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Abstract
Spherical robots (SRs) have the characteristics of nonholonomic constraints, underactuation, nonchain, and strong
coupling, which increase the difficulty of modeling and motion control compared with traditional robots. In this
study, we develop an adaptive motion control scheme for a nonholonomic SR, in which an omnidirectional dynamic
model is carried out by using the Euler–Lagrange method to describe the omnidirectional motion of the SR more
accurately. Furthermore, to facilitate the design of the motion controller, the dynamic model is simplified to obtain
the state space expression of the SR. Aiming at the problem of poor control effect caused by the change of system
model parameters which are influenced by dynamic model reduction, an adaptive motion control law of SR is
designed based on MRAC. And the coefficient adjustment of the controller is obtained by the Lyapunov method,
with the guaranteed stability of the closed-loop system. Finally, the controller designed in this thesis is compared
with four controllers including linear quadratic regulator, Fuzzy PID, PSO-ADRC, and hierarchical SMC. The
experimental comparison proves that the control scheme proposed in this study still has good control ability when
the motion parameters are disturbed.

1. Introduction
Since the appearance of spherical robots (SR) in 1996, they have received extensive attention from
scholars at home and abroad due to their compact structure, flexible movement, and ability to withstand
various task loads [1]. The SR is a fully enclosed robot in which the drive mechanism, control system, and
battery are all enclosed in the spherical shell. This prevents adverse damage to the external environment,
which makes the SR suitable to be applied in humid, dusty, radiation, or toxic environment.

At present, the drive mechanism of the SR is mainly divided into omnidirectional wheel eccentric
torque drive [2], frictional internal drive [3], and eccentric torque drive of heavy pendulum [4]. The
pendulum drive is favored by industry and academia due to its simple implementation and significant
driving torque. However, during the pendulum SR movement, the internal suspension is in the under
actuation state, which affects its stability and accuracy, and even causes control failure.

In recent years, most studies on the pendulum SR’s dynamic modeling and motion control have
mainly focused on the speed control of the SR. For instance, a motion control approach was proposed
in ref. [5] for a spherical mobile robot rolling on a plane, in which only one Euler angle was varied in
each step, improving computational efficiency. In refs. [6–8], the motion equation was decomposed into
horizontal and vertical subsystems. References [6, 7] designed full-state feedback and PI controllers for
rolling and forward motions, respectively. In ref. [8], a feedback linearized PD-type fuzzy controller
was employed for the closed-loop control of robot motion. Roozegar M. et al. [9] utilized the heuristic
fuzzy controller and PID controllers to realize the SR’s motion control on an inclined plane. The above
approaches did not consider the system’s robustness to parametric uncertainties and the reduction of
stationary errors in detail. Wang Y. et al. [10] constructed a yaw angle prediction-based fuzzy PID
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controller to adjust the attitude of a SR, which can perform fuzzy reasoning and autonomously modify
control parameters based on the robot’s current state information. However, the controller is based on a
kinematics design, which cannot effectively control the SR under the uncertain parameters of its model.
Xie L. et al. [11] studied the dynamics modeling and joint trajectory tracking control of robotic systems
with external disturbances and uncertain parameters and proposed a robust fuzzy sliding mode control
to achieve desired trajectory tracking of joints. The synovial controller is independent of object model
parameters and disturbances, the sliding modes of which can be designed.

In order to solve the problems of inaccurate dynamic modeling, parameter changes, and interference
in the SR control that led to poor performance of traditional controllers, Cai Y. et al. [12] proposed a
speed control method combining fuzzy logic and SMC, while Kayacan E. et al. [13] utilized the adaptive
neuro-fuzzy controller and the learning algorithm of the SMC theory for the SR’s speed control. Liu Y.
et al. [14, 15] designed a hierarchical SMC (HSMC) for speed and orientation control of the SR, improv-
ing control efficiency and stability. Nevertheless, it is challenging to fit sensors in the limited space of
the sphere to measure variables such as rolling speed in spherical robots. Therefore, applying the HSMC
method for the motion control of SRs is challenging due to the unmeasurable state and the uncertain
rolling resistance torque generated by the ground. Yue M. et al. [16] combined HSMC and the state
expansion observer to promote the designed closed-loop system’s robustness and adaptability. As we all
know, since the state observer can reconstruct the system with the measurable state and obtain the value
of the internal state variable, the uncertain rolling resistance can be obtained in real time.

Most of the above studies are in the simulation step, and even if there are physical experiments, they
are mostly confined to smooth ground applications. SR control systems are susceptible to unmodeled
dynamics, parameter changes, uncertainties, and disturbances. For example, the parameters are suscep-
tible to disturbance when the spherical rolling robot rolls on uneven ground. Active disturbance rejection
controller (ADRC) [17] is independent of the system model and can estimate and compensate for dif-
ferent disturbances to the system in real time during motion. Tao T. et al. [18] and Lin R. et al. [19]
proposed an ADRC-based motion controller for SRs moving on uneven ground, which enhanced their
anti-interference capability. Liu M. et al. [20] designed a motion controller (PSO-ADRC) that employs
particle swarm optimization (PSO) to adjust the parameters b0, β01, β02, and β03 in ADRC to enhance the
SRs’ anti-interference efficiency in actual motion. However, the ADRC controller has many parameters
where their tuning can considerably influence the SR’s motion control efficiency.

There are other concerns about improving the control capability of disturbed parameters during the
motion of SRs. For example, Yue M. [21], Sun H. [22], and Loh R.N.K. [23] designed the optimal control
law of a linear quadratic regulator (LQR) with the change of state variables as the objective function
to reduce the disturbance caused by the dynamic change of the state effects on SRs. Zadeh F. K. et al.
[24] designed an efficient LQR to eliminate the oscillation in a SR’s motion and improve the system’s
stability. Zhan Q. et al. [25–29] utilized backstepping, the neurodynamic shunt model, the cerebellar
model joint control model, and RBF neural network to improve the controller’s disturbance immunity.

Although the above control methods ensure the SR’s stable control to a certain extent, the motion
parameters of SRs vary significantly due to the lack of their environmental perception ability and sus-
ceptibility to external and internal uncertainties. Therefore, designing the control system based on an
accurate model has certain limitations, especially when the system is greatly disturbed, degrading the
system’s control effect significantly. Model reference adaptive control (MRAC) is a powerful tool for
solving the mentioned problem [30]. Typically, an MRAC comprises two distinct loops, where the inner
one, including the plant and the controller, is connected in parallel with the reference model, and the outer
one is an adaptation mechanism that adjusts the controller parameters. Since the reference signal applied
to the adjustable controller also acts on the reference model, the system can effectively solve the reduc-
tion of the control effect due to the parameter change of the system model so that the system can obtain
better control performance. For example, Roozegar M. et al. [31] developed an MRAC-based adaptive
method for the control of pendulum-driven SRs. Bomfim M. et al. [32] designed a Lyapunov-based
hybrid MRAC for a pneumatic artificial muscle-actuated manipulator.
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Figure 1. XK-I spherical robot coordinate system.

Inspired by the above research, a Lyapunov-based MRAC control algorithm is proposed. The essen-
tial contributions of the current work are (1) According to the actual situation of SR motion, taking the
pendulum’s swing angle and the spherical shell’s rolling angle as generalized coordinates, the Euler–
Lagrange approach is adopted to establish the SR learning model’s omnidirectional dynamics. (2) The
dynamic model is simplified sequentially to design the controller. According to the steering principle
of the car during driving, the XK-I SR’s motion control model is decoupled into linear and steering,
and the state space expressions of the SR’s linear and steering motions are obtained. (3) The pro-
posed MRAC control algorithm is based on the Lyapunov method. MRAC is utilized to design the
SR’s adaptive motion control law, and the controller parameters are adjusted through the Lyapunov
approach to overcome the poor control effect induced by the SR’s inaccurate dynamic model and param-
eter uncertainty. Finally, the paper conducts experimental verification and compares MRAC with LQR,
Fuzzy-PID, PSO-ADRC, and HSMC.

The remainder of this article is arranged as follows. Section 2 describes the XK-I SR’s mathematical
model, including the uncoupled dynamic model and state space equations. Section 3 designs the adaptive
motion controller for the SR. The simulation and experimental results are given in Section 4. In the end,
the conclusions of this study and future research perspectives are presented in Section 5.

2. Description of the pendulum SR system
2.1. Dynamic model of the pendulum SR
The XK-I SR in this study is composed of a two-degree-of-freedom pendulum driven by two sets of
motors. As described in Fig. 1, a Cartesian coordinate system o − x1y1z1 is established, considering the
sphere’s center as the origin o. The driving torque produced by the motor makes the pendulum swing
around the ox1 and oy1 axes by angles α and β, respectively. In Fig. 1, o − xyz describes an inertial
coordinate system fixed on the moving ground, and o − x0y0z0 describes a moving coordinate system
with the center of the sphere as the origin. The o − x0y0z0 coordinate system is only translated relative
to the o − xyz coordinate system, and the o − x1y1z1 coordinate system is only rotated with respect to
the o − x0y0z0 coordinate system. θ , ϕ, and ψ are the rolling angles of the sphere around ox, oy, and oz,
respectively. From the actual motion of the XK-I type, only considering the sphere rotation around the
lateral axis ox and the longitudinal axis oy, the rotation matrix between o − x1y1z1 and o − x0y0z0 is

R = R(x, θ )R(y, ϕ) =
⎡
⎢⎣

cos ϕ 0 −sin ϕ

sin θ sin ϕ cos θ sin θ cos ϕ

cos θ sin ϕ −sin θ cos θ cos ϕ

⎤
⎥⎦ (1)
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In order to construct the XK-I SR’s kinematics and dynamics models, the following assumptions are
made:

1. There is no sliding friction when the ball moves on the ground;
2. The spherical shell’s density and thickness are uniformly distributed, and the mass is m1;
3. The square frame of the XK-I type is like a pendulum, and the mass is m2;
4. The pendulum’s center is connected to the sphere’s center with a rigid rod regardless of mass,

and the length is l;
5. The whole system’s center of mass is located at the spherical shell’s geometric center;
6. The sphere’s rotational motion around the vertical oz axis is ignored;
7. The swing direction is specified as the positive direction.

Assuming the spherical shell center of mass’s angular velocity is ω1 = (−θ̇ , −ϕ̇, 0)T , then the cor-
responding velocity is v1 = rω1 = (−rθ̇ , −rϕ̇, 0)T , where r is sphere radius. Thus, the spherical shell’s
Lagrangian function is

L1 = E1 − P1 (2)

where E1 describes the sum of the spherical shell’s horizontal displacement and rotational kinetic ener-
gies. Since the spherical shell is equivalent to a uniform thin spherical shell, its moment of inertia is

I1 = 2

3
m1r2. Thereby,

E1 = 1

2
m1 ‖v1‖2 + 1

2
I1 ‖ω1‖2 (3)

where P1 is the gravitational potential energy of the spherical shell, and the rolling plane is a zero-
potential energy surface, then: P1 = m1gr.

Assuming that the pendulum’s angular velocities in the o − x0y0z0 and o − x1y1z1 coordinate systems
are denoted by ω2 and ω, respectively, then,

ω2 = ω1 + Rω = (α̇ cos ϕ − θ̇ , α̇ sin θ sin ϕ + β̇ cos θ − ϕ̇, α̇ cos θ sin ϕ − β̇ sin θ )T (4)

where ω = (α̇, β̇, 0)T . The position vector of the pendulum’s center of mass is described as r2 and r in
the o − x0y0z0 and o − x1y1z1 coordinate systems, respectively, then

r2 = Rr (5)

Since the pendulum can swing around the ox1 and oy1 axes, the position of the pendulum’s center of
mass changes in the three-dimensional space, then

r = xi + yj + zk = (−l sin β)i + (l sin α) j − (l cos α cos β)k (6)

where (i, j, k) describes a unit vector. The linear velocity of the pendulum’s center of mass is

v2 = v1 + ω2 × r2 (7)

The Lagrangian function of the pendulum is L2 = E2 − P2, where E2 is the sum of the pendulum’s
horizontal movement and rotational kinetic energies, which is

E2 = 1

2
m2 ‖v2‖2 + 1

2
I2 ‖ω2‖2 (8)

where I2 is the pendulum’s moment of inertia, I2 = 1

12
m2l2 + 1

4
m2l2. P2 describes the sum of the pen-

dulum’s potential energy, P3 = m2g(r − l cos α cos β). Combining Eqs. (1)–(8), the whole XK-1 SR
system’s Lagrangian function is attained as

L = 1

2
m1 ‖v1‖2 + 1

2
I1 ‖ω1‖2 − m1gr + 1

2
m2 ‖v2‖2 + 1

2
I2 ‖ω2‖2 − m2g (r − lcos αcos β) (9)
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From the Lagrangian approach, the pendulum swing angles α, β and spherical shell rolling angles
θ , ϕ are taken as four generalized coordinates, that is, q = (θ , α, ϕ, β)T . The SR movement is generally
driven by the two motors torques, τx and τy output by the two sets of motors. Therefore, the input torque
of the system is Q = (τx, τx, τy, τy)T . Now, the motion’s Euler–Lagrangian equation for the simplified
model is attained as ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d

dt

(
∂L

∂ q̇1

)
− ∂L

∂q1

= τx

d

dt

(
∂L

∂ q̇2

)
− ∂L

∂q2

= τx

d

dt

(
∂L

∂ q̇3

)
− ∂L

∂q3

= τy

d

dt

(
∂L

∂ q̇4

)
− ∂L

∂q4

= τy

(10)

According to Eq. (10), the SR’s dynamic equation is described with the following matrix form:

M(q)q̈ + V(q, q̇)q̇ = u (11)⎛
⎜⎜⎜⎜⎜⎝

m1 a b c

a m2 d e

b d m3 f

c e f m4

⎞
⎟⎟⎟⎟⎟⎠ ·

⎡
⎢⎢⎢⎢⎣

q̈1

q̈2

q̈3

q̈4

⎤
⎥⎥⎥⎥⎦ +

⎡
⎢⎢⎢⎢⎣

V11

V21

V31

V41

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎣

τx

τx

τy

τy

⎤
⎥⎥⎥⎥⎥⎦ (12)

where M ∈R
4×4, V ∈R

4×1. The specific elements of matrices M and V are in Appendix 1.

2.2. State-space equations of the pendulum SR
The dynamic equation (12) is a coupled nonlinear system. It is challenging to construct the motion
control system of type XK-I described by Eq. (12). According to the method of [4, 8, 20], the XK-I
SR’s rolling and steering motion control can be separated; that is, the driving force produced by a
group of motors makes the XK-I move in a straight line. If the XK-I type needs steering motion during
linear motion, it is only necessary to input control signals to another group of motors. Therefore, the
SR’s linear motion is driven by the torque τx output by one set of motors. In contrast, the torque τy

output by another set of motors derives the steering movement. This decoupling approach converts
the nonholonomic system into two decoupled subsystems, simplifies the SR dynamics equations, and
improves the maneuverability of the system.

Besides, in the XK-I type’s actual movement process, the pendulum’s swing angle is slight, and the
Taylor series is utilized to linearize the sine and cosine functions of α and β .

When the SR moves in a straight line, only u1 = τx is the torque provided by the linear motor.
Therefore, the pendulum’s swinging angle is only α, and the spherical shell’s rolling angle is only
θ . Then, the state variable of the SR’s linear motion is x1 = [q1, q̇1, q2, q̇2]T . Since the pendulum swing
angle α is small during the XK-I spherical robot’s actual movement, sin α and cos α are described with
their corresponding Taylor series. Since for small swinging angles, we have sin α = α and cos α= 1, the
state-space expression of the SR’s linear motion can be attained as{

ẋ1 = A1x1 + B1u1

y1 = C1x1 + D1u1

(13)

where A1 ∈R
4×4, B1 ∈R

4×1, C1 ∈R
4×4, and D1 = [04×1]. The specific elements of matrices A1, B1 and

C1 are in Appendix 2.
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Figure 2. Adaptive control system of spherical robot.

In the same way, when the spherical robot turns and moves, only u2 = τy is the torque provided by
the motor. Therefore, the pendulum’s swing angle is only β, and the spherical shell’s rolling angle
is only ϕ. Since the pendulum swing angle β is small during the actual movement of the XK-I SR,
sin β and cos β can be represented with their corresponding Taylor series. The state variable of the SR
turning motion is x2 = [q3, q̇3, q4, q̇4]T . Then, the SR turning motion’s state-space equations are{

ẋ2 = A2x2 + B2u2

y2 = C2x2 + D2u2

(14)

where A2 ∈R
4×4, B2 ∈R

4×1, C2 ∈R
4×4, and D2 = [04×1]. The specific elements of matrices A2, B2, and

C2 are in Appendix 3.

3. Design of the XK-I adaptive motion controller
The design block diagram of the model reference adaptive controller of the XK-I SR is presented in
Fig. 2. The controller mainly includes a reference model, adaptive regulator, and parameter debugger.
Therefore, the XK-I SR controller’s reference model is first constructed according to the state space
equation and the LQR. Here, we focus on analyzing the XK-I SR’s linear motion control, and the steering
motion can be obtained similarly. In the XK-I SR’s motion control, we give the desired motion state x′

1,
such as the angular velocity and angle of the spherical shell and the pendulum. It is hoped that the SR
output is the same as the expected value at each moment. However, the actual process is imperfect, and
there will be errors in the control at every moment. When only the error at the current moment is utilized
in the controller design, the steady-state error is inevitable, degrading the control system’s performance.
The desired system performance can be attained by minimizing the accumulated state errors of the
XK-I SR in the entire movement time. Then, the controller is designed to minimize the cumulative error
when the SR’s motion state reaches the desired value at a particular moment. Therefore, the quadratic
performance cost function of the error state and control signals should be constructed for the state-
space equations (13) or (14). Finally, the optimal control signal u1 or u2 is determined to minimize the
following quadratic performance index

J = 1

2

∫ ∞

0

(
eT

1 Q1e1 + Ru2
1

)
dt → min (15)

where e1 ∈R
4×1 is the error vector, e1 = x′

1 − x1, and x′
1 describes the given state vector, Q1 ∈R

4×4 is
a positive definite matrix and R describes a weighting constant. The control law that minimizes the
performance index Eq. (15) is

u1 = R−1B1
TPe1 = Ke1 (16)

where P is the Riccati equation’s positive definite symmetrical solution, then, AT
1 P + PA1 + Q1 −

PB1R−1BT
1 P = 0, K is the control parameter of the optimal controller. Therefore, the reference model’s

state-space equations are designed as {
ẋ1r = A1x1r + B1u1

y1r = C1x1r

(17)
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Bringing Eq. (16) into the state equation (17) of the reference model, and assume that the state x1 can
be consistent with the state x1r of the reference model, we get,{

ẋ1r = A1rx1r + B1rx′
1

y1r = C1x1r

(18)

where A1r = (A1 − B1K), B1r = B1K. In practice, it is difficult for x1r to be consistent with x1, then the
error between the reference model output x1r and the state vector x1 is e1r = x1r − x1. Combining Eqs.
(13) and (18), we can get,

ė1r = ẋ1r − ẋ1 = A1re1r + (A1r − A1) x1 + B1rx′
1 − B1u1 (19)

The goal is to make x1r approach x1, then e1r = 0. Thus, u1 can be calculated by Eq. (19),

u1 = (
BT

1 B1

)−1 BT
1 (A1r − A1) x1 + (

BT
1 B1

)−1 BT
1 B1rx′

1 = ρx1 + ηx′
1 (20)

Thus, Eq. (16) can be rewritten as Eq. (20). Since the reference model is an ideal control system, ρ

and η are ideal tuning parameters, and Eq. (20) is a desired control law. Additionally, since the error term
is not included in the control law (20), it is challenging to eliminate the error by adjusting the parameters.
Therefore, the actual control law of the XK-I robot’s linear motion under complex road conditions is
considered as follows:

û1 = ρ̂x1 + η̂x′
1 (21)

Multiplying Eq. (20) by matrix B1 gives

B1u1 = (A1r − A1) x1 + B1rx′
1 = B1

(
ρx1 + ηx′

1

)
(22)

Substitute formula (21) into deviation Eq. (19), extracting matrix B1, and combining formula (20),
we can get

ė1r = A1re1r + B1

(
ρ̃x1 + η̃x′

1

)
(23)

where ρ̃ and η̃ are the differences between the ideal and actual adjustment coefficients; that is, ρ̃ = ρ − ρ̂,
η̃ = η − η̂. In order to obtain the actual control law, the following Lyapunov function candidate is defined
in terms of the errors e1r and ρ̃, η̃ are

V = eT
1rHe1r + |B1|

(
1

2
ρ̃

TN1ρ̃ + η̃
TN2η̃

)
(24)

where N1, N2 are diagonal matrices, where their diagonal elements are positive. The matrix H satisfies
the following relationship: AT

1rH + HA1r = −I. Differentiating Eq. (24) gives

V̇ = eT
1r

(
AT

1rH + HA1r

)
e1r + 2eT

1rHB
(
ρ̃x1 + η̃x′

1

) + |B1|
(
ρ̃

TN1
˙̃ρ + η̃

TN2
˙̃η
)

(25)

Since the first term in Eq. (25) is negative, the following equality should be satisfied to ensure V̇ ≤ 0,

2eT
1rHB

(
ρ̃x1 + η̃x′

1

) + |B1|
(
ρ̃

TN1
˙̃ρ + η̃

TN2
˙̃η
)

= 0 (26)

Equation (26) has ρ̃, η̃ variables. If ρ̃ matches with η̃, then Eq. (26) has a solution. Therefore,
assuming N1 = N2 = N, −ρ = η, and −ρ̂ = η̂ we can get −ρ̃ = η̃, simplifies Eq. (26) as

−2eT
1rHBρ̃e1 + 2 |B1| ρ̃TN ˙̃ρ = 0 (27)
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Table I. Robot parameters.

Parameter Value Parameter Value
m1 0.6 kg I1 0.009 kg · m2

m2 0.51 kg I2 0.0017 kg · m2

R 0.15 m l 0.1 m
g 9.8 N/m

Figure 3. XK-I spherical robot prototype.

When −˙̂ρ = ˙̃ρ, the control law and coefficient adjustment rule are obtained as

û1 = ρ̂e1 (28)

˙̂ρ = −sgnB1 · N−1eT
1rHe1 (29)

4. Experimental analysis and discussion
In order to evaluate the performance of the designed adaptive motion controller, simulation and real
experiments of the XK-I SR are performed. The simulation experiments in this study are divided into
two groups: (1) The ideal situation without disturbance and noise, in which the designed controller
speed is verified and (2) random interference noise is added to the feedback loop to evaluate the anti-
interference capability of the constructed controller. In order to evaluate the efficiency of the MRAC,
the simulation experiments are compared with LQR, Fuzzy-PID, PSO-ADRC, and HSMC.

4.1. Simulation results
Table I shows the parameter settings in the simulation process based on the XK-I SR’s physical pro-
totype (as presented in Fig. 3). During the simulation, the linear and steering motions are carried out
independently; that is, the motor groups M1 and M2 control the linear and steering motions, respectively.
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Table II. Fuzzy rules for Kp parameters in Fuzzy-PID.

E

EC NL NM NS ZE PS PM PL
NL PL PL PM PM PS PS ZE
NM PL PL PM PM PS ZE ZE
NS PM PM PM PS ZE NS NM
ZE PM PS PS ZE NS NM NM
PS PS PS ZE NS NS NM NM
PM ZE ZE NS NM NM NM NL
PL ZE NS NS NM NM NL NL

Table III. Fuzzy rules for Ki parameters in Fuzzy-PID.

E

EC NL NM NS ZE PS PM PL
NL NL NL NL NM NM ZE ZE
NM NL NL NM NM NS ZE ZE
NS NM NM NS NS ZE PS PS
ZE NM NS NS ZE PS PS PM
PS NS NS ZE PS PS PM PM
PM ZE ZE PS PM PM PL PL
PL ZE ZE PS PM PL PL PL

Table IV. Fuzzy rules for Kd parameters in Fuzzy-PID.

E

EC NL NM NS ZE PS PM PL
NL PS PS ZE ZE ZE PL PL
NM NS NS NS NS ZE NS PM
NS NL NL NM NS ZE PS PM
ZE NL NM NM NS ZE PS PM
PS NL NM NS NS ZE PS PS
PM NM NS NS NS ZE PS PS
PL PS ZE ZE ZE ZE PL PL

Besides, the rotational speed of the XK-I SR’s linear and steering motions is set to 3 rad/s, and random
signals are selected as the interference source, where the interference amplitude is less than 1 rad/s.

In the simulations, when the LQR controller is utilized to control the motion effect, the cumulative
amount of the state change of the system should be as small as possible during the change of the state
variable of the robot from the initial value to the expected value. In this way, the influence of the distur-
bance caused by the dynamic change in the robot’s state can be reduced. Therefore, Eq. (15) is adopted
as the system’s objective function.

When designing the Fuzzy-PID controller, the input error is quantified in the range (−6,6).
Further, the error is fuzzified to determine the fuzzy subset as {NL, NM, NS, ZE, PS, PM, PL}.
Besides, the triangular membership function is selected. The specific fuzzy rules are presented in
Tables II–IV.
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Figure 4. Linear motion simulation of the SR: (a) no interference environment; (b) interference
environment.

Figure 5. Errors of each controller and reference signal in linear motion of the SR: (a) no interference
environment; (b) interference environment.

The PSO-ADRC controller adopts the method provided in ref. [20]. In the particle swarm algorithm,
both the population size and the number of iterations are set to 50 so that the overall number of iterations
of the ADRC controller reaches 2500, and the random generation of parameters ranges from 0.0001 to
100000 values. The controller tuning parameters mainly select the velocity factor r and the system
integration time h in the tracking differentiator (TD) in ADRC, and the compensation coefficient b0 and
the observer parameters b01, b02, b03 in the extended state observer (ESO) can be considered a coupling
of two second-order subsystems. The HSMC controller selects the relationship between the spherical
shell and the pendulum in the state-space equations as the target-controlled object and calculates the
difference between the output velocity and acceleration of the spherical shell and the ideal signal.

During simulation, the ideal model’s output speed is selected as the reference speed signal
(3 rad/s). The linear motion simulation results are presented in Figs. 4 and 5. As shown in Figs. 4
and 5, the presented MRAC strategy makes the output velocity approach the reference signal quickly
under ideal and interference conditions. In terms of the overall speed, in the ideal case, we have
MRAC>PSO-ADRC>Fuzzy-PID>LQR>HSMC; in the case of interference, we have MRAC>PSO-
ADRC>Fuzzy-PID>HSMC>LQR. In terms of error volatility, Fuzzy-PID, LQR, and HSMC have
noticeable fluctuations with a specific magnitude under ideal conditions; in the case of interference, in
the error change at 0.5 s, eMRAC < ePSO−ADRC < eFuzzy−PID < eHSMC < eLQR . Fuzzy-PID, LQR, and HSMC
have evident error fluctuations in the next few seconds.

Similarly, the steering motion simulation results can be obtained, as shown in Figs. 6 and 7. Under
ideal conditions, in terms of fast performance, we have MRAC>PSO-ADRC>Fuzzy-PID>LQR>SMC.
After adding interference, the five controllers all have significant fluctuations in the initial period at 0.5 s,
while the MRAC controller fluctuation is close to the impulse signal. It can be seen that the reference
model can be quickly tracked even under the action of disturbance, which can efficiently counter the
disturbance and restore the system’s stability quickly.
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Figure 6. Steering motion simulation of SR: (a) interference-free environment; (b) interference
environment.

Figure 7. Errors between the controllers and the reference signal in the spherical robot’s linear motion:
(a) no interference environment; (b) interference environment.

Figure 8. The spherical robot’s linear motion control under the smooth ground condition.

4.2. Linear motion experiment
Further, real experiments of linear motion control are performed on smooth and uneven ground. The
motor velocity’s expected values of the SR are set as 50 rps, 100 rps, and 150 rps, respectively. The
experimental results are presented in Figs. 8 and 9, and the analysis data are presented in Table V.
Figures 10 and 11 show the process of using the MRAC controller to control the XK-I linear motion
under smooth and uneven ground conditions.
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Table V. Control error and stability comparison table of four controllers under different condi-
tions.

Experimental Expected value LQR Fuzzy-PID PSO-ADRC HSMC MRAC
conditions
Smooth ground 50 rps Error 3.75% 0.38% 2.50% 0.87% 0.13%

Mean 48.125 50.188 48.750 49.563 50.063
Variance 0.250 0.696 15.133 0.930 0.196

100 rps Error 5.56% 1.19% 6.19% 1.13% 1.94%
Mean 94.438 98.813 93.813 101.125 98.063
Variance 85.995 2.029 66.296 2.117 0.195

150 rps Error 13.54% 0.54% 4.37% 1.08% 0.12%
Mean 129.688 149.188 143.438 148.375 149.813
Variance 573.162 2.696 219.595 2.917 0.296

Uneven ground 50 rps Error 30.25% 11.50% 12.00% 16.37% 19.25%
Mean 34.875 44.25 44.000 41.813 40.375
Variance 421.717 135.133 172.667 143.229 145.717

100 rps Error 44.81% 6.38% 13.88% 10.13% 23.13%
Mean 55.188 93.625 86.125 89.875 76.875
Variance 694.963 418.917 765.717 291.45 591.583

150 rps Error 51.58% 7.08% 3.04% 6.5% 8.29%
Mean 72.625 139.375 145.437 140.25 137.563
Variance 1517.45 290.65 263.863 308.467 374.529

Figure 9. The spherical robot’s linear motion control under the uneven ground condition.

Figure 10. Process diagram of the XK-I SR moving on smooth ground.

Figure 8 presents the SR test results on smooth ground. Due to the error of modeling and model
decoupling, the system parameters may change during the SR’s actual motion. Figure 8 shows that
Fuzzy-PID, MRAC, and HSMC can control the movement speed to reach the desired value within 1s,
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Figure 11. Process diagram of the XK-I SR moving on uneven ground.

while the transient response efficiency of the LQR and PSO-ADRC controllers is low. Among the Fuzzy-
PID, MRAC, and HSMC controllers, the Fuzzy-PID controller leads to a considerable overshoot in the
transient response. The transient response fluctuations of the Fuzzy-PID controller are more significant
than the MRAC. The HSMC controller always has evident static error problems and is slower than
the MRAC and Fuzzy-PID controllers. Besides, Table V indicates that the movement speed variance
provided by the MRAC is 0.196, 0.195, and 0.296, respectively, which is the smallest variance compared
to the other four controllers. These features demonstrate the good control effect of the MRAC controller.

Figure 9 presents the SR test results on the bumpy ground. Under strong interference, all five con-
trollers exhibit significant fluctuations. In terms of speed, MRAC, Fuzzy-PID, and HSMC controllers all
provide good results. Besides, the designed MRAC’s anti-interference capability is at a medium level,
which is stronger than the LQR controller and the same as the HSMC controller but weaker than the
PSO-ADRC and Fuzzy-PID controllers.

In summary, in the simulation and real experiments, the MRAC controller can quickly approach the
control motor’s expected value of the SR and quickly restore stability in the presence of disturbances.
The simulation and smooth ground test results demonstrate that the MRAC still has good control ability
under motion disturbances.

The data in Table V are divided into two cases: smooth ground and uneven ground. Under smooth
ground, the mean value of MRAC is closest to the target value. The error is within 2 rps. The con-
trol effect of other controllers is quite different from the set value. The control signal error follows
MRAC<Fuzzy-PID<HSMC<PSO-ADRC<LQR. In terms of variance, the volatility of MRAC is also the
smallest. The fluctuation of the control signal follows MRAC<Fuzzy-PID<HSMC<PSO-ADRC<LQR.
The overall reflection of the fast performance of MRAC is the best.

Under uneven ground, there is external interference. As presented in Table V, both the mean and
variance of MRAC are in the middle of several controllers. Figure 8 intuitively shows that the fast per-
formance of MRAC is very prominent, while its anti-interference performance is not optimal. Besides,
the noise immunity performances of Fuzzy-PID, HSMC, and PSO-ADRC are almost the same.

The ideal and interference environments in Table V reflect the controller’s fast and anti-interference
performance, respectively. The data reflect that the designed MRAC has excellent fast performance,
while the anti-interference is insufficient. In the real environment, various disturbances, such as the
changes in the external environment, will inevitably affect the SRs’ motion control performance. In
the future, combined with the MRAC, a motion control strategy for SRs that can effectively suppress
external disturbances, such as a disturbance observer-based control method [33], will be studied. In this
method, the difference between the actual object and the nominal model induced by external distur-
bances and model parameter variations is equivalent to the control input, and equivalent compensation
is incorporated into the controller to eliminate the disturbances.

4.3. Rolling of the XK-I SR over curvilinear trajectories
In order to verify the practical application of the presented control approach, an experiment was per-
formed in which the MRAC controlled the XK-I SR to move along a curve on smooth ground. The
trajectory diagram of moving along the curve is presented in Fig. 12, and the actual scene diagrams of
the XK-I SR moving along the curve are shown in Figs. 13 and 14. Figure 12 shows a particular deviation
when the MRAC controls the XK-I SR to move along the curve, indicating that it cannot accurately track
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Figure 12. Experimental results of rolling over curvilinear trajectories.

Figure 13. The actual scene of the XK-I SR moving along a circular trajectory.

the curve movement. During the MRAC design, controlling the angular velocity and angle of the XK-I
SR’s pendulum swing and spherical shell rolling is considered while ignoring its position and attitude
control, deviating from the control of the XK-I along the curve. In the future, the expected value in the
MRAC can be set to the trajectory coordinate value moving along the curve to reconstruct the control
law and realize the XK-I SR’s path following control.

5. Conclusions
The current work presented a Lyapunov-based MRAC control algorithm. The SR’s omnidirectional
dynamic model is established via the Euler–Lagrange method by taking the pendulum’s swing angle
and the spherical shell’s rolling angle as the generalized coordinates. According to the steering princi-
ple of the car during driving, the XK-I SR’s dynamic model is decoupled into linear and steering models.
Besides, MRAC is utilized to design the SR’s adaptive motion control law, and a Lyapunov-based adap-
tation mechanism for the controller parameters is designed to overcome the poor control effect induced
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Figure 14. The actual scene of the XK-I SR moving along the trajectory.

by the SR’s inaccurate dynamic model and parameter uncertainty. Finally, to evaluate the effect of the
designed motion controller, the simulation and real experiments are compared with LQR, Fuzzy-PID,
PSO-ADRC, and HSMC. Experiments indicate that the designed controller can be successfully applied
to the SR control system. In the case of interference, it can quickly restore stability. Especially when the
system parameters are uncertain, the SR can still be well controlled to achieve the expected effect after
decoupling the SR. In the future, the SR’s control system should be further studied, mainly to solve the
anti-interference ability problem and trajectory tracking of the MRAC controller.
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Appendix 1

m1 = (m_1 + m_2)r2 + I_1 + I_2 + 2m_2l2 sin ϕ cos ϕ cos α sin β cos β + m_2l2(sin α2

+ sin ϕ2 sin β2 + cos ϕ2 cos α2 cos β2);
m2 = I2 + m2l2(sin α2 + cos α2 cos β2);

https://doi.org/10.1017/S0263574723000280 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574723000280


Robotica 2047

m3 = (m1 + m2)r2 + I1 + I2 + m2l2(cos ϕ2 sin β2 + sin θ 2 sin α2 − 2 sin ϕ cos ϕ cos α sin β cos β
+ cos α2 sin ϕ2 cos β2 + cos θ 2 sin ϕ2 sin β2 + 2 sin θ cos θ sin α cos α cos β cos ϕ
+ cos θ 2 cos α2 cos ϕ2 cos β2 + 2 sin θ cos θ sin ϕ sin α sin β + 2 cos θ 2 sin ϕ cos ϕ cos α sin β cos β);
m4 = I2 + m2l2(sin β2 + cos α2 cos β2);
a = −I2 cos ϕ + m2lr sin ϕ sin α + m2l2(−sin ϕ cos α sin β cos β −cos ϕ cos α2 cos β2 −cos ϕ sin α2);
b = m2l2(sin θ sin ϕ2 sin β cos β cos α −sin θ sin ϕ cos ϕ sin β2 −cos θ sin ϕ sin α cos α cos β
+ cos θ cos ϕ sin α sin β −sin θ cos ϕ2 cos α sin β cos β + sin θ sin ϕ cos ϕ cos α2 cos β2);
c = m2lr(sin ϕ sin β + cos ϕ cos α cos β) + m2l2(+ sin ϕ sin α cos α cos β −cos ϕ sin β sin α);
d = −I2 sin θ sin ϕ + m2lr(−cos θ cos α cos β −sin θ cos ϕ sin α) + m2l2(−cos θ sin α sin β
−sin θ sin ϕ sin α2 + sin θ cos ϕ cos α sin β cos β −sin θ sin ϕ cos α2 cos β2);
e = m2l2(sin α sin β);
f = −I2 cos θ + m2lr(−sin θ cos ϕ sin β −sin θ sin ϕ cos α cos β) + m2l2(−cos θ sin β2

−cos θ cos α2 cos β2 −sin θ sin ϕ sin α sin β −sin θ sin ϕ sin α cos α cos β.);
V11 = m2rl(−α̇(sin ϕsin α)′ + β̇(sin ϕsin β + cos ϕcos αcos β)′)

+m2l2(α̇(−sin ϕcos αsin βcos β − cos ϕcos α2cos β2 − cos ϕsin α2)′

+β̇(−cos ϕsin αsin β + sin ϕsin αcos αcos β)′ + θ̇ (2sin ϕcos ϕcos αsin βcos β
+cos ϕ2cos α2cos β2 + sin ϕ2sin β2 + sin α2)′ + ϕ̇(− sin θsin ϕcos ϕsin β2

+sin θsin ϕ2cos αsin βcos β+ cosθcos ϕsin αsin β − cos θsin ϕsin αcos αcos β
−sin θcos ϕ2cos αsin βcos β + sin θsin ϕcos ϕcos α2cos β2)′

+I2(α̇ϕ̇sin ϕ + β̇ϕ̇sin θ − α̇ϕ̇cos θsin ϕ.) + m2(Z1 · (− ϕ̇lsin θsin ϕsin β + ϕ̇lcos θsin α
−ϕ̇lsin θcos ϕcos αcos β) + Z2 · (− α̇lsin θcos αcos β + α̇lcos θcos ϕsin α
+β̇lcos θcos ϕsin β − β̇lcos θsin ϕcos αcos β + θ̇ lsin θsin ϕsin β
−θ̇ lcos θsin α + θ̇ lsin θcos ϕcos αcos β) + Z3 · (− α̇lsin θcos ϕsin α
−α̇lcos θcos αcos β + θ̇ lcos θsin ϕsin β + θ̇ lsin θsin α + θ̇ lcos θcos ϕcos αcos β
−β̇lsin θcos ϕsin β + β̇lsin ϕsin θcos αcos β);

V21 = I2(θ̇ ϕ̇ sin ϕ − θ̇ ϕ̇ cos θ sin ϕ − ϕ̇2 sin θ cos ϕ)
+m2rl(θ̇(sin ϕ sin α)′ + ϕ̇(−cos θ cos α cos β −sin θ cos ϕ sin α)′)
+m2l2(α̇(sin α2 + cos α2 cos β2)′ + β̇(sin α sin β)′

+θ̇ (−sin ϕ cos α sin β cos β −cos ϕ sin α2 −cos ϕ cos α2 cos β2)′

+ϕ̇(−cos θ sin α sin β −sin θ sin ϕ sin α2 + sin θ cos ϕ cos α sin β cos β
−sin θ sin ϕ cos α2 cos β)′

+m2(Z1 · (−α̇lsin ϕcos α + β̇lcos ϕsin αcos β + ϕ̇lsin θcos α − ϕ̇lcos θcos ϕsin αcos β)
+Z2 · (− α̇lcos θsin αcos β + α̇lsin θcos ϕcos α + β̇lsin θsin ϕsin αcos β
−θ̇ lsin θcos α + θ̇ lcos θcos ϕsin αcos β)
+Z3 · (α̇lcos θcos ϕcos α+ α̇lsin θsin αcos β
−θ̇ lcos θcos α − θ̇ lsin θcos ϕsin αcos β + β̇lsin ϕcos θsin αcos β
−ϕ̇lsin ϕsin αcos β) − m2glsin αcos β;

V31 = I2(−α̇θ̇ cos θ sin ϕ − 2α̇ϕ̇ sin θ cos ϕ + β̇θ̇ sin θ + θ̇ α̇ sin ϕ)
+m2rl(α̇(−cos θ cos α cos β −sin θ cos ϕ sin α)′

+β̇(−sin θ cos ϕ sin β + sin θ sin ϕ cos α cos β)′)
+m2l2(α̇(sin θ cos ϕ cos α sin β cos β −cos θ sin α sin β −sin θ sin ϕ sin α2

−sin θ sin ϕ cos α2 cos β2

+β̇(−cos θ sin β2 −cos θ cos α2 cos β2 −sin θ sin ϕ sin α sin β −sin θ cos ϕ sin α cos α cos β)′

+ϕ̇(cos θ 2 sin ϕ2 sin β2 + 2 sin θ cos θ sin ϕ sin α sin β + 2 cos θ 2 sin ϕ cos ϕ cos α sin β cos β
+ sin θ 2 sin α2 + 2 sin θ cos θ cos ϕ sin α cos α cos β + cos θ 2 cos ϕ2 cos α2 cos β2 + cos ϕ2 sin β2

−2 sin ϕ cos ϕ cos α sin β cos β + sin ϕ2 cos α2 cos β2)′

+θ̇ (−sin θ sin ϕ cos ϕ sin β2 + cos θ cos ϕ sin α sin β −sin θ cos ϕ2 cos α sin β cos β
+ sin θ sin ϕ2 cos α sin β cos β −cos θ sin ϕ sin α cos α cos β + sin θ sin ϕ cos ϕ cos α2 cos β2)′)
+m2(Z1 · (− α̇l cos ϕ sin α− β̇l cos ϕ sin β + β̇l sin ϕ cos α cos β + ϕ̇l cos θ cos ϕ sin β
−ϕ̇l cos θ sin ϕ cos α cos β) + Z2

·(− α̇l cos θ sin α cos β − α̇l sin θ sin α sin ϕ − β̇l sin θ sin ϕ sin β − β̇l sin θ cos ϕ cos α cos β
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−θ̇ l cos θ cos ϕ sin β + θ̇ l cos θ sin ϕ cos α cos β) + Z2

·(− α̇l cos θ sin ϕ sin α+ θ̇ l sin θ cos ϕ sin β − θ̇ l sin θ sin ϕ cos α cos β − β̇l cos θ sin ϕ sin β
−β̇l cos θ cos ϕ cos α cos β + ϕ̇l sin ϕ sin β + ϕ̇l cos ϕ cos α cos β));

V41 = I2θ̇ ϕ̇ sin θ + m2rl(θ̇(sin ϕ sin β + cos ϕ cos α cos β)′ + ϕ̇(−sin θ cos ϕ sin β + sin θ sin ϕ cos α cos β)′)
+m2l2(α̇(sin α sin β)′ + β̇(cos α2 cos β2 + sin β2)′

+θ̇ (sin ϕ sin α cos α cos β −cos ϕ sin α sin β)′

+ϕ̇(−cos θ sin β2 −sin θ sin ϕ sin α sin β −sin θ cos ϕ sin α cos α cos β −cos θ cos α2 cos β2)′)
+m2(Z1 · (−β̇l sin ϕ cos β + β̇l cos ϕ cos α sin β + ϕ̇l cos θ sin ϕ cos β − ϕ̇l cos θ cos ϕ cos α sin β)
+Z2 · (− α̇l cos θ cos α sin β + β̇l sin θ cos ϕ cos β + β̇l sin θ sin ϕ cos α sin β
−θ̇ l cos θ sin ϕ cos β + θ̇ l cos θ cos ϕ cos α sin β) + Z3

·(α̇l sin θ cos α sin β + θ̇ l sin θ sin ϕ cos β − θ̇ l sin θ cos ϕ cos α sin β + β̇l cos θ cos ϕ cos β
+β̇l cos θ sin ϕ cos α sin β − ϕ̇l cos ϕ cos β − ϕ̇l sin ϕ cos α sin β) − m2gl cos α sin β;

Z1 = −α̇l sin ϕ sin α− β̇l sin ϕ sin β − β̇l cos ϕ cos α cos β + ϕ̇l cos θ sin ϕ sin β + ϕ̇l sin θ sin α
+ϕ̇l cos θ cos ϕ cos α cos β − rθ̇ ;

Z2 = α̇l cos θ cos α cos β + α̇l sin θ cos ϕ sin α + β̇l sin θ cos ϕ sin β − β̇l sin θ sin ϕ cos α cos β
−θ̇ l cos θ sin ϕ sin β − θ̇ l sin θ sin α − θ̇ l cos θ cos ϕ cos α cos β − rϕ̇;

Z3 = α̇l cos θ cos ϕ sin α− α̇l sin θ cos α cos β + θ̇ l sin θ sin ϕ sin β − θ̇ l cos θ sin α
+θ̇ l sin θ cos ϕ cos α cos β + β̇l cos θ cos ϕ sin β − β̇l sin ϕ cos θ cos α cos β
−ϕ̇l cos ϕ sin β + ϕ̇l sin ϕ cos α cos β;

Appendix 2

A1 =

⎡
⎢⎢⎢⎢⎣

0 1 0 0

0 0 F1H−1
1 0

0 0 0 1

0 0 F2H−1
1 0

⎤
⎥⎥⎥⎥⎦ ; B1 =

⎡
⎢⎢⎢⎢⎣

0

F3H−1
1

0

F4H−1
1

⎡
⎢⎢⎢⎢⎣ ; C1 =

⎡
⎢⎢⎢⎢⎣

0 1 0 0

0 0 0 0

0 0 0 0

0 0 0 0

⎤
⎥⎥⎥⎥⎦ ;

F1 = ((I2 + m2l2)3 − (I2 + m2l2)2((m1 + m2)r2 + I1 + I2 + m2l2) + (I2 + m2l2)m2
2l2r2)m2gl;

F2 = (1/4m2
1/2

2l2r2((m1 + m2)r2 + I1 + I2) − ((m1 + m2)r2 + I1 + I2)((m1 + m2)r2

+I1 + I2 + m2l2)(I2 + m2l2) + ((m1 + m2)r2 + I1 + I2)(I2 + m2l2)2)m2gl;
H1 = ((m1 + m2)r2 + I1 + I2)(I2 + m2l2)3 − ((m1 + m2)r2 + I1 + I2)(m1 + m2)r2

+I1 + I2 + m2l2)(I2 + m2l2)2 +((m1 + m2)r2 + I1 + I2)(I2 + m2l2)m2
2l2r2

+(I2 + m2l2)4((m1 + m2)r2 + I1 + I2 + m2l2) − (I2 + m2l2)4 − 2(I2 + m2l2)2m2
2l2r2

+((m1 + m2)r2 + I1 + I2 + m2l2)(I2 + m2l2)m2
2l2r2 − m2

4l4r4;
F3 = (I2 + m2l2)2((m1 + m2)r2 + I1 + I2 + m2l2) − (I2 + m2l2)2 − (I2 + m2l2)m2

2l2r2;
F4 = −((m1 + m2)r2 + I1 + I2)(I2 + m2l2)m2lr + (I2 + m2l2)2m2lr + m2

3l3r3

−(I2 + m2l2)2((m1 + m2)r2 + I1 + I2 + m2l2) + (I2 + m2l2)3 + (I2 + m2l2)m2
2l2r2;

Appendix 3

A2 =

⎡
⎢⎢⎢⎢⎣

0 1 0 0

0 0 K1H−1
2 0

0 0 0 1

0 0 K2H−1
2 0

⎤
⎥⎥⎥⎥⎦ ; B2 =

⎡
⎢⎢⎢⎢⎣

0

K3H
−1
2

0

K4H
−1
2

⎤
⎥⎥⎥⎥⎦ ; C2 =

⎡
⎢⎢⎢⎢⎣

0 1 0 0

0 0 0 0

0 0 0 0

0 0 0 0

⎤
⎥⎥⎥⎥⎦ ;

K1 = ((I2 + m2l2)3 − ((m1 + m2)r2 + I1 + I2 + m2l2)(I2 + m2l2)2 + m2
2l2r2(I2 + m2l2))m2gl;

K2 = (((m1 + m2)r2 + I1 + I2 + m2l2)2 − ((m1 + m2)r2 + I1 + I2 + m2l2)m2
2l2r2 + ((m1 + m2)r2

+I1 + I2 + m2l2)2(I2 + m2l2))m2;
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K3 = (−(m1 + m2)r2 + I1 + I2 + m2l2)(I2 + m2l2)2 + (I2 + m2l2)3 + (I2 + m2l2)m2
2l2r2

−((m1 + m2)r2 + I1 + I2 + m2l2)(I2 + m2l2)m2lr + (I2 + m2l2)2m2lr + m2
3l3r3;

K4 = −(I2 + m2l2)((m1 + m2)r2 + I1 + I2 + m2l2)2 + ((m1 + m2)r2 + I1 + I2 + m2l2)m2
2l2r2

+((m1 + m2)r2 + I1 + I2 + m2l2)(I2 + m2l2)2;
H2 = ((m1 + m2)r2 + I1 + I2 + m2l2)(I2 + m2l2)3 − ((m1 + m2)r2 + I1 + I2 + m2l2)2(I2 + m2l2)2

+((m1 + m2)r2 + I1 + I2 + m2l2)(I2 + m2l2)m2
2l2r2 + ((m1 + m2)r2 + I1 + I2 + m2l2)(I2 + m2l2)3

−(I2 + m2l2)4 − 2(I2 + m2l2)2m2
2l2r2 + ((m1 + m2)r2 + I1 + I2 + m2l2)(I2 + m2l2)m2

2l2r2

−m2
4l4r4;
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