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Correction to a Theorem on Total Positivity

Carl Johan Ragnarsson, Wesley Wai Suen, and David G. Wagner

Abstract. A well-known theorem states that if f (z) generates a PFr sequence then 1/ f (−z) generates a

PFr sequence. We give two counterexamples which show that this is not true, and give a correct version

of the theorem. In the infinite limit the result is sound: if f (z) generates a PF sequence then 1/ f (−z)

generates a PF sequence.

1 The Bad News

Theorem 1.2 in Chapter 8 of Karlin’s book [2] implies the following:

Theorem A Let f (z) = 1 +
∑∞

n=1
anzn and g(z) = 1 +

∑∞

n=1
bnzn be power series

with real coefficients such that g(z) = 1/ f (−z). For any positive integer r, the Toeplitz

matrix of f is totally positive up to order r if and only if the Toeplitz matrix of g is totally

positive up to order r.

The bad news is that Theorem A is false. In the limit r → ∞ the result is sound,

and appears in work by Schoenberg et al. in the early 1950s [1, 4, 5]. We consider the

possible source of error at the end of this section, but first let us review the definitions.

For a power series f (z) =
∑∞

n=0
anzn, the Toeplitz matrix of f is the infinite matrix

T[ f ], indexed by pairs of integers, with entries

T[ f ]i j :=

{

a j−i if j − i ≥ 0,

0 if j − i < 0.

An infinite matrix M is totally positive up to order r when every minor of M of order

at most r is nonnegative. This condition is abbreviated TPr. If M is TPr for all r then

M is totally positive, abbreviated TP.

The matrix T[ f ] is TP1 if and only if the coefficients of f (z) are nonnegative. If

T[ f ] is TP2 then the sequence of coefficients a0, a1, . . . has no internal zeros, i.e., if

0 ≤ h < i < j and aha j 6= 0, then ai 6= 0. Also, if T[ f ] is TP2 then the sequence

of coefficients a0, a1, . . . is logarithmically concave, i.e., if j ≥ 1 then a2

j ≥ a j−1a j+1.

Nonnegativity of the remaining 2-by-2 minors of T[ f ] follows from these two con-

ditions. That is, the Toeplitz matrix T[ f ] is TP2 if and only if the sequence of coeffi-

cients a0, a1, . . . is nonnegative, has no internal zeros, and is logarithmically concave.
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Our first counterexample is the polynomial f (z) = 1 + 4z + 3z2 + z3. By the

preceding paragraph, one sees easily that T[ f ] is TP2. Elementary calculation with

linear recurrence relations yields

g(z) =
1

1 − 4z + 3z2 − z3
= 1 + 4z + 13z2 + 41z3 + 129z4 + 406z5 + · · · .

Since 1292 − 41 · 406 = −5 < 0, the Toeplitz matrix T[g] is evidently not TP2.

Theorem A is false. With hindsight, one notices that the coefficients of f (z) = 1 +

z + 2z2 are nonnegative, but that

g(z) =
1

1 − z + 2z2
= 1 + z − z2 − 3z3 − z4 + 5z5 + · · ·

has negative coefficients. Thus, T[ f ] is TP1 while T[g] is not TP1.

The approach of Schoenberg et al. [1, 4, 5] to the r → ∞ limit of Theorem A

proceeds via Jacobi’s theorem on complementary minors of inverse matrices. Assume

that T[ f ] is TP, and let M be a k-by-k submatrix of T[g]. Then M is contained in a

suitably large n-by-n principal submatrix B of T[g] supported on consecutive rows

and columns. Let A be the corresponding principal submatrix of T[ f ]. Multiplying

every row and column of B with even index by −1, we obtain a matrix B ′ such that

AB ′
= I. Both A and B ′ have determinant one. Let N be the (n − k)-by-(n − k)

submatrix of A supported on rows and columns complementary to those supporting

M in B. Application of Jacobi’s theorem and careful accounting for signs shows that

det(M) = det(N). Since T[ f ] is assumed to be TP, this shows that T[g] is TP.

This argument breaks down if T[ f ] is merely assumed to be TPr since the value

of n required above can be strictly larger than r + k, in which case we lose control

over the sign of the (n − k)-by-(n − k) minor det(N) of T[ f ]. This seems to be the

problem in [2].

2 The Good News

The good news is that Theorem A can be fixed.

To do this we need a few facts about symmetric functions; see Macdonald [3]

for details. The ring Λ of symmetric functions consists of all formal power series of

bounded degree in independent commuting indeterminates x1, x2, . . . that are in-

variant under all permutations of the indeterminates. In particular, for n ≥ 1 the

n-th elementary symmetric function is

en :=
∑

1≤i1<i2<···<in

xi1
xi2

. . . xin

and the n-th complete symmetric function is

hn :=
∑

1≤i1≤i2≤···≤in

xi1
xi2

. . . xin
.
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Let E(t) := 1 +
∑∞

n=1
entn and H(t) := 1 +

∑∞

n=1
hntn be the generating series for

these sequences. Formally, e1, e2, . . . and h1, h2, . . . can be regarded as indetermi-

nates that are algebraically independent over the field Q of rational numbers, except

for the single relation E(t) = H(−t)−1. By means of this relation one can determine

each en as a polyomial in the hn’s, and conversely. The indeterminates {hn} remain

algebraically independent over Q , as do the indeterminates {en}. The ring Λ is a

polynomial ring with coefficients in Q over either set of indeterminates {hn} or {en}.

Since the indeterminates {hn} are algebraically independent and generate Λ, a

homomorphism ϕ : Λ → R from Λ to another ring R is determined by its sequence

of values {ϕ(hn)}. For our application we only need this fact when R = R is the real

field. A real power series f (z) = 1 +
∑∞

n=1
anzn determines such a homomorphism

ϕ f : Λ → R by ϕ f (hn) := an. Notice that if g(z) = 1 +
∑∞

n=1
bnzn is such that

g(z) = 1/ f (−z) then ϕ f (en) = bn and ϕg(en) = an.

The set of all integer partitions, partially ordered by inclusion of Ferrers diagrams,

is called Young’s lattice and denoted by Y. For µ ≤ λ in Y there is a symmetric

function sλ/µ called a skew Schur function. Every skew Schur function can be indexed

by a pair of partitions in Y such that:

(i) µ ≤ λ,

(ii) µ has strictly fewer parts than λ,

(iii) the largest part of µ is strictly smaller than the largest part of λ.

We will denote this relation by µ ≺ λ in Y. The formulae we need are the Jacobi–

Trudy formula and its dual form:

sλ ′/µ ′ = det(eλi−i+ j−µ j
) and sλ/µ = det(hλi−i+ j−µ j

).

The order of these determinants is the number of parts of λ, and if j exceeds the

number of parts of µ, then µ j := 0. The notation λ ′ denotes the partition conjugate

to λ. If f (z) and g(z) are real power series such that g(z) = 1/ f (−z), then

ϕ f (sλ/µ) = ϕg(sλ ′/µ ′) and ϕg(sλ/µ) = ϕ f (sλ ′/µ ′).

Consider the submatrix M of T[ f ] supported on rows {i1 < i2 < · · · < ir} and

columns { j1 < j2 < · · · < jr}. If jk < ik for any 1 ≤ k ≤ r then det(M) = 0, so

we may assume that jk ≥ ik for all 1 ≤ k ≤ r. If j1 = i1 or jr = ir then det(M)

reduces by Laplace expansion to a smaller minor of T[ f ]. Thus we may assume as

well that j1 > i1 and jr > ir . A minor satisfying all these conditions is called an

essential minor of T[ f ]. It is clear that T[ f ] is TPr if and only if every essential minor

of T[ f ] of order at most r is nonnegative.

Every essential minor of T[ f ] has the form ϕ f (sλ/µ) = det(aλi−i+ j−µ j
) for some

µ ≺ λ in Y. To see this, let det(M) be an essential minor of T[ f ] supported on rows

{i1 < i2 < · · · < ir} and columns { j1 < j2 < · · · < jr}. For each 1 ≤ k ≤ r let

λk := jr − ik + k − r. The inequalities λ1 ≥ · · · ≥ λr > 0 are easily seen, so that

λ is an integer partition with r parts. For each 1 ≤ k ≤ r let µk := jr − jk + k − r.

One can check that µ is an integer partition with at most r− 1 parts, that µ ≺ λ in Y,

and that det(M) = det(aλi−i+ j−µ j
). This construction can be reversed, so that every
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ϕ f (sλ/µ) is an essential minor of T[ f ]. In this way the skew Schur functions can be

regarded as generic essential Toeplitz minors.

The order of the minor ϕ f (sλ/µ) of T[ f ] is the number of parts of λ. This implies

the following: (i) the Toeplitz matrix T[ f ] is TPr if and only if ϕ f (sλ/µ) ≥ 0 for all

µ ≺ λ in Y for which λ has at most r parts. Similarly, (ii) the Toeplitz matrix T[g]

is TPr if and only if ϕg(sλ/µ) ≥ 0 for all µ ≺ λ in Y for which λ has at most r parts.

If g(z) = 1/ f (−z) then, since ϕg(sλ/µ) = ϕ f (sλ ′/µ ′), condition (ii) is equivalent to:

(iii) the Toeplitz matrix T[g] is TPr if and only if ϕ f (sλ ′/µ ′) ≥ 0 for all µ ≺ λ in

Y for which λ has at most r parts. Or, in other words, (iv) the Toeplitz matrix T[g]

is TPr if and only if ϕ f (sλ/µ) ≥ 0 for all µ ≺ λ in Y for which λ has largest part

at most r. Comparing (i) and (iv) we see that the two conditions in Theorem A are

closely related, but not equivalent.

Interpreting ϕ f (sλ/µ) as a minor of T[ f ], bounding the number of parts of λ
corresponds to bounding the order of the minor. What corresponds to bounding

the largest part of λ? For the submatrix M of T[ f ] supported on rows {i1 < i2 <
· · · < ir} and columns { j1 < j2 < · · · < jr}, define the level of M to be ℓ :=

jr − i1 + 1− r. The level of a minor of T[ f ] is the level of the submatrix of which it is

the determinant. The Toeplitz matrix T[ f ] is totally positive up to level ℓ when every

minor of T[ f ] of level at most ℓ is nonnegative. This condition is abbreviated TP ′
ℓ. If

T[ f ] is TP ′
ℓ for all ℓ then T[ f ] is totally positive, TP.

Theorem B Let f (z) = 1 +
∑∞

n=1
anzn and g(z) = 1 +

∑∞

n=1
bnzn be power series with

real coefficients such that g(z) = 1/ f (−z). For any positive integer r, T[ f ] is totally

positive up to level r if and only if T[g] is totally positive up to order r.

Notice that in the limit as r → ∞ we get the equivalence: T[ f ] is TP if and only

if T[g] is TP. This is the most important consequence of Theorem A in the literature,

and it is a huge relief that it survives.
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