
306 THE MATHEMATICAL GAZETTE

Grechuk for bringing up all these interesting diophantine equations through
his investigations. Last but not least, we are indebted to the referee for
suggesting a number of amendments of a linguistic nature as well as for
pointing out that it is better to mention elliptic curves in a gentler manner.
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107.16 An expression for the prime-composite characteristic
function

Introduction
We define the prime-composite characteristic function as the function

on the set of natural numbers that is equal to 1 for all primes, 0 for all
composites, and is not defined otherwise.

Proposition
For all naturals , the prime-composite characteristic function is

equal to:
n ≠ 4

C (n) =
n

n − 1 {(n − 1)!
n }

where  is the fractional part of  [1].{x} x

Proof
The proof hinges on the evaluation of the fractional part :

- if  is a prime, then  by virtue of Wilson's theorem [1],n {(n − 1)!
n } =

n − 1
n

- if  is a composite different from 4, then  divides  and the braces
evaluate to 0 [2].

n n (n − 1)!
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Consequences
The set of composite numbers can be expressed, save for 1 and 4, as:

.{n ∈ � : n2 | n!}
The prime counting function can be expressed for all  as:n ≥ 4

π (n) =
4
3

+ ∑
n − 1

j = 3

j + 1
j { j!

j + 1} .

Discussion
The number 4, which is the smallest composite number, is exceptional

as ‘it is the only composite  that does not divide ’[2]. This is the
reason  indicates all primes and composites apart from 4. If  is used as
a measure of primeness, then  indicates that 4 is the ‘least
composite’ composite in that measure.

n (n − 1)!
C (n) C

C (4) = 2 / 3

The behaviour of  for large  can be considered through the
following plausibility argument. First, note that  is a prime number
only if  has no divisor that is a multiple of . ����� et al. [3] have shown
that the number of divisors of  grows faster than any power of  for large
. This entails that the probability that  has no divisor that is a multiple of
, which is the probability that  is prime, tends to 0 as .

C (n) n
n ≠ 4

n! n2

n! n
n n!
n2 n n → ∞
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107.17 Two curios related to lattice polygons

A lattice polygon is a planar polygon in  all of whose vertices have
integer coordinates. It is regular if its sides and angles are all equal. The
fundamental theorem in this area is:

�d

Theorem A
(i) In , the only regular lattice polygons are squares.�2

(ii) In , , the only regular lattice polygons are triangles, squares
and hexagons.

�d d ≥ 3

Theorem A is blessed with several neat proofs such as the ingenious
geometric one in [1] and the one using algebra and trigonometry in [2]. The
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