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Porous membranes are thin solid structures that allow the flow to pass through their tiny
openings, called pores. Flow inertia may play a significant role in several filtration flows
of natural and engineering interest. Here, we develop a predictive macroscopic model
to describe solvent and solute flows past thin membranes for non-negligible inertia. We
leverage homogenization theory to link the solvent velocity and solute concentration to the
jumps of solvent stress and solute flux across the membrane. Within this framework, the
membrane acts as a boundary separating two distinct fluid regions. These jump conditions
rely on several coefficients, stemming from closure problems at the microscopic pore scale.
Two approximations for the advective terms of Navier–Stokes and advection–diffusion
equations are introduced to include inertia in the microscopic problem. The approximate
inertial terms couple the micro- and macroscopic fields. Here, this coupling is solved
numerically using an iterative fixed-point procedure. We compare the resulting models
against full-scale simulations, with a good agreement both in terms of averaged values
across the membrane and far-field values. Eventually, we develop a strategy based on
unsupervised machine learning to improve the computational efficiency of the iterative
procedure. The extension of homogenization towards weak-inertia flow configurations as
well as the performed data-driven approximation may find application in preliminary
analyses as well as optimization procedures towards the design of filtration systems,
where inertia effects can be instrumental in broadening the spectrum of permeability and
selectivity properties of these filters.
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1. Introduction

Flows across thin permeable structures are encountered in a wide range of engineering
situations and nature, see, for example, the stable glide of dandelion seeds thanks to
their hairy parachute called pappus (Cummins et al. 2018; Ledda et al. 2019) and the
recirculating patterns inside deep-sea porous sponges, which are beneficial for organisms
living within their structure (Falcucci et al. 2021, 2024). The filtration properties of
these sponges are crucial in defining these patterns and consequently the transport of
nutrients.

Related to this, fluidic systems are widely employed for separation and filtration
processes (Catarino et al. 2019). The flow is usually laminar but, in certain applications,
advection may play an important role in the transport of solute (Tripathi et al. 2015).
Advection effects are quantified through two non-dimensional numbers: the Reynolds
number, the ratio between inertial and viscous scales for the fluid flow, and the Péclet
number, the ratio between the advective and diffusive scales for the transport of solute
in a solvent. In membrane filters for the collection of particles, the Reynolds number can
reach values of up to 20 (Yang et al. 1999). In hydrogen fuel cells, the Péclet number
inside a proton-exchange membrane can be of the order of 10 (Suresh & Jayanti 2016).
Microfluidic mixing processes can be enhanced by adding microstructured patterns within
the micro-channels (Stroock et al. 2002). However, filtration processes do not only involve
lab-scale systems. As a matter of fact, nets and harps are attracting interest in harvesting
water from fog in arid environments (Park et al. 2013; Labbé & Duprat 2019; Moncuquet
et al. 2022).

Accurately modelling the transport phenomena across porous membranes in the
presence of inertial effects thus affects a variety of applications ranging across several
length and time scales. Numerical studies concerning the interaction between fluid flows
and permeable structures belong to two approaches: full-scale solutions and averaged
models. Direct full-scale solutions, such as that reported by Icardi et al. (2014), although
very accurate, require a non-trivial computational effort from the geometry and mesh
generation to the actual numerical solution. This approach rapidly becomes prohibitive for
flows at industrial scales or in the case of biological systems with extreme scale separation,
e.g. cell membranes, where pores are nanometric and membranes are micrometric
(Verkman & Mitra 2000). In addition, full-scale solutions offer sometimes little insight
into the general physics governing the processes and they are not scalable in the case of
parametric studies or optimization routines. Conversely, simplified models are preferred in
some contexts. Some authors have studied analytically the specific case of flow normal
to the membrane (Conca 1987; Bourgeat & Marusic-Paloka 1998), while others have
developed theories for flow through infinitesimally thin porous membranes and deduced
some range of applicability of Stokes’ approximation (Tio & Sadhal 1994), or considered
simplified pore geometries and arrangements (Jensen, André & Stone 2014a). A specific
class of simplified flow descriptions consists of averaged models. Early models describe
the fluid flow and solute transport across a bulk porous medium with a solvent flow
description analogous to Darcy’s law (Darcy 1856, see Dagan 1987 for a review). Despite
being computationally less expensive, these models converge to the actual fluid flow
field only in an average sense and rely on empirical coefficients, like the permeability,
difficult to quantify from a theoretical point of view, and thus limit the model’s predictive
power. Multi-scale techniques such as the volume-averaged method (Whitaker 1996) and
homogenization (Hornung 1997) enable a more accurate and predictive description of
such flows. In homogenization, the medium properties are the spatially averaged solution
of closure problems at the pore-scale level. Zampogna & Gallaire (2020) proposed an

1000 A46-2

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

98
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.987


Large-inertia laminar transport across permeable membranes

homogenization-based formal approach to predict the permeability properties of thin
porous membranes, including the transport of diluted species (Zampogna, Ledda &
Gallaire 2022). Ledda et al. (2021) showed that this methodology can be used not
only for flow analysis, but also for membrane design and optimization. Homogenization
thus provides a formal approach for studying and designing porous structures when the
flow at the pore scale has negligible inertia. However, at the current state of the art,
homogenization cannot handle pore-scale inertial flows since it requires the linearity
of the governing pore-scale equations. To overcome this limitation, Zampogna et al.
(2016) and Luminari, Airiau & Bottaro (2018) proposed an Oseen-like momentum
equation to close the pore-scale problem in the case of flows through bulk porous
media.

Actual applications in thin membrane flows can significantly benefit from extending
beyond the inertia-less regime the modelling and optimization strategies associated with
homogenization to better upscale transport and filtration phenomena occurring at the pore
scale. In the present work, we generalize the framework proposed by Zampogna et al.
(2022) for inertial pore-scale flows. In § 2, we present the mathematical derivation of
the homogenization procedure. Section 3 presents the solution to the problems we solve
at the microscopic level to obtain the effective permeability and diffusivity coefficients,
while in § 4, we use these solutions to predict the mean flow behaviour past permeable
membranes. We compare our homogeneous model with simulations solved at all scales.
In § 5, we improve the computational efficiency of our methodology by introducing a
machine learning algorithm to minimize the number of microscopic problems to be solved.
In § 6, we discuss our results and future perspectives.

2. Homogenized model and quasi-linear inertial flow extension

We consider the incompressible flow of a Newtonian fluid (so-called solvent) of density
ρ and viscosity μ0 travelling across a thin microstructured porous membrane and
transporting a diluted solute of diffusivity D. We introduce the solute concentration ĉ and
the solvent velocity and pressure fields ûi, p̂. Because of the presence of the diluted solute,
the viscosity μ of the solvent–solute ensemble varies linearly with the concentration
(Einstein 1906). However, actual variations of viscosity strongly depend on the considered
couple solvent–solute. To remain within a general framework, we consider a constant
viscosity of the ensemble (Geback & Heintz 2019; Royer 2019), which, for example, can be
its average value. The range of dilution in which this hypothesis holds clearly depends on
the considered case (cf. for example, the experimental curves by Goldsack & Franchetto
2011), but it allows us to focus on the effect of inertia at the pore scale. The fluid domain
and porous structure are depicted in figure 1. Denoting as � and L the pore (micro-scale)
and the membrane (macro-scale) length scales, respectively, we define the separation of
scales parameter as ε = �/L. The full-scale problem is governed by the Navier–Stokes
equations for the solvent velocity and pressure, as well as by the advection–diffusion
equation for the solute concentration,

ρ(∂̂tûi + ûj∂̂jûi) = −∂̂ip̂ + μ∂̂2
ll ûi,

∂̂iûi = 0,

∂̂tĉ = −ûi∂̂iĉ + D∂̂2
ll ĉ,

⎫⎪⎪⎬
⎪⎪⎭ (2.1)

where the Einstein index notation is adopted. As shown in the following sections,
homogenization relies on the following steps (figure 2): (i) define the inner equations
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Figure 1. Porous thin membrane. (a) Membrane as it appears in the physical world. The fluid flow (blue
streamlines) crosses the membrane via its pores and the concentration field (yellow contour) interacts with
the membrane surface at the pore scale. (b) Purely macroscopic domain, where the membrane is substituted
by its mean surface C and where the details of the pores have been coarse-grained: C is a fictitious surface,
separating two domains, where equivalent boundary conditions are imposed to reproduce the average effect of
the membrane on the fluid flow and concentration fields.
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Figure 2. Diagram of the procedure used to deduce the macroscopic model. The green box highlights the
novel iterative part of the procedure.

and normalization, which apply at the pore scale; (ii) define the outer equations and
normalizations, which apply far from the membrane; (iii) match the inner and outer
domains; (iv) solve the inner (microscopic) problem; (v) average the inner solution and
deduce the macroscopic condition.

2.1. The inner problem
We refer to the domain F in figure 1(a) as the microscopic domain, in opposition to the
outer, macroscopic domain, formed by the fluid region far from the membrane (figure 1b).
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Large-inertia laminar transport across permeable membranes

In the inner domain, we employ the following scaling:

p̂ = �Pp = μU
�

p, û = Uu, t̂ = T t = �

U t, ĉ = Cc, (2.2a–d)

where �P,U , T and C are the scales of pressure difference, velocity, time and
concentration at the pore level, respectively. The equations governing the physics within
the microscopic elementary cell, F, are

Re�(∂tui + uj∂jui) = −∂ip + ∂2
llui,

∂iui = 0,

Pe�∂tc = −Pe�ui∂ic + ∂2
llc,

⎫⎪⎬
⎪⎭ (2.3)

where Pe� = U�/D and Re� = U�/ν are the Péclet and Reynolds numbers referring
to the microscopic length �, respectively. The flow is assumed to be periodic along
the tangential-to-the-membrane directions. No-slip (ui = 0) and chemostat-like (c = 0)
boundary conditions are imposed on the fluid–solid interface ∂M. These Dirichlet
boundary conditions are contained in the more general set of Robin boundary conditions
presented by Zampogna et al. (2022). The inner flow is assumed continuous with the
outer flow, in terms of velocity, stress, concentration and solute flux at the upward U and
downward D sides (cf. figure 1) of the microscopic domain.

2.2. The outer problem
In the macroscopic domain, we employ the following non-dimensionalization to scale the
equations:

p̂ = �POpO = ρUO2
pO, û = UOuO, t̂ = TOtO = L

UO
tO, ĉ = COcO. (2.4a–d)

The governing equations of the outer problem are

∂tu
O

i + uO

j ∂ju
O

i = −∂ipO + 1
ReL

∂2
llu

O

i ,

∂iu
O

i = 0,

PeL∂tcO = −PeLuO

i ∂icO + ∂2
llc

O,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(2.5)

where PeL = UOL/D and ReL = UOL/ν.

2.3. Matching the inner and outer domains
To observe inertial effects at the pore scale, we require at least ReL ∼ PeL ∼ 1/ε and
Re� ∼ Pe� ∼ 1, and thus we assume U ∼ UO. Consequently, the ratio of microscopic and
macroscopic time scales reads

T
TO

= �

U
UO

L
= ε

UO

U ∼ ε. (2.6)

Equation (2.6) suggests that variations at the micro-scale occur in a much shorter time
compared with the characteristic time variations at the macro-scale, and thus the pore-scale
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problem can be considered steady if no unsteadiness is triggered at the micro-scale,

Re�uj∂jui = −∂ip + ∂2
llui,

∂iui = 0,

−Pe�ui∂ic + ∂2
llc = 0.

⎫⎪⎪⎬
⎪⎪⎭ (2.7)

On the upward U and downward D sides of F, the dimensional outer and inner fluid flow
and concentration fields match, i.e.

Σ̂ijnj = Σ̂
O

ij nj ⇒ [−p̂δij + μ(∂̂iûj + ∂̂jûi)]nj = [−p̂Oδij + μ(∂̂iû
O

j + ∂̂jû
O

i )]nj

⇒
[
−μU

�
pδij + μU

�
(∂iuj + ∂jui)

]
nj =

[
−ρUO2

pOδij + μUO

L
(∂iu

O

j + ∂ju
O

i )

]
nj

⇒ Σijnj = ε ReL
UO

U Σ
O

ij nj, (2.8a)

F̂ini = F̂O

i ni ⇒ [ûiĉ − D∂̂iĉ]ni = [ûO

i ĉO − D∂̂iĉO]ni

⇒
[
UCuic − D

C
�

∂ic
]

ni =
[
UOCOuO

i cO − D
CO

L
∂icO

]
ni

⇒ Fini = ε
CO

C
FO

i ni, (2.8b)

u = UO

U uO, c = CO

C
cO, (2.8c,d)

where Σjk = −pδjk + (∂juk + ∂kuj), Σ
O

jk = −pOδjk + 1
ReL

(∂ju
O

k + ∂kuO

j ), Fj = Pe�uic −
∂ic and FO

j = PeLuO

i cO − ∂icO are the fluid stresses and solute fluxes in the inner and
outer domains, respectively.

2.4. Solving the inner problem
To apply homogenization to the problem in (2.7), the Stokes approximation assumes Re� ∼
Pe� ∼ ε (Zampogna et al. 2022). In this paper, we introduce finite Péclet and Reynolds
numbers at the pore scale, i.e. Re� ∼ 1 and Pe� ∼ 1. Consequently, the problem in (2.7)
is a set of nonlinear partial differential equations. Exploiting the separation of scales, we
perform the following asymptotic expansion:

xi = xi + εXi, ∂i = ∂i + ε∂I,

(ui, p, c) = (u(0)
i , p(0), c(0)) + ε(u(1)

i , p(1), c(1)) + O(ε2).

}
(2.9)
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Large-inertia laminar transport across permeable membranes

Substituting (2.9) into (2.7), we obtain the leading order equation,

Re�u(0)
j ∂ju

(0)
i = −∂ip(0) + ∂2

llu
(0)
i ,

∂iu
(0)
i = 0,

−Pe�u(0)
i ∂ic(0) + ∂2

llc
(0) = 0,

Σ
(0)
ij nj = Σ

O

ij nj on U, D,

u(0)
i = 0 on ∂M,

u(0)
i , p(0) periodic along t, s.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.10)

To write the solution of (2.10) as a linear combination of the boundary fluxes, we introduce
the closure advective velocity Uj such that

Re�Uj∂ju
(0)
i = −∂ip(0) + ∂2

llu
(0)
i ,

∂iu
(0)
i = 0,

−Pe�Uj∂jc(0) + ∂2
llc

(0) = 0,

Σ
(0)
ij nj = Σ

O

ij nj on U, D,

u(0)
i = 0 on ∂M,

u(0)
i , p(0) periodic along t, s.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.11)

The term Uj needs to be specified to close (2.11). However, we refer to § 2.6 for the
closure of Uj. The solution of (2.11) can be formally written as a linear combination of
the boundary fluxes,

u(0)
i = εReL

UO

U (MijΣ
O,U
jk nk + NijΣ

O,D
jk nk),

p(0) = εReL
UO

U (QjΣ
O,U
jk nk + RjΣ

O,D
jk nk),

c(0) = ε
CO

C
(TFO,U

j nj + SFO,D
j nj).

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(2.12)

Substituting (2.12) into (2.11), we obtain the set of solvability conditions:

Re�Um∂mMij = −∂iQj + ∂2
llMij in F,

∂iMij = 0 in F,

Σpq(M·j, Qj)nq = δjpnq on U,

Σpq(M·j, Qj)nq = 0 on D,

Mij = 0 on ∂M,

Mij, Qj periodic along t, s,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.13a)
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Re�Um∂mNij = −∂iRj + ∂2
llNij in F,

∂iNij = 0 in F,

Σpq(N·j, Rj)nq = 0 on U,

Σpq(N·j, Rj)nq = δjpnq on D,

Nij = 0 on ∂M,

Nij, Rj periodic along t, s,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.13b)

Pe�Uj∂jT − ∂2
llT = 0 in F,

(Pe�UjT − ∂jT)nj = 1 on U,

(Pe�UjT − ∂jT)nj = 0 on D,

T = 0 on ∂M,

T periodic along t, s,

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

Pe�Uj∂jS − ∂2
llS = 0 in F,

(Pe�UjS − ∂jS)nj = 0 on U,

(Pe�UjS − ∂jS)nj = 1 on D,

S = 0 on ∂M,

S periodic along t, s,

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(2.13c,d)

where Σpq(M·j, Qj) = −Qjδpq + (∂qMpj + ∂pMqj) and similarly for Nij, Rj. Since Σpq
contain the quantities Qj, Rj, no additional boundary condition is needed for the closing
of these equations. The first (second) problem in (2.13) represents the pore-level solvent
transport in response to normal and tangential unitary stresses on the upward side U

(downward side D) of the membrane. Conversely, the third (fourth) problem represents the
pore-level solute transport across the membrane caused by a unitary solute flux entering
the upward side U (downward side D) of the membrane. We notice that by integrating
in F the last two problems in (2.13) and applying the divergence theorem, we obtain an
integral balance of solute fluxes which states that the solute flux entering from the U or D

side is removed from the domain at the boundary ∂M because of its boundary condition.
The solvability conditions in (2.13) slightly differ from those introduced by Zampogna
et al. (2022) because of the presence of the advective term. In the case of flows on rough,
impermeable surfaces, Bottaro (2019) and Lācis et al. (2020) showed that the systems in
(2.13) are equivalent to the following set of equations:

Re�Um∂mMij = −∂iQj + ∂2
llMij + δCδij,

∂iMij = 0,

Σpq(M·j, Qj)nq = 0 on U, D,

Mij = 0 on ∂M,

Mij, Qj periodic along t, s,

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(2.14a)

Re�Um∂mNij = −∂iRj + ∂2
llNij − δCδij,

∂iNij = 0,

Σpq(N·j, Rj)nq = 0 on U, D,

Nij = 0 on ∂M,

Nij, Rj periodic along t, s,

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(2.14b)
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Pe�Uj∂jT − ∂2
llT + δC = 0 in F,

(Pe�UjT − ∂jT)nj = 0 on U, D,

T = 0 on ∂M,

T periodic along t, s,

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(2.14c)

Pe�Uj∂jS − ∂2
llS − δC = 0 in F,

(Pe�UjS − ∂jS)nj = 0 on U, D,

S = 0 on ∂M,

S periodic along t, s,

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(2.14d)

where δC is a Dirac impulse centred in xC. The physical significance of the problems
in (2.13) and (2.14) is similar, but here the forcing is represented by a unitary volume
source appearing in the momentum and advection–diffusion equations. The quantities
Mij, Nij, Qi, Ri, T and S depend parametrically on the closure advective velocity Uj. In
the present paper, we adopt the formulation in (2.14) to compute the microscopic solution.

2.5. Averaging step and macroscopic condition
To upscale the microscopic solutions, we introduce the following averages at both the
upstream and downstream sides of the membrane:

M̄ij = 1
|U|

∫
U

Mij dxt dxs, N̄ij = 1
|D|

∫
D

Nij dxt dxs. (2.15a,b)

We clarify the physical significance of the M̄ij tensors in a two-dimensional domain: M̄nn
and M̄tn represent the ability of the fluid to move along the positive normal and tangential
directions as a consequence of a normal unitary forcing. Instead, M̄nt and M̄tt represent
the ability of the fluid to move along the positive normal and tangential directions as a
consequence of a tangential unitary forcing. The same applies for N̄ij, with negative normal
and tangential directions. Thus, M̄nn and M̄tt can be interpreted as a permeability and a slip
coefficient, respectively. The same average definitions apply to the quantities T and S,

T̄ = 1
|U|

∫
U

T dxt dxs, S̄ = 1
|D|

∫
D

S dxt dxs. (2.16a,b)

These quantities can be interpreted as effective solute diffusivities relative to a unitary
solute flux in the positive (T̄) and negative (S̄) directions. Quantities M, N, T, S are not
solely properties of the geometry (as in the inertia-less case of Zampogna & Gallaire
2020), but also of the fluid flow since they depend on the closure advective velocity.

Applying averages ((2.15), (2.16)) to (2.12), the following macroscopic boundary
conditions are obtained:

ūO

i = εReL(M̄ijΣ
O,U
jk nk + N̄ijΣ

O,D
jk nk),

c̄O = ε(T̄FO,U
j nj + S̄FO,D

j nj).

⎫⎬
⎭ (2.17)

We specify that (2.17) is obtained from (2.12) by re-normalizing with the outer scales in
(2.8).
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2.6. The closure advective velocity
The solution to (2.14) lies in the closure advective velocity that gives rise to an
inertia-driven coupling between the macroscopic and microscopic flows. Two different
definitions have been considered in the present work:

(i) a constant advective velocity in the microscopic cell

Ui = ūO

i , (2.18)

which leads to an Oseen-like equation (constant advection closure). This approach
has already been proposed in the volume-averaged and homogenization frameworks
by other authors for the flow over rough surfaces (Bottaro 2019; Zampogna,
Magnaudet & Bottaro 2019);

(ii) a spatially dependent closure advective velocity, reconstructed from the outer
stresses (variable advection closure),

Ui = εReL(MijΣ
O,U
jk nk + NijΣ

O,D
jk nk). (2.19)

A similar approach has been proposed for the flow in bulk porous media
(Valdés-Parada & Lasseux 2021; Sánchez-Vargas et al. 2023).

The equations for Mij, Qj, T in the microscopic problems thus become:

(i) for the constant advection closure approach in (2.18):

εReL
U
UO

ūO
m∂mMij = −∂iQj + ∂2

llMij + δCδij,

∂iMij = 0,

Σpq(M·j, Qj)nq = 0 on U, D,

Mij = 0 on ∂M,

Mij, Qj periodic along t, s;

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.20a)

εReL
U
UO

ūO
m∂mNij = −∂iRj + ∂2

llNij − δCδij,

∂iNij = 0,

Σpq(N·j, Rj)nq = 0 on U, D,

Nij = 0 on ∂M,

Nij, Rj periodic along t, s;

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.20b)

εPeL
U
UO

ūO

i ∂jT − ∂2
llT + δC = 0,

(εPeLūO

i T − ∂jT)nj = 0 on U, D,

T = 0 on ∂M,

T periodic along t, s;

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(2.20c)
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εPeL
U
UO

ūO

i ∂jS − ∂2
llS − δC = 0,

(εPeLūO

i S − ∂jS)nj = 0 on U, D,

S = 0 on ∂M,

S periodic along t, s;

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(2.20d)

(ii) for the variable advection closure approach in (2.19):

ε2Re2
L
U
UO

(MmnΣ
O,U
nl nl + NmnΣ

O,D
nl nl)∂mMij = −∂iQj + ∂2

llMij + δCδij,

∂iMij = 0,

Σpq(M·j, Qj)nq = 0 on U, D,

Mij = 0 on ∂M,

Mij, Qjk periodic along t, s;

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(2.21a)

ε2Re2
L
U
UO

(MmnΣ
O,U
nl nl + NmnΣ

O,D
nl nl)∂mNij = −∂iRj + ∂2

llNij − δCδij,

∂iNij = 0,

Σpq(N·j, Rj)nq = 0 on U, D,

Nij = 0 on ∂M,

Nij, Rj periodic along t, s;

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.21b)

ε2PeL
U
UO

(MmnΣ
O,U
nl nl + NmnΣ

O,D
nl nl)∂jT − ∂2

llT + δC = 0,

(ε2PeL(MmnΣ
O,U
nl nl + NmnΣ

O,D
nl nl)T − ∂jT)nj = 0 on U, D,

T = 0 on ∂M,

T periodic along t, s;

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(2.21c)

ε2PeL
U
UO

(MmnΣ
O,U
nl nl + NmnΣ

O,D
nl nl)∂jS − ∂2

llS − δC = 0,

(ε2PeL(MmnΣ
O,U
nl nl + NmnΣ

O,D
nl nl)S − ∂jS)nj = 0 on U, D,

S = 0 on ∂M,

S periodic along t, s.

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(2.21d)

The tensors and scalars used in (2.17) are found either by solving (2.20) or (2.21).
A computational iterative strategy to interface the macroscopic fields with the microscopic
problems is required.

3. Solution of the microscopic problems

We investigate the influence of the closure advective velocity on the microscopic fields
Mij, Nij, T and S, in the constant and variable advection closure cases. We introduce the
porosity θ = |CF|/|CF ∪ CM| as the fluid-to-total ratio at the membrane centreline C
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Figure 3. Flow fields within the microscopic domain with different advective velocities ǔi obtained by
solving the first two problems in the constant advection closure in (2.20) around a circular solid inclusion.
(a) Microscopic domain. (b–g) Magnitude contours and streamlines (red) of (Mnn, Mtn) for (b) ǔn = 0, ǔt = 0,
(c) ǔn = 50, ǔt = 0, (d) ǔn = 50, ǔt = 50. Magnitude contours and streamlines of the tensors (Mnt, Mtt) for
(e) ǔn = 0, ǔt = 0, ( f ) ǔn = 50, ǔt = 0, (g) ǔn = 50, ǔt = 50.

(cf. figure 1a). As a benchmark, we consider a circular inclusion of porosity θ = 0.7
(cf. figure 3a). The solution of (2.14) is computed numerically using the finite-element
software COMSOL Multiphysics 6.0. We refer to Appendix A for further details about the
numerical solution.

3.1. Constant advection closure
In the constant advection closure problem, we specify the advective velocity in (2.14) as a
constant field (2.18), obtaining (2.20). The solutions for the couples (Mnn, Mtn), (Mnt, Mtt)

are presented in figure 3. To compact the notation, we introduce ǔi = εReL(U/UO)ūO

i
in the term in front of the convective term on the left-hand side of (2.20), the
inertia-driven coupling term with the macroscopic problem. We consider three values of
ǔi, corresponding to the pure diffusive case (ǔi = 0; panels b, e), a case of pure normal
advection (ǔn /= 0 and ǔt = 0; panels c, f ), and a case of normal and tangential advection
(ǔn /= 0, ǔt /= 0; panels d, g). Recirculating zones propagate downstream the inclusion in
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Figure 4. Average hydrodynamic tensor components, obtained by applying (2.15) to a range of constant
advection closure solutions like those presented in figure 3. (a) M̄nn, (b) M̄nt, (c) M̄tn, (d) M̄tt, (e) N̄nn,
( f ) N̄nt, (g) N̄tn, (h) N̄tt.

the direction of the advective flow. Note that the same microscopic behaviour is noticed
for Nij, which satisfies Nij(ǔi) = −Mij(−ǔi), and it is hence not shown.

By applying the averaging operators (2.15) and (2.16) to these fields for ǔi in
the range [−50, 50], we obtain the maps of M̄ij, N̄ij. Figure 4 shows the contours
of M̄ij and N̄ij as functions of ǔi. The off-diagonal components of M̄ij, N̄ij are zero
when ǔi = 0. The ·nt and ·tt components show a strong asymmetry with respect
to ǔn. The permeability M̄nn (figure 4a) is instead symmetric with respect to both
components of ǔi and shows a maximum for ǔi = 0. This suggests that inertia always
decreases the permeability unless both the off-diagonal components are non-zero and
partially compensate for the diminished M̄nn. Similar considerations apply to N̄ij, since
M̄ij(ǔk) = −N̄(−ǔk). To confirm this observation, we propose a comparison of M̄nn
values with theoretical and experimental results from Jensen, Valente & Stone (2014b)
in Appendix D.

We consider now the problem for T and S. We parametrize T and S in terms of the
quantities appearing in the advective term, compacted as ũi = εPeL(U/UO)ūO

i . Figure 5
shows T and S in the pure diffusive case (panels a,d), an advective case with ũn =
100, ũt = 0 (panels b,e) and a case with ũn = ũt = 100 (panels c, f ).

Maps of T̄ are obtained by averaging T using (2.15) and (2.16) for ũi ∈ [−100, 100]
(figure 6). We notice that T̄(ũi, ũt) = T̄(ũn, −ũt) and that the maximum (minimum) of
T̄ (S̄) is attained for a non-zero ũn. This suggests that advection increases the effective
diffusivity T̄ . Similar considerations apply for S fields, which obey S̄(ũi) = −T̄(−ũi).
Eventually, the advective velocity can cause recirculating zones or concentration wakes
downstream of the inclusions, with non-zero off-diagonal components of the tensors even
in the absence of geometrical asymmetry (cf. figure 4b,c, f,g).
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Figure 5. Solute concentration fields within the microscopic domain with different advective velocities ũi
obtained by solving the second two problems in the constant advection closure (2.20) around a circular solid
inclusion. Contours of (a–c) T and (d–f ) S for (a,d) ũn = ũt = 0, (b, e) ũn = 100, ũt = 0 and (c, f ) ũn = ũt =
100 obtained using the constant advection closure approach.
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Figure 6. Average effective diffusivities, obtained by applying (2.16) to a range of constant advection closure
solutions like those presented in figure 5. Contours of (a) T̄ and (b) S̄ as a function of the advection velocity
components ũn, ũt obtained using the constant advection closure approach. (c) A zoom-in on the region where
the maximum and minimum of T̄ (blue) and S̄ (red) are attained.

3.2. Variable advection closure
In the variable advection closure problem, we specify the advective velocity in (2.14) as a
variable field, see (2.19), obtaining (2.21). The solutions for Mij and Nij are presented in
figure 3. The advective term depends on four parameters, Σ̌

U,D
ij = ε2Re2

L(U/UO)Σ
U,D
ij nj

for the hydrodynamic problem and four parameters Σ̃
U,D
ij = ε2PeL(U/UO)Σ

U,D
ij nj for the

advection–diffusion problem (T, S). In figure 7, the effect of Σ̌
U,D
ij is shown for variations

of some sample components of Mij. The application of a non-zero stress component along
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Figure 7. Flow fields within the microscopic domain with different advective velocities Σ̌ij obtained by solving
the first two problems in the constant advection closure (2.21) around a circular solid inclusion. Magnitude
iso-contours and streamlines (red) of (a–e) (Mnn, Mtn) and ( f –j) (Mnt, Mtt) for five different combinations
of Σ̌

U,D
ij . (a, f ) Σ̌

U,D
ij = ε2Re2

LΣ
U,D
ij = 0; (b,g) Σ̌U

nn = 2500, (c,h) Σ̌U
tn = 2500, (d,i) Σ̌D

nn = 2500 and (e, j)

Σ̌D
tn = 2500. For each case, the components of Σ̌

U,D
ij not specified are equal to zero. The variable advection

closure is employed.

a given direction causes the flow to deviate along that direction, eventually developing a
laminar separation bubble downstream (for Σ̌nn with the same sign of the Dirac forcing)
or upstream the inclusion (for Σ̌nn with opposed sign with respect to the Dirac forcing).
By applying the averaging operators (2.15) and (2.16) to Mij and Nij, the iso-levels of
M̄ij, N̄ij are obtained for varying Σ̌

U,D
ij (cf. figure 8). This figure represents a sampling on

a two-dimensional (2-D) sub-manifold of the four-dimensional (4-D) manifold where the
averaged tensors live. Further sub-manifolds are presented in Appendix B for other values
of Σ̌

U,D
ij . The M̄nn and N̄nn terms show symmetry about two axes also in this case, while

M̄ij(Σ̌
U,D
ij ) = −N(−Σ̌

U,D
ij ). The maxima of permeability (M̄nn) are found in the case of

Stokes flow (i.e. balanced Σ̌U

ij and Σ̌D

ij contributions). Slip (M̄tt) has a maximum for values

of Σ̌U
nn close to Σ̌D

nn, but not exactly corresponding to Stokes’ flow.
The variable advection approach applied to the problem for T and S in (2.14) gives

(2.21). Its solution requires the tensors Mij and Nij to be known. For simplicity, we consider
the case of diffusive momentum transport (ReL = 0, panel a, corresponding to M̄nn =
0.05, M̄nn = 0.01, M̄nt = M̄tn = 0 and N̄ij = −M̄ij). The microscopic field T is presented
in figure 9 for different values of Σ̃

U,D
ij . Here, T exhibits a wake directed as the dominant

inertial component for each case. By applying the average operator (2.15) and (2.16), we
obtain the contours of T̄ for Σ̃

U,D
ij ∈ [−50, 50]. Interestingly, in the considered range,

there is a negligible influence of Σ̃
U,D
tn , while Σ̃U,D

nn is dominant in this problem. Similar
considerations apply to S̄, since T̄(Σ̃U,D

nn ) = −S̄(−Σ̃U,D
nn ).

In this section, we presented relevant features of the microscopic flow occurring for
non-negligible inertia. The microscopic solutions depend on the pore geometry and flow
characteristics. A comparison of figures 6 and 10 shows that T depends strongly on ũt but
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Figure 8. Average hydrodynamic tensor components, obtained by applying (2.15) to a range of variable
advection closure solutions like those presented in figure 7. Iso-contours of average tensor component (a)
M̄nn, (b) M̄nt, (c) M̄tn, (d) M̄tt, (e) N̄nn, ( f ) N̄nt, (g) N̄tn, (h) N̄tt for (Σ̌U

nn, Σ̌
U
tn ) ∈ [−2500, 2500], while Σ̌D·n = 0.

The variable advection closure approach is exploited.
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Figure 9. Solute concentration fields within the microscopic domain with different advective velocities Σ̃ij
obtained by solving the second two problems in the variable advection closure (2.21) around a circular solid
inclusion. Iso-contours of the effective diffusivity T computed using the variable advection closure model.
(a) Σ̃

U,D
ij = 0, (b) Σ̃U

nn = 100, (c) Σ̃U
tn = 100, (d) Σ̃D

nn = 100 and (e) Σ̃D
tn = 100. For each panel, the

components of Σ̃
U,D
ij not mentioned are equal to zero.

not on Σ̃
U,D
tn . However, this apparent discrepancy can be explained by considering that not

all points in figure 6 are images of points in figure 10 through (2.17). The range represented
in figure 10 thus corresponds only to a thin zone around the axis ũt = 0 in figure 6.

4. Comparison between full-scale simulations and homogenized model

In this section, we compare the macroscopic solution against simulations of the flow
solved at all scales. We consider a two-dimensional flat membrane composed of circular
inclusions with spacing �/L = ε = 0.1, invested by a uniform stream. The computational
domain is depicted in figure 11. Dirichlet boundary conditions on the velocity
(ux, uy) = (sin α, cos α) are imposed on the bottom and left sides of the domain, while
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Figure 10. Average effective diffusivities, obtained by applying (2.16) to a range of variable advection closure
solutions like those presented in figure 9. Contours of (a–d) T̄ and (e–h) S̄. Each panel is obtained for a different
value of Σ̃

U,D
ij ; (a,e) Σ̃D

nn = Σ̃D
tn = 0, (b, f ) Σ̃D

nn = Σ̃D
tn = 50, (c,g) Σ̃U

nn = Σ̃U
tn = 0, (d,h) Σ̃U

nn = Σ̃U
tn = 50.

The stress tensor components not mentioned in each panel are equal to zero. The variable advection closure
approach is considered.

a Neumann condition Σijnj = 0 is imposed at the top and right sides of the domain. The
no-slip condition ui = 0 is imposed on the surface of the inclusions ∂M. For the solute
concentration c, the Dirichlet condition c = 1 applies on the left side of the domain,
while c = 0 is imposed on ∂M. Zero-flux conditions apply on the external sides of
the domain. The domain decomposition method (Quarteroni 2017) is employed to solve
the macroscopic configuration by splitting the domain into two regions (cf. figure 11b)
connected by the membrane’s homogenized condition (2.17) on C. Continuity of velocity
and stresses are imposed on the fluid–fluid interfaces, identified by the dashed lines
in figure 11(b). The macroscopic simulations are solved iteratively using a fixed-point
scheme:

(i) the macroscopic problem is solved using the Stokes solution;
(ii) the values of ǔi, ũi (for the constant advection closure approach) or Σ̌

U,D
ij , Σ̃

U,D
ij

(for the variable advection closure approach) are sampled along the surface C

cell-by-cell (i.e. by computing their average value in each segment of length � on
C). This additional averaging of the velocity profile aligns with the need to match
the continuous macroscopic solution with a discrete number of microscopic cells
that form the membrane and is asymptotically coherent as long as variations of
the local velocity from the average are of order O(ε2). In the ideal theoretical
limit as ε → 0, the point-wise macroscopic velocity would replace the cell-by-cell
average; however, this scenario is never encountered in real membrane geometries.
We assumed U/UO ∼ 1 in the present computations. However, when U/UO � 1
(like the case of flow purely tangential to the membrane), taking U/UO as the
average macroscopic velocity on the membrane is a cheaper alternative;

(iii) we substitute these values into the microscopic problems in (2.14);
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Figure 11. (a) Full-scale computational domain. Arrows correspond to a Dirichlet boundary condition on
velocity (inlet), and outlet boundary condition corresponds to imposing Σijnj = 0. No slip is applied on the
membrane walls. The origin of the axes is placed at the lowest end of the membrane, and the domain extends
for x1 ∈ [−1.5L, 5.5L] and x2 ∈ [−1.5L, 3.5L]. (b) Purely macroscopic computational domain. The full domain
is separated into an upward and a downward domain by membrane centreline C (red).

(iv) we solve again the macroscopic simulation with the new distribution of microscopic
tensors, constant on each cell of length � and changing discontinuously between cells
to get an updated version of the closure advection to be fed within the microscopic
problems;

(v) we iterate the procedure until convergence.

The convergence criterion is satisfied when the difference between two subsequent
computations in terms of (ui, c) on C is below 1 % of their mean values cell-by-cell. At
each iteration, we perform 1/ε microscopic (since the membrane is made of 1/ε cells of
length �, for a total length of L) and one macroscopic computation, with an averaging step
in between. The comparison between the macroscopic model and the full-scale solution is
performed in terms of averaged values of velocity and concentration on the membrane and
point-wise values of the velocity, pressure and concentration fields far from the membrane.
For simplicity, we compare separately the solvent and solute transport, which corresponds
to considering ReL /= 0, PeL = 0 (§ 4.1) and ReL = 0, PeL /= 0 (§ 4.2), respectively.

4.1. Mass and momentum conservation
In this section, we focus on the solvent flow with ReL = 400, ε = 0.1 and α = 75◦.
In figure 12, we observe a wake developing downstream of each inclusion, forming a
macroscopic wake downstream of the membrane, with parabolic-like velocity profiles
across the openings of the membrane. Figure 13 shows the relative differences in the
fields between the full-scale and homogenized models. The largest discrepancies are found
in the region immediately downstream of the membrane. These discrepancies decrease
from the Stokes to the constant and variable advection closure models (panels a, c and b,
respectively), confirming that the quasi-linear models well capture the flow structures for
non-negligible inertial effects and the variable advection model is a faithful approximation
of the Navier–Stokes solution at the microscopic scale. Figure 14 shows the values of
M̄ij and N̄ij sampled on the membrane. The difference between the values of M̄ij found
using the Stokes and the constant and variable advection models is evident, in particular
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Figure 12. (a,c) Velocity magnitude and (b,d) pressure iso-contours with velocity streamlines superimposed
in the proximity of the membrane for (a,b) a full-scale and (c,d) a variable-advection macroscopic simulation
for α = 75◦, ε = 0.1 and ReL = 400. Black dashes indicate the location of the fictitious interface.

for the off-diagonal components. When advection is considered, the components ·nn and
·tt show a nearly constant value along the membrane which is different from the value
predicted by the Stokes model. A comparison of the velocity fields at the membrane
centreline C is presented in figure 15 and confirms the accuracy observed in figure 13.
We consider also two sampling lines at x1 = ±ε/2, i.e. on the two sides of the interface,
presented in figure 15(c). Pressure, sampled at x1 = ±ε/2, is captured more accurately
by the constant advection and the variable advection models than by the Stokes model.
Figure 16 shows local comparisons on the x2 = 0.5 lines, exhibiting a good agreement
between the full-scale and macroscopic fields far from the membrane.

To assess the robustness of the previous observations, we vary ReL, ε and α, and
quantitatively evaluate the agreement between the full-scale solution and the macroscopic
models via a global error defined as

eg =
√

ēr(||u||)2 + ēr(|p|)2, (4.1)

where ēr is the mean of the point-wise relative error between the considered macroscopic
model and the full-scale solution in the computational domain. Figure 17(a) shows the
errors calculated for several configurations such that ε = 0.1, α ∈ [0◦, 90◦] and ReL ∈
[200, 1000]. Going from Stokes to constant and variable advection models, an overall
decrease of eg is noticed. Figure 17(b) presents the dependence of eg on the velocity at the
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Figure 13. Contours of the relative error of (a–c) velocity magnitude and (d–f ) pressure between the full-scale
solution and the macroscopic models. Panels (a,d) refer to Stokes models, while panels (b,e) and (c, f ) to the
constant and variable advection closure, respectively. Fluid-flow and geometry parameters are α = 75◦, ε = 0.1
and ReL = 400. Colourbar is in log10 er(·)-scale.
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Figure 14. Averaged tensor values (a) M̄nn, (b) M̄nt, (c) M̄tn, (d) M̄tt, (e) N̄nn, ( f ) N̄nt, (g) N̄tn and (h) N̄tt
for ReL = 400, α = 75◦, ε = 0.1 with the Stokes (green line), constant advection closure (blue circles) and
variable advection closure (red squares) problems.

membrane as a function of ε for Re� ≈ εReL = 75. Here, α = 90◦ for all computations.
The error computed for the Stokes and the variable advection model shows nearly an order
of magnitude of difference, with opposite trends as a function of ε (keeping εReL constant).
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Figure 15. (a) Horizontal and (b) vertical velocity and (c) pressure. In panels (a,b), velocity values are sampled
on the membrane centreline (x1 = 0, x2 ∈ [−1, 2]) in the full-scale solution and on the fictitious interface in the
macroscopic simulations. In panel (c), the pressure values are sampled at x1 = ±ε/2 and presented as dotted
and full lines, respectively. Colour code, full-scale solution (black lines); averaged full-scale solution (black
dots); constant (blue) and variable (red) advection closure; Stokes case (green). Configuration parameters are
α = 75◦, ε = 0.1 and ReL = 400.
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Figure 16. (a) Horizontal and (b) vertical velocity and (c) pressure sampled along a line at x2 = 0.5 and
x1 ∈ [−1, 2]. The same colour code and configuration parameters as in figure 15 are used.

An additional test case, the flow in a channel vertically split by a membrane, is considered
in Appendix C.

4.2. Solute flux conservation
We consider the case of PeL > 0. To increase PeL, we decrease the diffusivity D while ReL
remains negligible. This allows us to assess the reliability of the model independently of
the solvent flow approximation. We consider a set-up with α = 90◦, ε = 0.1 and PeL =
1000. The iso-contours of the flow fields solved at all scales are presented in figure 18.
The velocity field (panel a) shows a small wake downstream of the membrane. The
macroscopic flow does not present a re-circulation region, coherent with the hypothesis
of negligible inertia. Conversely, the effect of the finite Péclet number is evident in panel
(b), where the solute concentration iso-levels are aligned with the solvent flow streamlines.
The T̄ and S̄ values found in the present flow configuration using the different models are
collected in figure 19. The values of T̄ and S̄ found using the Stokes and constant advection
model are quite similar, as opposed to those obtained using the variable advection model.

The variable advection model shows larger differences with respect to the Stokes
solution compared with those with the constant advection closure model. We present a
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Figure 17. (a) Global error eg defined in (4.1) for macroscopic simulations having ε = 0.1, and α ranging from
α = 0◦ to 90◦ and ReL from 200 to 1000. The values of α are represented using the colour code (legend in panel
a), while the marker indicates the type of macroscopic model used to compute that data point (triangles for
Stokes, squares for constant advection closure and circles for variable advection closure). (b) eg for the Stokes
and variable advection closure model for different values of ε. All simulations have Re� = 75 and α = 90◦.
A constant value of Re� = 75 has been realized by choosing the (ε, ReL) couples as (0.1, 750), (0.05, 1500)

and (0.025, 3000). Same marker code as for panel (a).
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Figure 18. (a,c) Velocity magnitude and (b,d, red lines) concentration iso-contours with velocity streamlines
for (a,b) a full-scale and (c,d) a variable-advection macroscopic solution at ReL = 0, PeL = 1000, α = 90◦ and
ε = 0.1. Black dashes indicate the location of the fictitious interface.
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Figure 19. Values of (a) T̄ and (b) S̄ along the membrane for Stokes (green line), constant advection closure
(blue circles) and variable advection closure (red squares). The flow parameters are α = 90◦, ε = 0.1, PeL =
1000 and ReL = 0.
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Figure 20. Comparison between the values of concentration c sampled (a) on the membrane centreline C or
(b) on the membrane axis, corresponding to a line at x2 = 0.5 and x1 ∈ [−1, 2]. The same colour coding as in
figure 15 has been adopted. The flow parameters are α = 90◦, ε = 0.1, PeL = 1000 and ReL = 0.

comparison of the concentration values on the membrane (x1 = 0) and its axis (x2 = 0.5)
in figure 20. The variable advection closure approach shows a good agreement with the
full-scale solution both on the membrane (panel a) and in the far-field, represented by
the values of solute concentration sampled on the membrane axis (panel b). The constant
advection closure offers little improvement in terms of accuracy, compared with the Stokes
case. We conclude that the maximum accuracy for the case of finite Péclet number is
found using the variable advection closure, in analogy with the non-zero Reynolds number
case. The quasi-linear homogeneous model is thus more accurate than the Stokes model.
In addition, the variable advection approach shows a better agreement with full-scale
simulations than the constant advection approach. However, we observe that the new
macroscopic approximations are computationally more expensive than the Stokes model.
Models of engineering interest used in preliminary design phases need to provide a fast and
accurate output which can be used as a starting point for more expensive computations.
In the following section, we discuss the trade-off between accuracy and computational
efficiency, a key aspect of industrial flow modelling.
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Figure 21. Comparison between the (a) averaged full-scale solution normal velocity, (b) tangential velocity
and (c) pressure. Velocity components are sampled on the membrane centreline C in the full-scale solution and
the fictitious interface in the macroscopic cases (x1 = 0, y ∈ [0, 1]). Pressure is sampled on two lines parallel
to C and distant ±ε/2 (dotted and full lines, respectively). The colour code is common to all panels: black
dots for the cell-averaged values of the full-scale solution, green lines for the Stokes model, red lines for the
variable advection closure unclustered model and blue lines for the variable advection closure, clustered model.
The flow and geometry parameters are α = 60◦, ReL = 700, ε = 0.1.

5. Towards data-driven homogenization: improving the computational efficiency
through a central-value approximation

The constant and variable advection closure models require the solution of (2.14) in each
microscopic cell forming a single membrane, i.e. 1/ε times at each iteration (or N/ε for
N membranes whose inclusions have spacing ε). This leads to a loss in computational
efficiency compared with the Stokes model, which requires only one microscopic solution
without any iterative procedure. In the following, we propose a strategy to reduce the
computational cost of the macroscopic solution focusing on the previously validated
variable-advection approach. To avoid overloading this article, we consider only the
hydrodynamic problem. However, the efficient solution strategy proposed in this section
applies also to the constant advection model and advection–diffusion equations.

5.1. Computing a single membrane using its central values

The quantities P = (ǔi, ũi, Σ̌
U,D
ij , Σ̃

U,D
ij ) affect the values of M̄ij, N̄ij, T̄ and S̄. We notice

that the dispersion of M̄ij and N̄ij observed in figure 14 is small (less than 5 % of the
mean membrane values for the three dominant components (M̄nn, N̄nn and M̄tt) of the
M̄ij and N̄ij tensors). For the simple geometry presented in figure 11, the central value
of this dispersion roughly corresponds to the values of P evaluated at the membrane’s
centre. We can thus employ the values of P reached in the middle of the membrane in the
evaluation of M̄ij, N̄ij, T̄ and S̄. To assess the validity of this approach, we consider the case
α = 60◦, ReL = 700. Figure 21 presents a comparison of the cell-averaged values of the
solvent velocity and pressure on the membrane obtained in the full-scale solution and using
the Stokes and variable advection closure models, clustered (i.e. obtained using a single
microscopic computation for all cells at each iteration) and unclustered (i.e. using one
microscopic computation for each cell at each iteration). Figure 22 compares the solvent
flow fields sampled along the axis of the membrane. In both figures 21 and 22, the variable
advection closure clustered and unclustered versions predict very similar values of the flow
fields. Average relative differences between the two approaches are of the order of 0.05ε,
well below the accuracy of the homogeneous model (O(ε)). In terms of computational
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Figure 22. Comparison between flow field values of (a) normal velocity, (b) tangential velocity and
(c) pressure sampled along the axis of the membrane, x2 = 0.5, x1 ∈ [−1, 2]. The same colour code as in
figure 21 is adopted. The flow and geometry parameters are α = 60◦, ReL = 700, ε = 0.1.

cost, the clustered version requires only one computation per iteration (similar to the
Stokes solution), while the unclustered one requires 1/ε.

5.2. Clustering the cells
In the previous paragraph, the centre of the membrane was used to compute one set
of approximate values of the tensors M̄ij and N̄ij in place of 1/ε (i.e. one for each
microscopic cell). Flow and geometry configurations of industrial interest are generally
more complicated. We introduce a clustering algorithm in our macroscopic simulation
workflow to automate the choice of a subset of flow conditions (i.e. of the P quantities)
which can approximate the real, cell-wise distribution of P . Given a set of length N of
the flow quantities P , we divide P into K ≤ N clusters in which each element belongs
to the cluster with the nearest centroid. We thus represent the cluster using its centroid.
Several algorithms for splitting datasets into clusters have been proposed in the literature,
see Bishop (2006) for a review. Testing their relative performance in the present case goes
beyond the scope of this work. For this reason, as an example, we choose the K-Means++
(Arthur & Vassilvitskii 2007), implemented in MATLAB 2023a. This algorithm splits a
given set of data into a user-defined number of clusters according to a notion of distance,
Euclidean in the present case. The optimal number of clusters can be found using some
heuristic procedures, like the ‘elbow rule’ (Tibshirani, Walther & Hastie 2001), but the
cluster distribution is sufficiently evident in this case that the iterative procedure can be
avoided. Figure 23(a) shows the considered flow configuration. It consists of three identical
membranes composed of circular inclusions with spacing ε = 0.1, immersed in a free
stream at ReL = 500. Velocity magnitude iso-levels and velocity streamlines are presented
in panel (a). On the top and bottom sides of the domain, a no-slip boundary condition is
applied. The leftmost membrane is fully exposed to the flow, as well as the top portions of
the other two membranes, while the bottom portions experience milder flow conditions.
Panel (b) shows that the data are clustered in three or four blocks, corresponding to the
different flow conditions at the cell level. By computing the microscopic cases using the
Σ

U,D
ij of each cluster centroid, we solve the corresponding macroscopic computation.

A comparison of the velocity at the membranes in the full-scale solution and the
clustered variable advection closure macroscopic solution is presented in figure 24. The
prediction based on the four clusters is satisfactory compared with the full-scale solution,
with minor discrepancies only in the tangential velocity of the red cluster. In terms of
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Figure 23. (a) Contours of velocity magnitude and streamlines (red) in the full-scale solution for α = 90◦,
ε = 0.1 and ReL = 500. Each of the three identical membranes contains ten circular solid inclusions of porosity
0.7 and spacing ε. Inclusions 1, 11 and 21 are located in (0, 0), (L, 0.5L) and (2L, L), respectively. The domain
extent is x1 ∈ [−1.5L, 5.5L] and y ∈ [−1.5L, 3.5L]. No slip is imposed on the top and bottom sides of the
domain, while (u1, u2) = (1, 0) is imposed on the leftmost side and Σijn; j = 0 on the rightmost side of the
domain. Cells are numbered from bottom to top and left to right (red text). (b) A possible clustering choice
for the cells on the membrane obtained using the MATLAB k-Means algorithm. Each cluster is visualized in a
different marker and colour. Black markers represent the centroids of each cluster. Here, ΣD

tn is close to zero,
thus it does not affect the results and it is hence not shown. Black numbers refer to corresponding cells in
panel (a).

required computational resources, on a laptop with one INTEL i9-10900HK CPU (8 cores,
2.40 GHz) and 32 GB of RAM, a microscopic variable advection closure simulation has a
run-time of up to 3 min, while a macroscopic simulation takes approximately 1 min. The
clustering step proposed in this section has reduced the number of microscopic problems
from 30 to 4 cases per iteration, which translates into a microscopic iteration step 7.5 times
faster. In general, if we suppose that the number of iterations and the number of clusters
at each iteration are O(1), while the number of microscopic cases to run at each iteration
without clustering is O(1/ε), then clustering makes the iterative procedure O(1/ε) times
faster. For the cases proposed in this work, a few iterations were needed for convergence:
for εReL of order 10, generally, 1−2 iterations are sufficient, while for εReL of order 100,
we need 5–6 iterations.

Concerning the case proposed in figure 23, this case reaches a steady state in
approximately 100 time units. In a laptop with one INTEL i9-10900HK CPU (8 cores,
2.40 GHz) and 32 GB of RAM, the full-scale simulation (∼270k degrees of freedom,
kDOFs) has a runtime of approximately 310 s. The runtime of the macroscopic simulation
sums up as follows: approximately 5 s for a single initial Stokes microscopic problem,
80 s for the initial variable advection microscopic problem (∼140 kDOFs), initialized
with the Stokes solution, approximately 35 s for each of the following variable advection
microscopic problems, initialized with the previous solution. A single macroscopic
solution (∼55 kDOFs) takes approximately 10 s. The problem requires three iterations
(initialization included) and can be accurately approximated with four clusters for the
microscopic problems. The total runtime for the macroscopic simulation is 5 s + 80s +
2 × 4 × 35 s + 3 × 10 s = 395 s. In the present case and from a total runtime point
of view, using the macroscopic model does not imply a substantial computational gain.
However, we should consider that:
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Figure 24. (a–c) Normal and (d–f ) tangential velocity components on the centreline of each membrane. Black
dots represent cell-averaged values of the full-scale solution, green lines represent the unclustered variable
advection closure model and red lines are the clustered variable advection closure model. (g–i) Pressure values
sampled at ±ε/2 from each centreline in the full-scale solution (full black line) and corresponding values
for the unclustered variable advection closure model (green) and clustered variable advection closure (red)
sampled on the corresponding sides of the fictitious interfaces. Panels (a,d,g) refer to the leftmost membrane,
panels (b,e,h) to the central one and panels (c,f ,i) to the rightmost membrane in figure 23(a).

(i) the macroscopic simulation is ε-insensitive, i.e. its computational cost does not
depend on the ratio between the pore and the membrane scales, whereas the
full-scale simulation depends mainly on ε, since it requires resolving all details of
the microstructure;

(ii) in the macroscopic simulation, there are no mesh expansion-ratio-related problems,
whereas it can be the case for the full-scale simulation, in particular, when ε is low
or the microstructure has a non-trivial shape;

(iii) the RAM usage in the macroscopic case is reduced compared with the full-scale
simulation since the iterative procedure splits the microscopic and macroscopic
simulations;

(iv) most of the difference in runtime between the macroscopic and full-scale simulations
stems from the microscopic coupling step. Creating a database of geometries and
advective-velocity conditions or finding a surrogate model for them could further
reduce the computational cost of the macroscopic simulation, making it of the order
of the single macroscopic step in the coupling procedure.

These factors suggest that there is a gain in computational effort in using the present model
when: (i) the scale separation is extreme (i.e. small ε); (ii) the details of the microstructure
require a non-negligible effort in preparing the mesh; (iii) the advective velocities are close
to some representative mean value; and (iv) the RAM usage is limited. An even more
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significant gain is expected with surrogate models based on a large dataset of microscopic
simulations.

6. Conclusion and perspectives

In this work, we developed a quasi-linear model to predict the solvent flow and diluted
solute transport across thin permeable membranes in the case of non-negligible inertia at
the pore scale. We exploited the separation of scales between the membrane and the pore
size to decompose the mathematical problem into purely macroscopic equations and a
microscopic problem which requires parametric inputs from the macro-scale stemming
from the flow inertia at the pore scale. The presence of inertia therefore requires the
approximation of the advective terms in the equations for the solvent flow and solute
transport. An iterative procedure is employed to feed the microscopic problems with
the macroscopic quantities included in the inertial terms within the Navier–Stokes and
advection–diffusion equations. The macroscopic solution converges in an average sense to
the fully resolved direct numerical simulations on the membrane and in the far-field.

Our work aims at extending the macroscopic, homogenized, description of filtration
flows across permeable membranes towards practical applications when the Reynolds and
Péclet numbers at the pore scale cannot be neglected. A relevant improvement in accuracy
compared with the inertia-less version is found, for microscopic Reynolds number of
order 10. In addition, preliminary faithful results can be obtained through machine
learning clustering algorithms. This approach could offer a beneficial trade-off between
efficiency and accuracy for large systems of industrial interest, such as filters or fuel
cells (Cullen et al. 2021; Wang et al. 2023). In typical applications involving microfluidic
circuits, flow inertia is either disregarded or considered a detrimental effect since it may
affect the low-Reynolds-number hydrodynamic analytical predictions. However, our model
establishes a specific relation between permeability properties and flow inertia. Hence,
filtration properties can be finely tuned by selecting the flow rate within microfluidic
channels, using the Reynolds and Péclet numbers as control parameters, and thus become
a design parameter in addition to geometrical properties. As a matter of fact, for the same
geometry, one can obtain a broad spectrum of filtration properties by simply changing the
flow rate. Flow inertia thus becomes an opportunity to extend the working conditions of
filtering systems.

This work could be extended in several ways. First, in the present form, the model
cannot be applied to the case of macroscopic unsteady configuration triggered by
pore-scale hydrodynamic instabilities (Nicolle & Eames 2011). To extend the model
towards larger Reynolds numbers, space–time averages need to be introduced and
data-aided physics-informed microscopic models are required to efficiently handle the
micro–macro coupling. The quasi-linear iterative strategy developed in the present paper
may open the door to the modelling of other, low-Re, nonlinear phenomena, such as the
variation of viscosity with the solute concentration and osmotic or phoretic flows through
semi-permeable structures, which typically present a strong nonlinear coupling between
the solvent velocity and the solute concentration (Marbach, Yoshida & Bocquet 2017).
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Appendix A. Computational details

The microscopic and macroscopic equations and the full-scale solution presented in § 4
have been solved numerically using the finite-element solver COMSOL Multiphysics
6.0. The coupling between the microscopic and the macroscopic problems is automated
thanks to the MATLAB Livelink extension. The spatial convergence of the mesh has
been tested for each model and flow configuration. The same criterion has been used for
the microscopic calculations. All simulations are performed using a Taylor–Hood P2-P1
scheme for coupling velocity and pressure and a P2 scheme for the solute concentration.
The deriving linear systems are solved using MUMPS and a time marching procedure is
exploited to find the stationary solution. We present hereafter the results of the convergence
study for ε = 0.1, ReL = 500, α = 90◦ and circular inclusions with porosity 0.7 for the
macroscopic and full-scale simulations. We start with a mesh whose typical size is:

(i) 0.01L on the macroscopic interface and 0.045L far from it for the macroscopic
problem (corresponding to K = 1 in figure 25a);

(ii) 0.0015L on the solid boundary and 0.05L far from it for the full-scale problem
(corresponding to K = 1 in figure 25b);

(iii) 0.04� near the solid inclusion and 0.5� far from them for the microscopic problems
(corresponding to K = 1 in figure 1),

and explore a range of K values to verify that the results are mesh-independent, where
K is a parameter dividing the initial mesh sizing for each simulation. We consider the
mesh converged when the force magnitude F = ‖ ∫

C
Σijnj dS‖ applied by the fluid on the
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Figure 26. Microscopic tensors average values as a function of the domain amplitude w [�]. The green
shaded zone corresponds to a range of ±1 % about the tensor value obtained at maximum domain amplitude.

fictitious interface C in the macroscopic simulation and on ∂M in the full-scale simulation
reaches an asymptotic value and the relative error between two F values sampled at two
subsequent values of K is less than 0.2 %. The converged macroscopic mesh has 91 304
elements and the full-scale one has 237 900, both corresponding to K = 1 (cf. figure 25).
The parameters of the microscopic case are Σ̌U

ij nj = 104 and Σ̌D

ij nj = 0. We consider the
mesh converged when the relative difference between the non-zero values of M̄ij, N̄ij is
less than 1 % for two subsequent values of K. The final mesh contains 12 780 elements,
corresponding to K = 10 in table 1. We also tested the convergence of the microscopic
problems concerning changes in the domain width in the normal direction, w. We present
a typical convergence study for Σ̌U

nn = Σ̌U
tn = 104 and Σ̌D

nn = Σ̌D
tn = 0 in figure 26. The

green shaded zone corresponds to a range of ±1 % about the value at maximum amplitude
w of each tensor component and is used as a threshold for convergence. Only the relevant
tensor components M̄nn, M̄nt, N̄nn, N̄nt and N̄tt have been used to test the convergence of
the tensors with respect to the domain width. A domain of length 9� represents a good
trade-off between accuracy and computational cost.

Appendix B. Further variable advection closure maps

Figures 27–31 present further 2-D sub-manifolds of the 4-D manifold of M̄ij and N̄ij values
found by solving the variable advection closure microscopic problem (2.21).

Appendix C. Flow inside a channel obstructed by a membrane

Zampogna & Gallaire (2020) proposed several macroscopic validation cases, among
which is a 2-D channel obstructed by the presence of a membrane on its full section. We
consider a similar test case, a 2-D channel of dimensions 7L × 1L, obstructed by a porous
membrane constituted by 10 circular solid inclusions of porosity θ = 0.7. Figure 32 shows
the corresponding pressure fields and streamlines in (a) the full-scale, (b) macroscopic
obtained using Stokes approximation and (c) macroscopic obtained with the variable
advection closure cases. Panels (d,e) show the average velocity components sampled along
C. The problem is dominated by mass conservation since the flow is forced to cross the
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membrane. The velocity on the membrane using the Stokes and the variable advection
closure models is predicted with similar accuracy. However, the pressure fields show major
differences upstream of the membrane, confirming the superior accuracy of the variable
advection closure model with respect to the Stokes model.
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Appendix D. Comparison between microscopic constant advection closure solutions
and experimental data

In § 3.1, we observed that the permeability M̄nn decreases as the flow inertia within the
pore increases. In this section, we compare the theoretical model of Jensen et al. (2014b)
and the experimental results of Johansen (1930) with the constant advection closure model
prediction. Indeed, the latter allows for a direct comparison since the flow inertia is
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tn , while Σ̌D

nn = 0 and Σ̌D
tn = −2500.

expressed in terms of average velocity (or microscopic Reynolds number) across the pore.
Starting from the Stokes flow solution across a circular pore, Jensen et al. (2014b) proposed
the following empirical model for the normal flow of a viscous fluid across a periodic, thin,
porous membrane, in the presence of inertia:

q̂
�p̂

= â3

3μ

[
8

3π

t̂
â

− G
(

â
�

)3

+ φ(Repore)

3

] , (D1)

where q̂ is the pore flow rate, �p̂ is the pressure drop across the membrane, t̂ is the
membrane thickness, â is the pore radius, � is the pore array centre-to-centre distance and
φ = 3 + (Repore − ReT

pore)/π is a term representing the inertial effects. The term ReT
pore

is a parameter representing the transition between the inertia-less and inertial regime in
the pore: Jensen et al. (2014b) obtained a value of ReT

pore = 4 by fitting from experimental
data. In addition, G is a coefficient that represents the effect of the pore arrangement on the
membrane (for a square array of pores, the authors suggest G = 1.9) and Repore = ρûa/μ

(û is the pore average velocity). Non-dimensionalizing (D1) with the inner scales, we get

q
�p

= a3

3
[

8
3π

t
a

− 1.9(a)3 + φ(Repore)

3

] . (D2)

As a matter of fact, q/�p = a3/φ(Repore) is the classic Darcy permeability term which,
in our work, corresponds to M̄nn. The parameters for the constant advection closure model
(2.20) in this case are Repore = (a)Re� and U = (1, 0, 0) (pure normal advection). The
considered pore has a non-dimensional radius a = 0.25 and non-dimensional thickness
t = a/2 (see geometry in figure 33a). A comparison between the model of Jensen et al.
(2014b) and our result is reported in figure 33(a) for a square array of pores in terms
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Figure 32. Flow across a membrane obstructing a 2-D channel at ReL = 400. Pressure contours and
streamlines for (a) the full-scale, (b) macroscopic with Stokes approximation and (c) macroscopic with variable
advection closure models. (d) Horizontal and (e) vertical average velocity components on the membrane:
full-scale (black), macroscopic with Stokes (green) and macroscopic with the variable advection closure model
(red). ( f ) Pressure sampled on a line crossing the whole domain at x2 = 0.5: full-scale (black), macroscopic
with Stokes (green) and macroscopic with the variable advection closure model (red). The original domain is
7L × 1L wide, but here we focus on the flow near the membrane.

of permeability. Additionally, we isolate the effect of inertia by considering φ(Repore) −
φ(Repore = 0) in figure 33(b). To compute this term from M̄nn and without any fitting
coefficient, we start from (21) of Jensen et al. (2014b) and non-dimensionalize, obtaining

φCA(Repore) = a3

M̄nn(Repore)
. (D3)

Jensen et al. (2014b) suggested that the effect of inertia φ in a pure normal flow can be
modelled as a linear function of the pore Reynolds number of slope 1/π in the inertial
regime (i.e. Repore > ReT

pore = 4), which well agrees with our predictions. Furthermore,
the comparison with the experimental data of Johansen (1930) in figure 33(b) depicts a
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Figure 33. (a) Permeability coefficient and (b) inertial coefficient φ as a function of the pore Reynolds number
Repore. We compare the theoretical prediction obtained using (D2) (black), the constant advection closure model
(blue) and the experimental data of Johansen (1930) (magenta). The inset in panel (a) shows the pore geometry.

good agreement also in terms of actual values of φ. We conclude by noting that our model
is also able to capture the smooth transition from the Stokes regime to the inertial one.
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