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It is well known that buoyancy suppresses, and can even laminarise, turbulence in upward
heated pipe flow. Heat transfer seriously deteriorates in this case. A new direct numerical
simulation model is established to simulate flow-dependent heat transfer in an upward
heated pipe. The model shows good agreement with experimental results. Three flow
states are simulated for different values of the buoyancy parameter C: shear turbulence,
laminarisation and convective turbulence. The latter two regimes correspond to the heat
transfer deterioration regime and the heat transfer recovery regime, respectively (Jackson
& Li 2002; Bae et al., Phys. Fluids, vol. 17, issue 10, 2005; Zhang et al., Appl. Energy, vol.
269, 2020, 114962). We confirm that convective turbulence is driven by a linear instability
(Su & Chung, J. Fluid Mech., vol. 422, 2000, pp. 141–166) and that the deteriorated heat
transfer within convective turbulence is related to a lack of rolls near the wall, which leads
to weak mixing between the flow near the wall and the centre of the pipe. Having surveyed
the fundamental properties of the system, we perform a nonlinear non-modal stability
analysis, which seeks the minimal perturbation that triggers a transition from the laminar
state. Given the differences between shear and convective turbulence, we aim to determine
how the nonlinear optimal (NLOP) changes as the buoyancy parameter C increases. We
find that at first, the NLOP becomes thinner and closer to the wall. Most importantly,
the critical initial energy E0 required to trigger turbulence keeps increasing, implying that
attempts to trigger it artificially may not be an efficient means to improve heat transfer at
larger C. At C = 6, a new type of NLOP is discovered, capable of triggering convective
turbulence from lower energy, but over a longer time. It is active only in the centre of
the pipe. We next compare the transition processes, from linear instability and by the
nonlinear non-modal excitation. At C = 4, linear instability leads to a state that approaches
a travelling wave solution or periodic solutions, while the minimal seed triggers shear
turbulence before decaying to convective turbulence. Deeper into the parameter space for
convective turbulence, at C = 6, the new nonlinear optimal triggers convective turbulence
directly. Detailed analysis of the periodic solution at C = 4 reveals three stages: growth
of the unstable eigenfunction, the formation of streaks, and the decay of the streaks.
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The stages of the cycle correspond to changes in the linear instability of the turbulent
mean velocity profile. Unlike the self-sustaining process for classical shear flows, where
the streak is disrupted via instability, here, decay of the streak is more closely linked
to suppression of the linear instability of the mean flow, and hence suppression of the
rolls. Flow visualisations at C up to 10 also show similar processes, suggesting that the
convective turbulence in the heat transfer recovery regime is sustained by these three
typical processes.

Key words: nonlinear instability, transition to turbulence, pipe flow

1. Introduction

In isothermal pipe flow, the flow is driven by an external pressure gradient. This is referred
to as ‘forced’ flow. In a vertical configuration, however, buoyancy resulting from the
expansivity of the fluid close to a heated wall can provide a force that partially or fully
drives the flow, referred to as ‘mixed’ or ‘natural’ convection, respectively. The use of
mixed convection is fundamentally important and practical in engineering applications,
e.g. geothermal energy capture, nuclear reactor cooling systems, fossil fuel power plants,
and has been widely researched. Heat transfer in the presence of buoyancy exhibits totally
different characteristics for downward flow and upward flow. In a downward flow, the
buoyancy acts as a drag force but always enhances the heat transfer. By contrast, in an
upward flow, buoyancy assists the flow, but heat transfer can deteriorate significantly
(Ackerman 1970; McEligot, Coon & Perkins 1970; Jackson & Li 2002; Bae, Yoo & Choi
2005; Wibisono, Addad & Lee 2015; Zhang et al. 2020). When the heating parameter is
gradually increased, heat transfer first deteriorates, then recovers, and finally can approach
as large values as for downward flow (Zhang et al. 2020). Interestingly, shear turbulence
is gradually suppressed and even laminarised at lower Reynolds numbers (Bae et al. 2005;
Chu, Laurien & McEligot 2016; He, He & Seddighi 2016; He et al. 2021), then the flow
enters a convective turbulence state when the buoyancy exceeds a critical intensity (Su &
Chung 2000; Marensi, He & Willis 2021).

Research on the phenomenon of laminarisation in mixed convection can be traced at
least as far back as Hall & Jackson (1969), who provided a theoretical explanation of this
phenomenon, suggesting that reduced shear stress in the buffer layer leads to a reduction or
even elimination of turbulence production. This interpretation received wide acceptance.
More recently, He et al. (2016) modelled the buoyancy with a radially dependent body
force added to isothermal flow, successfully reproducing the laminarisation phenomenon.
They found that the body force causes little change to the key characteristics of turbulence,
and proposed that laminarisation is caused by the reduction of the ‘apparent Reynolds
number’, which is calculated based only on the pressure force of the flow (i.e. excluding the
contribution of the body force). In flows at supercritical pressure, the laminarisation and
deterioration of heat transfer are reproduced successfully by Bae et al. (2005, 2006). He
et al. (2021) researched the laminarisation phenomenon in flows at supercritical pressure,
and established a unified explanation for the laminarisation mechanism. It is thought to
be due to the variations of thermophysical properties, buoyancy and inertia, the latter of
which plays a significant role in a developing flow.

Meanwhile, in isothermal flow, the laminarisation phenomenon has been observed when
the base velocity profile is flattened (Hof et al. 2010; Kühnen et al. 2018; Marensi,
Willis & Kerswell 2019). (The effect of buoyancy on the base velocity profile can be
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similar.) Kühnen et al. (2018) proposed that the laminarisation is caused by reduced
transient growth of small perturbations when the velocity profile is flattened. Marensi et al.
(2019) considered the nonlinear stability of finite perturbations for a series of flattened
base velocity profiles in (isothermal) pipe flow, and found that flattening enhances the
nonlinear stability of the laminar flow. Recently, machine learning has been used to explore
laminarisation events in a reduced model of wall-bounded shear flows, and it has been
suggested that the collapse of turbulence is connected with the suppression of streak
instabilities (Lellep et al. 2022).

There have been many studies of mixed convection, both experimental (Celataa et al.
1998; Wang et al. 2011; Jackson 2013; Zhang et al. 2020) and numerical (You, Yoo &
Choi 2003; Poskas, Poskas & Gediminskas 2012; Yoo 2013; Zhao et al. 2018), but most
of these works focus on statistical properties, e.g. the Nusselt number, Reynolds stress,
mean velocity profile and the mean temperature profile. Few works pay attention to the
dynamical characteristics of the flow, such as the transition between flow types and the
maintenance of convective turbulence. In particular, the transition mechanisms for mixed
convection appear to be quite different from those of isothermal flow. Experimental results
(Hanratty, Rosen & Kabel 1958; Scheele, Rosen & Hanratty 1960; Ackerman 1970) have
shown that a heated vertical pipe flow can go through a flow transition at Reynolds number
as low as 30. Scheele & Hanratty (1962) found that the vertical heated upward flow in
a pipe first becomes unstable when the velocity profiles develop an inflectional point.
The flow develops regular and periodic motion after transition at a rather low Reynolds
number. Similar patterns have been also observed by Kemeny & Somers (1962). Yao
(1987) confirmed the experimental observations that the flow in a heated vertical pipe
is supercritically unstable, and found that the bifurcated new equilibrium laminar flow is
likely to be a double spiral flow. A weakly nonlinear instability analysis by Rogers & Yao
(1993) revealed that the heated upward flow is supercritically unstable while the heated
downward flow is potentially subcritically unstable. Su & Chung (2000) systematically
researched the linear stability of mixed convection for upward and downward flow in
a vertical pipe with constant heat flux, to explain multiple flow states that appeared in
the experimental and numerical results. The calculation found that the first azimuthal
mode is always the most unstable. The Rayleigh–Taylor instability is operative when
the Reynolds number is extremely low, while the opposed-thermal-buoyant instability is
dominant when the Reynolds number is higher. The transition of a low Reynolds number
mixed convection flow in a vertical channel has been investigated by Chen & Chung (2002)
for K-type (Klebanoff, Tidstrom & Sargent 1962) and H-type (Herbert 1983) disturbances.
It was found that the flow field bifurcates to a new quasi-steady nonlinear state after
the initial transient period, for both types of perturbation. Khandelwal & Bera (2015)
developed a weakly nonlinear stability theory in terms of a Landau equation to analyse the
nonlinear saturation of stably stratified non-isothermal Poiseuille flow in a vertical channel
with respect to different fluids, i.e. mercury, gases, liquids and heavy oils. A substantial
enhancement in heat transfer rate was found for liquids and heavy oils from the basic state
beyond the critical Rayleigh number. Recently, Marensi et al. (2021) also performed linear
stability analysis for a vertical heated pipe flow, using the parameter C to measure the
buoyancy force relative to the force that drives the laminar isothermal shear flow. Their
results show that the flow is not always linearly unstable at a strong buoyancy condition,
and revealed that the heat transfer deterioration is caused by the suppression of rolls in the
flow. This finding is in line with the study of Lellep et al. (2022), as the suppression of
rolls would occur when streak instabilities are suppressed.

Some works have considered the linear and weakly nonlinear stability of a vertical
heated flow, and have shown the instability of convective turbulence. However, the
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transition involving shear-driven turbulence is fundamentally nonlinear, and multiple flow
states can arise at the same parameter values. Further understanding is of great significance
for heat transfer prediction and optimisation in engineering applications, and there remain
open questions to be addressed. How does the shear turbulence gradually disappear?
Is laminarisation similar to that in isothermal flow? How is the convective turbulence
triggered and sustained?

To tackle these questions, we employ nonlinear non-modal stability analysis (Pringle
& Kerswell 2010; Cherubini et al. 2011; Pringle, Willis & Kerswell 2012; Cherubini &
De Palma 2013; Marensi et al. 2019) to seek the most efficient perturbation to trigger
transition from the laminar state in a vertical heated pipe. The optimised perturbation
is called the nonlinear optimal (NLOP), and the critical (i.e. lowest energy) NLOP that
triggers turbulence is called the ‘minimal seed’ in isothermal flow. The magnitude and
structure of the minimal seed reflects the nonlinear stability properties of the flow (Marensi
et al. 2019). The Lagrange multiplier method has been used widely in fluid mechanics,
including the heat transfer optimisation approach proposed by Guo, Zhu & Liang (2007)
and Motoki, Kawahara & Shimizu (2018). We do not optimise heat transfer directly here,
however, but seek the optimal flow perturbation that leads to transition away from the low
heat-transfer state of laminar flow.

The plan of the paper is as follows. In § 2, we present the new model for direct
numerical simulations of vertical heated pipe flow, and methods for the linear stability and
nonlinear non-modal stability analysis. In § 3, we first show the results of direct numerical
simulations, then present the results of linear stability and nonlinear non-modal stability
analysis. Next, we reveal the separate transition processes starting from the NLOP and
unstable eigenfunctions, as well as the self-sustaining process in convective turbulence.
Finally, the paper concludes with a summary in § 4.

2. Formulation

2.1. Simulation of heated pipe flow
The upward flow through a vertical heated pipe flow is considered in this work. Like
several models, we assume that there is a background temperature gradient along the axis
of the pipe – e.g. Yao (1987), Chen & Chung (1996, 2002) and Khandelwal & Bera (2015).
Different from many models, however, we suppose that the temperature gradient may vary
in time due to changes in the way the fluid flows. We fix the difference between the bulk
temperature of the fluid and that of the wall, aiming to see directly how the buoyancy
parameter affects the flow pattern, and hence the heat flux at the wall and the temperature
gradient. Our code is a modification to that of Marensi et al. (2021), where the function of
the temperature gradient was replaced by a spatially uniform heat sink. That assumption
had the advantage of providing a simple analytic expression for the laminar state; here, it
is computed numerically.

Let x = (r, φ, z) denote cylindrical coordinates. We decompose the total temperature as

Ttot(x, t) = Tw(z, t) + T(x, t) − 2Tb, (2.1)

with wall temperature Tw = atot(t) z + b, where atot(t) is the time-dependent axial
temperature gradient, and b is a constant reference temperature. Axial periodicity over
a distance L is assumed for the temperature fluctuation field T(x, t) and velocity field utot.
Let Tb = 〈T〉, where the angle brackets denote the spatial average. The factor −2Tb has
been inserted in (2.1) so that the temperature fluctuations due to the heating from the
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wall are positive and largest at the wall: evaluating (2.1) at the pipe radius r = R gives
T|r=R = 2Tb.

We take 2Tb as our temperature scale for non-dimensionalisation, and assume that
local fluctuations in T are more rapid than changes in the gradient atot(t). For the length
and velocity scales, we non-dimensionalise with the radius R and twice the bulk flow
speed 2Ub, the latter of which coincides with the isothermal laminar centreline speed.
Throughout the rest of the text, dimensionless variables and equations are presented,
except in the definition of dimensionless parameters.

Temperature fluctuations T satisfy

∂T
∂t

+ (utot · ∇)T = 1
Re Pr

∇2T − utot · ẑ atot(t), (2.2)

with boundary condition T = 1 at the wall. A fixed bulk temperature 〈T〉 = 1/2 is
maintained through adjustments in the gradient atot(t), which is determined at each instant
via the spatial average of the equation (see (2.11a,b) below). The dimensionless parameters
are the Reynolds and Prandtl numbers Re = 2UbR/ν and Pr = ν/κ , where ν and κ

are the kinematic viscosity and thermal diffusivity, respectively. Under the Boussinesq
approximation (Turner & Turner 1979), the Navier–Stokes equations are

∂utot

∂t
+ (utot · ∇)utot = −∇ptot + 1

Re
∇2utot + 4

Re
(1 + β ′(t) + CT)ẑ, (2.3)

with continuity equation
∇ · utot = 0, (2.4)

and no-slip condition utot = 0 at the wall. Here, β ′(t) is the excess pressure fraction,
relative to isothermal laminar flow, required to maintain the fixed dimensionless mass
flux, 〈utot · ẑ〉 = 1/2. The dimensionless parameter

C = Gr
16 Re

(2.5)

measures the buoyancy force relative to the force that drives laminar isothermal shear
flow, where Gr = γ g(T|r=R − Tb)(2R)3/ν2 is the Grashof number, γ is the coefficient
of volume expansion, and g is gravitational acceleration. For further details, see Marensi
et al. (2021).

As the focus of this study is on the dynamics of perturbations from the laminar
solution, we decompose the variables, utot = u0 + u, ptot = p0 + p, 1 + β ′(t) = 1 + β0 +
β(t), T = Θ0 + Θ , atot(t) = a0 + a(t), where subscript 0 tags the laminar solution, u =
(ur, uφ, uz). The laminar velocity u0 = u0(r) ẑ satisfies

− ∇p0 + 1
Re

∇2u0 + 4
Re

(1 + β0 + CΘ0)ẑ = 0. (2.6)

Subtracting (2.6) from (2.3), we obtain

∂u
∂t

+ u0
∂u
∂z

+ ur
du0

dr
ẑ + (u · ∇)u = −∇p + 1

Re
∇2u + 4

Re
(CΘ + β(t))ẑ. (2.7)

Taking the spatial average of the z-components of (2.6) and (2.7) gives equations for β0
and β(t) that fix 〈uz〉 = 0:

β0 = −1
2

(
∂u0

∂r

∣∣∣∣
r=1

+ C
)

, β(t) = −1
2

∂(uz)00

∂r

∣∣∣∣
r=1

, (2.8)
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where (·)00 corresponds to averaging over φ and z. The laminar temperature profile Θ0(r)
satisfies

1
Re Pr

∇2Θ0 = u0 · ẑa0. (2.9)

Subtracting (2.9) from (2.2), we obtain

∂Θ

∂t
+ u0

∂Θ

∂z
+ ur

dΘ0

dr
+ (u · ∇)Θ = 1

Re Pr
∇2Θ − uza0 − (u0 + uz) a(t). (2.10)

Taking the spatial averages of (2.9) and (2.10) gives equations that determine a0 and the
value of a(t) required to fix 〈Θ〉 = 0:

a0 = 4
Re Pr

∂rΘ0|r=1 , a(t) = 4
Re Pr

∂r(Θ)00|r=1 . (2.11a,b)

2.2. Linear stability analysis
Arnoldi iteration is employed to calculate the leading eigenvalues and eigenfunctions of
the laminar solution using our simulation code. Considering a small perturbation u to the
laminar solution u0, so that the nonlinear terms of (2.7) may be ignored, the linearised
system may be written in the form

∂tu = A(u0) u. (2.12)

Integrating over a period T , eigenfunctions of (2.12) with growth rate σ satisfy the
exponentiated eigenvalue problem

u(T ) = u(0) +
∫ T

0
A(u0) u(t) dt = B(u0) u(0) = eσT u(0). (2.13)

The Arnoldi method requires only the result of the calculations of multiplying B with
given u, i.e. the result of time integration of u over the period T . Given a starting u,
the method seeks eigenvectors in the Krylov subspace K = span{u, Bu, B2u, . . .}, using
Gram–Schmidt orthogonalisation to improve the numerical suitability of this basis set.
Using f (u) to denote the result of time integration of a perturbation u from the laminar
state, we may make the approximation

B(u0) u ≈ 1
ε

{ f (0 + εu) − f (0)} = 1
ε

f (εu), (2.14)

for some small value ε. We take ε such that ε ‖u‖ = 10−6 ‖u0‖, i.e. the perturbation is
6 orders of magnitude smaller than the laminar state, and nonlinear terms are 12 orders
smaller. The choice of T does not affect evaluation of the real part of σ , which determines
stability, but a large T can cause aliasing of its complex part. The period T is therefore
chosen to be small, but not too small, as the number of Arnoldi iterations required is
usually inversely proportional to T , and many iterations would require storage of a large K.
With the aim of keeping the calculation to approximately 50 Arnoldi iterations, typically
T ≈ 10.
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2.3. Nonlinear non-modal stability analysis
When the linear system is stable, we must appeal to nonlinear dynamics to interpret
transition. The NLOP (Pringle & Kerswell 2010; Pringle et al. 2012) is the optimal
perturbation that achieves the largest energy growth, and when it is just large enough to
trigger transition, it is called the minimal seed.

The NLOP can be found by the Lagrange multiplier technique; for details, see Pringle
et al. (2012). To reduce complexity, we consider only the optimal velocity perturbation,
and set the initial temperature perturbation to zero. In this case, the Lagrangian is defined
by

L = 〈1
2 (u(x, T ))2〉 − λ0

(1
2 〈(u(x, 0))2〉 − E0

) −
∫ T

0
〈v · NS(u)〉 dt

−
∫ T

0
〈Π ∇ · u〉 dt −

∫ T

0
〈π Tem(Θ)〉 dt

−
∫ T

0
Γ 〈u · ẑ〉 dt −

∫ T

0
Q〈Θ〉 dt, (2.15)

where λ0, Π(x, t), π(x, t), Γ (t), Q(t) and v(x, t) = (vr, vφ, vz) are Lagrange multipliers.
The first term, the perturbation energy at final time t = T , is the objective function
to be maximised. The second term is the constraint of fixed amplitude for the initial
perturbation. Then the velocity perturbation u is constrained to satisfy the Navier–Stokes
equation NS(u) and the continuity equation from t = 0 to t = T , while the temperature
perturbation satisfies the temperature equation Tem(Θ) from t = 0 to t = T . The velocity
and temperature must also satisfy fixed mass flux and fixed heat flux, represented by the
last two terms. Taking variations of L with respect to each variable, and setting them
equal to zero, we obtain the following set of Euler–Lagrange equations. The adjoint
Navier–Stokes, temperature equation and continuity equations are

δL
δu

= ∂v

∂t
+ u0

∂v

∂z
− vzu′

0r̂ + ∇ × (v × u) − v × ∇ × u + ∇Π

+ 1
Re

∇2v − π Θ ′
0r̂ − π∇Θ − π(a(t) + a0)ẑ − Γ ẑ = 0, (2.16)

δL
δΘ

= ∂π

∂t
+ u0

∂π

∂z
+ 4

Re
vzC + u · ∇π + 1

Re Pr
∇2π − Q = 0, (2.17)

δL
δp

= ∇ · v = 0, (2.18)

where primes indicate the radial derivative. The compatibility conditions are given by
δL

δu(x, T )
= u(x, T ) − v(x, T ) = 0, (2.19)

δL
δΘ(x, T )

= −π(x, T ) = 0, (2.20)

and the optimality condition is
δL

δu(x, 0)
= −λ0 u(x, 0) + v(x, 0) = 0. (2.21)

Optimisation is performed iteratively from a starting velocity field u(x, 0)(0), where the
superscript indicates the iteration. Given a field u(x, 0)( j), the Navier–Stokes equations
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are integrated to time T . The compatibility conditions (2.19) and (2.20) provide end
conditions for the backwards integration of (2.16) and (2.17) to time 0. Like p and β, the
Lagrange multipliers Π and Γ are used to ensure that ν(x, t) is also divergence-free and
has zero flux. Here, Q is used to fix 〈π〉 = 0. Finally, once ν(x, 0) has been calculated, the
optimality condition (2.21) may be evaluated. As the optimality condition is not satisfied
automatically, u(x, 0) is moved in the direction of δL/δu(x, 0) towards achieving a
maximum for L, where δL/δu(x, 0) should vanish. The update to u(x, 0)( j) each iteration
is

u(x, 0)( j+1) = u(x, 0)( j) + ε0
δL

δu(x, 0)( j) , (2.22)

where ε0 is a small value, controlled using a procedure described in Pringle et al. (2012),
and λ0 is adjusted to set 〈[u(x, 0)( j+1)]2〉 = 2 E0.

2.4. Time integration code
The calculations are carried out by the open-source code openpipeflow.org (Willis 2017).
Variables are discretised on the domain {r, φ, z} = [0, 1] × [0, 2π] × [0, 2π/k0], where
k0 = 2π/L, using Fourier decomposition in the azimuthal and streamwise directions and
finite difference in the radial direction,

{u, p, Θ} (rs, φ, z) =
∑

k<|K|

∑
m<|M|

{u, p, Θ}skm exp(i(k0kz + mφ)), (2.23)

where s = 1, . . . , S, and the radial points are clustered near the wall. Temporal
discretisation is via a second-order predictor–corrector scheme, with an Euler predictor
and a Crank–Nicolson corrector applied to the nonlinear terms. The laminar solution is
quickly calculated by eliminating azimuthal and axial variations using a resolution S = 64,
M = 1, K = 1. For nonlinear calculations, as the adjoint optimisation requires forward
and backward time integrations for each iteration, it is computationally expensive. To
keep calculations manageable, a Reynolds number Re = 3000 is adopted for the nonlinear
non-modal stability analysis with a domain of length L = 5D. We use S = 64, M = 48,
K = 42, and a time step �t = 0.01.

3. Results

3.1. Flow regimes
Figure 1 shows how the laminar velocity and temperature profile changes with C. It
is observed that the velocity profile becomes flattened, then is well known to become
‘M-shaped’ at larger values of C. The temperature profile also changes, but not so strongly.
The boundary temperature gradient of the laminar state is shown in figure 2(a). The
laminar temperature gradient increases slightly with C, and decreases substantially with
Re, as the higher flow rate carries heat out of the system more rapidly. The Nusselt number
is defined as

Nu = 2R qw

λ(T|r=R − Tb)
, (3.1)

where λ is the thermal conductivity of the fluid, and qw is net wall heat flux. The laminar
Nusselt number increases with a larger value of C (see figure 2b), but it is independent of
the Reynolds number (Su & Chung 2000).
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Figure 1. (a) The laminar velocity profile. (b) The laminar temperature profile. Laminar profiles are
independent of Reynolds number.
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Figure 2. (a) Temperature gradient of laminar flow a0 as a function of C for several Re. (b) Nusselt number

as a function of C.

As discussed in the Introduction, there are three typical flow states: laminar flow, shear
turbulence and convective turbulence (convection-driven turbulence). We have performed
a suite of simulations at different Reynolds numbers Re and buoyancy parameters C, and
the observed flow regime is shown in figure 3(a). The diagram is consistent with figure 7 of
Marensi et al. (2021). Close to the boundary, where the laminar or convective turbulence
regimes meet shear turbulence, the flow can be found in either state. Nevertheless, the
three typical flow regimes can be identified clearly. In the isothermal case (C = 0), shear
turbulence appears for Re � 2000 (Avila et al. 2011; Avila, Barkley & Hof 2023), but
increasing the effect of buoyancy, at lower Reynolds numbers, the flow first laminarises
then transitions to convective turbulence. At a higher Reynolds number, the laminarisation
regime becomes narrower and finally disappears. Convective turbulence first appears
for C � 4 at lower Reynolds number, as reported by Scheele et al. (1960), Scheele &
Hanratty (1962) and Yao (1987). But at high Reynolds number, the shear-driven state
persists to larger C and crosses the critical C observed at low Reynolds number, setting
up a direct transition from the shear-driven turbulence to convective turbulence as C
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Figure 3. (a) Regions of laminar flow (L), shear turbulence (S) and convective turbulence (C); SL and SC
indicate that the flow may be in either of the two states. (b) Change in heat flux, normalised by that for
the isothermal state (C → 0), as a function of Bo = 8 × 104 (8 Nu Gr)/(Re3.425 Pr0.8). Present data from
simulations at Re = 5300, Pr = 0.7 and various Gr = 16 Re C. The upper and lower branches correspond to
shear turbulence and convective turbulence, respectively.

is increased. The flow states at Re larger than 5300 have not been computed in the
present work, but this direct transition is known to occur at much larger Re, and a
collapse in experimental data is observed when presented in terms of the buoyancy number
Bo = 8 × 104 (8 Nu Gr)/(Re3.425 Pr0.8), where Gr = 16 Re C, as seen in figure 3(b).

Numerical results are validated quantitatively by comparison with experiments in
figure 3(b), which also includes the numerical results of Marensi et al. (2021). The strong
heat flux for smaller values of buoyancy number Bo is brought about by shear turbulence,
but deteriorates as Bo is increased when buoyancy suppresses the shear turbulence.
When Bo exceeds a certain value, the flow switches from shear turbulence to convective
turbulence, accompanied by a sudden drop in heat transfer. However, the heat transfer
eventually recovers with further increase of Bo. The captured heat transfer features are
consistent with the results reported by Bae et al. (2005) and Yoo (2013). In the present
model, the velocity field is allowed to affect the heat flux at the wall; the model and
code are a minor update to that of Marensi et al. (2021), which assumed a constant
boundary temperature with a spatially uniform heat sink term. The uniform sink has the
advantage that there is a simple analytic expression for the laminar base flow, but the axial
temperature gradient that leads to the spatially dependent heat sink term is expected to be
closer to the real system. Compared with Marensi et al. (2021), it is found that the present
model provides a small improvement in agreement with experimental data in the shear
turbulence regime, while in the convective turbulence regime, the two models give similar
results.

Starting from isothermal flow (C = 0) at Re = 3000, figure 4 shows the effect of
switching on the buoyancy for C = 1, 3, 5. When the buoyancy is weak, at C = 1, in
figure 4(a), we find that all three components maintain a high amplitude, and the flow
is essentially unchanged from the isothermal case. For C = 3, the velocity perturbation
energy decays quickly, indicating the occurrence of laminarisation. At C = 5, initially
a similar energy drop is also observed, but it stops at a much lower energy level, and
fluctuates with a low frequency, which is typical of the convective turbulence state.
Heat transfer for the laminar and convective turbulence state is severely reduced, seen
in figure 4(b), where the Nusselt number drops to approximately half of that for shear
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Figure 4. Simulation at Re = 3000 starting from the same initial condition at C = 1, 3, 5. (a) Velocity
perturbation energy. The solid, dashed and dotted lines represent the energy of three components of velocity,
denoted as E(ur), E(uφ) and E(uz), respectively. (b) Nusselt number.
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Figure 5. The isosurface of streamwise vorticity at (a) shear turbulence (C = 1) and (b) convective
turbulence (C = 5) at Re = 3000; red/yellow are 30 % of the min/max streamwise vorticity.

turbulence. The convective turbulence state at these parameters has a Nusselt number that
is not much greater than for the laminar state.

Isosurfaces of the streamwise vorticity are plotted in figure 5 for shear turbulence
(C = 1) and convective turbulence (C = 5). Shear turbulence has complicated streamwise
vortices that fill the whole pipe, while the convective turbulence exhibits more organised
vortex structures that are concentrated mainly around the middle of the pipe. The location
of the structures can be seen more clearly in the cross-sections of figure 6. In shear
turbulence, there are abundant near-wall streamwise vortices, which lift up low-speed
streaks, and enhance the mixing of fluid in the pipe. In convective turbulence, the
perturbations are found around the centre of the pipe, and the near-wall flow is almost
steady. There are almost no near-wall rolls and streaks observed. Further visualisations
of flow at larger C show similar characteristics. The self-sustaining process of shear
turbulence, reliant on near-wall vortices for the creation of streaks, has been destroyed
in convective turbulence. The lack of streamwise vortices significantly weakens the
interaction between fluid near the wall and centre, and heat transfer is therefore seriously
damaged.
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Figure 6. Cross-sections of (a) shear turbulence (C = 1) and (b) convective turbulence (C = 5) at Re = 3000.
The contours are coloured by streamwise total velocity, and the arrows represent cross-stream components. The
largest arrow has magnitude 5.6 × 10−3 in (a), and 1.93 × 10−4 in (b).

3.2. Linear stability results
This subsection examines the change of linear stability of the laminar solution at different
C values, revealing how the buoyancy affects the dynamics near the laminar solution.
Time stepping is combined with Arnoldi iteration to calculate the leading eigenvalues
and eigenfunctions for small perturbations about the laminar state. A resolution S = 64,
M = 10, K = 10 is used. A finer radial resolution does not produce a noticeable difference
in the results, and the low K and M are sufficient to pick the most unstable axial and
azimuthal modes for the given domain (L = 5D). It is found that the most unstable mode
is always of azimuthal wavenumber m = 1 and is usually of wavenumber k = 1 or 2. These
observations are consistent with results of Scheele et al. (1960), Su & Chung (2000) and
Marensi et al. (2021). The real part of the eigenvalue of the unstable modes is shown
in figure 7. The instability first appears near C = 4, consistent with the appearance of
convective turbulence, verifying that convective turbulence is caused by linear instability
(Yao 1987; Rogers & Yao 1993; Marensi et al. 2021). Two branches of unstable mode
lead to the instability of the flow, apart from at the lowest Re. For both k = 1 and k = 2
cases, the first branch enters just before C = 4 but stabilises by C ≈ 6. A second branch
then takes over for C � 6. Comparing eigenvalues between the k = 1 and k = 2 cases,
the first branch with k = 1 leads at lower C, and the second branch with k = 2 leads at
larger C. Interestingly, the flow is not always linearly unstable for C > 4, as there is a
window of stability for C ≈ 6 for a range Re ≈ 2000–4000. This was also reported for
the model of Marensi et al. (2021). In particular, at Re = 3000, the flow is linearly stable
for C = 6 – we will take advantage of this for the nonlinear stability analysis of § 3.3.
Eigenfunctions of the two branches of unstable modes with wavenumber k = 2, m = 1 are
shown in figure 8 with isosurfaces of streamwise velocity and streamwise vorticity. The
eigenfunctions are consistent with the results of Khandelwal & Bera (2015) and Marensi
et al. (2021). The perturbation is active mainly in the centre of the pipe, in good agreement
with the observations of Su & Chung (2000) and Marensi et al. (2021).

Linear stability analysis results have confirmed that convective turbulence is triggered
by linear instability, thus it appears mainly at C > 4, as shown by the magenta
shadowed region in figure 3(a). However, at a high Reynolds number, the critical C
for transition is pushed back to larger C. This indicates competition between shear
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Figure 7. Growth rate of perturbations of different streamwise wavenumbers, (a) m = 1, k = 1, and (b)
m = 1, k = 2, versus buoyancy parameter C at several Reynolds numbers.
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C = 4; (c,d) second branch at C = 10, for (a,c) streamwise velocity perturbations, (b,d) streamwise vorticity.
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turbulence and convective turbulence. For the limit of the shear turbulence region shown
in figure 3(a), various possible explanations have been proposed. He et al. (2016) linked
the buoyancy-modified flow to a partner isothermal flow at a different (lower) ‘apparent
Reynolds number’, based on an apparent friction velocity associated with only the
pressure force of the flow (i.e. excluding the contribution of the body force). They
found that the buoyancy can reduce the apparent Reynolds number, thereby suppressing
turbulence. Kühnen et al. (2018) suggested that it is the flattened base velocity profile (see
figure 1) that reduces the transient growth of streaky perturbations, and thereby causes
the laminarisation. Marensi et al. (2019) did a nonlinear non-normal stability analysis of
the flattened base velocity profile, suggesting that the nonlinear stability of the flattened
velocity profile is enhanced, i.e. a larger amplitude perturbation is required to trigger
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turbulence. Lellep et al. (2022) used a machine learning method and linked the collapse
of turbulence to the suppression of streak instability. We hold a view similar to that of
Lellep et al. (2022) – through linear and nonlinear optimisation (Chu, Willis & Marensi’
unpublished observations), we have found that a body force that flattens the base velocity
profile always produces streaks with a more stable shape. Further numerical experiments
have been carried out, imposing a body force that flattens the base velocity profile at
particular times during the relative periodic orbit, i.e. only during the time interval of the
formation of streaks, or the interval for the regeneration of rolls. Only when targeting the
formation of streaks was the self-sustaining process disrupted, supporting that the flattened
profile suppresses turbulence by the stabilisation of streaks. With the increase of Reynolds
number, the streaks formed by the flattened base velocity profile will recover the instability
to sustain turbulence. Therefore, the laminarisation regime gradually disappears at a higher
Reynolds number; see the green shadowed region in figure 3(a).

3.3. Nonlinear non-modal stability analysis
Isothermal pipe flow is linearly stable, and nonlinear dynamics must be considered when
examining transition. As C is increased, we have just seen that linear instability arises, but
also that there is a range of linear stability even in the convective regime. In this subsection,
we consider a perturbation of given finite amplitude A0 that grows most over a time T . This
perturbation is the NLOP. When A0 is just large enough to trigger turbulence, the NLOP
is known as the ‘minimal seed’. We seek to see how the NLOP is affected by buoyancy,
and focus on Re = 3000 for C in the range 0–6. Nonlinear flows at C = 0, 1, 2 are in
the shear turbulence regime, while flow at C = 3 returns to the laminar regime. Flows at
C = 4, 5, 6 are in the convective turbulence regime. Note, however, that only the laminar
flows at C = 4 and 5 are linearly unstable, while at C = 6 the flow is linearly stable yet
well within the convective regime.

To calculate the largest growing perturbation to the laminar state, we use the method
of § 2.3. Following Pringle et al. (2012), T needs to be sufficiently large to produce a
rapid jump in the objective function with respect to a relatively small increase in E0. We
first consider a target time T = 300, which is approximately twice the time at which peak
linear growth can be observed at this Reynolds number. This T is found to be sufficient
to isolate effects of buoyancy on the NLOP. Typical residuals δL/δu(x, 0) and energy
growth G = 〈u(T )2〉/〈u(0)2〉 during the optimisation are shown in figure 9(a). A clear
drop of residual leads to final optimal energy growth, which means that the calculation is
well converged, and starting each calculation from different random initial velocity fields
produces the same final optimal. Usually, the calculation is stopped when the change in G
is smaller than 10 × 10−5.

We first present the results at C = 0–5, where similar NLOPs are found, then a new
NLOP at C = 6 is presented separately. The optimal energy growth as a function of E0 for
several C is plotted in figure 9(b). For each C at small E0, the growth G is constant, which
implies that the linear optimal has been found. As E0 is increased, the NLOP takes over and
G increases. At slightly larger E0 still, a clear jump in the energy growth is observed when
shear turbulence is triggered. Note, however, that at C = 5, the NLOP is not observed to
take over for the given T = 300.

Figure 10 shows the time series of the energy growth of an NLOP (solid line) and
minimal seed (dashed line) for C = 0–5. The minimal seed triggers turbulence, while the
perturbation eventually decays when it starts from the NLOP at a slightly lower E0. (The
true value of E0 for the minimal seed could be further refined, but without a noticeable
change in the velocity field. We will call the perturbation at the upper E0 the minimal
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Figure 9. (a) The residual δL/δu(x, 0) (left-hand axis) and energy growth G = 〈u(T )2〉/〈u(0)2〉 (right-hand
axis) versus iterations in the case at C = 1, E0 = 2.7 × 10−5, Re = 3000. (b) The optimal energy growth G
changes with E0 for C = 0–5, T = 300, Re = 3000.
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Figure 10. The energy growth of the NLOP versus time at (a) C = 0–2 and (b) C = 3–5. In (b) for C = 5, the
dashed line is for an NLOP of the same type as for C < 5, while for the solid line, the NLOP is close to the
linear eigenfunction.

seed.) At a larger C, the maximum energy growth is smaller and the peak occurs at an
earlier time. The reduced maximum energy is caused by the more flattened base velocity
profile, which suppresses the nonlinear instability (Marensi et al. 2019). The maximum
occurring at an earlier time is attributed to the smaller length scale of the streamwise
vortices structure in the minimal seed, shown in figure 11(d).

At C = 5, the algorithm converges to either the solid green line or the dashed green line
in figure 10(b), depending on the initial guess, although the solid green case appears more
frequently. Note that the two optimals have similar energy at the target time T , leading
to the possibility of local optimals of the Lagrangian. (Local optimals with similar L
have also been observed by Motoki et al. (2018) for maximal heat transfer in steady plane
Couette flow.) The solid green line includes a period of exponential growth, indicating that
the perturbation approaches the unstable eigenfunction of the unstable laminar state. The
initial state for the dashed line is of the same type as the NLOP calculated for C < 5.

The structures of the minimal seeds at C = 0, 2 are shown in figure 11. They are
essentially similar, localised in both the azimuthal and streamwise directions, consistent
with the isothermal NLOP (Pringle & Kerswell 2010; Pringle et al. 2012). But compared
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Figure 11. Isosurfaces of streamwise velocity perturbation and cross-sections at z = 5 for the NLOP: (a,c)
C = 0, E0 = 1.9 × 10−5, and (b,d) C = 2, E0 = 3.36 × 10−5, at Re = 3000. Red/yellow isosurfaces are for
30 % of the min/max streamwise velocity. Arrows show the cross-stream components; the largest arrow has
magnitude 1.55 × 10−4 in (c), and 2.39 × 10−4 in (d).

with isothermal pipe flow C = 0, the minimal seed at C = 2 is more localised and
‘thinner’, being located closer to the wall; see figures 11(c,d). A thinner minimal seed
was also reported by Marensi et al. (2019) for a (prescribed) flattened base velocity profile.
Here, the flattened profile is due to the buoyancy. The effective radial interval for the lift-up
mechanism is narrower, and consequently the optimal rolls gradually become thinner.
Structures of the NLOP at C = 3, 4 (not shown) are similar to figure 11(d) but thinner
still. The optimal perturbation at C = 5, which is close to the unstable eigenfunction, is
shown in figure 12(b), accompanied by the same branch of optimal perturbation at C = 4
in figure 12(a), found by using a longer target time T = 400 (to enable slower linear
growth to compete with the NLOP). This type of optimal perturbation is almost unchanged
at small E0, suggesting linearity. Its structures are initially also close to the wall, but after
an initial transient growth, they are rolled up near the centre of the pipe, approaching the
unstable eigenfunctions. The exponential growth rate is in good agreement with the linear
stability analysis.

For the interesting case at C = 6, an NLOP with structure similar to that found at C < 5
was not found for similar E0 and T . By reducing the initial energy and extending the target
time substantially (E0 ∼ O(10−7), T = 1000), we finally located a new type of NLOP.
(Note that the energy of the convective state itself is also much reduced compared to shear
turbulence, seen in figure 4(a).) Energy growth as a function of time is shown in figure 13.
Optimals at all energies experience a period of energy growth at the beginning. Then for a
small initial energy E0 = 1 × 10−8, it decays exponentially. At larger initial energy, below
the critical energy, the energy grows a little but finally still decays, albeit slowly. For this
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Figure 12. Isosurfaces of the streamwise velocity of the NLOP at (a) C = 4 and (b) C = 5, at Re = 3000,
T = 400. Red/yellow are 30 % of the min/max value.
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Figure 13. Optimal energy growth for C = 6, Re = 3000, T = 1000.

reason, the long optimisation time T = 1000 was required. At a slightly larger E0 still, the
critical energy jump is observed; see figure 13(b).

Isosurfaces of the optimal at different E0 for C = 6 are shown in figure 14. Unlike
the NLOP at C = 0–4, its structure is observed to change as E0 is increased. The linear
optimal is shown in figure 14(a), which is distributed regularly in the streamwise direction.
It is very different from the linear optimal of the isothermal case, which consists of
streamwise rolls, and is different from the convective eigenfunctions of figure 8. For larger
E0, the NLOP shown in figure 14(b) has a more spiral structure. As the initial energy
increases further in figures 14(c,d), it localises in the streamwise direction. The last of
these, figure 14(d), is the minimal seed that eventually triggers turbulence. Its cross-section
in figure 15 shows two pairs of very weak streamwise vortices in the centre of the pipe,
with very small magnitude compared to the streamwise perturbation. The dynamics of this
optimal is investigated in the next subsection.

3.4. Transition to convective turbulence
Transition to shear turbulence via the NLOP has been widely researched for isothermal
flow (Pringle & Kerswell 2010; Pringle et al. 2012; Marensi et al. 2019), therefore we focus
on the transition to convective turbulence (C � 4) here. In figure 16(a), transition at C = 4
and Re = 3000 is compared for several initial conditions – shear turbulence, the minimal
seed, and unstable eigenfunctions. Here, E3d is the energy of the streamwise-dependent
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Figure 14. Isosurfaces of streamwise perturbation at C = 6. Linear optimal (a) E0 = 1 × 10−8, and NLOPs
at (b) E0 = 1 × 10−7, (c) E0 = 3 × 10−7, (d) E0 = 4 × 10−7. Red/yellow are 30 % of the min/max.
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Figure 15. Cross-section of NLOP at C = 6, E0 = 4 × 10−7. Contours for streamwise perturbations, while
the arrows represent the small cross-stream components; the largest arrow has magnitude 4.44 × 10−7.

component of the flow (modes k /= 0 in the Fourier expansion (2.23)). For the minimal
seed, E3d increases substantially at first, reaching the shear turbulence state. It then
decays to the convective turbulence state. This implies that shear turbulence can still be
triggered in the buoyancy regime, but it is not sustained. Starting with a shear turbulence
state taken from an isothermal simulation, there is an immediate decay at first, then
E3d grows exponentially towards convective turbulence. Interestingly, starting from the
unstable eigenfunctions, the dynamics approaches a travelling wave solution (mode 2) or
relative periodic solutions (modes 1 and 3). These states can be approached for a long
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Figure 16. Plots of E3d (energy of the streamwise-dependent component of the flow) for different initial
conditions at (a) C = 4 and (b) C = 5, at Re = 3000. There are three unstable modes at C = 4: mode 1 (m = 1,
k = 2), mode 2 (m = 1, k = 1) and mode 3 (m = 1, k = 3). There is only one unstable mode at C = 5 (m = 1,
k = 1).

time, suggesting that the travelling wave and relative periodic orbit solutions are only
weakly unstable. An equilibrium state and periodic motion have also been reported in
early research (Kemeny & Somers 1962; Scheele & Hanratty 1962; Yao 1987), but at low
Reynolds number (Re < 2000).

At C = 5 (figure 16b), the unstable eigenfunction does not lead to a travelling wave
or periodic solution, and instead transitions to convective turbulence directly. This may be
due to the enhanced instability of these equilibrium solutions at larger C. The minimal seed
at C = 5 also triggers the convective turbulence directly, or at least, there is no period of
decay after the initial growth, which would indicate a distinct switch from shear turbulence
to convective turbulence. Meanwhile, starting from shear turbulence, there is a clear initial
decay, followed by exponential growth at a rate that matches the value starting from the
eigenfunction.

The transition process at C = 6, where the laminar state is linearly stable, is quite
different, shown in figure 17. Compared with transition via the NLOP in the isothermal
case (Pringle et al. 2012), the transition process is much slower: the earliest time turbulence
is seen at approximately t = 1000 in figure 17, hence the large target time T = 1000
required. The edge state (Duguet, Willis & Kerswell 2008), here to the convective
turbulence state, appears to be less unstable than that for the shear turbulence state,
as intermediate energies before transition can be achieved for long times with little
refinement of the initial energy. Some typical coherent structures that appear in the process
of transition are presented in figure 18, starting from slightly different initial energies,
E0 = 4 × 10−7 (left-hand plots) and E0 = 4.2 × 10−7 (right-hand plots). Initially, the
contours of minimal seed are tightly layered and forward-facing, but because the base
profile is M-shaped, the structures are inclined into the shear; see figure 14(d). (For the
isothermal minimal seed, similar layers are inclined into the shear, but without the region
of reversed flow, they are backward-facing and located closer to the wall (Pringle et al.
2012).) Therefore, between t = 0 and t = T1, there is a great energy growth in a short
time through the Orr mechanism (Orr 1907; Pringle et al. 2012). The flow then evolves
to a simpler organised state at t = T2 (figure 18b), and the flows still look similar. At
t = T3 (figure 18, right-hand plot), the structure is more elongated, and looks similar to the
travelling wave solution of figure 19(a). For slightly lower initial energy, the state gradually
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Figure 17. Time series of energy starting from the NLOP obtained at several E0 values, at C = 6, Re = 3000.
The cases E0 = 4 × 10−7, 4.6 × 10−7, 5 × 10−7 were also shown in figure 13(a) up to t = T = 1000.

decays exponentially to T4 (figure 18d, left-hand plot) with a very small decay rate. For the
slightly larger initial energy, it evolves into the convective state at T4 (figure 18d, right-hand
plot). A relatively rapid increase of energy is observed at approximately T4 for this case
(E0 = 4.2 × 10−7), and a similar final growth stage is observed for the NLOPs of larger
initial energies, at earlier times, seen in figure 17. Overall, the transition process of the
minimal seed is complex and long compared to that of the minimal seed for transition to
shear turbulence.

3.5. Travelling wave and periodic orbit solutions
In recent years, a series of invariant solutions of the Navier–Stokes equations has been
found for pipe flow (Hof et al. 2004; Wedin & Kerswell 2004; Eckhardt et al. 2007) and
other shear flows (Nagata 1990; Toh & Itano 2003; Reetz, Kreilos & Schneider 2019).
These invariant solutions have significantly enriched our understanding of the transition
and maintenance of turbulence. A subset of these invariant solutions is found in the
edge between the laminar and turbulent attractors, and sheds some light on the transition
to turbulence (Duguet et al. 2008; Avila et al. 2023). Within turbulence, a well-known
periodic solution for plane Couette flow (Kawahara & Kida 2001) successfully reproduces
the self-sustaining process of shear turbulence (Hamilton, Kim & Waleffe 1995). Although
these solutions are unstable, the dimensions of their unstable manifolds in phase space are
typically low (Kawahara 2005; Kerswell & Tutty 2007). A generic turbulent state may
approach them and spend a substantial fraction of its lifetime in their neighbourhood
(Kawahara, Uhlmann & Van Veen 2012).

In figure 16, the dynamics approached a travelling wave solution and periodic solutions.
Using states from the trajectories seen in figure 16(a) at later times as initial guesses, the
Jacobian-free Newton–Krylov method (Willis 2019) converged very quickly to a travelling
wave solution and periodic solutions. The travelling wave solution is plotted in figure 19,
which has wave speed c = 0.6783. Streamwise vorticity is localised in the streamwise
direction, located at the bends of the high-speed streak. An initial state was also taken from
t = 1500 for E0 = 4.2 × 10−7 of figure 17, and rapidly converged to a periodic orbit with
weak variation and period 68.4. Linear instability analysis of this periodic orbit solution
shows that it has only one real eigenvalue, with small real part Re(σ ) = 8.06 × 10−4,
so that excessive refinement of the initial energy is not required to stay close to it for
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Figure 18. Isosurfaces of streamwise velocity starting from NLOPs for E0 = 4 × 10−7 in the left-hand plots,
and E0 = 4.2 × 10−7 in the right-hand plots, at times (a) t = T1, (b) t = T2, (c) t = T3, (d) t = T4, for C = 6,
Re = 3000. Times are marked in figure 17. Red/yellow are 30 % of the min/max value.
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Figure 20. (a) Time evolution of the periodic solution PO1 at C = 4, Re = 3000, where Eroll = E(ur) +
E(uφ), Ewave = E(uz)k /= 0 and Estreak = E(uz)k=0. (b) The turbulent mean velocity profile at several
times.

significant time before diverging to the convective turbulence or the laminar state (stable
at C = 6). As this periodic orbit has only one unstable direction, it is an attractor within
the boundary between the laminar and convective states, i.e. it is an ‘edge state’ (Duguet
et al. 2008).

The periodic solutions approached from the first and third unstable eigenfunctions at
C = 4, denoted PO1 and PO2, respectively, have long periods, T1 = 724.4 and T2 =
623.72. They are similar, only with a different dominant axial wavenumber (k = 2 for PO1,
and k = 3 for PO2). We here pay attention to the periodic solution triggered by the first
unstable mode. Time series of energies over approximately two periods of PO1 are shown
in figure 20(a): the energy of the rolls, Eroll = E(ur) + E(uφ), streaks, Estreak = E(uz)k=0,
and waves, Ewaves = E(uz)k /= 0, where the subscripts k = 0 and k /= 0 indicate streamwise
independent and dependent components extracted via the Fourier decomposition. As a
single streak forms at the centre of the pipe, we have not split azimuthal dependence
through m. For the well-known periodic process studied in channel flow by Hamilton et al.
(1995), the peak of the roll energy closely corresponds to the valley of the streak energy,
but for PO1, these energies are more offset. Contours of streamwise perturbation velocity
uz at t = 500, 700, 900, 1100 are plotted in figure 21, which shows how the structure
changes over one period. At t = 500, the streak energy is at its lowest, and the velocity
field resembles the unstable eigenfunction, only with a weak break of shift and reflection
symmetry. Then by t = 700, the unstable eigenfunction has grown until regions of positive
velocity have merged, forming a high-speed streak in the centre of the pipe. At this stage,
the wavy high-speed streak in the centre of the pipe is similar to that of the travelling
wave of figure 19. In the presence of the streak, the roll perturbations decay at t = 900,
then return once the streak has weakened at t = 1100. Therefore, three typical stages
are observed in the periodic solution, i.e. growth of the eigenfunction, formation of the
streak, and decay of the streak. These processes can be understood from the changes in
the mean velocity profile, seen in figure 20(b). At first, when the perturbation is weak,
the velocity profile is close to the laminar solution (t = 500). Linear instability takes
charge of the dynamics, and the unstable eigenfunction grows at this stage. Then, when
the perturbation excites a sufficiently strong streak near the axis, the velocity profile is
flattened (t = 700, 900) and the linear instability is suppressed, causing the perturbation
to decay. Once the perturbation decays to a certain level, the velocity profile becomes
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Figure 21. Contours of periodic solution PO1 at (a) t = 500, (b) t = 700, (c) t = 900, (d) t = 1100, coloured
by streamwise velocity disturbance.
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Figure 22. Contours of transient convective turbulence at (a) t = 2500, (b) t = 2750, (c) t = 3000, (d) t =
3250, picked from figure 16 when the turbulence is triggered by shear turbulence at C = 4. The contours are
coloured by streamwise velocity disturbance.

unstable again (t = 1100) and the process repeats. (The full periodic process is shown in
the supplementary movie available at https://doi.org/10.1017/jfm.2024.589.)

In the chaotic convective state at C = 4, phenomena similar to those of the periodic
orbits occur, but the laminar flow is unstable to multiple modes. Contours of convective
turbulence show that the flow still exhibits the three typical processes, i.e. the growth of
unstable modes (figure 22a), the formation of the high-speed streak (figure 22b), and the
decay of the streak and reappearance of the unstable modes (figures 22c,d). The scales
of the observed modes are in good agreement with the first unstable mode and the third
unstable mode (k = 2 and k = 3), which is consistent with the flow wandering between
the two periodic solutions. The scale of the travelling wave (k = 1) is hardly observed.

At larger C, the periodic solutions become more unstable and the flow is more chaotic.
However, the typical process can still be observed, as in figure 23, which shows two
transient flow states taken from the flow at C = 5. Figure 23(b) shows the typical growth
of an unstable mode upon a mean velocity profile of figure 23(a). It is observed that
the profile is close to the laminar profile, but does not go so close as the case at C = 4
of figure 20(b), as the laminar solution is also more unstable. Figure 23(c) shows the
high-speed streak formed by growth of the unstable mode, whose profile is almost flattened
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Figure 23. (a) The turbulent mean profiles of the flow at (b,c). Contours of transient convective turbulence
at (b) t = 1150, (c) t = 1350, picked from figure 16 when the turbulence is triggered by shear turbulence at
C = 5. The contours are coloured by streamwise velocity disturbance.

and loses linear instability. These typical flow states can often be observed at C = 5,
and can even be observed at C = 10, although less clearly. Therefore, it appears that the
convective turbulence is self-sustained by these typical stages, i.e. the growth of unstable
modes, the formation of streaks and the decay of streaks.

4. Conclusion

In this study, a new direct numerical simulations model that includes time-dependent
heat flux and background temperature gradient is established. The results show good
consistency with the experiment, and a little improvement over the model of Marensi
et al. (2021), which also had time-dependent heat flux, but a spatially uniform heat
sink term. Simulations at different values of the buoyancy parameter C confirm three
typical flow states, i.e. shear turbulence, laminarisation and convective turbulence. The
distribution of these states in the parameter space is consistent with the calculations of
Marensi et al. (2021). Detailed examination of the convective turbulence found that it
lacks near-wall rolls, which enhance the mixing of fluid near the wall and centre, therefore
the heat transfer is seriously reduced. The linear stability analysis further verifies that
the convective turbulence is driven by linear instability (Yao 1987; Su & Chung 2000;
Khandelwal & Bera 2015; Marensi et al. 2021). The structures of unstable eigenfunctions
are found to be concentrated mainly on the centre of the pipe, which explains the similar
flow characteristics observed in the transient convective turbulence.

Nonlinear non-modal stability analysis is extended to the heated pipe case to determine
the effects of buoyancy on the smallest perturbation that triggers transition, the ‘minimal
seed’. As C is increased from 0, it is found that the structure of the minimal seed becomes
thinner, rolls move nearer to the wall, and the critical energy for transition increases.
Maximum energy growth occurs earlier and is greatly reduced. Importantly, this suggests
that strategies for exciting shear turbulence to encourage greater heat flux do not carry
over straightforwardly from the isothermal to the heated pipe case. The branch of the
NLOP that triggers turbulence in isothermal flow could not be tracked beyond C = 5, due
to the combined reduction in growth and enhancement of linear instability. Instead, a new
type of NLOP arises for a longer target time and a small initial energy. The new NLOP
changes structure as the initial energy is increased, localising in the streamwise direction.
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It is concentrated towards the centre of the pipe, triggering convective turbulence directly,
but over a long period.

The transitions towards convective turbulence at C = 4, 5, 6 triggered by the NLOP
were compared with transition via the unstable eigenfunctions. At C = 4, it is found
that starting from the unstable eigenfunctions leads to a travelling wave solution or
periodic solutions, while the minimal seed first triggers shear turbulence, then the shear
turbulence decays to convective turbulence. At C = 5, both unstable eigenfunctions and
the minimal seed trigger convective turbulence directly. At C = 6, the transition starting
from the new NLOP is much slower. The edge state to the convective turbulence appears
to be less unstable than that of shear turbulence, and intermediate energies before
transition can be achieved for a long time with little refinement of the initial energy.
The approached travelling wave solution and periodic solutions were calculated using
the Jacobian-free Newton–Krylov method, and their stability calculated using Arnoldi
iteration. The periodic orbit solution at C = 6 has only one unstable direction, as expected
for an edge state.

The periodic solution is found to distil three typical processes, i.e. the growth of an
unstable eigenfunction, the formation of streaks and the decay of the streaks. Analysis of
the mean velocity profile showed that the periodic process is caused by the appearance
and suppression of linear instability of the mean velocity profile. This is fundamentally
different from the self-sustaining process of isothermal shear flow, which occurs in the
absence of linear instability of the mean flow. Chaotic convective turbulence at C = 4 is
still dominated by the three typical processes, but consists of the scales of two periodic
solutions, consistent with the dynamics wandering between the two solutions in phase
space. A similar phenomenon is still often observed at C = 5, and can be recognised even
up to C = 10.

We caution that of our work has focused on the case Re = 3000. However, the form
of the minimal seed is known to be robust in the isothermal case with respect to large
changes in Re and flattening of the base profile (Marensi et al. 2019). Due to the collapse
with respect to the buoyancy parameter Bo for the transition seen in figure 3(b), we expect
similar behaviour to be exhibited at larger Re, in particular, for values of C around where
transition from shear turbulence to the convective state is observed.

Supplementary movie. A supplementary movie is available at https://doi.org/10.1017/jfm.2024.589.
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