to assess whether an
economically disadvantaged group results in a CSM at the end of the period. At the
end of the contract, both the CSM and the LC equal zero (LC(t0+t) = 0, CSM(t0+t) = 0).

2.1.5. Profit or loss (P&L)
Let It represent the net cash flow in (t− 1, t]. The following equation shows profit or
loss for reporting time t (Palmborg et al., 2021a):

P&Lt = L(t−1) + CSM(t−1) + P(t) − L(t) + CSM(t)
( )− It (10)

More comprehensive information regarding the principles of IFRS 17 can be found
in Palmborg et al. (2021a, 2021b).

3. Mortality and interest rate model

3.1. Mortality model

Life insurance companies commonly utilize fixed mortality rates in calculating present
values. However, this deterministic approach fails to capture the current mortality rates
accurately. In contrast, introducing randomness through stochastic mortality models
can address this limitation. However, stochastic models do not reflect the effects of
shocks on mortality rates, as observed during the recent COVID-19 pandemic. The
present study integrates a mortality model with a jump component. First, the
Poisson log-bilinear model, which we consider as the permanent jump model, is
addressed in this section. Later, the temporary mortality jump model is defined to
explain unexpected changes in mortality.

3.1.1. Poisson log-bilinear Lee–Carter model
The paper is based on calculating the parameters of the Poisson log-bilinear model for
death rates, which was put out by Brouhns et al. (2002). In this model, a Poisson
regression model is incorporated into the Lee–Carter model for mortality rates.
Herein, let Dx,t represent the number of deaths in the population at the age of x in
the period t. The probability distribution of Dx,t conditioned on Ex,t and μx,t is
expressed as a Poisson distribution:

L(Dx,t | Ex,t , mx,t) = Pois(Ex,tmx,t) (11)

At age x, in period t, Ex,t shows risk exposure, and μx,t denotes the mortality rate. The
formulation of the mortality rate model is presented by

log (mx,t) = ax + bxkt , kt = d+ kt−1 + jt (12)

Here, ax represents the age effect, κt expresses the mortality trend, and βx is the age
sensitivity of the change in κt. Notably, κt is a Gaussian random walk, where δ is the
drift parameter and ξt is an independent and identically distributed (i.i.d.) variable
with jt � N(0, s2

k). The constraints
∑

t kt = 0 and
∑

x bx = 1 are maintained. It is
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assumed that the mortality rates remain constant after the age of 90. Furthermore, the
mortality trend is characterized as a non-stationary series. The derivation of survival
probabilities using this model is presented in detail in Appendix A.

3.1.2. Mortality risk including temporary jump
The mortality model, incorporating the temporary jump, is expressed as

m
j
x,t = mx,te

Hx,t (13)

Here, μx,t represents the force of mortality without the jump, as defined in equation
(12). The transient mortality jump process Hx,t is defined by

Hx,t =
∑1
j=1

bjBj(x) exp (− kj(t − tj))I(t≥tj) (14)

Here, τj represents the time of the j-th adverse mortality event, and bj is the maximum
severity of the j-th jump event. The time τj can be modeled as the arrival times of a
Poisson process with a jump size bj > 0. Bj(x) distributes the jumping effect of the
mortality rate among different ages (0≤ Bj(x)≤ 1). For instance, in the flu epidemic
of 1918, people younger than 50 were more likely to be affected, while the situation
was vice versa for COVID-19. As demonstrated by these examples, the impact of the
jump in the mortality rate may vary according to age. The term exp (− kj(t − tj)) is
used to model the temporal nature of the shock, kj can be estimated using historical
data or set to 1, as commonly done in the literature. The higher kj implies a faster
cessation of the jump’s effect. I is the indicator function, equal to 1 if a jump event
occurs and 0 otherwise.

3.2. Modeling short rate

Interest rates play a significant role in determining the present value of future cash flows
and assessing risks from a financial perspective. The insurance industry often relies on a
fixed-rate assumption. However, this approach may struggle to adapt to markets with
high financial volatility. In contrast, stochastic interest rates offer a more realistic
approach to modeling uncertainties and fluctuations in the real world. Acknowledging
this, the Vasicek model, well-known for its convenience and widespread use, was
selected as the preferred framework for modeling stochastic interest rates in this study.

Vasicek model was introduced by Vasicek (1977) to model short-term interest rates
under the assumption that of interest rates can based on a single stochastic factor.
Vasicek model is described by

drt = g(u− rt)dt + sdWt (15)

γ, θ, and σ are non-negative constants.Wt represents the random market risk defined as
the Wiener process, θ represents the long-term average interest rate, γ indicates the rate
of return to θ, and σ is the volatility of the short-term interest rate. The short-term rate
is pushed up and pulled down, respectively, when it tends below and above the
long-term rate (Burgess, 2014).
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The Vasicek model is the Ornstein–Uhlenbeck process. The interest rate for a future
time t, where 0≤ s≤ t, is defined by (Burgess, 2014)

rt = e−g(t−s)rs + u(1− e−g(t−s))+ s

∫t
u=s

e−g(t−u)dWu

The parameters of the Vasicek model, where rt is the current interest rate, can be
estimated by using the maximum-likelihood method. The estimation of parameters is

ĝ = − 1
dt

log
n
∑n

i=1 rti rti−1 −
∑n

i=1 rti
∑n

i=1 rti−1

n
∑n

i=1 r
2
ti −

∑n
i=1 rti−1

( )2
( )

û = 1
n(1− e−ĝdt)

∑n
i=1

rti − e−ĝdt
∑n
i=1

rti−1

( )

ŝ2 = 2ĝ
n(1− e−2ĝdt)

∑n
i=1

rti − rti−1e
−ĝdt − û(1− e−ĝdt)

( )2

where dt = ti − ti−1, i = 1, 2, . . ., n (Tanaka et al., 2020).
The discount rate is used to calculate the present value of cash flows expected in a

certain period. The discount rate is shown with the interest rate as

dt0,t = e
−
�t

t0
rsds (16)

4. Numerical illustration

Our aim is to examine the effect of the pandemic and interest rates on the insurance
company using the framework of IFRS 17. To this end, data sourced from the United
States is used to generate simulations pertaining to both interest and mortality rates. A
10-year simulation is generated, starting at 2018. Moreover, a second simulation is
developed that takes into consideration the pandemic scenario occurring in 2020.

First, parameter estimation of mortality and interest rate are given. Then coverage of
survival benefit and its valuation over time are presented. Finally, the valuation of
survival insurance with IFRS 17 are presented.

4.1. Mortality

We use mortality table for both sexes from age of 35 to 90 in the United States from
1960 to 2019 that is taken from the Human Mortality Database (The Human
Mortality Database, 2023), Mortality rates and parameter estimations are derived
using Poisson log-bilinear mortality model and the R package “StMoMo” is
employed for this purpose (Lee Carter, 1992; Brouhns et al., 2002; Villegas et al.,
2018). The most suitable model for the mortality trend is the ARIMA(0,1,0), with
parameters δ =−0.6291, s2

k = 0.5961. Figure 1 presents the results of the parameter
estimation for the mortality model.

The parameters shown in Figure 1, αx and βx vary with age, while κt varies with time.
κt represents a time series modeled with ARIMA(0,1,0), and κt for the next decade is
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predicted using this time series. To estimate the probabilities of permanent jumps,
10,000 simulations are generated using a 10-year time series forecast of κt.

COVID-19 data are utilized to estimate the parameters for the transient mortality
model (Hx,t) as defined in equations (13) and (14). For the COVID-19 data, excess
deaths in the United State between 2020 and 2022, as reported by the Center for
Disease Control and Prevention (CDC) (Center for Disease Control and Prevention,
2023), are taken into account. Figure 2 shows the distribution of excess deaths by age
group from the CDC. Notably, the distribution of excess deaths by age groups has
changed over the years. As demonstrated in Figure 2, COVID-19 has a notable
impact on people in middle age and older. The year 2020 observed the highest
deaths attributed to COVID-19 among those 85 years and older. However, following
years, notably 2022, observed a decline in fatalities owing to pandemic control
measures and widespread vaccination efforts. Additionally, the demographic groups
most severely affected by COVID-19 have shifted over time. For instance, while the
number of deaths among people aged 85 and older was higher in 2020, the number
of deaths in the 65–74 and 75–84 age groups was higher in 2021. It cannot be
determined in which age group COVID-19 is more effective with the excess death
numbers, but this conclusion can be reached by examining the excess death rates.

The excess death rate for each age group is calculated as (Zhang et al., 2021)

excess death ratet = excess deathst
the average deaths2015−2019

, t = 2020, 2021, 2022 (17)

Table 1 shows the excess death rate computed for each age group.
The linear interpolation method is used to estimate excess mortality for each age.

This method depends on the assumption that the probabilities of deaths presented in
Table 1 represent the median value for each age group. Additionally, it is assumed
that those under 24, and over 85 years old remained constant. In other words, the
excess mortality rate for people within this age range is determined by the median
value, and no interpolation is applied.

The rates estimated for each age are utilized to construct a distribution the impact of
mortality rate. This distribution denotes the adverse mortality effect and is denoted by
Bj(x) for x age. Since pandemic data from 2020 to 2022 are utilized in the paper, the
parameter Bj can be estimated for these years. In years beyond 2022, it is assumed
that the distribution observed in 2022, denoted as Bj, continues to be utilized.
Figure 3 shows the predicted Bj values. While the age distributions for 2020 and
2022 exhibit similarities in adverse mortality effects, the influence of COVID-19 is

Figure 1. Parameters estimation of mortality model for the United States.
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more pronounced among younger age groups in 2021. This trend could be attributed to
the increased transmission rate of the epidemic during that period.

bj signifies the maximum size of the jump event. The maximum value in Table 1 for
excess death rates is considered as the value of bj for the respective year.

Considering the Spanish flu that occurred between 1918 and 1920 and the ongoing
COVID-19 pandemic that began in 2019, it can be inferred that pandemic events occur
approximately once every century (Zhang et al., 2021). In addition, according to studies
in the literature, the probability of the event occurring is accepted as τj = 0.01. This
assumption is also accepted in the paper.

The kj value shown in equation (14) reflects information about the duration of the
pandemic. If kj, greater than 1, the jump effect ends quickly; otherwise, it persists for a
long time. The kj can be estimated using mortality data for 2020 and 2021. However,
due to not announced of mortality data for the years after 2021, the assumption kj =
1, which is frequently used in the literature, is accepted. The mean square error is

Table 1. Excess death rate for each age group from 2020 to 2022

Age group 2020 2021 2022

0–24 0.012117 0.033255 0.018934

25–34 0.045586 0.122977 0.040279

35–44 0.083890 0.216228 0.063669

45–54 0.108610 0.234087 0.072085

55–64 0.123382 0.215113 0.082773

65–74 0.155909 0.211722 0.100988

75–84 0.161141 0.168071 0.101908

85 + 0.141255 0.109895 0.084147

Figure 2. Excess death numbers from 2020 to 2022.
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utilized to estimate kj for 2020 and 2021. These estimates are evaluated in 0.001
increments for 0 < kj≤ 2. kj is estimated as 1.27 for 2020. Assuming that the kj in
2020 is 1.27, kj for 2021 is estimated as 0.71.

Figure 4 shows the transient death jump process Hx,t with parameters based on some
assumptions and estimates. Figure 4 reflects the changes in the temporal jump process
over the years for ages 40, 50, and 60. The impact of shocks on mortality increases in
the first 2 years and decreases in the following years. After 2024, although the impact of
the pandemic has eased, it still has an impact on mortality. As shown in Figure 3, the
impact of the temporary shock on mortality across ages varies by year.

The coherence of the simulations created using the estimated parameters with the
observed values is shown in Table 2 and Figure 5.

Figure 3. Adverse mortality effect across ages.

Figure 4. Temporary mortality jump for simulation in the next decade for ages 40, 50, and 60, starting from
2018. The point values in the chart represent the value at the end of the year.
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Table 2 contains the mean square errors of the temporary and permanent model for
2020 and 2021. The persistent jump model contains probabilities from simulations
created with Poisson-log bilinear Lee–Carter model estimated parameters. The
temporary jump model contains the probabilities obtained from the jump model
added to the mortality model. As can be seen from Table 2, the temporary mortality
jump model is a more appropriate model to explain the unexpected shock in mortality.

Figure 5 presents a detailed analysis of simulation results for 2020 and 2021, focusing
on age-specific discrepancies between observed mortality rates and modeled outcomes.

Table 2. Estimation of kj for 2020 and 2021 with mean square error

2020 2021

Permanent mortality jump model (Poisson log-bilinear
Lee–Carter model)

0.00004070465 0.00002953608

Temporary mortality jump model 0.0000008837232 0.000001650367

(kj = 1.27) (kj = 0.71)

Figure 5. Estimation of mortality rate and observed mortality rate for 2020 and 2021.
Note: The observed mortality rate is estimated using qx =mx/(1 + 0.5mx). The solid black dashed line indicates the
difference between the observed mortality probabilities and the predicted temporary mortality jump model. The
solid gray line represents the difference between the observed mortality probabilities and the permanent
mortality jump model.
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Interestingly, both years show similar results for people aged 35–45 across both models,
suggesting a minimal pandemic impact on this group. In particular, the difference
between the temporary mortality jump model and observations is less for the middle
and elderly population, which is significantly affected by the pandemic. In other words,
the temporary mortality jump model provides a more realistic simulation for all ages.

4.2. Interest rate

We utilize daily data of 3-month bond yields of the United States from January 2, 2008
to December 29, 2017. Data are sourced from the Federal Reserve Bank of St. Louis and
are shown in Figure 6.

Maximum-likelihood calibration is applied to estimate the parameters of the Vasicek
model. Table 3 involves parameter estimates. Moreover, Figure 6 presents several
simulated paths generated using the estimated parameters from Table 3. The
simulated paths closely match the actual data trends, demonstrating a strong
alignment between them. Showing only a few selected simulation paths is sufficient
to illustrate this consistency, as they effectively represent the overall behavior of bond
yields during this period.

A value greater than one for γ indicates that interest rates return to their average level
more quickly and fluctuations reach equilibrium more quickly. The parameters also
show that the interest pattern moves steadily within a certain range of variability in

Figure 6. 3-Month bond yields: actual data and simulated paths.
Note: The solid black lines represent the actual daily data of 3-month bond yields for the United States, while the
dashed lines illustrate a few examples of simulation paths based on parameters from Table 3.
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the long run. With estimates of parameters, 10,000 simulations are created, starting in
2018 and continuing until 2028.

4.3. Insurance coverage

Financial performance of the insurance company is analyzed using estimated interest
rates with both zero interest rates and the Vasicek model. It is assumed that the
starting point is t0 = 2018. Moreover, no new survival benefit policies are introduced.
Three distinct cohorts were considered for people aged 40, 50, and 60 years, each
comprising 10,000 people. The survival benefit policy is considered to yield benefits
(B = 1) if the policyholder lives for 10 years or more; if not, the policyholder is not
eligible for benefits. Considering these assumptions, the insurer’s liability over the
years is estimated for a portfolios of 10,000 people and the average of the resulting
simulated outcomes is calculated.

Figure 7 shows the insurer’s remaining liability over time for the ages of 40, 50, and
60 for both temporary and permanent mortality jump models. For the two-mortality
model, the values of the liability over time are depicted, both with and without
consideration of the interest rate. Additionally, it is important to note that the
disparity in the value of the remaining liability at the initial time (t0 = 2018) stems
from interest rate. The temporary jump model, unlike the permanent jump model,
leads to a decrease in liabilities with an increase in mortality. Every year, a consistent
decline in the insurer’s liability is observed, albeit at varying rates. It is a well-known
fact that mortality rates increase with age. This trend is particularly pronounced for
older ages, especially during the COVID-19 pandemic. As reflected in the graphs, the
difference between the two mortality models increases proportionally with age. This
phenomenon remains unchanged when the interest rate is taken as zero or estimated
using the Vasicek model. Furthermore, the fluctuation in liabilities depending on the
applied interest rates highlights the impact of interest rate adjustments on the
insurer’s financial position.

The premium amount for the insurance portfolio is estimated from the actuarial
equilibrium equation. Pure premiums that equalize the liability for each age are
obtained. A loading factor is added to the pure premium (Ppure) to cover the
insurer’s operational expenses, administrative and risk costs, and profit margin. Thus,
the premium (P) for each age is estimated as P = (1 +m)Ppure. Premiums for each age
are shown in Table 4, assuming that the premium (P) is received only at time t0 =
2018 and m = 0.1.

In the paper, benefits are committed to those who are survive at the end of 10 years.
Since the 40-year-old is considered more risky by the insurance company compared to
other ages, higher premiums are requested. Also, based on the data within the scope of
the paper, it can be said that interest rates play an important role in determining
insurance premiums.

The premium at time t0 is an crucial factor affecting the CSM and LC. Higher
premium can increase insurance companies’ future profit and increase CSM while at

Table 3. Parameter estimation for Vasicek model

γ θ σ r0

2.161191869 0.002249353 0.006030668 0.014070000
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the same time providing greater financial assurance against future benefits and reducing
LC.

The results derived from the CSM and LC defined by equations (7), (8), and (9)
through simulation are presented in Figure 8 over the years. CSM and LC must
equal zero at the end of the contract. The initial values of CSM and LC resulting
from premiums and liabilities at time t0 are differ for each age. The impact of the
mortality increase in 2020 is reflected differently in CSM and LC; in this case, it acts
more on the CSM and less on the LC. The effect of evaluating interest rates with the
Vasicek model on CSM and LC can be observed in the figure. The existence of the
interest rate for ages 40 and 50 causes a change in the CSM value, but the result is
still as CSM. When the interest rate is zero for the 60 age, it is recognized as LC;
however, when assumed with the Vasicek model, the result is recognized as CSM.

CSM and LC are financial estimates and cannot be directly recognized as profit or
loss. CSM and LC are used to help evaluate the financial performance, while
indicators such as profit or loss are often used to assess financial position and
performance. The profit or loss assessment of the insurance portfolio within the
scope of the paper is shown in Figure 9.

Figure 9 shows profits or losses of the insurance portfolios over years. Specifically,
for adults aged 40 and 50, Figure 8 clearly indicates that the contract service margin

Figure 7. Average remaining liability of the two models by years.
Note: The probabilities and the methodology for calculating liabilities are elucidated in Appendices A and B.

Table 4. Premiums

Age Vasicek model Zero interest rate

40 1.051031 1.074483

50 1.020245 1.043110

60 0.958080 0.979747
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will translate into profit. However, the situation is different for those over 60. Although
there is a loss at the beginning, there is a trend in which profits increase over time. It is
noted that among 60-year-olds, who are most impacted by the jump in mortality, this
effect is more distinctly reflected in profit or loss compared to other ages.

When evaluating the implementation of the Vasicek model, it is noticeable that the
profit or loss is more variable over the years. Especially in some years, significant losses
or profits become evident. It can be expressed that interest rates cause fluctuations in
profit and loss, and financial performance is more variable.

Figure 8. Contractual service margin (CSM) and loss component (LC).

Figure 9. Distribution of profit or loss for different margins by year.
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According to the results, the financial position of the portfolios varies over the years.
However, it has been observed that all portfolios, including those that started with a
loss, were in a profit position, albeit with different amounts, at the time the contract
ended. In addition, the volatility of financial performance and position increases over
the years, especially when the interest rate model is taken into account. This volatility
may require portfolio managers to pursue a more careful risk management strategy.
Additionally, financial positions in the portfolio may need to be managed more
dynamically due to the impact of interest rates.

5. Conclusions

With the introduction of the IFRS 17 standard, aimed at providing a more accurate
portrayal of insurance companies’ financial performance and position, significant
changes have occurred in the presentation of financial statements. Embracing this
changes, this paper addresses the impact of the COVID-19 pandemic on mortality
rates and its reflections on the insurance industry, especially within the scope of
IFRS 17. It reveals the complex interaction of unexpected jump in mortality and
interest rates on financial performance. The financial position and performance of a
survival benefit scenario is analyzed for different ages through various mortality and
interest rate models, such as the Poisson-log bilinear Lee–Carter and Vasicek models.

According to the results, integration of a temporary mortality jump model reflecting
COVID-19 deaths provides a more realistic assessment of the effects of the pandemic
and less impact on insurer financial condition compared to interest rate fluctuations.
Additionally, it seems that another significant factor affecting the financial situation
is premium. Therefore, accurate and precise premium forecasting is critical to ensure
insurance companies present a sound financial picture. The study demonstrates the
critical importance of mortality, interest rate, and premium in determining financial
performance under IFRS 17. As a result, insurers need to adapt to changing market
conditions to ensure financial stability and profitability in the face of unexpected events.
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px−1,t−1 = exp (mx−1,t−1)

nx−t,0 is the number of insured at the beginning of the insurance coverage (at time 0). Distribution of Nx,t is
(Palmborg et al., 2021a)

L(Nx,t |m) = Bin nx−t,0

∏t−1

i=0

px−t+i,i

( )

L(Nx+h,t+)|Nx,t , m) = Bin Nx,t

∏t+h−1

i=t

px−t+i,i

( )
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The probability of a person aged x surviving from time t to time t + u is expressed as follows:

P(Tx,t > u) = E[P(Tx,t > u|m)]

= exp −
∑u−1

s=0

E[mx+s,s]

{ }
(A1)

The mortality trend for the USA with ARIMA(0,1,0) time series is

kt = d+ k(t−1) + jt , kt = td+ k0 +
∑t

i=1

ji

We know that jt � N(0, s2
k). Thus

log (mx,t) = ax + bx td+ k0 +
∑t

i=1

ji

( )

log (mx,t) � N ax + bx(td+ k0), b
2
xs

2
kt

( )
The expected value of the mortality rate from the lognormal distribution can be expressed as follows:

E[mx,t] = exp ax + bx(td+ k0)+ 1
2
b2
xs

2
kt

{ }

With k(t)0 = kt , the probability of survival of a person aged x from time t to time t + u is shown as follows:

P(Tx,t > x + u− x) = exp −
∑u−1

s=0

exp ax+s + bx+s sd+ k(t)0

( )
+ 1
2
b2
x+ss

2
ks

[ ]{ }

Equation (A.1) estimates the number of people who will die in the next 10 years under insurance for the age
of x (Palmborg et al., 2021a). The temporary mortality jump model is

m
j
x,t = mx,te

Hx,t

Assuming that Hx,t and μx,t are independent of each other:

P(Tx,t > u) = E[P(Tx,t > u|mj)]

= exp −
∑u−1

s=0

E[mj
x+s,s]

{ }

E[mj
x,t] = E[mx,te

Hx,t ]

Using the linearity property of expectation, the equation can be expressed as follows:

E[mj
x,t] = E[mx,t]E[e

H(x,t) ]

Assuming that log (mx,t) has a normal distribution, the expected value of mj
x,t is expressed as follows:

E[mj
x,t] = exp [ax + bx(td+ k0)+ 1

2
b2
xs

2
kt]E[e

Hx,t ]
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The variance mj
x,t can be expressed as

Var[mj
x,t] = Var[mx,t e

Hx,t ]

= E[(mx,t e
Hx,t )2]− E[(mx,t)e

Hx,t )]2

= E[m2
x,t]Var[e

Hx,t ]+ E[eHx,t ]2Var[mx,t]

The second moment and variance of the log-normal distribution are represented by

E[m2
x,t] = exp 2 ax + bx(td+ k0)+ b2

xs
2
kt

[ ]{ }
Var[mx,t] = (eb

2
xs

2
k t − 1)e2[ax+bx(td+k0)]−b2

xs
2
kt

Determining a generally applicable distribution for Hx,t is challenging. Closed-form expressions for its
variance and mean are elusive, necessitating the use of simulation methods.

Appendix B.
Let (Xt)

t
(t=1) be the cash flow corresponding to the outstanding liability at time t. In this insurance system,

we need the expected value (E[R(t)|H(t)
0 ]) and variance (Var[R(t)|H(t)

s ] ) of the total cash flow liability to
calculate the liability at time t, where R : = ∑t

s=1 Xs. Let N(t)
s represent the number of active contracts at

time s≥ t, which gives the variation of the mortality trend up to time t concerning (ks)
t
s=1. The

σ-algebra filter produced by (Hs)
t−t
s=0 cash flows with contract end date τ depends only on the number of

contracts at time t:

H(t)
0 : = {∅, V}, H(t)

s : = s(N(t)
t+s) _ H(t)

s−1 s = 1, . . . , t− t

The outstanding liability at time t is (Engsner et al., 2017; Palmborg et al., 2021a)

L(t) = E[R(t)|H(t)
0 ]+ c0

∑t−1−t

s=0

Var[R(t)|H(t)
s ]− Var[R(t)|H(t)

s+1]
( )+

c0 is a measure of risk. According to IFRS 17, there is no specific use for the risk measure. Value at risk
(VaR(99.5%)) is used in the paper. The measure of risk ct is as follows (Palmborg et al., 2021a; Engsner
et al., 2020):

ct : = f−1(0.995)− 1
1+ ht

0.995f−1(0.995)+ f(f−1(0.995))
( )

ηt represents the capital cost ratio. The capital ratio in Solvency II is considered as η0 = 0.06 since it is a fixed
rate of 6% per annum.
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