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Abstract Semiclassical limits of generic multi-parameter quantized coordinate rings A = Oq(kn) of
affine spaces are constructed and related to A, for k an algebraically closed field of characteristic zero
and q a multiplicatively antisymmetric matrix whose entries generate a torsion-free subgroup of k×.
A semiclassical limit of A is a Poisson algebra structure on the corresponding classical coordinate ring
R = O(kn), and results of Oh, Park, Shin and the authors are used to construct homeomorphisms from
the Poisson-prime and Poisson-primitive spectra of R onto the prime and primitive spectra of A. The
Poisson-primitive spectrum of R is then identified with the space of symplectic cores in kn in the sense
of Brown and Gordon, and an example is presented (over C) for which the Poisson-primitive spectrum
of R is not homeomorphic to the space of symplectic leaves in kn. Finally, these results are extended
from quantum affine spaces to quantum affine toric varieties.
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1. Introduction

This paper is a study of ideal theory in quantum affine n-space and, more generally, in
quantum toric varieties. The focus is on the relationship between the prime and primitive
spectra of these non-commutative algebras and the Poisson spectra of corresponding
commutative semiclassical limits.

1.1. History and context

A basic principle of the orbit method is that given a non-commutative algebra A,
one should associate to A an algebraic variety V with a Poisson structure and should
relate the primitive ideals of A to the symplectic leaves in V . This idea first arose in Lie
theory, with the enveloping algebras A = U(g) of finite-dimensional complex Lie algebras
g providing fundamental examples. The symmetric algebra S(g) has a Poisson bracket
induced from the Lie bracket on g, and the identification of S(g) with the coordinate
ring O(g∗) turns the affine space g∗ into a Poisson variety, equipped with the KKS
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(Kirillov–Kostant–Souriau) Poisson structure. In this setting, the Poisson algebra S(g) =
O(g∗) is the semiclassical limit of U(g), because its Poisson bracket can be obtained
from the identification of this algebra with the associated graded algebra of U(g) (with
respect to the standard filtration). (See § 1.3 for the semiclassical limit process.) A famous
theorem of Kirillov, Kostant and Souriau shows that the symplectic leaves in g∗ coincide
with the coadjoint orbits of the associated simply connected Lie group. If g is solvable
and algebraic, the Dixmier map gives a homeomorphism from the space of symplectic
leaves of g∗ (equipped with the quotient Zariski topology) onto the primitive ideal space
PrimU(g).

Analogous patterns are posited for quantum groups (for which a variant of the semiclas-
sical limit is appropriate), particularly for quantized coordinate rings of algebraic varieties
(e.g. [10, Introduction]). One quickly sees, via examples, that the best results are to be
expected in generic cases (meaning that appropriate parameters are not roots of unity).
Here a fundamental test case is Oq(G), the standard single parameter quantized coor-
dinate ring of a complex semisimple algebraic group G. Hodges and Levasseur [10,11],
working with G = SLn(C), and Hodges et al . [12] extending their results to general G,
constructed bijections from the space of symplectic leaves in G (relative to the semi-
classical limit Poisson structure) onto the primitive ideal space of Oq(G). (The struc-
ture of the primitive ideals of Oq(G) underlying these bijections was also developed by
Joseph [14,15].) It is an open problem (solved only in the easy case G = SL2(C)) whether
homeomorphisms can be constructed. The problem may be alternatively expressed in
terms of topological quotients. The above results give surjections G → PrimOq(G) whose
fibres are the symplectic leaves in G, and the question becomes: does there exist such a
surjection for which PrimOq(G) has the quotient topology?

We raised the corresponding problem for other quantized coordinate rings in the fol-
lowing form [6,9]: if A is a generic quantized coordinate ring of an algebraic variety V ,
is PrimA a topological quotient of V , and is the prime spectrum SpecA a topological
quotient of SpecO(V )? We proved that these indeed hold for quantum tori and quan-
tum affine spaces [9]. (In fact, these results hold in non-generic cases as well, modulo
a small technical assumption.) Later, Oh et al . [17] showed that the maps constructed
in [9] induce homeomorphisms from the spaces of Poisson-primitive and Poisson-prime
ideals in coordinate rings of tori and affine spaces onto the primitive and prime spectra
of corresponding generic quantized coordinate rings. However, the Poisson structures in
these results were not exhibited as semiclassical limits.

1.2. Results of this paper

Our purposes here are threefold. First, we construct a semiclassical limit R = O(kn)
of the quantum coordinate ring A = Oq(kn), when the quantizing parameters generate
a torsion-free group, such that the above-cited results of Oh et al . can be applied to give
homeomorphisms, respectively, from the Poisson-prime and Poisson-primitive spectra of
R onto the prime and primitive spectra of A. Furthermore, since our homeomorphisms
occur in generic settings, the explicit descriptions of the maps involved can be somewhat
simplified, and we take the opportunity to do this. Second, we show that the Poisson-
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primitive ideals occurring in the coordinate rings O(kn) here correspond to the Poisson
cores in the affine space kn, in the sense of Brown and Gordon [5], and do not always
correspond to symplectic leaves in general (over C). Finally, we extend the preceding
results to quantum affine toric varieties, as we did for topological quotients in [6,9].

The paper is organized as follows. In § 2, the semiclassical limit is constructed. In § 3,
the homeomorphisms are presented. Section 3 also contains an example showing that
primitive ideals and symplectic leaves do not necessarily correspond bijectively. In § 4,
the special case in which the qij are all powers of a single parameter is considered. Finally,
§ 5 contains the generalizations to quantum affine toric varieties and related algebras.

1.3. Recall that a Poisson algebra over a field k is a commutative k-algebra R equipped
with a Poisson bracket, that is, a k-bilinear map {· , ·} : R × R → R such that (R, {· , ·})
is a Lie algebra and such that {· , ·} is a derivation in each variable. These can arise as
semiclassical limits in the following two ways.

First, suppose that A is a non-negatively filtered k-algebra whose associated graded
ring, R = grA, is commutative. Given homogeneous elements r ∈ gri A and s ∈ grj A,
choose representatives r̂ ∈ Ai and ŝ ∈ Aj . The commutativity of R implies that [r̂, ŝ] ∈
Ai+j−1, and we set {r, s} equal to the coset of [r̂, ŝ] in gri+j−1 A. This provides a well-
defined Poisson bracket on R, and the resulting Poisson algebra is called the semiclassical
limit of A.

For the second construction, suppose that A is a k-algebra and that h ∈ A is a
central non-zero-divisor such that R = A/hA is commutative. Given any r, s ∈ R, choose
representatives r̂, ŝ ∈ A. Then [r̂, ŝ] is uniquely divisible by h in A, and we set {r, s} equal
to the coset (1/h)[r̂, ŝ] + hA in R. We again obtain a well-defined Poisson bracket on R,
and this Poisson algebra is viewed as the semiclassical limit of A. The algebra A may
be thought of as a family of deformations of R, namely the algebras Aq = A/(h − q)A
for q ∈ k. By abuse of terminology, R is also referred to as a semiclassical limit of one of
the algebras Aq, when q is suitably generic.

2. Construction of the semiclassical limit

2.1. Set-up

Throughout the paper we make the following assumptions.

(i) k is an algebraically closed field of characteristic zero (with group of units k×).

(ii) q �= 0, 1 is an element of k.

(iii) n is a positive integer, and q = (qij) is a multiplicatively antisymmetric n × n

matrix over k (i.e. qii = 1 and qij = q−1
ji ∈ k× for 1 � i, j � n).

(iv) The multiplicative subgroup 〈qij〉 = 〈qij | 1 � i, j � n〉 of k× is torsion free. (Note
that the rank of this free abelian group can be no larger than n(n − 1)/2.)
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(v) A = Oq(kn) is the k-algebra presented by generators x1, . . . , xn and relations
xixj = qijxjxi for 1 � i, j � n. This algebra is commonly referred to as a multi-
parameter quantum affine n-space over k.

(vi) K = k[z]〈(z−1)(z−q)〉 is the localization of a polynomial ring k[z] at the semi-
maximal ideal 〈(z−1)(z−q)〉. (If desired, K can be replaced by a finitely generated
subalgebra, as noted in § 2.6.) Write K× for the group of units of K. Note that
there are well-defined evaluation maps

γ1 : K → k and γq : K → k,

given by γ1(f) = f(1) and γq(f) = f(q). Moreover, if f ∈ K×, then γ1(f), γq(f) ∈
k×.

Our goal is to realize SpecA via a suitable semiclassical limit. Our approach depends
essentially on [17], which in turn relies on [8,9,16].

2.2. We now follow [9, § 4] and [8, § 1] (cf. [4, § 4]).

(i) Let Γ = Zn, with standard basis elements ε1, . . . , εn. For s = (s1, . . . , sn) and
t = (t1, . . . , tn) in Γ , set

σ(s, t) =
n∏

i,j=1

q
sitj

ij .

Then σ : Γ × Γ → k× is an alternating bicharacter:

σ(s, s) = 1, σ(s, t) = σ(t, s)−1, σ(s, t + u) = σ(s, t)σ(s, u)

for s, t, u ∈ Γ . Moreover, the subgroup 〈im σ〉 of k× is equal to 〈qij〉.

(ii) Let Γ+ denote the submonoid of Γ of n-tuples without negative entries. For s =
(s1, . . . , sn) and t = (t1, . . . , tn) in Γ+, let xs denote the monomial

xs1
1 · · ·xsn

n ∈ A.

Note, for all s, t ∈ Γ+, that

xsxt = σ(s, t)xtxs.

Also note that qij = σ(εi, εj) for 1 � i, j,� n.

2.3. Since 〈qij〉 is torsion free, −1 /∈ 〈qij〉. Hence, it follows from [9, Lemma 4.2] that
there exists an alternating bicharacter c : Γ × Γ → k× such that σ(s, t) = c(s, t)2 for all
s, t ∈ Γ , and such that σ(s, t) = 1 if and only if c(s, t) = 1. In the proof of [9, Lemma
4.2], c is constructed so that the subgroup Λ = 〈im c〉 of k× is contained in a divisible
hull of 〈qij〉. Since 〈qij〉 is torsion free, so is its divisible hull, and therefore Λ is torsion
free.
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2.4. We now form the twisted monoid algebra kcΓ+, with k-basis {xs | s ∈ Γ+}, and
with multiplication given via xs ∗ xt = c(s, t)xs+t, for s, t ∈ Γ+. (The notational overlap
with § 2.2 (ii) will be resolved momentarily.) Note that

xs ∗ xt = c(s, t)2xt ∗ xs = σ(s, t)xt ∗ xs

for s, t ∈ Γ+. Hence, the assignment xi �→ xεi , for 1 � i � n, induces an isomorphism
from A onto kcΓ+.

Henceforth, we identify A with kcΓ+, via the above isomorphism. In particular, the
monomial xs of § 2.2 (ii), for s ∈ Γ+, is identified with the basis element xs of kcΓ+.

2.5. Suppose that λ1, . . . , λm form a basis for Λ, with

c(s, t) = λ
�1(s,t)
1 · · ·λ�m(s,t)

m

for s, t ∈ Γ , and for suitable (unique) alternating biadditive maps �i : Γ × Γ → Z.

2.6. The field k, being algebraically closed, must be infinite dimensional over Q. Choose
Q-linearly independent elements µ1, . . . , µm ∈ k. Observe that the matrix⎡

⎢⎣
1 1 1
q2 q 1
2 1 0

⎤
⎥⎦ ∈ M3(k)

has determinant (q − 1)2 �= 0 and so is invertible. Hence, for 1 � i � m, there are unique
scalars ai, bi, ci ∈ k such that the quadratic polynomial

fi(z) = aiz
2 + biz + ci

satisfies the following conditions:

fi(1) = 1, fi(q) = λi, f ′
i(1) = µi,

where f ′(z) denotes the formal derivative of a rational function f(z) ∈ k(z). The displayed
properties are all that we require of the polynomials fi. In particular, they need not be
quadratic.

Note that f1, . . . , fm ∈ K×, because neither z − 1 nor z − q is a factor of any fi.
Since these are the key properties needed for K, we could replace K by the affine algebra
k[z][f−1

1 , . . . , f−1
m ], if desired.

Further, set
c̃(s, t) = f

�1(s,t)
1 · · · f �m(s,t)

m

for s, t ∈ Γ , where �1, . . . , �m are as in § 2.5. Then c̃ : Γ × Γ → K× is an alternating
bicharacter, such that

c̃(s, t)(q) = λ
�1(s,t)
1 · · ·λ�m(s,t)

m = c(s, t)

for all s, t ∈ Γ .
Set Λ̃ = 〈im c̃〉 = 〈f1, . . . , fm〉 ⊂ K×.
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Lemma 2.1.

(i) The specialization z �→ q induces a group isomorphism

γq : Λ̃
f(z) �→f(q)−−−−−−−→ Λ.

(ii) The elements f1, . . . , fm form a basis for Λ̃, and so Λ̃ is free abelian of rank m.

Proof. Consider the group homomorphism

γq : K× f(z) �→f(q)−−−−−−−→ k×.

Note, for 1 � i � m, that γq(fi) = λi. Since f1, . . . , fm generate Λ̃ and λ1, . . . , λm form a
basis for Λ, we see both that the fi form a basis for Λ̃ and that γq maps Λ̃ isomorphically
onto Λ. �

Remark 2.2. By the construction, γq(c̃(s, t)) = c(s, t), for all s, t ∈ Γ .

Let k+ denote the additive group underlying the field k.

Lemma 2.3. The rule ψ(f) = f ′(1) gives a well-defined injective group homomor-
phism

ψ : Λ̃
f(z) �→f ′(1)−−−−−−−→ k+.

Proof. Observe that K is closed under formal differentiation, and so f ′(1) is defined
for f ∈ K. Thus, ψ is a well-defined map from Λ̃ to k. Now fi(1) = 1 for 1 � i � m, and
so f(1) = 1 for all f ∈ Λ̃. Therefore, for all f, g ∈ Λ̃,

ψ(fg) = f ′(1)g(1) + f(1)g′(1) = f ′(1) + g′(1) = ψ(f) + ψ(g),

proving that ψ is a group homomorphism. Second, for 1 � i � m,

ψ(fi) = f ′
i(1) = µi.

Since µ1, . . . , µm are Z-linearly independent, we conclude that ψ is injective. �

2.7. Now set R̃ = K c̃Γ+, the twisted monoid K-algebra with K-basis {xs | s ∈ Γ+}
and multiplication given via xs ∗xt = c̃(s, t)xs+t, for s, t ∈ Γ+. We again use xi to denote
xεi , for 1 � i � n.

Recall that qij = σ(εi, εj) = c(εi, εj)2, for 1 � i, j � n, and set

q̃ij = q̃ij(z) = c̃(εi, εj)2 ∈ K×.

Then
R̃ = K〈x1, . . . , xn | xi ∗ xj = q̃ijxj ∗ xi for 1 � i, j � n〉.

For µ ∈ k×, set
Rµ = R̃/〈z − µ〉.

We see that Rq
∼= A, since

q̃ij(q) = γq(q̃ij) = γq c̃(εi, εj) = c(εi, εj) = qij

for all i, j, and we use this isomorphism to identify A with Rq. Under this identification,
the cosets xi + 〈z − q〉 ∈ Rq correspond to the elements xi ∈ A.

https://doi.org/10.1017/S0013091507000910 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091507000910


Semiclassical limits of quantum affine spaces 393

2.8. Next, consider the group homomorphism

γ1 : K× f(z) �→f(1)−−−−−−−→ k×.

Note that γ1(Λ̃) = 1 and, in particular, that γ1(c̃(s, t)) = 1 for all s, t ∈ Γ . We therefore
have an isomorphism from R1 onto R := k[x1, . . . , xn], sending

xi + 〈z − 1〉 �→ xi,

and we identify R1 with R via this map. We also identify R and R1 with the commutative
monoid algebra kΓ+, with k-basis {xs | s ∈ Γ+} and multiplication given by xsxt = xs+t

for s, t ∈ Γ+.
Since R̃/〈z − 1〉 = R is commutative and z − 1 is a central non-zero-divisor in R̃, there

is a Poisson bracket on R as in § 1.3, and R becomes the semiclassical limit of A = Rq

(or, more accurately, the semiclassical limit of the family of algebras Rµ). The Poisson
bracket on R is given by

{ā, b̄} =
ab − ba

z − 1

∣∣∣∣
z=1

for all a, b ∈ R̃, where ā and b̄ denote the cosets of a and b in R. In particular,

{xi, xj} =
(

q̃ij(z) − 1
z − 1

∣∣∣∣
z=1

)
xixj = q̃′

ij(1)xixj

for 1 � i, j � n. (The last equality holds because q̃ij(1) = γ1(q̃ij) = 1.)
We treat R as a Poisson algebra in this way, for the remainder of the paper. In the

notation of [17, 3.1], R = kuΓ+, where u : Γ × Γ → k is the alternating biadditive map
such that u(εi, εj) = q̃′

ij(1), for 1 � i, j � n. In this notation,

{xs, xt} = u(s, t)xsxt

for s, t ∈ Γ+.

3. The homeomorphisms

Retain the notation of the previous section. In particular,

A = Rq = k〈x1, . . . , xn | xixj = qijxjxi for 1 � i, j � n〉

is as in § 2.7, with qij = q̃ij(q), and

R = R1 = k[x1, . . . , xn]

is the Poisson algebra with bracket

{xi, xj} = q̃′
ij(1)xixj ,

following § 2.8. In particular, R is a semiclassical limit of A.
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3.1. (We now follow [5,7,16,17].) An ideal I of R is a Poisson ideal if {R, I} ⊆ I.
We let PSpec R denote the (Zariski) subspace of SpecR comprised of the prime Pois-
son ideals. Each maximal ideal m of R contains a unique largest Poisson ideal P(m),
called the Poisson core of m. The Poisson cores of the maximal ideals of R are termed
Poisson-primitive ideals [5, 3.2] (or symplectic ideals [16, Definition 1.2]) and are prime
(see [5, 3.2] or [16, Lemma 1.3]). The subspace of PSpec R consisting of the Poisson-
primitive ideals will be denoted PPrimR. The Poisson centre Zp(R) is the set of z ∈ R

such that {R, z} = 0.
In our main result, Theorem 3.2, we will describe a homeomorphism from PSpecR

onto SpecA.

3.2. To proceed further, we need more of the notation of [17].

(i) Let W denote the set of subsets of {1, . . . , n}, and let w ∈ W .

(ii) Let Iw denote the ideal of R generated by the xi for i ∈ w, and let Yw denote the
multiplicatively closed subset of R/Iw generated by 1 and the cosets of the xj for
j /∈ w. Let Rw denote the localization of R/Iw at Yw. We let each xi also denote
its image in Rw.

(iii) Let Γw denote the subgroup of Γ generated by the basis elements εj for j /∈ w, and
let cw denote the restriction of c, defined in § 2.3, to Γw × Γw.

(iv) Identify Rw with the group algebra kΓw, via xj ↔ xεj , for j /∈ w.

(v) Set H = Hom(Γ, k×), which is a group under pointwise multiplication, isomorphic
to the algebraic torus (k×)n. This group acts on R = kΓ+ and on Rw = kΓw by
k-algebra automorphisms such that

h · xs = 〈h, s〉hs,

for h ∈ H and s ∈ Γ+ or s ∈ Γw. Further, set

Sw = rad(cw) = {s ∈ Γw | cw(s, t) = 1 for all t ∈ Γw},

S⊥
w = {h ∈ H | 〈h, s〉 = 1 for all s ∈ Sw}.

Then S⊥
w is a subgroup of H, and it acts on both R and Rw through the H-action.

To match the notation of [6, 3.4], let σw denote the restriction of σ = c2 to Γw.
The conditions on c in § 2.3 then imply that

Sw = {s ∈ Γw | σw(s, t) = 1 for all t ∈ Γw} = rad(σw).

(vi) Let Specw R denote the set of prime ideals of R that contain xi for i ∈ w but do
not contain xj for j /∈ w. Localization provides a natural homeomorphism between
Specw R and SpecRw, and this homeomorphism is H-equivariant.

(vii) For P ∈ Specw R, let (P : S⊥
w ) denote the intersection of the prime ideals in the

S⊥
w -orbit of P .
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3.3. Both R and A have k-basis {xs | s ∈ Γ+}. We will use Φ : A → R to denote the
k-linear isomorphism such that Φ(xs) = xs for all s ∈ Γ+.

3.4.

(i) For w ∈ W , set

PSpecw R = PSpecR ∩ Specw R,

PPrimw R = PPrimR ∩ Specw R.

(ii) The maps PSpecR → Spec A and PPrimR → PrimA used in [17, Theorem 3.5]
are defined by the formula

P �→ Φ−1(P : S⊥
w )

for w ∈ W and P ∈ PSpecw R. Moreover, as mentioned in the proof of [17, Propo-
sition 3.4], (P : S⊥

w ) = P for all P ∈ PSpecw R under our present hypotheses, and
so the formula reduces to

P �→ Φ−1(P ).

Since this key point is somewhat hidden in [17], we excerpt the result and its proof
in the next lemma. Before doing so, however, we need the following ingredient.

(iii) Recall the isomorphism γq of Lemma 2.1 and the homomorphism ψ of Lemma 2.3.
Let ϕ denote the composite homomorphism

Λ
γ−1

q−−→ Λ̃
f �→f2

−−−−→ Λ̃
ψ−→ k+,

which is injective because ϕ(λi) = ψ(f2
i ) = 2µi for 1 � i � n. Recalling u from

§ 2.8, observe that

ϕ(c(εi, εj)) = ψ(γ−1
q (c(εi, εj))2) = ψγ−1

q (qij) = ψ(q̃ij) = q̃′
ij(1) = u(εi, εj)

for 1 � i, j � n, and so u = ϕc.

Lemma 3.1 (Oh et al . [17]). Let w ∈ W and let P be a Poisson-prime ideal in
Specw R. Then P is stable under the action of S⊥

w . Consequently, P = (P : S⊥
w ).

Proof. Let uw denote the restriction of u to Γw, and note that uw = ϕcw. The induced
Poisson structure on the localization Rw = kΓw satisfies

{xs, xt} = uw(s, t)xsxt

for s, t ∈ Γ+
w , and so we have Rw = kuwΓ .

The Poisson-prime ideal P/Iw in R/Iw induces a Poisson-prime ideal Q in Rw, which
contracts to a prime ideal Q′ in the Poisson centre Zp(Rw). By [18, Lemma 1.2] (which
is valid over any base field of characteristic zero), Q is generated by Q′, and Zp(Rw)
equals the group algebra of the radical of uw. However,

rad(uw) = {s ∈ Γw | uw(s, t) = 0 for all t ∈ Γw} = rad(cw) = Sw,
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because uw = ϕcw and ϕ is injective. Thus, Zp(Rw) = kSw. By definition of S⊥
w , this

group acts trivially on kSw, and so it fixes Q′ (pointwise). Therefore, S⊥
w stabilizes Q,

and hence also P/Iw and finally P . �

We now apply [17, Theorem 3.5]. Note that the following theorem asserts, in particular,
that the linear map Φ−1 : R → A sends Poisson-prime ideals of R to prime ideals of A.

Theorem 3.2. Let A = Oq(kn), where k is an algebraically closed field of charac-
teristic zero, and where q = (qij) is a multiplicatively antisymmetric n × n matrix over
k such that the group 〈qij〉 ⊆ k× is torsion free. Let R = k[x1, . . . , xn], equipped with
the Poisson structure described in § 2.8, and let Φ : A → R be the k-linear isomorphism
of § 3.3. Then the rule P �→ Φ−1(P ) determines a homeomorphism

PSpecR → Spec A,

which restricts to a homeomorphism

PPrimR → PrimA.

Proof. We have a homomorphism ϕ, from § 3.4 (iii), and an alternating biadditive
map u, from § 2.8, exactly as described in [17, 2.3]. We can identify R as a Poisson
k-algebra with kuΓ+, following the notation of [17, 3.1] (see § 2.8). Similarly, we have
identified A as a k-algebra with kcΓ+, also following the notation of [17, 3.1] (see § 2.4).
The theorem now follows directly from Lemma 3.1 and [17, Theorem 3.5]. �

3.5.

(i) Identify the affine space kn with the maximal ideal space of R. The rule m �→ P(m)
gives a surjective map kn → PPrimR, the fibres of which are called symplectic
cores [5, 3.3], and are algebraic analogs of symplectic leaves (cf. [5, 3.3, 3.5, 3.7]).
Specifically, the symplectic core containing a point m is the set

C(m) = {m
′ ∈ kn | P(m′) = P(m)}.

(ii) Let SympCr kn denote the set of symplectic cores in kn. The rule m �→ C(m) gives
a surjective map kn → SympCr kn, and we give SympCr kn the quotient (Zariski)
topology via this map. By the definition of symplectic cores, there is a bijection
SympCr kn → PPrimR such that C(m) �→ P(m) for m ∈ kn.

(iii) It follows from [7, Theorem 4.1 (b)] that the Zariski topology on PPrimR is the
quotient topology from the canonical map kn → PPrimR in (i). (To verify the
hypotheses of [7, Theorem 4.1 (b)], observe that the action of the torus H on R is
a rational action by Poisson automorphisms, and observe that R has only finitely
many H-stable prime Poisson ideals, namely the ideals Iw of § 3.2 (ii).) Hence, the
bijection SympCr kn → PPrimR of (ii) is a homeomorphism.

Combining these observations with Theorem 3.2, we obtain the following.
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Corollary 3.3. Under the hypotheses of Theorem 3.2, there is a homeomorphism

SympCr kn → PrimA

given by the rule C(m) �→ Φ−1(P(m)).

The symplectic cores C(m), which make up the points of the space SympCr kn in
Corollary 3.3, have good geometric structure themselves: they are homogeneous smooth
irreducible quasi-affine varieties, as the following corollary shows. In keeping with the
notation of § 3.4 (i), set

Maxw R = MaxR ∩ Specw R

for w ∈ W . Since we have identified MaxR with kn, the sets Maxw R partition kn.

Corollary 3.4. Let w ∈ W and m ∈ Maxw R. Then the symplectic core C(m) is a
smooth irreducible locally closed subset of kn, and it equals the S⊥

w -orbit of m in kn.

Proof. Irreducibility and local closedness will follow from [5, Lemma 3.3] once we
know that all Poisson-primitive ideals of R are locally closed points in PSpecR. The
latter fact will follow from the Poisson Dixmier–Moeglin equivalence of [7, Theorem 4.3].
As we have already noted in § 3.5 (iii), the torus H acts rationally on R by Poisson
automorphisms, and there are only finitely many H-stable Poisson-prime ideals in R.
Hence, the hypotheses of [7, Theorem 4.3] are satisfied. Investing that theorem into [5,
Lemma 3.3], we find that C(m) is locally closed and that its closure is the set

{m
′ ∈ MaxR | m

′ ⊇ P(m)},

which is irreducible because P(m) is a prime ideal. Therefore, C(m) is irreducible. Lemma
3.3 of [5] also shows that C(m) is smooth in its closure. Smoothness in kn will follow from
the general theory of algebraic group actions (e.g. [2, Proposition 1.8]), once we exhibit
C(m) as an orbit of an algebraic group.

The S⊥
w -orbit of m appears as the fibre of the quotient map MaxR → PrimA in [9,

Theorem 4.11]. Hence, we need to show that this quotient map, call it µ, agrees with the
one obtained in our present setting, namely the map

τ : kn → PrimA, m �→ Φ−1(P(m)),

which is the composition of the homeomorphism in Corollary 3.3 with the quotient map
kn → SympCr kn. By construction, the fibres of τ are the symplectic cores in kn.

Since m ∈ Maxw R, [17, Proposition 3.4] shows that (m : S⊥
w ) = (P : S⊥

w ) for some
P ∈ PSpecw R. But (P : S⊥

w ) = P by Lemma 3.1, and so (m : S⊥
w ) = P is a Poisson-prime

ideal. In particular, (m : S⊥
w ) is a Poisson ideal contained in m, whence (m : S⊥

w ) ⊆ P(m).
On the other hand, the Poisson-primitive ideal P(m) is S⊥

w -stable by Lemma 3.1. Since
it is contained in m, it must be contained in (m : S⊥

w ). Therefore, P(m) = (m : S⊥
w ), and

we conclude that
τ(m) = Φ−1(m : S⊥

w ).
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This shows that τ agrees with µ, as desired. By [9, Theorem 4.11], the fibres of µ over
points in Primw A consist precisely of the S⊥

w -orbits within kn. Therefore, C(m) equals
the S⊥

w -orbit of m.
Note from its definition that S⊥

w is a closed subgroup of the torus H, so that it is an
affine algebraic group. Since H acts rationally on R, its induced action on MaxR = kn is
morphic, as is the corresponding action of S⊥

w . Standard results (e.g. [2, Proposition 1.8])
thus imply that the S⊥

w -orbit C(m) is smooth (and locally closed). �

When k = C, an affine variety equipped with a Poisson structure can also be partitioned
into symplectic leaves (e.g. see [5, 3.5]), and it has been a goal of research in quantum
groups to represent primitive spectra of quantized algebras as spaces of symplectic leaves.
This correspondence between primitive ideals and symplectic leaves, however, can break
down when the symplectic leaves are not algebraic (i.e. not locally closed in the Zariski
topology), as noted by Hodges et al . [12, p. 52], Vancliff [18, Theorem 3.8] and Brandl [3,
Example 6.4]. The following provides an explicit example of this phenomenon, in the form
of a quantum affine 3-space.

Example 3.5. (i) Let k = C, choose α ∈ R \ Q and choose q ∈ C transcendental
over the field Q(α). We would like to construct an example of the form Oq(C3), with
some qij = qα. However, that would require working with zα in our semiclassical limit
construction § 2.8, and we cannot form zα in K. To replace zα, we use the first-order
Taylor approximation 1 + α(z − 1), and consequently we use 1 + α(q − 1) in place of
qα in the defining relations for this example. Because q is transcendental over Q(α), the
elements λ1 = q and λ2 = 1 + α(q − 1) generate a free abelian subgroup of C× of rank 2.

We now take

q =

⎡
⎢⎣

1 λ2
1 λ2

2

λ−2
1 1 1

λ−2
2 1 1

⎤
⎥⎦

and form A = Oq(C3).

(ii) The primitive spectrum of A is easily calculated by the methods of [8], as follows.
Let W denote the set of subsets of {1, 2, 3}, and for w ∈ W set

Jw = 〈xi | i ∈ w〉 ∈ Spec A,

Aw = (A/Jw)[x−1
j | j /∈ w],

Primw A = {P ∈ PrimA | P ∩ {x1, x2, x3} = {xi | i ∈ w}},

Sw =
{

a ∈ Z3
∣∣∣∣ ai = 0 for i ∈ w and

∏
i/∈w

qai
ij = 1 for all j /∈ w

}
.

Then PrimA is the disjoint union of the sets Primw A, and each Primw A is homeo-
morphic to PrimAw via localization and contraction [8, Theorem 2.3]. Moreover, since
Aw is a quantum torus, PrimAw consists precisely of the ideals induced from maximal
ideals of the centre Z(Aw) [8, Corollary 1.5], and Z(Aw) is spanned by the (cosets of
the) monomials xa for a ∈ Sw (e.g. [8, Lemma 1.2]). In particular, when Z(Aw) = C
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(equivalently, when Aw is simple), Primw A consists of just the ideal Jw. In the present
example, this occurs in the cases w = ∅, {2}, {3}, {1, 2, 3}. Hence,

Prim∅ A = {〈0〉}, Prim{2} A = {〈x2〉},

Prim{3} A = {〈x3〉}, Prim{1,2,3} A = {〈x1, x2, x3〉}.

In the remaining four cases, Aw is a commutative Laurent polynomial ring over C, and
so we obtain

Prim{1} A = {〈x1, x2 − b, x3 − c〉 | b, c ∈ C×},

Prim{1,2} A = {〈x1, x2, x3 − c〉 | c ∈ C×},

Prim{1,3} A = {〈x1, x2 − b, x3〉 | b ∈ C×},

Prim{2,3} A = {〈x1 − a, x2, x3〉 | a ∈ C×}.

Hence, Prim A may be pictured as follows:

(a ∈ C)
· · · 〈x1−a, x2, x3〉 · · ·

(b ∈ C)
· · · 〈x1, x2−b, x3〉 · · ·

(c ∈ C)
· · · 〈x1, x2, x3−c〉 · · ·

(b, c ∈ C×)
· · · 〈x1, x2−b, x3−c〉 · · ·

〈x2〉

����������

������������������������ 〈x3〉

������������������������

����������

〈0〉

�����������������

�������������������������������

(iii) In setting up the semiclassical limit, we may choose c as in § 2.3 so that

c(ε1, ε2) = λ1, c(ε1, ε3) = λ2, c(ε2, ε3) = 1.

In view of (i), the group Λ = 〈im c〉 is free abelian with a basis λ1, λ2. Since α is irrational,
we may (and do) choose µ1 = 1 and µ2 = α. The polynomials fi of § 2.6 are then given
by

f1(z) = z, f2(z) = 1 + α(z − 1),

whence q̃12(z) = z2 and q̃13(z) = (1 + α(z − 1))2, while q̃23(z) = 1. Consequently,

q̃′
12(1) = 2, q̃′

13(1) = 2α, q̃′
23(1) = 0.

(iv) The semiclassical limit of A in this example is thus R = C[x1, x2, x3], equipped
with the Poisson structure such that

{x1, x2} = 2x1x2, {x1, x3} = 2αx1x3, {x2, x3} = 0.

This is a quadratic analog of the KKS Poisson structure on the dual of the standard
example of a non-algebraic solvable Lie algebra (see, for example, [19, Example 2.43]).
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The Poisson-primitive ideals of R can be computed via the Poisson analogue of the
methods of [8] (see [7, Theorems 4.2, 4.3]). These ideals are given by the same sets of
generators as the primitive ideals of A described in (ii); in particular, the picture of
PrimA obtained there serves also as a picture of PPrimR. From this picture, we see that
the symplectic cores in C3 for the Poisson structure under consideration are the following
sets:

(a) the individual points on the x1-axis;

(b) the individual points in the x2x3-plane;

(c) the x1x2-plane with the x1- and x2-axes removed;

(d) the x1x3-plane with the x1- and x3-axes removed;

(e) the space C3 with the three coordinate planes removed.

(v) Finally, we indicate how to find the symplectic leaves for this Poisson structure
on C3. These are not all algebraic, just as in the case of the KKS Poisson structure on
the dual of a non-algebraic solvable Lie algebra (cf. [19, Example 2.43 and discussion
on p. 67] and [5, Remark 1, p. 203]). We first recall from [5, Proposition 3.6 (1)] that
each symplectic core is a union of symplectic leaves. This immediately implies that those
individual points which are symplectic cores are also symplectic leaves. We determine
the other leaves by considering Hamiltonian paths, as follows.

In full, the Poisson bracket on R is given by the formula

{f, g} = 2x1x2

(
∂f

∂x1

∂g

∂x2
− ∂f

∂x2

∂g

∂x1

)
+ 2αx1x3

(
∂f

∂x1

∂g

∂x3
− ∂f

∂x3

∂g

∂x1

)
,

which also defines the unique extension of the bracket to the algebra S of smooth complex
functions on C3. For f ∈ S, the derivation Hf = {f, ·} on S gives a smooth vector field
on C3, and the flows (integral curves) of such vector fields Hf are the Hamiltonian paths
for the given Poisson structure.∗ By definition [20, p. 529], the symplectic leaves of C3

are the equivalence classes for the relation ‘connected by piecewise Hamiltonian paths’.
Paths of the form c(t) = (a, beat, ceαat) with a, b, c ∈ C are flows of Hx1/2, and paths

c(t) = (aebt, b, c) with a, b, c ∈ C are flows of H−x2/2. It follows that the third and fourth
symplectic cores listed in (iv) are connected with respect to piecewise Hamiltonian paths,
and hence these cores are also symplectic leaves. Moreover, each of the surfaces

Σd = {(a1, a2, a3) ∈ (C×)3 | a3 = daα
2 },

for d ∈ C×, is connected with respect to piecewise Hamiltonian paths. On the other hand,
any Hamiltonian path within (C×)3 must satisfy ẋ3(t)/x3(t) = αẋ2(t)/x2(t) and so must

∗ Specifically, a flow of Hf is a path c(t) = (x1(t), x2(t), x3(t)) such that

ċ(t) = Hf c(t) =
(

− 2x1x2
∂f

∂x2
− 2αx1x3

∂f

∂x3
, 2x1x2

∂f

∂x1
, 2αx1x3

∂f

∂x1

)
,

where the dot denotes d/dt.
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be contained within one of the Σd. Therefore, the Σd are the remaining symplectic leaves
of C3. These form a one-parameter family of non-algebraic surfaces whose union is a single
symplectic core.

We conclude that, while PrimA is homeomorphic to SympCr C3 (Corollary 3.3), it is
not homeomorphic to the space of symplectic leaves in C3. For instance, PrimA has just
one dense point, while the space of symplectic leaves in C3 (equipped with the quotient
Zariski topology) has uncountably many.

4. Uniparameter quantum affine spaces

The Poisson structure on kn in Theorem 3.2 can be given more explicitly in the unipa-
rameter case, namely when the scalars qij are powers of a single scalar which is not a
root of unity. We treat this scalar as a square (as we may, since k is algebraically closed),
and write it in the form q2 to match our existing notation.

4.1.

(i) Assume that the scalar q ∈ k× is not a root of unity. Let r = (rij) be an additively
antisymmetric n × n matrix over Z, and take qij = q2rij for all i, j. Assume that
r �= 0, so that at least one qij �= 1.

(ii) Under the present assumptions, the natural choice for the multiplicatively antisym-
metric bicharacter c, as in § 2.3, is to define it so that

c(εi, εj) = qrij

for all i, j. The group Λ = 〈im c〉 is then cyclic, of the form 〈qr〉, where r is the
greatest common divisor of the integers rij . Note that r �= 0 because r �= 0.

(iii) Take λ1 = qr as the basis element for Λ and let �1 be the corresponding alternating
biadditive map on Γ as in § 2.5, so that c(s, t) = qr�1(s,t) for s, t ∈ Γ . Thus,
�1(εi, εj) = rij/r for 1 � i, j � n.

(iv) Since r �= 0, we may take µ1 = r. It is most convenient to take a possibly non-
quadratic choice for the polynomial f1 in § 2.6, namely f1(z) = zr. It is easily seen
that this satisfies the desired conditions:

f1(1) = 1, f1(q) = λ1, f ′
1(1) = µ1.

Define c̃ as in § 2.6, and observe that

c̃(εi, εj) = zr�1(εi,εj) = zrij

for 1 � i, j � n.

(v) Defining q̃ij as in § 2.7, we have q̃ij(z) = c̃(εi, εj)2 = z2rij for 1 � i, j � n. Conse-
quently,

q̃′
ij(1) = 2rij

for 1 � i, j � n.
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In view of § 4.1, the uniparameter cases of Theorem 3.2 and Corollary 3.3 can be stated
as follows.

Theorem 4.1. Let A = Oq(kn), assuming that k is an algebraically closed field of
characteristic zero and q = (q2rij ), where q ∈ k× is not a root of unity and (rij) is a
non-zero additively antisymmetric n × n matrix over Z. Let R = k[x1, . . . , xn], equipped
with the Poisson structure such that

{xi, xj} = 2rijxixj

for 1 � i, j � n, and let Φ : A → R be the k-linear isomorphism of § 3.3. Then the rule
P �→ Φ−1(P ) determines a homeomorphism

PSpecR → Spec A

that restricts to a homeomorphism

PPrimR → PrimA.

Moreover, the rule C(m) �→ Φ−1(P(m)) determines a homeomorphism

SympCr kn → PrimA.

5. Quantum affine toric varieties

We extend our main results to quantizations of affine toric varieties and, somewhat
more generally, to certain cocycle twists of affine commutative algebras. By a quantum
affine toric variety over k we mean, as in [13], an affine domain over k equipped with a
rational action of an algebraic torus H by k-algebra automorphisms, such that the H-
eigenspaces are one-dimensional. Since a rational action of H is equivalent to a grading
by the character group of H (e.g. [4, Lemma II.2.11]), the quantum affine toric varieties
over k are also the affine domains over k, graded by free abelian groups of finite rank, with
one-dimensional homogeneous components. The latter description is convenient for our
present purposes, as it allows us to define quantizations via cocycle twists. As in [9, § 6]
and [6, § 4], neither one-dimensionality of homogeneous components nor absence of zero-
divisors is needed in our proofs, and so we can work with a more general class of twists
of graded algebras.

5.1.

(i) Let R be a commutative affine k-algebra graded by an abelian group G, and let
c : G × G → k× be a 2-cocycle. The twist of R by c [1, § 3] is a G-graded k-algebra
R′, with a G-graded vector space isomorphism r �→ r′ from R → R′ (the twist
map), and multiplication given by r′s′ = c(α, β)(rs)′ for α, β ∈ G and r ∈ Rα,
s ∈ Rβ .

In [9, Theorem 6.3], topological quotient maps SpecR → Spec R′ and maxR →
PrimR′ are constructed, under the assumptions that G is torsion free and −1 /∈
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〈im c〉 (or char k = 2). As discussed in [6, 4.3], the proof of [9, Theorem 6.3] provides
an alternating bicharacter d on G such that R′ is isomorphic to the twist of R by
d and, after replacing c by d, the torsion-freeness hypothesis on G is no longer
needed.

Thus, we now assume that c is an alternating bicharacter on G. Moreover, we
assume that the subgroup 〈im c〉 ⊆ k× is torsion free. Set A = R′, and let Φ : A → R

be the inverse of the twist map.

(ii) Since R is affine, we can choose a finite set of homogeneous k-algebra generators
for R, say r1, . . . , rn. Set δi = deg ri for 1 � i � n. Define Γ and Γ+ as in § 2.2, let
ρ : Γ → G be the group homomorphism such that ρ(εi) = δi for 1 � i � n, and set
ĉ = c ◦ (ρ × ρ), which is an alternating bicharacter on Γ . Also, set q̂ij = ĉ(εi, εj) =
c(δi, δj) for 1 � i, j � n and q̂ = (q̂ij).

Now set Â = Oq̂(kn) and identify Â with kĉΓ
+, with k-basis {xs | s ∈ Γ+}. The

corresponding semiclassical limit, as in § 2.8, is the Poisson algebra R̂ = kûΓ+, for
a suitable alternating biadditive map û = ϕĉ : Γ × Γ → k, where ϕ is an injective
group homomorphism from 〈q̂ij〉 = 〈im ĉ〉 to k+, as in § 3.4 (iii). We also write R̂

with k-basis {xs | s ∈ Γ+}. Hence, there is a k-linear isomorphism Φ̂ : Â → R̂ such
that Φ̂(xs) = xs for all s ∈ Γ+, as in § 3.3.

(iii) Let πA : Â → A and πR : R̂ → R be the natural k-algebra quotient maps, such that
πA(xi) = r′

i and πR(xi) = ri for 1 � i � n. Then we obtain a diagram of k-linear
maps as follows:

R̂

πR

����

Â
Φ̂��

πA

����
R A

Φ��

This diagram commutes because

ΦπA(xs) =
( ∏

1�i<j�n

c̃(siεi, sjεj)
)−1

ΦπA(xs1
1 · · ·xsn

n )

=
( ∏

1�i<j�n

c(siδi, sjδj)
)−1

Φ((rs1
1 )′ · · · (rsn

n )′)

= Φ((rs1
1 · · · rsn

n )′)

= rs1
1 · · · rsn

n

= πRΦ̂(xs)

for s ∈ Γ+.
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The Γ -grading on R̂ induces a G-grading via the homomorphism ρ, which we write
in the form R̂ =

⊕
α∈G R̂[α], where

R̂[α] =
⊕

s∈ρ−1(α)∩Γ+

kxs

for α ∈ G. With respect to this G-grading, πR is G-homogeneous, in the sense that
πR(R̂[α]) ⊆ Rα for all α ∈ G. Hence, ker πR is a G-homogeneous ideal of R̂.

(iv) We next show that kerπR is a Poisson ideal of R̂. To see this, let α, β ∈ G and note
that, whenever s ∈ ρ−1(α) ∩ Γ+ and t ∈ ρ−1(β) ∩ Γ+, we have

{xs, xt} = ϕĉ(s, t)xsxt = ϕc(α, β)xsxt.

It follows that {a, b} = ϕc(α, β)ab for all a ∈ R̂[α] and b ∈ R̂[β]. Consequently, any
G-homogeneous ideal of R̂, and in particular kerπR, is a Poisson ideal.

Now R becomes a Poisson algebra quotient of R̂, such that

{a, b} = ϕc(α, β)ab

whenever α, β ∈ G and a ∈ Rα, b ∈ Rβ . (In particular, {ri, rj} = ϕc(δi, δj)rirj for
1 � i, j � n.) We view R, equipped with this Poisson structure, as a semiclassical
limit of A.

Theorem 5.1. Let k be an algebraically closed field of characteristic zero and R a
commutative affine k-algebra, graded by an abelian group G. Let c : G × G → k× be
an alternating bicharacter such that the group 〈im c〉 ⊆ k× is torsion free, let A be the
twist of R by c and let Φ : A → R be the inverse of the twist map. Equip R with
the Poisson structure described in § 5.1 (iv). Then the rule P �→ Φ−1(P ) determines a
homeomorphism

PSpecR → Spec A,

which restricts to a homeomorphism

PPrimR → PrimA.

Moreover, the rule C(m) �→ Φ−1(P(m)) determines a homeomorphism

SympCr MaxR → PrimA.

Proof. By Theorem 3.2, the rule P �→ Φ̂−1(P ) determines homeomorphisms

PSpec R̂ → Spec Â and PPrim R̂ → Prim Â.

Observe that the first homeomorphism restricts to a homeomorphism η : V → W , where

V = {P ∈ PSpec R̂ | P ⊇ ker πR} and W = {P ∈ Spec Â | P ⊇ ker πA}.
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The quotient maps πR and πA induce homeomorphisms π∗
R : PSpecR → V and π∗

A :
Spec A → W , which fit into the following commutative diagram:

PSpec R̂
P �→Φ̂−1(P ) �� Spec Â

V

⊆

��

η �� W

⊆

��

PSpecR

π∗
R

��

P �→Φ−1(P ) �� Spec A

π∗
A

��

Thus, we have the desired homeomorphism PSpec R → Spec A.
The fact that P �→ Φ−1(P ) also determines a homeomorphism PPrim R → PrimA

follows in the same manner, once one observes that π∗
R and π∗

A map PPrimR and PrimA

homeomorphically onto V ∩ PPrim R̂ and W ∩ Prim Â, respectively.
The final homeomorphism will follow from the results above in the same manner as

Corollary 3.3 once we show that the Zariski topology on PPrimR is the quotient topology
induced by the Poisson core map P(·) : MaxR → PPrimR. Set

X = {m ∈ Max R̂ | m ⊇ ker πR},

and observe that we have a commutative diagram

Max R̂
P(·) �� PPrim R̂

X

⊆

��

θ �� V ∩ PPrim R̂

⊆

��

MaxR

π∗
R

��

P(·) �� PPrimR

π∗
R

��

with surjective horizontal maps. As in § 3.5 (iii), it follows from [7, Theorem 4.1(b)] that
the topology on PPrim R̂ is the quotient topology from the top map in the diagram.
It follows that θ is a topological quotient map, and therefore so is the bottom map, as
desired. �

5.2. The uniparameter case of Theorem 5.1 is the case in which c = qd where q ∈ k×

is not a root of unity and d : G × G → k is an antisymmetric biadditive map. We can
then take ϕ : 〈im c〉 → k to be the q-logarithm, so that ϕc(α, β) = d(α, β) for α, β ∈ G.
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The Poisson structure on R is then given by

{a, b} = d(α, β)ab

for α, β ∈ G and a ∈ Rα, b ∈ Rβ .
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