
J. Fluid Mech. (2024), vol. 999, A14, doi:10.1017/jfm.2024.895

Nonlinear waves in a sheared liquid film
on a horizontal plane at small Reynolds numbers

Kai-Xin Hu1,2,†, Kang Du1,2 and Qi-Sheng Chen3,4

1Zhejiang Provincial Engineering Research Center for the Safety of Pressure Vessel and Pipeline,
Ningbo University, Ningbo, Zhejiang 315211, PR China
2Key Laboratory of Impact and Safety Engineering (Ningbo University), Ministry of Education, Ningbo,
Zhejiang 315211, PR China
3School of Engineering Science, University of Chinese Academy of Sciences, Beijing 100190, PR China
4Key Laboratory of Microgravity, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190,
PR China

(Received 24 February 2024; revised 6 August 2024; accepted 5 September 2024)

The nonlinear waves in a sheared liquid film on a horizontal plate at small Reynolds
numbers are examined by theoretical and numerical approaches. The analysis employs
the long-wave approximation along with finite difference schemes. The results show that
the surface tension can suppress disturbances and prevent the occurrence of singularities.
While the film flow is driven by the shear stress on the interface, its instability highly
depends on the magnitude and direction of gravity. Specifically, when the direction
of gravity is opposite to the wall-normal direction, perturbations are stabilized by
gravity. In contrast, when these two directions are the same, the gravitational force
is destabilizing, and stationary travelling waves can exist if a balance is reached
between the effects of gravity and surface tension. For the steady solitary waves, there
are quasi-periodic oscillations occurring between two stationary points, indicating the
presence of heteroclinic trajectories. For periodic waves, the evolutions are sensitive to
several parameters and initial disturbances, while one steady-state wave exhibits a sine
function-like behaviour.

Key words: nonlinear instability, thin films, lubrication theory

1. Introduction

The dynamics and stability of liquid film flow have always received much attention as
they directly affect the heat and mass transfer characteristics in industrial applications,
especially under phase change conditions, such as water-cooled walls (Zhang et al. 2024),
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condensers (Zhang et al. 2022), evaporators (Wang et al. 2020), absorbers (Jenks &
Narayanan 2008) and heat pipes (Zhang & Nikolayev 2023). Consequently, throughout
several decades, a large amount of theoretical and experimental work on liquid films has
been conducted, which has been reviewed by Oron, Davis & Bankoff (1997), Craster &
Matar (2009) and Blossey (2012).

The driving forces of liquid film flow primarily consist of gravity and shear stress on
the surface. Since the groundbreaking experiment by the Kapitza family in 1949, the
gravity-driven film has intrigued many researchers due to its wide range of spatial and
temporal structures (Chang 1994; Zheng & Stone 2022). For small Reynolds numbers
(Re = O(1)), where the flow is predominantly influenced by surface tension and the inertial
force is much smaller, the Kuramoto–Sivashinsky (KS) equation can be obtained through
weakly nonlinear theory (Chang, Demekhin & Kopelevich 1993). For moderate Reynolds
numbers (� · Re = O(1), where � = d/l, l is the wavelength of the disturbance and d
is the average thickness of the thin film), where the surface tension is comparable to the
inertial force, a commonly employed approach involves using the integral boundary layer
(IBL) equation along with the application of weighted-residual methods (Ruyer-Quil, &
Manneville 2000; Oron, Gottlieb & Novbari 2009). These equations suggest that the falling
film yields a rich spectrum of fascinating wave dynamics at different parameters, such as
solitary waves, periodic waves, bifurcations and chaotic solutions (Chang & Demekhin
2002). For high Reynolds numbers, � · Re � 1, the inertial force becomes predominant
while the surface tension plays a secondary role, the transition to turbulence may occur
and full-scale Navier–Stokes equations must be considered in numerical simulations
(Kalliadasis et al. 2011).

The film flow driven by shear stress on the surface has also been examined extensively.
Smith & Davis (1982, 1983a,b) performed linear stability analysis on such flows and
have identified two types of instabilities in thin films. The first type is the surface-wave
instability, which can be induced by either wind stress or Marangoni forces. When
considering two-dimensional traveling waves, a critical Reynolds number is detected in a
linear velocity profile, whereas a long-wave instability arises in a parabolic velocity profile.
Recently, Patne, Agnon & Oron (2021) extended these findings to three-dimensional
waves in a liquid film with an oblique temperature gradient. Jurman & McCready (1989)
examined the linear and weakly nonlinear stability of a thin, horizontal liquid film sheared
by a concurrent turbulent gas flow. In another study, Frank (2006, 2008) numerically
investigated long nonlinear two-dimensional traveling waves on a liquid film driven by
laminar flow of a gas, showing the waves with equal amplitudes but different phase speeds.
The second type is the convective instability appearing in thermocapillary liquid layers,
which is driven by mechanisms within the bulk of the layer. The critical mode includes the
stationary rolls and travelling waves.

In many practical problems of liquid film, the driving force comprises gravity as well
as surface shear stress. The instability of this flow has also received much attention.
Miesen & Boersma (1995) studied the linear stability of a vertically falling film sheared
by a concurrent gas flow, showing the dependence of the critical Reynolds number on
the Weber number, on the curvature of the liquid velocity profile and on the properties
of the gas. Miladinova et al. (2002) examined the long-wave instabilities occurring in
non-uniformly heated falling films, where the flow is influenced by both gravity and
thermocapillary forces. Building upon this research, Mukhopadhyay & Mukhopadhyay
(2021) extended the investigation by incorporating the impact of odd viscosity. Tseluiko &
Kalliadasis (2011) conducted a study on the dynamics of a thin laminar liquid film flowing
down an inclined plane when turbulent gas flows above it. Later, this work was generalized
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by Vellingiri, Tseluiko & Kalliadasis (2015) to the absolute and convective instabilities.
In addition, the effects of condensation (Aktershev & Alekseenko 2005), evaporation
(Mohamed, Dallaston & Biancofiore 2021), a vibrating inclined plane (Samanta 2021),
surfactants (Hossain, Ghosh & Behera 2022) and thermocapillary instabilities (Choudhury
& Samanta 2023) have been considered by several authors.

Unlike the three situations mentioned above, the liquid film on a horizontal plate in
a gravitational field can flow under the action of surface shear forces. This scenario is
common in film cooling, where a thin liquid film on a solid surface can move under
friction of a forced gas and cool down the surface. Film cooling has important applications
in the fields of electronic devices (Kabov, Kuznetsov & Legros 2004) and aero-engines
(Acharya & Kanani 2017). The stability of the liquid film directly relates to its cooling
effect. Numerous studies have been carried out to explore the linear stability of these
flows, including the two-fluid boundary layer stability (Özgen, Degrez & Sarma 1998),
the convective/absolute instability in laminar and turbulent gas–liquid two-layer channel
flow (Naraigh, Spelt & Shaw 2013), and the role of water layer depth on the growth rate
of the Miles and rippling instabilities (Kadam, Patibandla & Roy 2023). Gravity is not the
primary driving force; however, it remains a vital factor contributing to the flow instability.
However, as far as we know, there has been little investigation on the nonlinear instability
of this problem. Although large-amplitude disturbances and instances of film rupture in
sheared liquid layers have been observed in experiments (Hirokawa, Ohta & Kabov 2015;
Wang et al. 2017), the evolution of nonlinear waves in liquid films under the influences
of surface tension and gravity is still unclear, and this is the central objective of the
current study. Here, we use theoretical and numerical approaches to examine the nonlinear
dynamics of perturbation waves in shear flows of thin films. Given that most instances of
rupture and instability phenomena in thin films typically occur on longer scales (Oron et al.
1997; Craster & Matar 2009), the long-wave theory (lubrication theory) is applied in our
analysis. By examining various parameters and conditions, we illustrate the diverse and
complex dynamical behaviours exhibited by liquid films. Notably, our findings highlight
the significant influences of gravity, in terms of both magnitude and direction, on the
evolution of disturbance waves.

Due to the widespread presence of wave steepening and film rupture in shear
liquid films, which exhibit significant deformation, linear and weakly nonlinear stability
analyses fall short in fully understanding these phenomena. Thus, this paper investigates
finite-amplitude perturbations with strong nonlinearity. The results indicate that within
certain parameter ranges (wave speed, wave number, gravity, etc.), the liquid film can still
sustain steady traveling wave solutions, while the relative variation of the film thickness
reaches O(1). For instance, we present the relevant parameters for solitary waves in
figure 10 and two wave patterns for steady-state periodic waves in figures 12 and 14.
In contrast, beyond these ranges, the perturbations cannot stably exist and are likely
to continuously grow, eventually leading to film rupture. Additionally, we demonstrate
examples of highly nonlinear waves through our experiment in figure 2 and the numerical
simulation in figure 15. Therefore, our findings contribute to the understanding of
deformation and rupture in shear liquid films.

The paper is organized as follows. Section 2 presents the physical model and
mathematical formulations, wherein the dimensionless governing equations and boundary
conditions are derived. Section 3 is dedicated to the numerical results, wherein the solitary
and periodic solutions of travelling waves are examined. The effects of gravity and surface
tension are discussed. We perform an energy analysis in § 4 and conduct a numerical
simulation for the gas–liquid two-phase flow in § 5. Finally, § 6 concludes the paper by
summarizing the key findings.
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Figure 1. Schematic of the liquid film flow on a horizontal plate driven by a constant shear stress at
the gas–liquid interface. Two scenarios are depicted: (a) where the direction of gravity is opposite to the
wall-normal direction and (b) where they are the same.

2. Problem formulation

We consider a liquid film on an infinitely large plate placed horizontally in a gravitational
field, as shown in figure 1. The gas–liquid interface experiences a constant shear stress τ ,
which is caused by wind shear. In this case, the fluid within the liquid film undergoes
motion due to the shear force acting on the interface, while gravity is parallel to the
wall-normal direction. Here, x and z represent the streamwise and normal directions,
respectively. In the following, we will examine two cases: one where the direction of
gravity is opposite to the normal direction (figure 1a), and the other where they are the
same (figure 1b). Because the gravity direction points to the lighter fluid, the so-called
Rayleigh–Taylor instability would arise in figure 1(b).

The case in figure 1(a) has been tested in the experiment of Wang et al. (2017). However,
the case in figure 1(b) can be realized by dispensing a certain amount of liquid onto a
solid plate, then using the wind to drive the liquid film lying on the underside of the
horizontal plane. We perform this experiment shown in figure 2 and a supplementary
movie is available at https://doi.org/10.1017/jfm.2024.895.

2.1. Governing equations
The liquid is supposed to be an incompressible Newtonian fluid with the dynamic viscosity
μ and density ρ. The average thickness of the liquid film is d, then the scales of velocity
and time can be defined as Ū = τd/μ and t0 = μ/τ , respectively. The surface tension
coefficient is σ . The following dimensionless groups can be defined:

Re = ρdŪ
μ

= ρd2τ

μ2 , S = ρdσ

μ2 , Ca = Re
S

, G = ρgd2

μŪ
= ρgd

τ
. (2.1a–d)

Here, Re is the Reynolds number; S is the non-dimensional surface-tension number; Ca is
the capillary number, which measures the magnitude of the surface deformation; and G is
the Galileo number, which measures the gravity effect.
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Figure 2. Disturbance waves in a sheared liquid film lying on the underside of the horizontal plane:
(a) photograph and (b) schematic of the experiment.

The dimensionless governing equations are given below, which are the continuity
equation and the momentum equation, respectively,

∇ · u = 0, (2.2a)

Re
(

∂u
∂ t

+ u · ∇u
)

= −∇p + ∇ · τ − G∇z. (2.2b)

Here, u = (u, v, w), p and τ stand for the velocity, pressure and stress tensor, respectively.
For a Newtonian fluid,

τ = S, (2.2c)

where 1
2 S = 1

2 (∇u + (∇u)T) is the strain-rate tensor.
To simplify the problem, we only consider two-dimensional (2-D) flows in the

present work. In general, three-dimensional (3-D) long-wave dynamics is preferable to
two-dimensional analysis in liquid films (Tomlin, Papageorgiou & Pavliotis 2017). For
example, in falling films, 2-D waves with straight wave fronts are excited first. As the
waves travel further downstream, the 2-D wave fronts begin to break and 3-D patterns
arise. However, our experiment suggests that if the spanwise length of the liquid film
is much smaller than its streamwise length, the disturbance waves can be considered
approximately two-dimensional (figure 2 and supplementary movie). The fluid used in
our experiment is corn oil, with its viscosity μ = 45.6 × 10−3 kg (m · s)−1, density ρ ≈
0.92 × 103 kg m−3, surface tension coefficient σ ∼ 32 × 10−3 kg s−2, film thickness
d ∼ 4 × 10−4 m (measured by Keyence laser displacement sensor CL-3000), spanwise
length l1 ∼ 6 × 10−3 m, streamwise length l2 ∼ 10−1 m, wavelength l ∼ 1.4 × 10−2 m
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and characteristic flow velocity Ū ∼ 4 × 10−2 m s−1. The dimensionless numbers are
Re ∼ O(0.3), G ∼ O(0.8), Ca ∼ O(0.06), all conforming to the conditions set in this
paper.

Thus, the governing equations of two-dimensional flows are

∂u
∂x

+ ∂w
∂z

= 0, (2.3a)

Re
(

∂u
∂t

+ u
∂u
∂x

+ w
∂u
∂z

)
= −∂p

∂x
+ ∂2u

∂x2 + ∂2u
∂z2 , (2.3b)

Re
(

∂w
∂t

+ u
∂w
∂x

+ w
∂w
∂z

)
= −∂p

∂z
+ ∂2w

∂x2 + ∂2w
∂z2 − G. (2.3c)

The boundary condition at the wall (z = 0) is

u = (u, w) = 0, (2.4)

while the boundary conditions on the free surface (z = η(x,t)) are

∂tη + u · ∂xη = w, (2.5a)

−p + n · σ · n = −Ca−1(∇s · n), (2.5b)

t · σ · n = 1, (2.5c)

where

σ = ∇u + (∇u)T, ∇s = (I − nn) · ∇, ∇s · n = − 1√
E3

∂2η

∂x2 , (2.6a)

n = 1√
E

(
−∂η

∂x
, 1
)

, t = 1√
E

(
1,

∂η

∂x

)
, E = 1 +

(
∂η

∂x

)2

. (2.6b)

2.2. Long-wave approximation
To investigate the disturbance wave in a liquid film, we use the long-wave approximation
in the analysis, assuming that the wavelength l of the disturbance is much greater than
the average thickness d of the thin film, i.e. � = d/l � 1. We choose l and d as the
length scales in the x and z directions, respectively, and perform the following scale
transformation on the parameters in the governing equation,

x = �−1X, z = Z, u = U, w = �W, p = P, t = �−1 t̃. (2.7a–c)

Thus, (2.3)–(2.6) can be written as

∂U
∂X

+ ∂W
∂Z

= 0, (2.8a)

�Re
(

∂U
∂ t̃

+ U
∂U
∂X

+ W
∂U
∂Z

)
= −�

∂P
∂X

+ � 2 ∂2U
∂X2 + ∂2U

∂Z2 , (2.8b)

� 2Re
(

∂W
∂ t̃

+ U
∂W
∂X

+ W
∂W
∂Z

)
= −∂P

∂Z
+ � 3 ∂2W

∂X2 + �
∂2W
∂Z2 − G. (2.8c)

The boundary condition at the wall (z = 0) is

u = (U, W) = 0, (2.9)
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while those on the free surface (z = η(x,t)) are

W = ∂η

∂ t̃
+ U

∂η

∂X
, (2.10a)

−
(

1 + � 2
(

∂η

∂X

)2
)

P + 2� 3
(

∂η

∂X

)2
∂U
∂X

− 2�
∂η

∂X

(
∂U
∂Z

+ � 2 ∂W
∂X

)

+ 2�
∂W
∂Z

= Ca−1� 2 ∂2η

∂X2 ·
(

1 + � 2
(

∂η

∂X

)2
)−1/2

, (2.10b)

2� 2 ∂η

∂X

(
∂W
∂Z

− ∂U
∂X

)
+
(

1 − � 2
(

∂η

∂X

)2
)(

� 2 ∂W
∂X

+ ∂U
∂Z

)
=
(

1 + � 2
(

∂η

∂X

)2
)

.

(2.10c)

2.2.1. Governing equation at small Reynolds numbers
Then, we consider the flow at small Reynolds numbers Re ≤ O(1). Meanwhile, S � 1.
Thus, it can be seen from (2.1) that the influence of surface tension on film flow is much
greater than that of inertial force. We seek the solutions of velocity and pressure as a
perturbation series in powers of the small parameter � ,

(U, W, P) = (U0, W0, P0) + �(U1, W1, P1) + O(� 2). (2.11)

Substituting (2.11) into (2.8)–(2.10), the approximate equations for various orders of �

can be obtained. The zero-order approximation is

∂U0

∂X
+ ∂W0

∂Z
= 0,

∂2U0

∂Z2 = 0,
∂P0

∂Z
= −G. (2.12a–c)

The boundary condition at z = 0 is

u = (U0, W0) = 0, (2.13)

while those at z = η(x,t) are

P0 = −Ca
−1 ∂2η

∂X2 ,
∂U0

∂Z
= 1. (2.14a,b)

Considering the dominant role of surface tension in the hydrodynamics of film flow, we
introduce Ca

−1 = � 2Ca−1 in the above equation. So the solutions of (2.12)–(2.14) can be
determined as follows:

U0 = Z, W0 = 0, P0 = G(η − Z) − Ca
−1 ∂2η

∂X2 . (2.15a–c)

Then, we pay attention to the first-order approximation. The governing equations are

∂U1

∂X
+ ∂W1

∂Z
= 0, (2.16a)

Re
(

∂U0

∂ t̃
+ U0

∂U0

∂X
+ W0

∂U0

∂Z

)
= −∂P0

∂X
+ ∂2U1

∂Z2 , (2.16b)

∂P1

∂Z
= ∂2W0

∂Z2 . (2.16c)
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The boundary condition at z = 0 is

u = (U1, W1) = 0, (2.17)

while those at z = η(x,t) are

P1 = 2
(

∂W0

∂Z
− ∂U0

∂Z
∂η

∂X

)
,

∂U1

∂Z
= 0. (2.18a,b)

Then, the solutions of (2.16)–(2.18) can be derived as follows:

U1 =
(

1
2

Z2 − ηZ
)(

G
∂η

∂X
− Ca

−1 ∂3η

∂X3

)
, (2.19a)

W1 = 1
2

∂η

∂X
Z2
(

G
∂η

∂X
− Ca

−1 ∂3η

∂X3

)
+
(

−1
6

Z3 + 1
2
ηZ2

)(
G

∂2η

∂X2 − Ca
−1 ∂4η

∂X4

)
,

(2.19b)

P1 = −2
∂η

∂X
. (2.19c)

Substituting (2.15) and (2.19) into (2.10a), we can obtain

∂η

∂ t̃
+ ∂η

∂X
η − �

∂

∂X

(
1
3
η3
(

G
∂η

∂X
− Ca

−1 ∂3η

∂X3

))
= 0. (2.20)

This equation is consistent with the corresponding situation of Oron et al. (1997).

2.2.2. Linear stability analysis
We conduct the linear stability analysis for (2.20). A small normal mode disturbance is
introduced to the basic state as follows:

η = 1 + A exp[i(kx − ωt)], (2.21)

where A is the amplitude, ω is the frequency and k is the wavenumber. The following
dispersion relation can be derived:

ω = k − i · 1
3 k2(G + k2Ca

−1
). (2.22)

When G > 0 (corresponding to figure 1a), Im(ω) < 0, meaning that the flow is linearly
stable. When G < 0 (corresponding to figure 1b), the flow is linearly unstable if

k2 < k2
c = |G| · Ca = ρ|g|d2/σ. (2.23)

This agrees with the result of Oron et al. (1997).
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2.2.3. Weakly nonlinear stability
If we perform a weak nonlinear expansion on (2.20), the famous KS equation can be
determined as follows: let η = 1 + �η′, t′ = � t̃, ξ = X − t̃, we can obtain

∂η

∂ t̃
= ∂η

∂ξ
· ∂ξ

∂ t̃
+ ∂η

∂t′
· ∂t′

∂ t̃
= −�

∂η′

∂ξ
+ � 2 ∂η′

∂t′
,

∂η

∂X
= ∂η

∂ξ
· ∂ξ

∂X
= �

∂η′

∂ξ
,

∂2η

∂X2 = �
∂2η′

∂ξ2 .

⎫⎪⎪⎬
⎪⎪⎭ (2.24a,b)

By substituting (2.24) into (2.20) and neglecting the third-order term, we can derive

∂η′

∂t′
+ η′ ∂η′

∂ξ
− 1

3

(
G

∂2η′

∂ξ2 − Ca
−1 ∂4η′

∂ξ4

)
= 0. (2.25)

If the direction of gravity is the same as the wall-normal direction (figure 1b), then G < 0,
and the following substitution is made:

ξ =
√

− 1

Ca · G
χ, η′ = −4G

3

√
−Ca · GH, t′ = 3

CaG2
T. (2.26a–c)

Thus, the KS equation can be obtained as follows:

∂H
∂T

+ 4H
∂H
∂χ

+ ∂2H
∂χ2 + ∂4H

∂χ4 = 0. (2.27)

Since there has been extensive research on this equation (Chang et al. 1993; Chang &
Demekhin 2002), we will no longer discuss it separately. Instead, our primary focus will
be on the solutions of (2.20) that exhibit nonlinearity of significant magnitude.

2.2.4. Traveling wave
When there is a traveling wave solution of (2.20), we can perform Galilean transformation
on the equation and introduce a new coordinate system x′ = X − Ct̃, t′ = t̃, so ∂/∂ t̃ =
−C(∂/∂x′) + ∂/∂t′, ∂/∂X = ∂/∂x′. Let

1
3�G = Ĝ, 1

3�Ca
−1 = Q, (2.28a,b)

then the following equation can be obtained:

∂η

∂t′
+ (η − C)

∂η

∂x′ − Ĝ
∂

∂x′

(
η3 ∂η

∂x′

)
+ Q

∂

∂x′

(
η3 ∂3η

∂x′3

)
= 0. (2.29)

It can be seen from (2.28b) that Q ≥ 0. Thus, we consider two cases. When Q = 0, (2.29)
can be simplified as follows:

∂η

∂t′
+ (η − C)

∂η

∂x′ − Ĝ
∂

∂x′

(
η3 ∂η

∂x′

)
= 0. (2.30a)

When Q > 0, let x′ = aς , t′ = aτ̃ , where a = Q1/3, then (2.26) can be simplified as
follows:

∂η

∂τ̃
+ (η − C)

∂η

∂ς
− G̃

∂

∂ς

(
η3 ∂η

∂ς

)
+ ∂

∂ς

(
η3 ∂3η

∂ς3

)
= 0, (2.30b)

where G̃ = Ĝ/a.
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Figure 3. Evolution of η at Q = 0, C = 1 and G̃ = 0: (a) the solitary wave; (b) the periodic wave.

For the sake of writing convenience, we will unify (2.30a) and (2.30b) in the following
form:

∂η

∂t
+ (η − C)

∂η

∂x
− G̃

∂

∂x

(
η3 ∂η

∂x

)
+ Q

∂

∂x

(
η3 ∂3η

∂x3

)
= 0, (2.31)

where Q = 0,1.
We restrict our attention to two types of travelling waves: the first one is the solitary

wave, which has

x → ±∞,
∂η

∂x
→ 0. (2.32)

The second one is the periodic wave, which has

∂nη

∂xn

∣∣∣∣
x=0

= ∂nη

∂xn

∣∣∣∣
x= �

T
, n = 0, 1, 2 . . . . (2.33)

Here, �T represents the period in the spatial direction.
The finite difference method is used in our numerical simulation. In Appendices A

and B, we show the finite difference schemes for two types of waves. The validation of
grid convergence is presented in Appendix C.

3. Numerical results

3.1. G̃ = 0
First, we consider the case at G̃ = 0. When Q = 0, (2.31) becomes the Burgers equation.
Although its properties are well known, to make comparisons with other situations,
we present the evolution of η for the Burgers equation in figure 3. The initial
conditions are η|t=0 = 1 + 0.315 exp(−2.5 · (x − 9)2) · sin[2(x − 9)] for figure 3(a) and
η|t=0 = 1 + 0.15 sin x for figure 3(b). It can be seen that |∂η/∂x| increases rapidly and
tends to infinity within a finite time in some places. Then the equation will become
singular.

For Q = 1, we can see in figure 4 that the surface tension effectively suppresses
the disturbance. Here, the initial conditions of figure 4(a,b) are identical to
those of figures 3(a) and 3(b), respectively. For figures 4(c) and 4(d), their
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Figure 4. Evolution of η at Q = 1, C = 1 and G̃ = 0: (a,c) the solitary wave; (b,d) the periodic wave.

initial conditions are η|t=0 = 1 + 0.58 exp(−10(x − 9)2) · sin[2(x − 9)] and η|t=0 = 1 +
0.15 sin(2x), respectively. These results indicate that as the wavenumber increases, the
disturbance decays more rapidly.

This can be attributed to the additional pressure exerted on liquids due to surface tension,
which is described by the Young–Laplace equation: 
p = σ(k1 + k2). Here, k1 and k2 are
two principal curvatures of the surface. This pressure can push the liquid at the wave
crest towards its equilibrium position, preventing the generation of singularities. As the
wavenumber increases, the principal curvature at the wave crest also increases, leading
to a faster decay of perturbations. The same trend holds true for disturbances with larger
amplitudes (max|η − 1| = 0.3).

3.2. G̃ > 0, Q = 0
Then, we examine the effect of gravity at Q = 0 and G̃ > 0, meaning that the direction of
gravity is opposite to the wall-normal direction. Figure 5 shows the evolution of η at Q = 0,
C = 1 and G̃ = 1. The initial conditions of figures 5(a) and 5(b) are identical to those of
figures 3(a) and 3(b), respectively. It can be found that the perturbation is stabilized by the
gravity at G̃ > 0. This result agrees with the experiment reported by Wang et al. (2017),
where a thin liquid film is sheared by the co-flowing air from above and heated from below
in a horizontal aluminium channel.
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Figure 5. Evolution of η at Q = 0, C = 1 and G̃ = 1: (a) the solitary wave; (b) the periodic wave.

Further research indicates that the greater the gravity, the stronger the suppressive
effect on disturbances. In addition, an increase in wavenumber results in a faster decay
of disturbances, a trend similar to that observed in figure 4.

To a certain extent, the problem we examined is similar to the cases of
Kelvin–Helmholtz instability and Rayleigh–Taylor instability. In these scenarios, two
uniform fluids are separated by a horizontal boundary at η = 1. The lower fluid has a
density of ρ1, while the upper fluid has a density of ρ2. Gravity acts vertically downwards
in this setup. The two fluids are streaming with the constant velocities U1 and U2.

In the linear stability analysis (2.21), the result of interfacial instability for two inviscid
fluids is (Chandrasekhar 2013)

ω = k
ρ1 + ρ2

[
(ρ1U1 + ρ2U2) ±

√
ρ1 + ρ2

k
[σk2 + (ρ1 − ρ2)g] − ρ1ρ2(U1 − U2)

2

]
.

(3.1)

Thus, instabilities appear when

ρ1 + ρ2

k
[σk2 + (ρ1 − ρ2)g] − ρ1ρ2(U1 − U2)

2 < 0. (3.2)

The instability arising from differences in velocity (U1 − U2) is known as the
Kelvin–Helmholtz instability, while that resulting from differences in density is called
the Rayleigh–Taylor instability. It is evident that surface tension always serves to stabilize,
whereas gravity acts as a destabilizing force only when the density of the upper fluid
exceeds the density of the lower fluid: (ρ1 − ρ2) < 0.

Since these conclusions are derived from linear stability analysis for inviscid fluids,
they may not be directly applicable to nonlinear waves in a sheared liquid film for viscous
fluids. Nonetheless, the aforementioned outcomes suggest that the influence of Q, G̃ on
the instability bears similarities.

3.3. G̃ < 0
The results above indicate that disturbances are suppressed by the surface tension (Q = 1),
whereas the gravity at G̃ < 0 is destabilizing. Therefore, we can speculate that if a balance
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Nonlinear waves in a sheared liquid film

is reached between these two factors, the disturbance waves may persist. Further analysis
confirms this possibility.

Suppose (2.31) has a steady-state solution, meaning ∂η/∂t = 0, then the equation
becomes

(η − C)
∂η

∂x
− G̃

∂

∂x

(
η3 ∂η

∂x

)
+ ∂

∂x

(
η3 ∂3η

∂x3

)
= 0. (3.3)

Integrating (3.3) yields

1
2
(η − C)2 − G̃η3 ∂η

∂x
+ η3 ∂3η

∂x3 = C1, (3.4)

where C1 is a constant.

3.3.1. Solitary waves
First, we consider solitary waves. Let

η′ = ∂η

∂x
, η′′ = ∂2η

∂x2 , η′′′ = ∂3η

∂x3 . (3.5a–c)

When x → −∞, η → η∞, η′, η′′′ → 0, then

η3(−G̃η′ + η′′′) = 1
2 [(η∞ − C)2 − (η − C)2]. (3.6)

There are two stationary points in (3.6), which are

κ1 = η∞, κ2 = 2C − η∞. (3.7a,b)

Now we discuss the stability of these stationary points. By introducing the phase space
coordinates(η1, η2, η3), where η1 = η, η2 = η′, η3 = η′′, we can derive

η′
1 = η2, η′

2 = η3, η′
3 = [(η∞ − C)2 − (η1 − C)2]

2η3
1

+ G̃η2. (3.8)

We regard η′
i(i = 1, 2, 3) as a velocity field in the phase space, then the incompressibility

condition is satisfied,

∇ · η′ = ∂η′
1

∂η1
+ ∂η′

2
∂η2

+ ∂η′
3

∂η3
= 0. (3.9)

The two stationary points in the phase space are O1(κ1, 0, 0) and O2(κ2, 0, 0). Then, we
consider an asymptotic solution near a stationary point as follows:

η = η̄ + η̃, (3.10)

where η̄ = κ1, κ2, η̃ = A exp(λx), A is a small amplitude and λ is an eigenvalue.
Substituting (3.10) into (3.8) and retaining the first-order small quantity, the eigenvalue
equation can be derived.
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For O1(κ1, 0, 0), its eigenvalue equation is

λ3 − G̃λ+ η∞ − C
η3∞

= 0. (3.11)

The roots of (3.11) are

λ1 = m + n, λ2 = −1
2
(m + n) +

√
3

2
i(m − n), λ3 = −1

2
(m + n) +

√
3

2
i(n − m),

(3.12a–c)

where

m = 3

√√√√√−η∞ − C
2η3∞

+

√√√√(η∞ − C
2η3∞

)2

−
(

G̃
3

)3

, (3.13a)

n = 3

√√√√√−η∞ − C
2η3∞

−

√√√√(η∞ − C
2η3∞

)2

−
(

G̃
3

)3

. (3.13b)

As G̃ < 0, we can derive that m > 0, n < 0, Im(λ2) > 0 and Im(λ3) < 0. When η∞ −
C > 0, we have λ1 < 0 and Re(λ2) = Re(λ3) > 0; while η∞ − C < 0, we have λ1 > 0
and Re(λ2) = Re(λ3) < 0.

For O2(κ2, 0, 0), its eigenvalue equation is

λ3 − G̃λ+ η∞ − C

(η∞ − 2C)3 = 0. (3.14)

The roots of (3.14) are

μ1 = a + b, μ2 = −1
2
(a + b) +

√
3

2
i(a − b), μ3 = −1

2
(a + b) +

√
3

2
i(b − a),

(3.15a–c)

where

a = 3

√√√√√ C − η∞
2(η∞ − 2C)3 +

√√√√( η∞ − C

2(η∞ − 2C)3

)2

−
(

G̃
3

)3

, (3.16a)

b = 3

√√√√√ C − η∞
2(η∞ − 2C)3 −

√√√√( η∞ − C

2(η∞ − 2C)3

)2

−
(

G̃
3

)3

. (3.16b)

The existence of O2 requires that 2C − η∞ > 0. Using the condition G̃ < 0, we can derive
that a > 0, b < 0, Im(μ2) > 0 and Im(μ3) < 0. When η∞ − C > 0, we have μ1 > 0
and Re(μ2) = Re(μ3) < 0; while when η∞ − C < 0, we have μ1 < 0 and Re(μ2) =
Re(μ3) > 0.

When η∞ = C, λ1 = Re(λ2) = Re(λ3) = 0, and two stationary points overlap. The
trajectory near the stationary point will not be attracted or repelled. Therefore, we will
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not consider this case. In addition, when 2C − η∞ ≤ 0, there is only one stationary
point. However, solitary waves are not found in this condition. Therefore, we restrict
our attention to the region C > 1

2η∞, C /= η∞ in the following. In this case, both
stationary points have eigenvalues with positive real parts, indicating their absolute
instability.

We provide an example at C = 5
6η∞, η∞ = 1 to illustrate the behaviour of trajectories

near stable points, while the case at C > η∞ is similar. In the vicinity of the stationary
point O1, the disturbance exhibits exponential convergence,

η = η̄ + A1 exp(λ1x), (3.17)

where λ1 < 0. However, the manner in which the disturbance diverges exhibits oscillatory
behaviour,

η = η̄ + A2 exp(Re(λ2)x) cos(Im(λ2)x + ϕ), (3.18)

where Reλ2 > 0 and ϕ is the phase angle. In contrast, in the vicinity of the stationary point
O2, the disturbance exhibits oscillatory convergence,

η = η̄ + A3 exp(Re(μ2)x) cos(Im(μ2)x + ϕ), (3.19)

where Re(μ2) < 0, while it diverges exponentially,

η = η̄ + A4 exp(μ1x), (3.20)

where μ1 > 0. It should be noted that Ai(i = 1 ∼ 4) are real numbers.
We select points near the stationary point O1 as initial points and employ numerical

integration methods (refer to Appendix D) to investigate the phase trajectory of (3.9). The
results indicate that the evolution of η shows a quasi-periodic oscillation pattern between
O1 and O2. The specific process is displayed in figure 6.

Initially, η oscillates near O1 with an increasing amplitude, demonstrating the presence
of the unstable two-dimensional manifold Wu

1 of O1. Subsequently, it oscillates towards
O2 with a decreasing amplitude, representing the stable two-dimensional manifold Ws

2
of O2. After reaching a certain distance, η exponentially deviates upwards from O2,
corresponding to the unstable one-dimensional manifold Wu

2 of O2. Later, it exponentially
converges towards O1 from below, signifying the stable one-dimensional manifold Ws

1
of O1, and after a certain distance, this pattern repeats itself as the system oscillates
away from O1 again. Consequently, the aforementioned situation suggests the existence
of heteroclinic trajectories between the two stationary points O1 and O2, as illustrated in
figure 7.

In the following, we discuss the impact of G̃ on the evolution of η. The computation
reveals that there are quasi-periodic solutions (see figure 8) when G̃ falls within a suitable
region. However, once G̃ surpasses the allowable range, the liquid film will break (η → 0),
as shown in figure 9. The approximate range of G̃ at C = 5

6 , η∞ = 1 is [−10, −3], while
the specific region is contingent upon the initial disturbance.

The allowable range of G̃ at different C is displayed in figure 10 where η∞ = 1. As 2C −
η∞ > 0, we have C > 0.5. For fixed C, stationary solitary waves could only appear when
(−G̃) ∈ [Mi, Mx]. Once G̃ < 0, we can find an allowable range of wave speed C.

To examine the properties of quasi-periodic solutions, we compute 3000 cycles at
G̃ = −5 for different η∞. The results in figure 11 indicate that the cycle length (Cl) steadily
decreases and converges to a constant value, while the maximum value of η within one
cycle (ηmax) remains nearly constant.
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Figure 6. Evolution of η, suggesting heteroclinic trajectories between two stationary points O1 and O2:
(a) the sketch; (b) the numerical result at G̃ = −3, Q = 1, η∞ = 1 and C = 5
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Figure 7. Heteroclinic contour of the stationary points O1 and O2.
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Figure 8. Quasi-periodic solution of η at G̃ = −5, Q = 1, η∞ = 1 and C = 5
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Figure 9. Evolution of η at G̃ = −2, Q = 1, η∞ = 1 and C = 5
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Figure 10. Allowable range of G̃ for stationary solitary waves at different C. Here, η∞ = 1.
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Figure 11. Variations of (a) cycle length and (b) ηmax in 3000 cycles at G̃ = −5, Q = 1, η∞ = 1 and
C = 5

6 η∞.

However, we do not find any other structures of solitary waves that appeared in the
KS equation, such as the homoclinic trajectory and the heteroclinic trajectory between a
stationary point and a limit cycle (Chang & Demekhin 2002). The reason may be related
to the nonlinearity of the disturbance. The KS equation describes the weak nonlinear
instability near the equilibrium position η = 1 with a disturbance amplitude of |�η′| �
1. However, the amplitude of the disturbance reaches O(1) in this paper. The strong
nonlinearity may lead to rapid and sustained growth of disturbances. In our computation,
disturbances that continuously grow near an equilibrium point, if not promptly attracted
by another equilibrium point, are prone to persistent divergence, ultimately leading to
film rupture. Therefore, steady-state solitary waves are most likely to be found in the
heteroclinic orbits between two equilibrium points.

3.3.2. Periodic waves
For periodic waves, we begin by conducting a linear stability analysis as (3.1). Substituting
(3.1) into (2.31) and considering |A| � 1, we can determine that a steady-state solution
exists at

C = 1, k2 = −G̃. (3.22a,b)

Despite the linear nature of the aforementioned analysis, numerical simulations
demonstrate that these results remain qualitatively valid even at |A| = 0.5.

We examine the evolution of a periodic wave with the initial condition η|t=0 = 1 +
A sin x. The results show that although nonlinearity is significant when A is large, the
distributions of η still resemble the sine function (see figure 12).

However, the amplitude A varies with time t. Figure 13 illustrates that the amplitude
increases at G̃ = −1.1, but decreases at G̃ = −1.0005. Therefore, a steady-state solution
may exist when G̃ falls between these two values.

Additionally, we find other wave patterns for steady-state periodic waves. Figure 14
illustrates one such pattern, where the curves are observed in a stationary coordinate
system. The wave speed of these periodic waves is C = 0.76 and the period is T = 8.56.

Further calculations indicate that the evolutions of periodic waves are sensitive to the
initial conditions (including wave number, amplitude, superposition of multiple waves,
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Figure 12. Distributions of η for periodic waves at t = 30: (I) G̃ = −1, C = 1.009; (II) G̃ = −1.001, C = 1.033;
(III) G̃ = −1, C = 1.085. At initial time, η|t=0 = 1 + A sin x, while A = 0.15, 0.3 and 0.5 for the three respective
cases.
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Figure 13. Variation of amplitude A with time t. The initial condition is η|t=0 = 1 + 0.3 sin x.

etc.) as well as the parameter G̃. In some cases, the amplitude of the disturbance may
continue to increase, thus the film thickness becomes very thin in some places, tending
towards film rupture (for example, when G̃ = −10 and η|t=0 = 1 + 0.3 sin x). We will
conduct a detailed study on this in our subsequent work to determine the parameter ranges
for the existence of various patterns of steady-state periodic waves, and further assess the
parameter conditions for film rupture.

4. Energy analysis

To analyse the evolution of disturbances from an energy perspective, we use h = η − 1 to
represent the deviation of the liquid surface from its equilibrium position, and perform a
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Figure 14. Another pattern of steady-state periodic wave at G̃ = −2.

Fourier expansion on it,

h =
∞∑

n=1

[An(t) cos(nkx) + Bn(t) sin(nkx)]. (4.1)

We set C = 1 in (2.31), meaning that we observe in a reference frame moving at a speed of
1, then (2.31) can be rewritten as

∂h
∂t

+ h
∂h
∂x

− G̃
∂

∂x

(
(1 + h)3 ∂h

∂x

)
+ Q

∂

∂x

(
(1 + h)3 ∂3h

∂x3

)
= 0. (4.2)

Multiplying (4.2) by h and integrating over a wavelength range yields

∂

∂t

∫ π/k

−π/k

(
1
2

h2
)

· dx = −
∫ π/k

−π/k

(
h2 ∂h

∂x
+ h

∂

∂x

(
(1 + h)3

(
Q

∂3h
∂x3 − G̃

∂h
∂x

)))
· dx.

(4.3)

By performing integration by parts and using the periodic conditions, we can obtain

∂

∂t

∫ π/k

−π/k

(
1
2

h2
)

· dx =
∫ π/k

−π/k
(1 + h)3

(
Q

∂h
∂x

∂3h
∂x3 − G̃

(
∂h
∂x

)2
)

· dx = P1 + P2,

(4.4)
where

P1 = Q
∫ π/k

−π/k
(1 + h)3

(
∂h
∂x

∂3h
∂x3

)
· dx2, (4.5)

P2 = −G̃
∫ π/k

−π/k
(1 + h)3

(
∂h
∂x

)2

· dx, (4.6)

representing the contributions of surface tension and gravity to the energy of the
disturbance, respectively. We only consider the case 1 + h = η > 0, where the liquid film
does not rupture.
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Nonlinear waves in a sheared liquid film

For P2, as (∂h/∂x)2 ≥ 0, the sign of P2 is entirely dependent on G̃. Thus, when G̃ >

0(G̃ < 0), gravity causes the disturbance to decay (grow).
For P1, if |h| � 1, meaning in the case of small disturbances, then

P1 ≈ Q
∫ π/k

−π/k

(
∂h
∂x

∂3h
∂x3

)
· dx2 = −Q

∫ π/k

−π/k

(
∂2h
∂x2

)2

· dx2 < 0. (4.7)

If the disturbance is a monochromatic wave h = A1(t) cos(kx), then

P1 = −QA2
1k4

∫ π/k

−π/k
(1 + h)3sin2kx · dx2 < 0. (4.8)

Therefore, in both of these scenarios, surface tension must cause the disturbance to decay.
For more general cases, it is not possible to directly determine the sign of P1. Our
calculations do not find situations where the surface tension causes the disturbance to
grow.

In summary, in the small-Reynolds-number regime studied in this paper, the only source
of energy that can contribute to the growth of disturbances is gravity, and in this case, the
liquid film must be positioned below a horizontal plate.

5. Numerical simulation

To compare with our findings, we perform a numerical simulation for the gas–liquid
two-phase flow using the software Fluent, as presented in figure 15. The liquid (corn
oil) film is sheared by an incompressible gas (air) flow. The system is assumed
to be two-dimensional. All parameters are listed in table 1. We employ the PISO
(pressure-implicit with splitting of operators) scheme to solve the flow equations, and
use the VoF (volume of fluid) method for tracking moving interfaces. In figure 15(a), the
top and bottom boundaries are solid walls, while the left and right sides employ periodic
boundary conditions. In the horizontal direction, 3000 grids are used, while in the vertical
direction, we set 38 grids for the gas section and 20 grids for the liquid section.

The simulation results show that the evolution process of the liquid film is sensitive to
initial disturbances and the flow is unsteady. In figure 15(b–d), we display the evolution
within a certain region at three different times. We can see a small disturbance at t = 1.13 s.
The amplitude increases at t = 2.79 s and the long-wave approximation is satisfied.
Additionally, the relative variation of the film thickness exceeds 30 % when t = 3.79 s.
These results are qualitatively consistent with the theoretical analysis in figures 12 and 14,
as well as the experimental finding presented in figure 2.

6. Conclusion

The current study focuses on investigating the nonlinear dynamics of a sheared liquid film
on a horizontal plate using theoretical and numerical methods. Due to the low Reynolds
number, the flow is primarily governed by surface tension while inertial forces playing a
much smaller role. By applying the long-wave theory, we derive the governing equation
for film thickness, and we employ finite difference schemes in our numerical simulations.
The effects of gravity and surface tension on disturbances are examined, measured by two
dimensionless parameters G̃ and Q, respectively. The evolutions of solitary and periodic
waves are presented. While the shear stress on the surface drives the film flow, the
magnitude and direction of gravity are still crucial for the instability.
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Figure 15. Numerical simulation of the gas–liquid two-phase flow: (a) the schematic and the evolution of the
liquid film at (b) t = 1.13 s, (c) t = 2.79 s and (d) t = 3.79 s.

Dimensional parameter Dimensionless parameter

H2 1.2 × 10−3 m Ū 3 × 10−2 m s−1 Re 0.121
H1 2 × 10−4 m g 9.81 m s−2 S 2.832
Wd 3 × 10−2 m σ 3.2 × 10−2 N m−1 Ca 0.043
ρ1 920 kg m−2 ρ2 1.225 kg m−2 G −0.264

Table 1. Parameters in the numerical simulation for the gas–liquid two-phase flow.

When effects of gravity and surface tension are neglected (G̃ = Q = 0), the governing
equation simplifies to the Burgers equation. In this case, singularities may occur at certain
points within a finite time. However, by increasing the surface tension, disturbances can
be suppressed, preventing the occurrence of singularities. Additionally, disturbances decay
more rapidly at higher wavenumbers. When the direction of gravity is opposite to the
wall-normal direction (G̃ > 0), the perturbation is stabilized by gravity.
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Nonlinear waves in a sheared liquid film

In contrast, when the direction of gravity aligns with the wall-normal direction (G̃ < 0),
gravity becomes destabilizing. Therefore, stationary travelling waves can exist when the
effects of gravity and surface tension reach equilibrium. In the case of weakly nonlinearity,
the Kuramoto–Sivashinsky equation is derived. For the steady-state solution of solitary
waves, we find two stationary points, both of which are unstable. When G̃ falls within an
appropriate range, quasi-periodic oscillations occur between these two points, suggesting
the presence of heteroclinic trajectories. However, if G̃ exceeds the permissible range, the
liquid film will break in some places. The precise boundaries of G̃ depend on the initial
disturbance. The evolutions of periodic waves are sensitive to G̃ and initial disturbances,
including wave number, amplitude, superposition of multiple waves, etc. Two patterns of
the steady-state periodic waves are presented, one of which resembles a sine function even
when nonlinearity is significant.

Supplementary movie. Supplementary movie is available at https://doi.org/10.1017/jfm.2024.895.
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Appendix A. Finite difference schemes for solitary waves

In the finite difference calculation of (2.31), the temporal direction only has a first-order
derivative, so we adopt a simple first-order accuracy scheme. In the calculation, reducing
the time step can improve the time accuracy without affecting the computational stability.
However, in the spatial direction, there are derivatives from first to fourth orders.
Meanwhile, reducing the space step may lead to divergence in the calculation, thus a
higher-order accuracy scheme is used. We adopt the following central difference schemes
that are fourth-order accurate in the spatial direction:

(
∂η

∂x

)n

j
=

−ηn
j+2 + 8ηn

j+1 − 8ηn
j−1 + ηn

j−2

12
x
+ O(
x4), (A1)

(
∂2η

∂x2

)n

j
=

−ηn
j+2 + 16ηn

j+1 − 30ηn
j + 16ηn

j−1 − ηn
j−2

12(
x)2 + O(
x4), (A2)

(
∂3η

∂x3

)n

j
=

−ηn
j+3 + 8ηn

j+2 − 13ηn
j+1 + 13ηn

j−1 − 8ηn
j−2 + ηn

j−3

8(
x)3 + O(
x4), (A3)

(
∂4η

∂x4

)n

j
=

−ηn
j+3 + 12ηn

j+2 − 39ηn
j+1 + 56ηn

j − 39ηn
j−1 + 12ηn

j−2 − ηn
j−3

6(
x)4 + O(
x4).

(A4)
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The superscript n = 1–M and subscript j = 1–N represent the grid numbers in the temporal
and spatial directions, respectively. Meanwhile, we employ the following first-order
accurate explicit difference scheme in the temporal direction:

ηn+1
j = ηn

j − 
t

⎡
⎢⎢⎢⎢⎢⎣

(ηn
j − C)

(
∂η

∂x

)n

j
− G̃

⎛
⎝(ηn

j )
3
(

∂2η

∂x2

)n

j
+ 3(ηn

j )
2

((
∂η

∂x

)n

j

)2
⎞
⎠

+ Q

(
(ηn

j )
3
(

∂4η

∂x4

)n

j
+ 3(ηn

j )
2
(

∂η

∂x

)n

j

(
∂3η

∂x3

)n

j

)
⎤
⎥⎥⎥⎥⎥⎦ .

(A5)

The difference schemes for boundary conditions are given as follows.
At the left boundary, it can be seen from (A1)–(A4) that we need to provide the schemes

at j = 1,2 for (∂η/∂x)n
j and (∂2η/∂x2)n

j , and the schemes at j = 1–3 for (∂3η/∂x3)n
j and

(∂4η/∂x4)n
j . Therefore, we adopt the following second-order accurate difference schemes

for (∂η/∂x)n
j and (∂2η/∂x2)n

j :

(
∂η

∂x

)n

1
= −3ηn

1 + 4ηn
2 − ηn

3
2
x

+ O(
x2), (A6a)

(
∂η

∂x

)n

2
= ηn

3 − ηn
1

2
x
+ O(
x2), (A6b)

(
∂2η

∂x2

)n

1
= 2ηn

1 − 5ηn
2 + 4ηn

3 − ηn
4

(
x)2 + O(
x2), (A7a)

(
∂2η

∂x2

)n

2
= ηn

3 − 2ηn
2 + ηn

1

(
x)2 + O(
x2). (A7b)

For (∂3η/∂x3)n
j and (∂4η/∂x4)n

j , the second-order accurate difference schemes are given as

(
∂3η

∂x3

)n

1
= −2.5ηn

1 + 9ηn
2 − 12ηn

3 + 7ηn
4 − 1.5ηn

5

(
x)3 + O(
x2), (A8a)

(
∂3η

∂x3

)n

2
= −1.5ηn

1 + 5ηn
2 − 6ηn

3 + 3ηn
4 − 0.5ηn

5

(
x)3 + O(
x2), (A8b)

(
∂3η

∂x3

)n

3
= −0.5ηn

1 + ηn
2 − ηn

4 + 0.5ηn
5

(
x)3 + O(
x2), (A8c)

(
∂4η

∂x4

)n

1
= 3ηn

1 − 14ηn
2 + 26ηn

3 − 24ηn
4 + 11ηn

5 − 2ηn
6

(
x)4 + O(
x2), (A9a)

(
∂4η

∂x4

)n

2
= 2ηn

1 − 9ηn
2 + 16ηn

3 − 14ηn
4 + 6ηn

5 − ηn
6

(
x)4 + O(
x2), (A9b)

(
∂4η

∂x4

)n

3
= ηn

1 − 4ηn
2 + 6ηn

3 − 4ηn
4 + ηn

5

(
x)4 + O(
x2). (A9c)
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Similarly, at the right boundary, we adopt the following schemes:(
∂η

∂x

)n

N
= 3ηn

N − 4ηn
N−1 + ηn

N−2

2
x
+ O(
x2), (A10a)

(
∂η

∂x

)n

N−1
= ηn

N − ηn
N−2

2
x
+ O(
x2), (A10b)

(
∂2η

∂x2

)n

N
= 2ηn

N − 5ηn
N−1 + 4ηn

N−2 − ηn
N−3

(
x)2 + O(
x2), (A11a)

(
∂2η

∂x2

)n

N−1
= ηn

N − 2ηn
N−1 + ηn

N−2

(
x)2 + O(
x2), (A11b)

(
∂3η

∂x3

)n

N
= −−2.5ηn

N + 9ηn
N−1 − 12ηn

N−2 + 7ηn
N−3 − 1.5ηn

N−4

(
x)3 + O(
x2), (A12a)

(
∂3η

∂x3

)n

N−1
= −−1.5ηn

N + 5ηn
N−1 − 6ηn

N−2 + 3ηn
N−3 − 0.5ηn

N−4

(
x)3 + O(
x2), (A12b)

(
∂3η

∂x3

)n

N−2
= −−0.5ηn

N + ηn
N−1 − ηn

N−3 + 0.5ηn
N−4

(
x)3 + O(
x2), (A12c)

(
∂4η

∂x4

)n

N
= 3ηn

N − 14ηn
N−1 + 26ηn

N−2 − 24ηn
N−3 + 11ηn

N−4 − 2ηn
N−5

(
x)4 + O(
x2),

(A13a)(
∂4η

∂x4

)n

N−1
= 2ηn

N − 9ηn
N−1 + 16ηn

N−2 − 14ηn
N−3 + 6ηn

N−4 − ηn
N−5

(
x)4 + O(
x2),

(A13b)(
∂4η

∂x4

)n

N−2
= ηn

N − 4ηn
N−1 + 6ηn

N−2 − 4ηn
N−3 + ηn

N−4

(
x)4 + O(
x2). (A13c)

Appendix B. Finite difference schemes for periodic solutions

The schemes of boundary condition for periodic solutions can be derived using a
fourth-order accurate central difference scheme consistent with Appendix A. This
approach takes advantage of periodicity ηi = ηN+i. The results are presented as follows:(

∂η

∂x

)n

1
= −ηn

3 + 8ηn
2 − 8ηn

N + ηn
N−1

12
x
+ O(
x4), (B1a)

(
∂η

∂x

)n

2
= −ηn

4 + 8ηn
3 − 8ηn

1 + ηn
N

12
x
+ O(
x4), (B1b)

(
∂2η

∂x2

)n

1
= −ηn

3 + 16ηn
2 − 30ηn

1 + 16ηn
N − ηn

N−1

12(
x)2 + O(
x4), (B2a)

(
∂2η

∂x2

)n

2
= −ηn

4 + 16ηn
3 − 30ηn

2 + 16ηn
1 − ηn

N

12(
x)2 + O(
x4), (B2b)
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∂3η

∂x3

)n

1
= −ηn

4 + 8ηn
3 − 13ηn

2 + 13ηn
N − 8ηn

N−1 + ηn
N−2

8(
x)3 + O(
x4), (B3a)

(
∂3η

∂x3

)n

2
= −ηn

5 + 8ηn
4 − 13ηn

3 + 13ηn
1 − 8ηn

N + ηn
N−1

8(
x)3 + O(
x4), (B3b)

(
∂3η

∂x3

)n

3
= −ηn

6 + 8ηn
5 − 13ηn

4 + 13ηn
2 − 8ηn

1 + ηn
N

8(
x)3 + O(
x4), (B3c)

(
∂4η

∂x4

)n

1
= −ηn

4 + 12ηn
3 − 39ηn

2 + 56ηn
1 − 39ηn

N + 12ηn
N−1 − ηn

N−2

6(
x)4 + O(
x4), (B4a)

(
∂4η

∂x4

)n

2
= −ηn

5 + 12ηn
4 − 39ηn

3 + 56ηn
2 − 39ηn

1 + 12ηn
N − ηn

N−1

6(
x)4 + O(
x4), (B4b)

(
∂4η

∂x4

)n

3
= −ηn

6 + 12ηn
5 − 39ηn

4 + 56ηn
3 − 39ηn

2 + 12ηn
1 − ηn

N

6(
x)4 + O(
x4), (B4c)

(
∂η

∂x

)n

N
= −ηn

2 + 8ηn
1 − 8ηn

N−1 + ηn
N−2

12
x
+ O(
x4), (B5a)

(
∂η

∂x

)n

N−1
= −ηn

1 + 8ηn
N − 8ηn

N−2 + ηn
N−3

12
x
+ O(
x4), (B5b)

(
∂2η

∂x2

)n

N
= −ηn

2 + 16ηn
1 − 30ηn

N + 16ηn
N−1 − ηn

N−2

12(
x)2 + O(
x4), (B6a)

(
∂2η

∂x2

)n

N−1
= −ηn

1 + 16ηn
N − 30ηn

N−1 + 16ηn
N−2 − ηn

N−3

12(
x)2 + O(
x4), (B6b)

(
∂3η

∂x3

)n

N
= −ηn

3 + 8ηn
2 − 13ηn

1 + 13ηn
N−1 − 8ηn

N−2 + ηn
N−3

8(
x)3 + O(
x4), (B7a)

(
∂3η

∂x3

)n

N−1
= −ηn

2 + 8ηn
1 − 13ηn

N + 13ηn
N−2 − 8ηn

N−3 + ηn
N−4

8(
x)3 + O(
x4), (B7b)

(
∂3η

∂x3

)n

N−2
= −ηn

1 + 8ηn
N − 13ηn

N−1 + 13ηn
N−3 − 8ηn
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Figure 16. Distribution of η at Q = 1, C = 1, G̃ = −0.5 and t = 0.003 for a solitary wave: (I) the space step


x = 0.06 and the time step 
t = 3 × 10−7; (II) 
x = 0.04 and 
t = 10−7; (III) 
x = 0.03 and 
t = 10−8.

Appendix C. The validation of grid convergence

We examine the evolution of η at Q = 1, C = 1 and G̃ = −0.5 for a solitary wave. The
initial conditions are the same as those in figure 3(a). The distribution of η at t = 0.03 is
presented in figure 16. The computation results are the same for different grids.

Appendix D. Numerical integration method

The first-order accurate difference scheme is adopted for the initial position,

η′′
2 = η′′

1 + η′′′
1 · 
x. (D1)

For other positions, we use the following second-order accurate difference scheme:

η′′
i = η′′

i−1 + (3η′′′
i−1 − η′′′

i−2)

2

x + O(
x2), (D2a)

η′
i = η′

i−1 + (η′′
i−1 + η′′

i )

2

x + O(
x2), (D2b)

ηi = ηi−1 + (η′
i−1 + η′

i)

2

x + O(
x2), (D2c)

η′′′
i = (η∞ − C)2 − (ηi − C)2

2η3
i

+ G̃η′
i + O(
x2). (D2d)

REFERENCES

ACHARYA, S. & KANANI, Y. 2017 Advances in film cooling heat transfer. In Advances in Heat Transfer.
Elsevier.

AKTERSHEV, S.P. & ALEKSEENKO, S.V. 2005 Influence of condensation on the stability of a liquid film
moving under the effect of gravity and turbulent vapor flow. Intl J. Heat Mass Transfer 48 (6), 1039–1052.

BLOSSEY, R. 2012 Thin Liquid Films: Dewetting and Polymer Flow. Springer Science & Business Media.
CHANDRASEKHAR, S. 2013 Hydrodynamic and Hydromagnetic Stability. Courier Corporation.
CHANG, H.C. 1994 Wave evolution on a falling film. Annu. Rev. Fluid Mech. 26 (1), 103–136.
CHANG, H.C. & DEMEKHIN, E.A. 2002 Complex Wave Dynamics on Thin Films. Springer.

999 A14-27

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

89
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.895


K.-X. Hu, K. Du and Q.-S. Chen

CHANG, H.C., DEMEKHIN, E.A. & KOPELEVICH, D.I. 1993 Nonlinear evolution of waves on a vertically
falling film. J. Fluid Mech. 250, 433–480.

CHOUDHURY, A. & SAMANTA, A. 2023 Thermocapillary instability for a shear-imposed falling film. Phys.
Rev. Fluids 8 (9), 094006.

CRASTER, R.V. & MATAR, O.K. 2009 Dynamics and stability of thin liquid films. Rev. Mod. Phys. 8l (3),
1131–1198.

FRANK, A.M. 2006 Shear driven solitary waves on a liquid film. Phys. Rev. E 74 (6), 065301.
FRANK, A.M. 2008 Numerical simulation of gas driven waves in a liquid film. Phys. Fluids 20 (12), 122102.
HIROKAWA, T., OHTA, H. & KABOV, O.A. 2015 Experimental investigation on behaviors and heat transfer

in shear-driven liquid film flow. Interfacial Phenom. H 3 (3), 303–317.
HOSSAIN, M.M., GHOSH, S. & BEHERA, H. 2022 Linear instability of a surfactant-laden shear imposed

falling film over an inclined porous bed. Phys. Fluids 34 (8), 084111.
JENKS, J. & NARAYANAN, V. 2008 Effect of channel geometry variations on the performance of a constrained

microscale-film ammonia-water bubble absorber. J. Heat Transfer 130 (11), 112402.
JURMAN, L.A. & MCCREADY, M.J. 1989 Study of waves on thin liquid films sheared by turbulent gas flows.

Phys. Fluids 1 (3), 522–536.
KABOV, O.A., KUZNETSOV, V.V. & LEGROS, J.C. 2004 Heat transfer and film dynamic in shear-driven

liquid film cooling system of microelectronic equipment. In International Conference on Nanochannels,
Microchannels, and Minichannels, 687–694. ASME.

KADAM, Y., PATIBANDLA, R. & ROY, A. 2023 Wind-generated waves on a water layer of finite depth. J. Fluid
Mech. 967, A12.

KALLIADASIS, S., RUYER-QUIL, C., SCHEID, B. & VELARDE, M.G. 2011 Falling Liquid Films. Springer
Science & Business Media.

MIESEN, R. & BOERSMA, B.J. 1995 Hydrodynamic stability of a sheared liquid film. J. Fluid Mech. 301,
175–202.

MILADINOVA, S., SLAVTCHEV, S., LEBON, G. & LEGROS, J.C. 2002 Long-wave instabilities of
non-uniformly heated falling films. J. Fluid Mech. 453, 153–175.

MOHAMED, O.A., DALLASTON, M.C. & BIANCOFIORE, L. 2021 Spatiotemporal evolution of evaporating
liquid films sheared by a gas. Phys. Rev. Fluids 6 (11), 114002.

MUKHOPADHYAY, S. & MUKHOPADHYAY, A. 2021 Thermocapillary instability and wave formation on a
viscous film flowing down an inclined plane with linear temperature variation: effect of odd viscosity.
Phys. Fluids 33 (3), 034110.

Ó NARAIGH, L., SPELT, P.D.M. & SHAW, S.J. 2013 Absolute linear instability in laminar and turbulent
gas–liquid two-layer channel flow. J. Fluid Mech. 714, 58–94.

ORON, A., DAVIS, S.H. & BANKOFF, S.G. 1997 Long-scale evolution of thin liquid films. Rev. Mod. Phys.
69 (3), 931–980.

ORON, A., GOTTLIEB, O. & NOVBARI, E. 2009 Numerical analysis of a weighted-residual integral
boundary-layer model for nonlinear dynamics of falling liquid films. Eur. J. Mech. (B/Fluids) 28 (1), 1–36.

ÖZGEN, S., DEGREZ, G. & SARMA, G.S.R. 1998 Two-fluid boundary layer stability. Phys. Fluids 10 (11),
2746–2757.

PATNE, R., AGNON, Y. & ORON, A. 2021 Thermocapillary instabilities in a liquid layer subjected to an
oblique temperature gradient. J. Fluid Mech. 906, A12.

RUYER-QUIL, C. & MANNEVILLE, P. 2000 Improved modeling of flows down inclined planes. Eur. Phys. J.
B 15, 357–369.

SAMANTA, A. 2021 Instability of a shear-imposed flow down a vibrating inclined plane. J. Fluid Mech. 915,
A93.

SMITH, M.K. & DAVIS, S.H. 1982 The instability of sheared liquid layers. J. Fluid Mech. 121, 187–206.
SMITH, M.K. & DAVIS, S.H. 1983a Instabilities of dynamic thermocapillary liquid layers. Part 1. Convective

instabilities. J. Fluid Mech. 132, 119–144.
SMITH, M.K. & DAVIS, S.H. 1983b Instabilities of dynamic thermocapillary liquid layers. Part 2.

Surface-wave instabilities. J. Fluid Mech. 132, 145–162.
TOMLIN, R.J., PAPAGEORGIOU, D.T. & PAVLIOTIS, G.A. 2017 Three-dimensional wave evolution on

electrified falling films. J. Fluid Mech. 822, 54–79.
TSELUIKO, D. & KALLIADASIS, S. 2011 Nonlinear waves in counter-current gas-liquid film flow. J. Fluid

Mech. 673, 19–59.
VELLINGIRI, R., TSELUIKO, D. & KALLIADASIS, S. 2015 Absolute and convective instabilities in

counter-current gas-liquid film flows. J. Fluid Mech. 763, 166–201.
WANG, K., ZHANG, Y., GONG, S., BAI, B. & MA, W. 2017 Dynamics of a thin liquid film under shearing

force and thermal influences. Exp. Therm. Fluid Sci. 85, 279–286.

999 A14-28

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

89
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.895


Nonlinear waves in a sheared liquid film

WANG, Q., LI, M., XU, W., YAO, L., LIU, X., SU, D. & WANG, P. 2020 Review on liquid film flow and
heat transfer characteristics outside horizontal tube falling film evaporator: CFD numerical simulation. Intl
J. Heat Mass Transfer 163, 120440.

ZHANG, X. & NIKOLAYEV, V.S. 2023 Physics and modeling of liquid films in pulsating heat pipes. Phys.
Rev. Fluids 8 (8), 084002.

ZHANG, X., WANG, S., JIANG, D. & WU, Z. 2024 Optimizing heat transfer characteristics in dry centrifugal
granulation: impact of particle population trajectory and cooling strategies. Appl. Therm. Engng 236,
121923.

ZHANG, Y., JIA, L., DANG, C. & QI, Z. 2022 Measurements of the liquid film thickness for annular flow
during flow condensation in a circular tube. Intl J. Heat Mass Transfer 187, 122552.

ZHENG, Z. & STONE, H.A. 2022 The influence of boundaries on gravity currents and thin films: drainage,
confinement, convergence, and deformation effects. Annu. Rev. Fluid Mech. 54, 27–56.

999 A14-29

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

89
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.895

	1 Introduction
	2 Problem formulation
	2.1 Governing equations
	2.2 Long-wave approximation
	2.2.1 Governing equation at small Reynolds numbers
	2.2.2 Linear stability analysis
	2.2.3 Weakly nonlinear stability
	2.2.4 Traveling wave


	3 Numerical results
	3.1 G = 0
	3.2  G >0,Q = 0
	3.3 G <0
	3.3.1 Solitary waves
	3.3.2 Periodic waves


	4 Energy analysis
	5 Numerical simulation
	6 Conclusion
	Appendix A. Finite difference schemes for solitary waves
	Appendix B. Finite difference schemes for periodic solutions
	Appendix C. The validation of grid convergence
	Appendix D. Numerical integration method
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage false
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings false
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


