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SUMMARY

This study evaluates the usefulness of spatio-temporal statistical tools to detect outbreaks using
routine surveillance data where limited epidemiological information is available. A dataset from
2002 to 2007 containing information regarding date, origin, source and serotype of 29 586
Salmonella isolates from Thailand was analysed. Data was grouped into human and non-human
categories and the analysis was performed for the top five occurring serovars for each year of the
study period. A total 91 human and 39 non-human significant spatio-temporal clusters were
observed, accounting for 11% and 16% of the isolates, respectively. Serovar-specific associations
between human and non-human clusters were also evaluated. Results show that these statistical
tools can provide information for use in outbreak prevention and detection, in countries where
only limited data is available. Moreover, it is suggested that monitoring non-human reservoirs
can be relevant in predicting future Salmonella human cases.
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INTRODUCTION In a globalized world with constant movement of
people, animals and goods, the importance of moni-
toring infectious diseases is growing. Alert systems,
able to detect changes in disease trends and risk fac-
tors as soon as possible, are essential to allow quick
control measures and prevent outbreaks and epi-
demics [0, 7]. One of the biggest challenges when
developing these tools is how to handle data limit-
ations. Surveillance datasets are often hampered by
the lack of sufficient quality data and confounded by
multiple human and environmental interactions.
Determining the sources of the infection of salmon-
ellosis is often done retrospectively using clinical

Salmonella is a major cause of human gastroenteritis
and bacteraemia in both the industrialized and devel-
oping world, with most frequent cases being food-
borne infections [1, 2]. Although Salmonella serovars
Typhimurium and Enteritidis are the most common
causes of human salmonellosis worldwide, other sero-
vars have been reported to be more prevalent in some
regions, e.g. S. Stanley and S. Weltevreden that are
very common in South East Asia [3-5].
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case information. To develop efficient methods for
prospective surveillance it is fundamental not only to
understand the mechanisms of infection development
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and spread but also survey the more probable sources
of infection. However, monitoring of the frequent
reservoirs for Salmonella is, in most countries, only
based in sporadic sample collections rather than in
focused structured surveillance programmes.

Statistical scans are a mathematical tool commonly
used in outbreak detection and evaluation from cancer
to infectious diseases including Salmonella [8-11].
These tools scan the data looking for unexpected
cases, patterns or trends in spatial, temporal and
also spatio-temporal dimensions.

The main objective of this study was to investigate
spatio-temporal clusters using statistical scan methods
on routine monitoring data of Salmonella infections.
The dataset comprised isolate data from human and
non-human sources in Thailand from 2002 to 2007.

A second objective was to evaluate the existence of
serovar-specific associations between human and non-
human clusters. This type of information could be use-
ful in complementing incomplete datasets and helping
the establishment of effective surveillance systems.

MATERIAL AND METHODS
Data

In Thailand, the monitoring of Salmonella infections
is based on a passive surveillance scheme where the
National Institute of Health (NIH) - Salmonella and
Shigella Section, receives the clinical isolates suspected
to be Salmonella from the diagnostic laboratories,
hospitals and medical clinics across the country. For
each confirmed case, the relevant clinical and epidemi-
ological information is recorded [12].

Data on Salmonella from other sources (e.g. ani-
mals or food) is based on sporadic and ad-hoc
sampling schemes implemented by the Thai auth-
orities [12].

For this study, we used a dataset containing data on
29586 Salmonella isolates collected during the period
2002-2007 from both human and other sources.
Besides date, location and source of the sample, the
isolate’s serotype was also registered.

Database management, descriptive statistics and
data arrangement were performed in SAS Enterprise
Guide 3.0 (SAS Institute, USA).

Spatio-temporal scan statistics

The cluster analysis was performed using spatio-
temporal statistical scan methods available at
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SaTScanTM v. 9.0.1 platform (Information Manage-
ment Services Inc., USA) [13].

Scan statistics analyses are usually done by moving
a scanning window (with different possibilities for
shapes and sizes) through the space and time dimen-
sion of the data. For each location and window size,
the number of observed and expected cases is com-
pared and any not-expected excesses on the number
of observed cases registered. The statistical signifi-
cance of each potential cluster is then evaluated
[8, 13]. Each cluster is determined independently so
that not only the most likely cluster (MLC) is
detected, but also all statistical significant clusters
are as well [13, 14]. By doing a simultaneous spatial
and temporal analysis it is possible to detect clusters
that would not be apparent if looking only into one
dimension. Spatio-temporal clusters can capture the
mechanisms of infection spreading much more realis-
tically [15].

For the human isolates, a retrospective space—time
permutation scan statistic method was used. This
method uses only case numbers, and does not require
data on the background population at risk [16]. It only
requires minimal assumptions about time and geo-
graphical location and has the advantage of adjusting
automatically for natural purely spatial or temporal
variation (e.g. seasonal variation) [8]. A cluster is
detected in a region, if during a specific time interval
there is a high proportion of excess cases or a smaller
deficiency of cases than in the neighbouring regions
[16]. The analyses were serovar-specific and performed
by year (using a month as a unit of observation).

A Bernoulli retrospective scan statistic was used for
the non-human isolates. This model is independent of
the underlying population using the data grouped as
cases vs. controls to determine if there is significant
clustering of the distribution of cases compared to
the distribution of controls [10, 17].

The analyses were per serovar, so the isolates from
each specific serovar were defined as cases, while the
isolates from the remaining serovars were defined as
controls.

Regarding the human isolates, the analyses were
performed by year (using a month as a unit of ob-
servation).

Other pre-defined settings common to both
methods were: a scanning window with an elliptical
shape, a maximum spatial cluster size of 50% of the
population at risk, a maximum temporal cluster size
of 50% of the study period (6 months), and no restric-
tions for reporting secondary clusters. A cluster was
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considered significant if the P value for its calculated
likelihood was <0-05 and 999 Monte Carlo simu-
lations were used for each assessment.

Besides the MLC, all significant secondary clusters
were reported in the tool output. Secondary clusters
with no overlap with the MLC were considered in
the results. In contrast, secondary clusters that were
just variations of the MLC were discarded, as the
only information provided by those refers to some
uncertainty on the exact boundaries (either in time
or space) of the MLC.

The existence of a possible association between a
human and a non-human cluster was also evaluated.
We considered two clusters possibly associated if the
clusters overlapped in time and space, if the clusters
overlapped only in one dimension (either time or
space) and were adjacent in the other or if the clusters
were adjacent in both time and space.

The geographical information system ArcMap 9.0
(Environmental Systems Research Institute, USA)
was used for providing spatial coordinates and for
visualizing the clusters. The Google charts API tool
(Google Inc., USA) was also used for cluster
visualization.

RESULTS
Data description

The 29586 isolates were collected from different
sources. The human isolates accounted for 65% of
the total, isolates from food sources represented 19%
and animal sources 7%. Isolates from a non-
descriptive ‘other’ source (e.g. environment) were 9%
of the data.

Apart from the human cases, the data collected
from other sources had too few isolates in each subca-
tegory (e.g. food, animal, environmental or other) to
allow a reliable analysis, so the data was aggregated
into a generic non-human data category. A total of
194 and 177 different serovars were identified for
the human and non-human categories, respectively
(results not shown).

The data distribution throughout the study period
was not uniform: 28% of the isolates were from
2002, 13% from 2003, 18% from 2004, 18% from
2005, 13% from 2006 and 11% from 2007. By perform-
ing the analyses for the complete study period as
whole, the results would be driven by the year 2002,
hiding possible clusters occurring later. The study
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period was then divided into years and the analyses
run separately.

Thailand is organized into four main geograph-
ical regions: Central, Northeastern, Northern and
Southern. These regions are further divided into 13
administrative zones (zones 1-12 and Bangkok),
which are again further organized into 76 provinces
[12, 18, 19]. The dataset contained data collected
within 55 of the 76 provinces. Bangkok was the
most represented province (34% of the isolates) fol-
lowed by Ratchaburi (9%), Nonthaburi (8%), Khon
Kaen (8%), Chiang Mai (6%), the remaining pro-
vinces each represented <5% of the isolates. The low
number of isolates in some provinces was insufficient
to allow an analysis at province level, so instead it
was done at the zone level. Figure 1 shows a map of
Thailand highlighting the 13 different administrative
zones.

For each year, the top five most common serovars
in the human category were selected for analysis
(Table 1). S. Enteritidis, S. Stanley and S. Rissen
were the most common serovars being present in
the 6 years analysed, followed by S. Weltevreden
(5 years), S. Anatum (3 years), S. Cholerasuis
(2 years), S. Corvallis (1 year) and S. Typhimurium
(1 year). However, in three instances, S. Cholerasuis
(2006 and 2007) and S. Enteritidis (2007), there were
not enough isolates in the non-human dataset to run
the analysis, so the isolates of S. Corvallis (2006)
and S. Weltevreden and S. Anatum (2007) were
used instead.

Spatio-temporal scan statistics

A total of 91 human (involving 11% of the total
human isolates) and 39 non-human (involving 16%
of the total non-human isolates) significant spatio-
temporal clusters were found distributed throughout
the 6 years of data. The summarization of the results
per year and serovar is shown on Table 2, while a
complete description of the detected clusters for
human and non-human isolates can be found in
Tables 3 and 4, respectively. Figures 2 and 3 illustrate
the clusters detected in 2003 for both categories.

In the results per year, for the human clusters, the
number of detected clusters ranged from nine (2003)
to 19 (2004). For the non-human clusters, the numbers
were very similar between the years.

Looking at the results by serovar, it was for
S. Rissen that more clusters were detected in both
the human (21 clusters) and non-human (nine clusters)
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Fig. 1 [colour online]. Map of Thailand representing the official 13 zones (map reproduced courtesy of the National
Institute of Health, Thailand; modified with permission). BKK, Bangkok.

categories, followed by S. Weltevreden and S. Stanley
each with 16 clusters in the human category and eight
in the non-human group.

DISCUSSION

This study presents a retrospective spatio-temporal
statistical scan analysis of Salmonella isolates in
Thailand during the period 2002-2007. The objectives
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of the analysis were to evaluate the existence of signifi-
cant clusters and possible relationships between the
human and non-human clusters. We also discuss the
usefulness of spatio-temporal statistical tools in ana-
lysing data with limited epidemiological information.
The need for efficient early-alert detection systems
for infectious diseases is growing. Public health auth-
orities have to be able to quickly assess a possible out-
break and take the appropriate actions to control it.
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S. Typhimurium (202)
S. Weltevreden (164)

S. Enteritidis* (440)
S. Stanley (297)

S. Rissen (219)

S. Choleraesuis* (211)
S. Anatum (122)

2007

S. Choleraesuis* (233)

S. Rissen (224)
S. Weltevreden (202)

S. Enteritidis (541)
S. Stanley (313)
S. Corvallis (122)

2006

S. Weltevreden (331)

S. Stanley (456)
S. Enteritidis (403)
S. Rissen (324)

S. Corvallis (208)

2005

S. Weltevreden (365)

S. Stanley (447)

S. Enteritidis (368)
S. Rissen (300)

S. Anatum (255)

2004

S. Enteritidis (304)
S. Stanley (220)

S. Rissen (174)
S. Weltevreden (166)

S. Anatum (157)

2003

S. Weltevreden (322)

S. Enteritidis (515)
S. Anatum (317)
S. Stanley (260)

S. Rissen (327)

2002

For three of the serovars (indicated by *) there were not enough isolates in the non-human dataset to run the analysis, therefore the analysis was run for the next serovar in the

Table 1. Five most frequent serovars (and respective number of isolates) per year in the human dataset
list that had enough available data.

Values in parentheses are number of isolates.

Rank
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Table 2. Number of human and non-human clusters and
respective associations detected per year and serovar

No. of No. of No. of
human non-human associations
clusters  clusters detected (%)
n=91) (®=39) (n=23)
Year
2002 17 6 5(29-4)
2003 8 7 3 (37-5)
2004 19 7 5(26:3)
2005 16 6 2 (12-5)
2006 17 7 5(29-4)
2007 14 6 3214
Serovar
S. Enteritidis 16 5 2 (12-5)
S. Rissen 21 9 8 (381)
S. Weltevreden 16 8 5(31-3)
S. Anatum 14 7 4 (28-6)
S. Stanley 16 8 4 (25)
S. Corvallis 5 2 0
S. Typhimurium 3 0 0

Mathematical methods that can quickly scan the
data looking for unexpected patterns, in time and
space, while adjusting for known covariates or risk
factors (e.g. climate or for foodborne bacteria, con-
sumption habits) are fundamental in prospective sur-
veillance systems.

In this study, we look at not only clinical data but
also data collected from common reservoirs for
Salmonella.

For the analysis of human isolates, a space-time
permutation model was used. The fact that the
method does not require data on population at risk
makes it a good choice when facing data limitations.
Moreover, because it can adjust automatically for
purely geographical variations (e.g. population den-
sity) and purely temporal variations (e.g. seasonal pat-
terns) [20], it reduces the effect of possible data bias.
The scan detected 91 significant clusters involving
11% of the total number of cases reported. The per-
centage of total reported salmonellosis cases associ-
ated with outbreaks has been estimated to be
between 5 and 10% in New Zealand and in Europe
[21, 22]. Tt was not possible to further investigate
each cluster to evaluate if it corresponded to a true
outbreak, but the results tend to agree with previous
findings.

As an example, for S. Weltevreden, most of the
clusters detected occurred in coastal regions (see clus-
ter ID nos. 15, 16, 42, 43, 57 in Table 3). This is in
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Table 3. Description of the clusters detected in the human dataset in the study period, 2002-2007

Cluster ID Serovar Year Zones Duration No. of isolates
1 S. Anatum 2002 5 Feb. 12
2 S. Anatum 2002 3+11 May 7
3 S. Anatum 2002 2 Aug. 5
4 S. Anatum 2002 10 Oct. 7
5 S. Anatum 2002 1+2 Nov. 33
6 S. Enteritidis 2002 Bangkok+5 Feb. 85
7 S. Enteritidis 2002 11+12 June 24
8 S. Enteritidis 2002 Bangkok July 81
9 S. Enteritidis 2002 1+2+4 Nov.—Dec. 26

10 S. Stanley 2002 2 Nov. 13

11 S. Rissen 2002 3+11+12 Jan. 8

12 S. Rissen 2002 3+11 May 6

13 S. Rissen 2002 Bangkok+4 July 26

14 S. Rissen 2002 8 Dec. 6

15 S. Weltevreden 2002 12 Jan. 45

16 S. Weltevreden 2002 Bangkok+3 May-Aug. 40

17 S. Weltevreden 2002 8+9+2+10+1+4 Oct.—Dec. 32

18 S. Anatum 2003 4 Jan. 13

19 S. Anatum 2003 6 June—July 13

20 S. Anatum 2003 2+5+7+8+9 Aug. 9

21 S. Enteritidis 2003 6+9+10 June 13

22 S. Enteritidis 2003 1 Nov.-Dec. 19

23 S. Stanley 2003 6+8+9 Nov. 13

24 S. Rissen 2003 6 July 19

25 S. Rissen 2003 14+2+8+49 Sep. 7

26 S. Anatum 2004 4 July 34

27 S. Anatum 2004 12 Aug 7

28 S. Anatum 2004 3+5+6 Sep. 8

29 S. Anatum 2004 10 Oct.—Dec. 20

30 S. Enteritidis 2004 Bangkok+1+3 Mar.—Apr. 39

31 S. Enteritidis 2004 12 June-Aug. 81

32 S. Enteritidis 2004 10 Oct.—Dec. 74

33 S. Stanley 2004 5 Jan. 27

34 S. Stanley 2004 4+8 May 26

35 S. Stanley 2004 1+2 July 10

36 S. Stanley 2004 10 Oct.—Dec. 33

37 S. Rissen 2004 1 Mar.—May 22

38 S. Rissen 2004 6 June 26

39 S. Rissen 2004 2+4 July 13

40 S. Rissen 2004 12 Aug. 12

41 S. Rissen 2004 10 Oct.—Dec. 20

42 S. Weltevreden 2004 1+3 Mar.—Apr. 23

43 S. Weltevreden 2004 12 June 62

44 S. Weltevreden 2004 10 Oct.—Dec. 30

45 S. Enteritidis 2005 5+9+10 Feb. 21

46 S. Enteritidis 2005 1+2+4 Mar. 21

47 S. Enteritidis 2005 12 May-July 47

48 S. Enteritidis 2005 3+5 Aug. 27

49 S. Stanley 2005 4 Mar. 22

50 S. Stanley 2005 12 May-July 54

51 S. Stanley 2005 2+8+9+10 Nov.—Dec. 45

52 S. Stanley 2005 6 May 24

53 S. Rissen 2005 1 June 24

54 S. Rissen 2005 12 May-Sep. 36

55 S. Rissen 2005 8+10 Dec. 20

56 S. Weltevreden 2005 5+7+9 Feb. 15

https://doi.org/10.1017/5095026881300215X Published online by Cambridge University Press
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Table 3 (cont.)

Cluster ID Serovar Year Zones Duration No. of isolates
57 S. Weltevreden 2005 12 May—July 56
58 S. Weltevreden 2005 8+10 Dec. 24
59 S. Corvallis 2005 12 May-July 26
60 S. Corvallis 2005 1+5+7 Aug. 9
61 S. Enteritidis 2006 10 Apr.—May 42
62 S. Enteritidis 2006 6+9 Aug. 37
63 S. Enteritidis 2006 3+5 Dec. 46
64 S. Stanley 2006 54+9+10 Apr. 34
65 S. Stanley 2006 4 July 18
66 S. Stanley 2006 Bangkok+1+2 Aug.—Oct. 41
67 S. Rissen 2006 6 Feb. 9
68 S. Rissen 2006 5+9+10 Apr. 16
69 S. Rissen 2006 4 July 16
70 S. Rissen 2006 2+5+7 Dec. 9
71 S. Weltevreden 2006 3 Jan. 10
72 S. Weltevreden 2006 5+9+10 Apr. 36
73 S. Weltevreden 2006 4 July 11
74 S. Weltevreden 2006 2+5+7 Dec. 16
75 S. Corvallis 2006 6 Feb. 3
76 S. Corvallis 2006 5 Apr. 3
77 S. Corvallis 2006 1+2+4 July—Oct. 26
78 S. Anatum 2007 8+9 July 14
79 S. Anatum 2007 3+5 Aug. 3
80 S. Stanley 2007 6 May 14
81 S. Stanley 2007 5 Aug. 12
82 S. Stanley 2007 2+8+9+10 Dec. 13
83 S. Rissen 2007 6 May 11
84 S. Rissen 2007 5 Aug. 8
85 S. Rissen 2007 1 Sep.—Oct. 16
86 S. Weltevreden 2007 6 May 13
87 S. Weltevreden 2007 5 Aug. 7
88 S. Weltevreden 2007 10 Oct. 10
89 S. Typhimurium 2007 6+9 May 11
90 S. Typhimurium 2007 3+5+7+11+12 Aug. 7
91 S. Typhimurium 2007 4 Jan. 9

For the number representing the geographical zones, refer to the key in Figure 1.

agreement with Hendriksen ez al. [23] who describe
S. Weltevreden as being commonly associated with
seafood. Moreover, for S. Rissen and S. Stanley, the
results predict more clusters occurring in the central
part of Thailand, which is a region associated with
agriculture and more specifically intensive pig
farming. Once again, in agreement with Hendriksen
et al. [24], these serovars are frequently associated
with pigs.

The data collection for the non-human category
was mostly based on specific monitoring initiatives
rather than in an established surveillance programme.
Thus, there is both over- and under-representation of
regions, periods of the year and reservoirs sampled in
the dataset. The Bernoulli statistical method handles
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the data in two separate sets: cases and controls. By
defining as cases the isolates from the serovar chosen
for analysis, and as controls the rest of the isolates
collected in the same year, the bias on the represent-
ativeness of the data is minimized.

The choice of serovars to be analysed was based on
the most frequent serovars isolated in humans per
year. For years 2002-2005 (results not shown) the
most common serovars found in humans were also
among those most common in the non-human cat-
egory. However, in 2006 for S. Cholerasuis, and in
2007 for S. Cholerasuis and S. Enteritidis, there
were not enough isolates to perform the scan, even
though these serovars were among the most frequent
cases in humans. This could be due to changes in
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Table 4. Description of the clusters detected in the non-human dataset in the study period, 2002-2007

Cluster ID Serovar Year Zones Duration No. of isolates
1 S. Anatum 2002 6 Apr. 111
2 S. Enteritidis 2002 2 Nov. 35
3 S. Stanley 2002 1 June-Nov. 49
4 S. Rissen 2002 2+6+8+9+10 Jan.—Apr. 99
5 S. Weltevreden 2002 9+10 Apr.—Aug. 62
6 S. Weltevreden 2002 4+1 Sep.—Dec. 33
7 S.Anatum 2003 Bangkok Oct. 18
8 S.Anatum 2003 6+8+9+10 Nov.-Dec. 78
9 S. Enteritidis 2003 Bangkok+2+4+8 Jan.—Apr. 62

10 S. Stanley 2003 1 Jan.—June 27

11 S. Rissen 2003 1 Feb. 6

12 S. Rissen 2003 6+8+9+10 July-Dec. 90

13 S. Weltevreden 2003 Bangkok Dec. 57

14 S.Anatum 2004 1 Mar. 23

15 S.Anatum 2004 Bangkok+3 May—June 52

16 S.Anatum 2004 2+4+8+9+10 Sep. 10

17 S. Enteritidis 2004 Bangkok Sep. 56

18 S. Stanley 2004 Bangkok+4 Aug. 41

19 S. Rissen 2004 Bangkok Apr.—June 58

20 S. Weltevreden 2004 Bangkok Oct.—Nov. 31

21 S. Enteritidis 2005 3 Dec. 20

22 S. Stanley 2005 Bangkok+4+11+12 Feb. 51

23 S. Rissen 2005 Bangkok Feb. 74

24 S. Rissen 2005 5+6+7+8+9 May-Oct. 113

25 S. Weltevreden 2005 Bangkok+4+8+10 July-Dec. 98

26 S. Corvallis 2005 Bangkok Oct. 10

27 S. Enteritidis 2006 3 Feb. 29

28 S. Stanley 2006 1+2+6+8+9+10 Feb.-May 32

29 S. Stanley 2006 1+2+7+11+12 Aug. 6

30 S. Rissen 2006 1+2+4+6+8+9+10 Jan.—Mar. 29

31 S. Weltevreden 2006 Bangkok+4 May-Aug. 48

32 S. Weltevreden 2006 3 Aug.—Dec. 46

33 S. Corvallis 2006 Bangkok+4 Jan.—Feb. 39

34 S. Anatum 2007 3 Jan.—Apr. 12

35 S. Stanley 2007 4 Mar. 8

36 S. Stanley 2007 2 Dec. 7

37 S. Rissen 2007 2+4 Apr.—Sep. 23

38 S. Rissen 2007 1+2 Feb.—Mar. 13

39 S. Weltevreden 2007 Bangkok+4 +8 Nov. 6

For the number representing the geographical zones, refer to the key in Figure 1.

the reservoirs sampled (e.g. not collecting samples
from eggs in 2007 which would be the most common
reservoir for S. Enteritidis), or by true decreases on
prevalences conjugated for instance with increases in
the consumption of imported foods that were not
sampled.

Statistical scan methods, such as those presented
here, have been frequently used to identify clusters
of disease, both infectious and chronic [8, 10, 11, 17,
20, 25-27].

The results showed that the methods performed
well in detecting significant clusters and handling
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data limitations. Both the space-time permutation
model and the Bernoulli model could detect not
only the most likely cluster but also detected two or
three significant secondary clusters for many of the
serovars. This suggests that the models are sensitive
enough to detect all possible significant clusters
according to the defined settings of likelihood.
However, the scanning window used was limited to
an elliptical cylinder shape (even if with various
sizes), which could result in some clusters not being
detected when scanning large geographical regions
like Thailand [8].
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Fig. 2 [colour online]. Representation of the human clusters detected in 2003. Each marker colour represents a serovar
(blue: S. Anatum; green: S. Enteritidis; red: S. Stanley; orange: S. Rissen). The size of the markers is scaled according to
the number of isolates involved in each cluster. The clusters represented are cluster numbers 18, 19, 20, 21, 22, 23, 24 and

25 from Table 3.

Data on surveillance of the most common reser-
voirs for Salmonella can provide useful insight for
the prevention or early detection of human outbreaks
and should be handled together with clinical data.
In this analysis, we evaluated cases where there was
a geographical and temporal adjacency or overlap
between human and non-human clusters for the
same serovar.

In the cases where an overlap existed, the infor-
mation from the non-human clusters could help in
tracking the source of the outbreak. Furthermore,
for cases when a non-human cluster occurred before
the human cluster or in its bordering regions, the
information could be used to prevent human out-
breaks from occurring. This type of associations and
information will be more reliable and significant as
the data quality improves.

The associations detected were especially pro-
nounced for S. Rissen. This serovar has often been
linked with human infections through the consump-
tion of pork products [23], which are very popular in
Thai cuisine. More details on the source of the
S. Rissen isolates could confirm the association
detected.
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Regarding other possible bias in the data collection,
the decrease in the number of isolates throughout the
study period could be explained by a real decrease in
the number of cases due to surveillance changes and
improvements, but it should also reflect changes in
the data collection process. Demographic differences
should also be taken into account, e.g. the fact that
Bangkok and its bordering regions are much more
populated than the northern part of Thailand, or
that access to medical facilities is more difficult in
rural areas than in the cities. Similarly, the main econ-
omic activity of each region influences the number of
submitted isolates, for instance coastal areas have
more tourism and during seasonal peaks population
numbers can increase markedly.

The amount and distribution of available data
forced the analysis to be run aggregating the isolates
from non-human sources in one generic group.
A more complete and systematic data collection
would allow the analysis to be run accounting for
specific source (food, animal or even more detailed
as food type or animal species) and resulting in
more definitive conclusions about possible associ-
ations detected. Nevertheless, these types of data
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Fig. 3 [colour online]. Representation of the non-human clusters detected in 2003. Each marker colour represents a serovar
(blue: S. Anatum; green: S. Enteritidis; red: S. Stanley; orange: S. Rissen; pink: S. Weltevreden). The size of the markers
is scaled according to the number of isolates involved in each cluster. The clusters represented are cluster numbers 7, 8, 9,

10, 11, 12 and 13 from Table 4.

restrictions reflect the reality for most countries, where
a systematic and integrated surveillance system is not
yet in place. It is important to develop methods that
can work within these limitations and still have a
reasonable predictive ability.

Further epidemiological investigations are needed
to determine whether clusters represent real outbreaks
or if they are a result of a temporary increase in the
prevalence of endemic strains. Still, a significant clus-
ter shows that some changes have occurred either in
reservoirs or in the human population and this may
require appropriate action by the relevant authorities.
The observed temporal association between clusters
appearing in non-human reservoirs prior to cases in
humans could be used as warnings for the authorities
and allow preventive actions to be taken before cases
occur in humans.

The statistical analysis was done retrospectively
using data from 2002 to 2007, but it still provides
important indications on how the tools work and
how limitations, such as the low amount of data col-
lected and the fact that it is geographically unevenly
dispersed over a large territory like Thailand, are
handled. This can be useful for future adaptations of

https://doi.org/10.1017/5095026881300215X Published online by Cambridge University Press

the methods to work in real-time and function as an
outbreak detection tool.

In this study, spatio-temporal scan statistics proved
to be an efficient and user-friendly platform for run-
ning a retrospective cluster analysis. The SatScan soft-
ware comprises different statistical methods that can
be adequate for different types of data and limitations
as shown in this study. The use of approaches like the
one presented here could provide methodological sup-
port to contribute to the implementation of efficient
strategies to control and prevent Salmonella infec-
tions.
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