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Abstract 18 

Leishmaniasis, caused by obligate intracellular Leishmania parasites, poses a significant global 19 

health burden. The control of Leishmania infection relies on an effective T cell-dependent 20 

immune response; however, various factors impede the host's ability to mount a successful 21 

defense. Alterations in the chemokine profile, responsible for cell trafficking to the infection 22 

site, can disrupt optimal immune responses and influence the outcome of pathogenesis by 23 

facilitating parasite persistence. This review aims to emphasize the significance of the 24 

chemokine system in T cell responses and to summarize the current knowledge on the 25 

dysregulation of chemokines and their receptors associated with different subsets of T 26 

lymphocytes during Leishmaniasis. A comprehensive understanding of the dynamic nature of 27 

the chemokine system during Leishmaniasis is crucial for the development of successful 28 

immunotherapeutic approaches. 29 
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Introduction 32 

Leishmaniasis is a neglected tropical vector-borne disease caused by the protozoan parasite 33 

Leishmania. According to the World Health Organization (WHO), in 2022, Leishmaniasis was 34 

endemic in approximately 99 countries and territories out of 200 worldwide. It manifests in 35 

five different clinical forms, including visceral leishmaniasis (VL or kala-azar), post-kala-azar 36 

dermal leishmaniasis (PKDL), cutaneous leishmaniasis (CL), mucocutaneous leishmaniasis 37 

(MCL), and diffuse cutaneous leishmaniasis (DCL) [1]. Among these, visceral leishmaniasis is 38 

the most severe form, affecting approximately 90% of the global population and primarily 39 

reported in seven countries: Brazil, India, South Sudan, Sudan, Ethiopia, Kenya, and Somalia 40 

(WHO report, 2018). Visceral leishmaniasis affects the visceral organs of the host and is caused 41 

by the protozoan parasite Leishmania donovani in Asia, Africa, and the Middle East, and 42 

Leishmania infantum in South America and Europe. If left untreated, VL can be fatal. The 43 

disease is characterized by various symptoms, including splenomegaly (enlarged spleen), 44 

hepatomegaly (enlarged liver), pancytopenia (reduction in blood cell counts), 45 

hypergammaglobulinemia (elevated levels of gamma globulins in the blood), weight loss, 46 

weakness, and progressive anemia [2].  47 

The chemokines and their receptors play a vital role in guiding immune cells to specific 48 

locations during homeostasis and inflammatory conditions. Chemokines, which are a type of 49 

cytokine, bind to their G-protein coupled receptors (GPCRs), known as chemokine receptors 50 

(CKRs), and initiate signaling through coupled heterotrimeric G-proteins [3]. This signaling 51 

pathway leads to the activation of integrins, enabling leukocytes to firmly adhere to endothelial 52 

cells and extravasate into the tissue microenvironment [4]. Chemokine receptors are designated 53 

based on the type of chemokine(s) they bind, such as CXC, CC, XC, and CX3C, followed by 54 

'R' (for receptor) and a number indicating the order of discovery. The chemokine system plays 55 

a crucial role in immune cell migration and the composition of immune cells at a specific site 56 

depends on various factors, including chemokine expression. This composition of immune 57 

cells also influences the host's susceptibility to infection. During inflammation, various types 58 

of immune cells, including neutrophils, macrophages, and lymphocytes, as well as non-59 

immune cells such as endothelial cells, epithelial cells, fibroblasts, and adipocytes, produce 60 

chemokines. This results in the migration of different cell types, such as macrophages, 61 
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neutrophils, and T cells, to the specific location of inflammation [5,6]. The secretion of 62 

cytokines from these cells in the inflamed zone affects the behavior of infiltrating cells and 63 

disease progression [7]. For instance, CXCL8 secreted by endothelial cells, wounded epithelial 64 

cells recruit neutrophils which can further release some more CXCL8 and attract even more 65 

neutrophils, and other types of leukocytes to the inflamed zone [5,8,9]. T lymphocytes, a subset 66 

of immune cells, have a central role in combating intracellular infections and coordinating 67 

adaptive immune responses. T lymphocytes can produce proinflammatory or anti-68 

inflammatory cytokines and can eliminate unwanted cells [10]. They express a range of 69 

chemokine receptors on their surface and also produce various chemokines, including CXCR3, 70 

CCR5, CCR4, CCR8, CCL3, CCL4, CCL5, CXCL8, etc. (Table-1). 71 

However, the chemokine system associated with T cells, particularly in Leishmaniasis, has 72 

received limited attention. Understanding the complex interactions between the chemokine 73 

system and T cells is crucial to elucidate the impaired migration and functioning of immune 74 

cells during Leishmania infection. This understanding can contribute to the identification of 75 

potential drug targets against chemokines and chemokine receptors, facilitating the 76 

development of novel therapeutic strategies. 77 

T- cell associated chemokine system: at the crossroad of infection or protection  78 

The chemokines profile plays a critical role in the migration of immune cells during 79 

homeostatic and inflammatory conditions [11]. Chemokine receptors (CKRs) are expressed on 80 

the surface of immune cells and exhibit differential expression patterns [12]. The promiscuous 81 

nature of the chemokine system allows multiple chemokines to bind to a single receptor, and 82 

conversely, a single chemokine can interact with multiple receptors [13]. This complex 83 

interaction between chemokines and receptors influences the migratory behavior and 84 

functional consequences of immune cells [14,15]. Chemokines belonging to the CC family, 85 

such as RANTES (CCL5), can bind to multiple chemokine receptors, including CCR1, CCR3, 86 

and CCR5. Similarly, CC chemokine receptor 5 (CCR5) can interact with different chemokines 87 

like MIP-1β, MIP-1α, and RANTES [16]. This promiscuity allows for versatile chemokine-88 

receptor interactions, expanding the repertoire of migratory signals that immune cells can 89 

respond to. The expression pattern of chemokine receptors on the cell surface determines the 90 

migratory behavior of immune cells in response to specific chemoattractant sources. Instead of 91 

directly migrating to a specific site, cells pass through different zones expressing different 92 

chemokines. This multistep directional migration is guided by the combinatorial expression of 93 

https://doi.org/10.1017/erm.2024.36
Downloaded from https://www.cambridge.org/core. IP address: 3.145.162.155, on 26 Dec 2024 at 03:36:17, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms.

https://doi.org/10.1017/erm.2024.36
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


Accepted Manuscript 

chemokine receptors on the cell surface [17]. For example, naïve T cells require CCR7 to 94 

migrate to the T cell zone, expressing CCL19, and once there, desensitization or 95 

downregulation of CCR7 allows them to migrate to the B-cell zone, guided by 96 

CXCR5/CXCL13 axis [18].  97 

The expression of chemokine receptors is tightly regulated during cell development and 98 

differentiation [19]. This regulation allows for the distinction of different forms of CD4+ and 99 

CD8+ T cells, such as naïve T cells, effector T cells, and memory T cells, based on the specific 100 

chemokine receptors they express. Each T cell subset uniquely expresses various chemokine 101 

receptors that define its identity and functional characteristics [10]. The host employs various 102 

strategies to combat pathogenesis during infection. The development of resistance in the host 103 

largely depends on the orchestrated response of cells that possess the ability to eliminate 104 

pathogens. Chemokines play a crucial role in directing selective cell migration towards the site 105 

of infection. Depending on the specific chemokine signals present, the host may mount a 106 

protective response or experience tissue damage [20]. The chemokine receptors associated with 107 

different subsets of T lymphocytes is under various inflammatory conditions is given in Table-108 

1. 109 

Migratory control over naïve and central memory T cells:  110 

Naïve T cells (Th0) and central memory T cells (Tcm) express crucial homing receptors, such 111 

as CCR7 and CXCR4, which are involved in their migration to secondary lymphoid organs 112 

(SLOs) where they can actively participate in immune surveillance and responses [21–23]. 113 

Naïve T cells are those that have not been previously exposed to antigens, circulate in the 114 

bloodstream and travel to lymph nodes, where they scan for antigens presented by antigen-115 

presenting cells (APCs) to initiate an immune response. CCR7 facilitate rolling over the 116 

endothelium of blood vessels during transmigration. Homeostatic chemokines CCL19 and 117 

CCL21, which are secreted by high endothelial venules (HEV), stimulate the CCR7 receptor 118 

on T cells [24]. The interaction between CCR7 and its ligands increases the affinity of the 119 

integrin LFA-1 (found on lymphocytes and other leukocytes) for its ligand ICAM-1 (expressed 120 

on HEV). This firm attachment to the endothelium enables T cells to migrate through the HEV 121 

and enter the lymph node [25,26]. Experimental studies using mutant mice lacking CCR7 122 

(CCR7-/-) have demonstrated impaired immunogenic responses due to restricted entry of 123 

lymphocytes from the bloodstream to SLOs [27].Similarly, Tcm cells also express CCR7  124 

which facilitates its retention in SLO.  Another homing receptor, CXCR4 interact with 125 
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CXCL12 (SDF-1) and  is involved in memory T cell maintenance, cell growth, cell survival, 126 

and the recirculation of T cells within SLOs. Bone marrow stromal cells express CXCL12 127 

which attract T cells expressing CXCR4 on its surface [28,29].  Its expression is reduced once 128 

T cells are activated [30]. CXCR4 is a remarkable marker expressed constitutively on both 129 

naïve CD4+ and CD8+ T cells, but predominantly on naïve and central memory CD8+ T cells  130 

[28,31,32].   131 

CCR7 is highly expressed on resting naïve CD4+ T cells (CD45RA+ CCR7+), however, most 132 

activated T cells lack CCR7 on their surface, and if they do, it is expressed at a very low level 133 

[33]. Tcm cells do not possess effector functions but can differentiate into effector memory T 134 

(Tem) cells upon antigenic stimulation having lower CCR7 but upregulated some other 135 

chemokine receptors like CCR5, CXCR3, CCR4 [34,35]. This transition allows them to migrate 136 

to peripheral tissues to provide robust immune responses rather than to rest within the lymphoid 137 

tissues.   138 

Similarly, CD8+ T cells also express CCR7 on their surface and migrate towards SLOs, like 139 

CD4+ T cells as discussed earlier [36]. CXCR4 is a remarkable marker expressed constitutively 140 

on both naïve CD4+ and CD8+ T cells, but predominantly on CD8+ T cells [31]. It interacts with 141 

its ligand, stromal cell-derived factor 1 (SDF-1 or CXCL12), and regulates the migration of 142 

CXCR4+ T cells by facilitating their adhesion to the venules of SLOs. The presence of CXCR4 143 

has been discovered to provide essential signals for the survival of thymocytes during their 144 

maturation process. Disrupting the function of CXCR4 has an impact on thymic development 145 

[37]. CXCL12/CXCR4 signaling is crucial for TCR-induced immunological synapse 146 

development, early signaling molecule phosphorylation, and thymic β selection [38]. CXCR4 147 

mediates the migration of naïve and central memory (Tcm) CD8+ T cells to the bone marrow 148 

and is critical for homeostatic proliferation of CD8+ Tcm cells. It also maintains the reservoir 149 

of memory CD8+ T cells [28]. Their expression decreases during differentiation into effector 150 

memory cells (CD8+ Tem) as negatively correlated with perforin expression [31]. 151 

Migratory control over effector memory T cells:  152 

As naïve T cells differentiate into effector T cells, they begin to express additional chemokine 153 

receptors (Table-1) that are necessary for their migration and positioning within target tissues 154 

[39,40]. Effector memory T cells (Tem) are CCR7low and express other chemokine receptors 155 

that facilitate their circulation in the peripheral blood and migration to inflamed tissues, where 156 

they can exert their protective functions against infections [41].  157 
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Different subsets of CD4+ effector cells, such as Th1 and Th2 cells, express distinct arrays of 158 

chemokine receptors. Th1 cells preferentially express CCR5 and CXCR3, while Th2 cells, on 159 

the other hand, preferentially express CCR3, CCR4 and CCR8 [42,43] which are involved in 160 

their migration to inflamed tissues. CXCR5 is a chemokine receptor that directs the migration 161 

of T cells into B cell follicles. While subsets of both CD4+ and CD8+ T cells express CXCR5, 162 

its high expression is found on T follicular helper cells (Tfh), a subset of CD4+ T cells [44]. 163 

The ligand for CXCR5, CXCL13 is released from ‘B cell zones’ in secondary lymphoid organs 164 

and guides the migration of Tfh cells towards B cell follicles, where they assist in affinity 165 

maturation [45]. Deletion of CXCR5 or CXCL13 in mice leads to altered and impaired 166 

microarchitecture of secondary lymphoid organs [46,47]. CXCR5+ central memory T cells 167 

(Tcm) play a crucial role in the generation of antibody-mediated secondary immune responses 168 

[48]. The immunosuppressive CD25+ regulatory T cells (Tregs) found to be associated with 169 

many C-C chemokine receptors such as CCR4, CCR5, CCR6, CCR7 & CCR8 but majorly 170 

express CCR4 and CCR8 [49–51]. Previously, it was found that CXCR4 expression decreases 171 

with T cell activation, however subsequent discoveries have also shown that its expression 172 

increases on CD4+ T cells in diseased condition as reported in HIV-infected patients where it 173 

acts as a coreceptor for HIV-entry [30,32,52] . 174 

Effector CD8+ T cells express chemokine receptors such as CXCR3, CXCR6, CCR4, CCR6, 175 

CCR9 and CCR10, which direct their migration to specific tissues during inflammatory 176 

responses [36,53]. IFN-γ producing CD4+ T cells affect the recruitment of effector CD8+ T cells 177 

by upregulating the production of CXCL9 and CXCL10 (ligands for CXCR3) at the site of 178 

infection [36]. CXCR3high has been found to be a determination factor of cytotoxic response, as 179 

studied during influenza pathogenesis [14]. CXCR3 expression is induced on naive CD8+ T 180 

cells upon activation and remains preferentially upregulated on effector CD8+ T cells. CXCR3 181 

is involved in the migration of CD8+ T cells to inflammatory sites. Antigen-specific CD8+ T 182 

cells that lack CXCR3 skewed towards more memory cells with decreased activation property 183 

and fewer short-lived effector cells [53,54]. CCR9 promotes migration to the gut, while CCR10 184 

facilitates migration to the skin [55], indicating that the draining lymph node plays a significant 185 

role in determining the migratory properties of activated CD8+ T cells, guiding them toward 186 

specific locations.  187 

In summary, the expression of specific chemokine receptors on effector memory T cells 188 

determines their migratory behavior and allows them to migrate to the appropriate tissues 189 
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during an immune response. The differential expression of chemokine receptors on different 190 

subsets of T cells contributes to their specialized functions and distribution within the body. 191 

Chemokine Signaling 192 

Chemokine receptors (CKRs) are a type of G protein-coupled receptors (GPCRs) that play a 193 

crucial role in cell signaling. The signaling of CKRs involves various molecules, including 194 

heterotrimeric G proteins, G protein receptor kinases (GRKs), and β-arrestins. These 195 

components work together to initiate and regulate signal transduction pathways, leading to a 196 

wide range of biological functions [56]. When a specific stimulus binds to a heptahelical 197 

chemokine receptor, it activates specific heterotrimeric G proteins. These G proteins consist of 198 

an alpha subunit (Gα) and a beta-gamma subunit (Gβγ). Different Gα subunits have been 199 

identified on the basis of sequence and functional similarities (Table-2) - stimulatory subunit 200 

(Gαs), inhibitory subunit (Gαi), Gα12/13, and Gαq [57]. Initially, the Gα subunit is bound to GDP 201 

(guanosine diphosphate), but upon stimulation, guanine nucleotide exchange factors (GEFs) 202 

stimulate the exchange of GDP for GTP (guanosine triphosphate) on the Gα subunit. The 203 

binding of GTP to Gα leads to its activation and activated Gα subunits can then interact with 204 

various downstream effectors like adenylate cyclase (AC), GTPase of rho-family, protein 205 

kinase A (PKA), protein kinase C (PKC) etc. in order to perform effector functions, including 206 

cell migration [58–62].  For example, Gαq can activate an enzyme called phospholipase C 207 

(PLC), which is associated with the cell membrane. PLC cleaves phosphatidylinositol (4,5)-208 

bisphosphate (PIP2) into two second messenger molecules: diacylglycerol (DAG) and inositol 209 

triphosphate (IP3). DAG activates protein kinase C (PKC), while IP3 triggers the release of 210 

calcium ions from intracellular stores, such as the endoplasmic reticulum [63–65]. These events 211 

initiate multiple signaling cascades that ultimately lead to various cellular responses, including 212 

actin polarization and chemotaxis (Figure 1) [57,66].  213 

To regulate the ongoing signaling, there is a regulator of G protein signaling (RGS) proteins 214 

act as GTPase-activating proteins (GAPs) for Gα subunits. They facilitate the hydrolysis of 215 

GTP bound to Gα, thereby switching off the ongoing signaling processes. On the other hand, 216 

the Gβγ dimer, which remains bound together, acts as a signaling molecule itself. It can initiate 217 

signaling pathways independently and also regulate the activity of Gα subunits. Some of the 218 

pathways regulated by Gβγ include the Akt pathway, MAP kinase pathway, and calcium-219 

dependent pathway, which can lead to cellular responses like cell migration [67]. Gβγ subunit 220 

mainly negatively regulate Gα subunit when bind with it. Intracellular GPCR kinases (GRKs) 221 
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play a role in the regulation of CKRs. Upon continuous stimulation with chemokines, GRKs 222 

phosphorylate the CKRs. This phosphorylation allows for the binding of arrestin proteins, 223 

leading to the desensitization or internalization of the CKRs. This process can ultimately result 224 

in the degradation of the receptors or their recycling back to the cell surface. Different 225 

chemokines can activate the same CKR through different GRKs. For example, CCR7 can be 226 

activated by both GRK3 and GRK6 in response to CCL19, while CCL21-induced CCR7 227 

signaling is mediated only by GRK6 [68]. A phenomenon known as oligomerization is the 228 

formation of complexes between either the same or different CKRs, has also been reported. 229 

This can lead to altered receptor activity and crosstalk between signaling pathways, which may 230 

affect normal signaling and result in a variety of cellular responses, including the regulation of 231 

cell migration [69]. As studied in case of CCR7, oligomerization is necessary for the effective 232 

cell migration. If oligomerization were to somehow fail, cell movement would be hampered 233 

[70]. 234 

Role of T cells during Leishmaniasis 235 

The orchestration of T lymphocytes on the targeted site plays central role during adaptive 236 

immunity. An optimal T cell dependent immunoprotective response is essential to combat 237 

infection caused by obligate intracellular Leishmania parasites in the mammalian host. 238 

Different subsets of T cells have been discovered to play various roles in different clinical 239 

forms of Leishmaniasis, highlighting the importance of understanding the types of T cells that 240 

exhibit protective and destructive responses during infection (Figure 2). 241 

CD4+ T cells 242 

CD4+ T cells, a major group of T cells, provide protection to the host during Leishmaniasis 243 

which relies on the expression of various antiparasitic molecules (eg. reactive oxygen species, 244 

nitric oxide) in phagocytic cells that get activated on IFN-γ productions [71]. Various subsets 245 

of CD4+ T cells, including Th1, Th2, Th17, Th22, Th9, Treg and Tfh cells, have been identified 246 

based on their distinct cytokine profiles (Table-3). These subsets are responsible for different 247 

immune responses and can determine resistance or susceptibility to Leishmania infection, 248 

depending on which subset dominates the infected site. Treg cells possess immunosuppressive 249 

properties during infection. They play a regulatory role in dampening immune responses and 250 

can contribute to the persistence of the parasite [72]. 251 
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In VL, Th1 cells produce pro-inflammatory cytokines such as IFN-γ and TNF-α, which induce 252 

phagocytic activity and control parasitic growth while Th2 cells produce higher level of IL-4, 253 

IL-5, IL-13, IL-10 that leads to susceptibility towards infection [73,74]. Another 254 

proinflammatory subset of CD4+ T cells, Th17 produces IL-17 and IL-22 that recruit 255 

neutrophils and inflammatory cells at the inflammatory site, thus playing a protective role 256 

during VL [75,76]. It was observed that the cytokines IL-10, TGF-β and IL-35 released by these 257 

cells hinder the functioning of IFN-γ, TNF-α and IL-17 during chronic VL as studied on L. 258 

donovani infected mice model [77,78]. T follicular helper (Tfh) cells, an important CD4+ T cell 259 

subset that regulate B lymphocytes activation during humoral immune responses, produce IL-260 

21 and IL-4 [79]. It has been found that IL-21 mRNA expression was upregulated in CD3+ T 261 

cells of VL patients which is responsible for the expansion of IL-10 producing cells [80,81]. 262 

As, IL-21 also assists in antibody production, their increased level in serum of chronic VL 263 

patients may be responsible for generating autoantibodies [82,83]. Th9 subset secrete IL-9 264 

during infection. CD4+ T cells releasing IL-9 have been found to be upregulated in human VL 265 

during acute phase and leads to immunopathogenesis [84]. 266 

In CL caused by Leishmania (V.) braziliensis, patients with active lesions exhibit a mixed 267 

Th1/Th2 response, producing cytokines like TNF-α, IFN-γ, IL-12, IL-4, and IL-1. However, 268 

individuals who have been cured of the infection primarily produce IFN-γ (Th1 response), 269 

which is associated with a protective immune response [85]. Although IFN-γ and TNF-α 270 

provide protection to the host against Leishmaniasis but their overproduction may cause tissue 271 

damage [86]. IL-22, released by Th22 and Th17 cells both, found to provide protection against 272 

tissue destruction during CL [87]. IL-17 was considered as a predictive marker of disease 273 

progression in L. guyanensis infected CL patients [88]. High production of IL-17 cytokine has 274 

been directly associated with disease severity in CL [89]. Primarily IL-9 produced by Th9 275 

subset, but Th17 and Treg cells also produce this cytokine at low level and is involved in CL 276 

pathogenesis [90,91]. 277 

During PKDL, there is an increase in the production of Th1 cells specific cytokines, namely 278 

IFN-γ, TNF-α and IL-12, as well as IL-17A, IL17F and IL22 specific to Th17 cells shows 279 

protective role during infection. IL-17 may contribute to resistance by increasing the 280 

production of TNF-α, NO, and antimicrobial peptides (like β-defensin) in conjunction with IL-281 

22 [74]. Th2 cells produces higher level of IL-4, IL-5, IL-13, and IL-10 that leads to 282 

susceptibility towards infection and promote parasite persistence during PKDL. The 283 
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progression of VL to PKDL is associated with overproduction of Th2-related cytokines in the 284 

skin [91]. The simultaneous overproduction of IL-10 diminishes the effectiveness of IFN-γ and 285 

TNF-α [92]. It was also found that the patients with PKDL had lower levels of serum IFN-γ, 286 

IL-10, and IL-6 compared to VL patients and comparable levels to healthy persons. However, 287 

the levels of TNF-α in PKDL patients were considerably higher than in VL patients or healthy 288 

participants [93]. Different kinds of PKDL have varying levels of these cytokines, polymorphic 289 

PKDL had greater serum levels of IFN-γ and IL-10 than macular PKDL, while macular lesions 290 

had lower levels of IFN-γ and TNF-α than nodular PKDL [74].  291 

CD8+ T cells The role of CD8+ T cells in Leishmaniasis has received relatively less attention 292 

compared to CD4+ T cells. Nonetheless, studies have demonstrated that CD8+ T cells, 293 

specifically the Tc1 subset, do play a protective role in protozoan infections, including 294 

Leishmaniasis. CD8+ T cells exert their protective effects through various mechanisms. They 295 

produce inflammatory molecules such as IFN-γ and TNF-α, which contribute to the activation 296 

of macrophages and the control of intracellular pathogens like Leishmania.  297 

In VL, CD8+ T cells play a role in defending against the development of the disease. They 298 

secrete IFN-γ, perforin, and granzyme, which contribute to the control of Leishmania infection 299 

[94,95]. However, during the progression of human VL, there is often a depletion of CD8+ T 300 

cells possessing anergic phenotype, which reduces their protective potential against the parasite 301 

[96]. There are two distinct groups of CD8+ T cells have been identified, one is CD8low which 302 

was present during onset and VL progression, and the other one is CD8high which increases 303 

after the cure of disease [97]. Despite the challenges observed in human VL, studies in mouse 304 

models have shown promising results regarding CD8+ T cell-based vaccines. These vaccines 305 

rely on the chemokine CXCL10, which plays a crucial role in attracting CD8+ T cells to the 306 

sites of infection. By enhancing the recruitment and activation of CD8+ T cells, CXCL10-based 307 

vaccines have demonstrated effectiveness in reducing the parasitic burden in organs [98]. 308 

The production of IFN-γ, TNF-α and cytolytic molecules by CD8+T cells play protective role 309 

during CL also [99]. The cytolytic genes are highly expressed in lesion and is positively 310 

correlated with the recruitment of granzyme B+ CD8+ T cells [100]. CD8+ T cells contribute to 311 

resistance against L. major infection by increasing the development of Th1 cells and 312 

suppressing the development of Th2 cells, via the production of IFN-γ [101]. Additionally, 313 

CD8+ T cells also responsible for the host immunopathology during CL [102].[102] A previous 314 

report found association between granzyme B and disease outcome. It was observed that on 315 

https://doi.org/10.1017/erm.2024.36
Downloaded from https://www.cambridge.org/core. IP address: 3.145.162.155, on 26 Dec 2024 at 03:36:17, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms.

https://doi.org/10.1017/erm.2024.36
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


Accepted Manuscript 

inhibiting the granzyme release from CD8+T cells during CL reduces disease severity [103].  316 

CD8+ T cell mediated pathology has been linked with the induction of inflammasome NLRP3 317 

formation and release of IL-1β which is confirmed by the increased level of this cytokine in 318 

the lesions of patients infected with L. braziliensis [104]. This suggest that CD8+T cells possess 319 

protective as well as immunopathogenic nature during Leishmania infection.  320 

The frequency of IL-10 producing CD8+ T cells was considerably elevated in individuals with 321 

PKDL caused by L. donovani, but it decreased after successful treatment [105]. Increased 322 

expression of exhaustion markers such as programmed death-1 (PD-1), while reduced 323 

expression of perforin and granzyme was also observed at lesional site [106]. This implies that 324 

the conditions are favourable for the survival of parasites and leads to the progression of 325 

diseases. 326 

γδ T cells  327 

Gamma delta T cells or γδ T cells accounting for 2–5% of the overall cell population in healthy 328 

persons and possess a γδ T-cell receptor (TCR) on their cell surface rather than αβ TCR chains 329 

as found in case of CD4+ and CD8+ T cells. A previous study demonstrated that mice infected 330 

with L. major subcutaneously exhibited elevated levels of γδ T-cells in the spleen and draining 331 

lymph nodes of both susceptible BALB/c and resistant CBA/J mice. This suggests that γδ T-332 

cells involve in protective inflammatory responses associated with the infection by promoting 333 

granuloma formation [107–109]. In VL patients, elevated γδ-T cells were observed to stimulate 334 

the proliferation and differentiation of B-cells which is achieved through the secretion of 335 

growth factor (BCGF) and differentiation factor (BCDF). This results into abnormalities in 336 

humoral immune responses and hypergammaglobulinemia, suggesting an immuno-suppressive 337 

and pathogenic response [110]. In another study of VL patients infected with L. donovani, a 338 

substantial production of IL-10 was found which suggests an immunomodulatory function of 339 

γδ T cells [111]. In an experimental model of C57BL/6 mice infected with L. donovani, it was 340 

shown that IL-17, which is generated by γδ T cells, has an inhibitory effect and restricts the 341 

proliferation of parasites in the liver [112]. 342 

Natural killer T cells (NKT)  343 

NKT cells are specialized lymphocytes that share surface markers and functional 344 

characteristics with both natural killer cells (NK) and T cells [113]. They may express CD4 or 345 

CD8 marker on their surface and secrete IFN-γ, TNF-α, IL-4, IL-10, and IL-13 and constitute 346 
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0.1–0.5% of peripheral blood leukocytes [114,115]. IFN-γ producing CD8+ NKT cells was 347 

shown to be protective in nature, whereas CD4+ NKT cells expressing CD25, Foxp3 and IL-348 

10 was found to be pathogenic during L. donovani infection [116]. These CD4+ NKT cells 349 

accumulate at the infection site and it may be due to expression of CCR5 on its surface during 350 

infection [117]. In a previous study on peripheral blood of VL patients, it was observed that 351 

CD8dim CD56+ NKT cells are the subset which express more granzyme B and are more 352 

cytotoxic than CD8bright CD56+ NKT cells [118].  353 

In CL, CD3+ CD56+ CD8+ NKT cells were also found to be protective in nature and shown to 354 

be associated with a cytotoxic response against L. braziliensis [117,119]. In CD1d-/- and Jα18-/- 355 

mice, which lack NKT cells, exhibited a delay in clearing >10^6 L. major parasites during 356 

infections [120]. 357 

However, despite the presence of the defensive properties of CD4+T cells and CD8+T cells, 358 

immune responses are ineffective to control parasitic growth and thus disease progression 359 

occur during chronic infections. Furthermore, hyporesponsive T cells expressing several 360 

exhaustion markers (eg. PD-1, CTLA-4, LAG-3, TIM-3) leads to ineffective immune responses 361 

and high parasitic load that depends on infection duration and host immunity [121]. The 362 

understanding of the role of chemokines and their receptors associated with different T cell 363 

subsets during Leishmaniasis, we can get valuable information on the key factors driving 364 

disease progression and prognosis, potentially leading to better clinical management of the 365 

disease. Targeting specific chemokines and their receptors holds potential for modulating T 366 

cell responses and enhancing protective immunity against Leishmania infection. 367 

Hepatic granuloma formation during VL is a function of T- cell associated chemokine 368 

profile 369 

The formation and maturation of granulomas in response to infection, including Leishmaniasis, 370 

are dependent on the active cell recruitment [122]. Granulomas are complex inflammatory 371 

structures that develop around infected cells, such as Kupffer cells in the liver. It includes a 372 

variety of immune cells, including several types of T cells, particularly CD4+ T cells that 373 

produce protective IFN-γ [5]. Kupffer cells phagocytosed parasites but were unable to eliminate 374 

it solely and as formation of mature granuloma progresses, T cells become a central component 375 

of the mature granuloma and contribute to the leishmanicidal activity of infected Kupffer cells 376 

[123–125]. These cells work together to provide a targeted immune response and prevent the 377 
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parasites from spreading to other tissues. Chemokines play a crucial role in orchestrating the 378 

formation and maturation of granulomas. They regulate the recruitment and infiltration of 379 

various immune cells into the granuloma, allowing for a more effective immune response 380 

against the infection. Chemokines secreted by activated Kupffer cells, such as CCL2, CCL3, 381 

CXCL10 [126] attract immune cells like monocytes, T cells, neutrophils, and invariant natural 382 

killer T (iNKT) cells to the site of infection. iNKT cells, upon activation, are necessary for the 383 

sustained expression of CXCL10, an inflammatory chemokine that binds to CXCR3 and recruit 384 

some more iNKT cells. This promotes the initiation of the granuloma formation where iNKT 385 

cells are predominantly present [127,128]. In an in vivo model of VL, CXCL10 shown to 386 

generate a protective proinflammatory environment by upregulating Th1 cytokines (IL-12, 387 

IFN-γ, TNF-α) and downregulating anti-inflammatory IL-10 & TGF-β cytokines [129,130], 388 

creating an environment favorable for the immune response against the infection. In the 389 

inflammatory environment, the presence of IFN-γ cytokine can induce the expression of the 390 

inflammatory chemokine CXCL9, CXCL10 and CXCL11 which attracts some more CXCR3+ 391 

T cells to the site of infection [131], suggests a positive feedback loop around these chemokines 392 

and IFN-γ. Other chemokines, such as CCL19, CCL27, CXCL16, CCL9, and CCL25, that 393 

selectively attract lymphoid cells have also been observed to be expressed during an early 394 

infection [128]. The recruitment of T cells contributes to the immune defense against parasite 395 

L. donovani by promoting the maturation of granulomas and facilitating the elimination of 396 

infected cells [132]. The protective inflammatory environment created due to accumulated T 397 

cells (CD4+ T cells, CD8+ T cells etc.)  highlights their importance in the liver immune response 398 

against parasite as observed in an experimental mice model infected with L. donovani [133–399 

135] (Figure 3). [123–125] 400 

Overall, the interplay between the chemokine system and T cells is critical for the development 401 

and function of hepatic granulomas in Leishmaniasis. Understanding the specific chemokines 402 

and receptors involved in T cell recruitment and function within granuloma provides insights 403 

into the potential points of intervention that help in pathogen clearance. 404 

Altered chemokine profiles during Leishmaniasis: protection vs parasite persistence   405 

Leishmania infection induces the expression of several chemokines and chemokine receptors 406 

that promote the migration of specific immune cell subsets. The parasites have the ability to 407 

modify the expression of chemokines and chemokine receptors, either upregulating or 408 

downregulating them, in order to persist within the host [136,137]. This suggests that the 409 
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modified chemokine expression profiles and impaired immune cell migration are related to the 410 

disease and its pathogenesis. In the liver of L. donovani infected BALB/c mice, the resolution 411 

of infection initially occurs independently of T cells. This suggests that mechanisms other than 412 

T cell-mediated responses are involved in controlling the infection during the early stages. 413 

However, as the infection progresses, T-cell dependence becomes crucial for the expression of 414 

chemokines and recruitment of inflammatory cells [138]. Immune cells are likely to migrate 415 

from secondary lymphoid organs to sites of higher chemokine concentration during an immune 416 

response.  417 

The alteration in chemokine receptor expression can modulate the migratory properties of T 418 

cells. Activated T cells exhibit a switch in chemokine receptor expression from constitutive to 419 

inflammatory, contributing to the altered migration of these cells. Specific chemokines such as 420 

CCL2 (MCP-1), CCL3 (MIP-1α), and CCL4 (MIP-1β) are known to stimulate the migration 421 

of activated CD4+ and CD8+ T lymphocytes to the infected sites where an immune response is 422 

being mounted [139,140]. The parasite L. major, which causes CL, has been demonstrated to 423 

influence the mRNA expression of chemokines such as CCL2 and CXCL8, providing more 424 

evidence that the infection affects chemokine expression [141]. [141]CCL2 that interact with 425 

CCR2 is found to be upregulated in early lesions of human CL infection with L. braziliensis 426 

when compared with their healthy controls [142]. CCL2 is believed to be a biomarker of cure 427 

because it was upregulated in cured VL patients [143]. CCL3 and CCL5 (RANTES), which are 428 

ligands for CCR1 and CCR5, selectively attract Th1 cells and are produced in high levels 429 

during a Th1 response [144,145]. Elevated levels of CCL5 have been reported in L. major-430 

infected mice model and correlated it with parasite control [146]. Although increased CCL3 431 

expression is linked to early control of parasitic load and the establishment of an anti-432 

leishmanial milieu, it also facilitates parasite survival during the later phases of L. donovani 433 

infection [125]. CCL7 (MCP-3) interact with several receptors (CCR1, CCR2, CCR3, CCR5 434 

and CCR10) and was found to be upregulated during L. major infection [147] and promote Th2 435 

cell migration [148]. Chemokine expression profiles have also been used to define different 436 

clinical forms of Leishmaniasis. Elevated levels of chemokines such as CCL2, CXCL9, and 437 

CXCL10 have been observed in the lesions of patients with localized CL while diffused CL 438 

patients have upregulated CCL3 [149]. Upregulation of these chemokines may indicate an 439 

attempt to recruit immune cells and initiate an effective immune response despite the disease 440 

progression. 441 
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In human MCL caused by L. braziliensis, there is an increase in mRNA and serum levels of 442 

CXCL10. This upregulation of CXCL10 suggests its involvement in the immunopathogenesis 443 

[150]. CXCL9 and CXCL10 expression is also upregulated during active VL which is known 444 

to recruit CXCR3+ Th1 cells, may contribute to tissue damage and disease severity 445 

[136,151,152]. The increased expression of CXCL10 during a long infection period in L. 446 

donovani-infected mice further supports its role in the immune response against the parasite 447 

[153]. Further, the reduced presence of CXCR3+ Treg cells in CXCL10−/− L. donovani-infected 448 

mice suggests that CXCL10 is important for their recruitment. This altered Treg cell trafficking 449 

may contribute to a decrease in the regulatory mechanisms that control the immune response 450 

against the parasite, ultimately resulting in a lower parasitic load [154]. This suggests that 451 

CXCL10 is involved in creating a favorable immune environment for parasite control. 452 

While information on T cell trafficking during Leishmania infection may be limited, the role 453 

of certain chemokine receptors expressed on T cells has been investigated in the context of 454 

Leishmaniasis. Some important chemokine receptors and their potential roles in different 455 

phenotypes of Leishmaniasis are discussed below: 456 

1. CXCR3 457 

In L. infantum infected mice, Cxcr3 gene is found to be associated with the activated T 458 

lymphocytes, including effector cells and regulatory cells, suggesting their initial migration 459 

towards affected spleen [125]. It is a crucial chemokine receptor involved in the trafficking of 460 

activated CD4+ T cells and CD8+ T cells during infection [155,156]. It interacts with its ligands, 461 

CXCL9 (MIG), CXCL10 (IP-10), and CXCL11 (I-TAC), and promote integrin activation and 462 

immune cell migration  [157]. CXCR3 is a remarkable marker of Th1 cells and their lower 463 

expression causes less trafficking of Th1 cells to the inflamed tissues during VL. It leads to 464 

less IFN-γ production that affect host protective response against parasite [158]. In an 465 

experimental model of VL, reduced number of CXCR3+ CD4+ T cells have been observed in 466 

the spleen compared to liver during chronic phase of infection, and this impairment is 467 

associated with a high parasitic burden in the organ, suggesting the importance of CXCR3 in 468 

host immunity. However, their upregulated expression on T cells doesn’t prevent from 469 

developing VL as studied in transgenic mice that overexpressed CXCR3 on all T cells [159]. A 470 

prior study on CXCR3-/- C57BL/6 mice have shown that CXCR3 plays a crucial role in 471 

resolving disease during L. major infection as it is necessary for T cells trafficking in skin, but 472 

it is not essential during L. donovani infection, as mutant mice still able to recruit T cells to the 473 
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affected organs at later stages and exhibit a Th1 response, and effectively clear the infection 474 

similar to CXCR3+/+ mice [160]. This is suggesting that the CXCR3 is necessary for T cells 475 

trafficking in skin during L. major infection. Also, higher frequency of infiltrating cells was 476 

IFN-γ producing Th1 and Tc1 cells expressing CXCR3, accounting for resolution of dermal 477 

lesions [161]. 478 

2. CCR1 479 

CCR1 belongs to the beta-chemokine receptor family which interacts with several ligands, 480 

including Regulated on Activation Normal T Expressed and Secreted Protein 481 

(RANTES/CCL5), Macrophage Inflammatory Protein 1 alpha (MIP-1α/CCL3), Monocyte 482 

Chemoattractant Protein 3 (MCP-3/CCL7), and Myeloid Progenitor Inhibitory Factor-1 483 

(MPIF-1/CCL23). While CCR1 expression is preferentially found on CD4+ Th1 cells [162] and 484 

is involved in recruiting effector cells to infection sites, the specific role of CCR1 in the 485 

immune response to Leishmaniasis can vary depending on the context and the specific species 486 

of Leishmania involved.  In C57BL/6 mice infected with L. major, it was found that CCR1 487 

could actually contribute to susceptibility to CL, associated with an enhanced production of 488 

interleukin-4 (IL-4) and interleukin-10 (IL-10) which suggests a shift towards a Th2 immune 489 

response [163].  Previous research has revealed the expression of CCR1 by CD8+ T cells [164] 490 

in different diseases but no studies have been conducted to investigate this expression in the 491 

context of Leishmaniasis.  492 

3. CCR2 493 

CCR2 is the main receptor for the chemokine monocyte chemoattractant protein 1 (MCP-1), 494 

also referred as CCL2. It also binds with other chemokines such as CCL7 and CCL12.  When 495 

CCR2 interacts with its ligands, it initiates signaling pathways that increase intracellular 496 

calcium levels (Ca2+) and leads to the recruitment of memory T cells, monocytes, and dendritic 497 

cells to inflamed tissues [165–167].  CCR2 has been shown to promote the differentiation of T 498 

cells into Th17 cells, which are characterized by the production of interleukin-17 (IL-17) and 499 

contribute to inflammatory responses in colon. While in the absence of CCR2 signaling as 500 

studied on RAG1−/− immunocompromised mice transferred with CCR2-/- T cells, there is an 501 

increase in the conversion of T cells into FoxP3+ regulatory T cells (Tregs), which are involved 502 

in immune tolerance and suppression of immune responses [168]. It suggests that presence and 503 

absence of CCR2 signaling play an important role in differentiation of T cells. 504 
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The association between CCR2 and T cells in the context of Leishmaniasis has not been 505 

extensively studied compared to other chemokine receptors such as CCR1, CCR3, and CXCR3. 506 

The research focus has primarily been on these other receptors and their involvement in the 507 

immune response to Leishmania infection. However, considering the role of CCR2 in 508 

recruiting monocytes and dendritic cells, it is plausible that CCR2 may also play a role in 509 

modulating T cell responses during Leishmania infection. The recruitment and activation of 510 

these antigen-presenting cells by CCR2 may influence the subsequent T cell responses and the 511 

overall immune response against the parasite. To fully understand the specific involvement of 512 

CCR2 in T cell responses and its impact on the immune response to Leishmaniasis, further 513 

studies are needed. 514 

4. CCR4 515 

CCR4 is primarily expressed on activated T cells, particularly Th2 cells, antigen-specific skin-516 

homing T cells and Treg cells  [169,170]. When CCR4 interacts with its ligand, CCL17 (also 517 

known as thymus and activation regulated chemokine; (TARC), it can lead to an increase in 518 

intracellular calcium levels [171]. While CCR4 is predominantly expressed on Th2 cells, other 519 

cell types, which may not necessarily be IL-4 producers, can also express CCR4.  In human 520 

VL, higher expression of CCR4 on regulatory T cells (Tregs) has been observed, and this 521 

increased expression may contribute to the accumulation of Tregs in the bone marrow of VL 522 

patients. The accumulation of CCR4-expressing Tregs in the bone marrow may suppress local 523 

effector T cell responses, thereby dampening the immune response against Leishmania 524 

parasites in this compartment [72]. In late localized CL caused by L. braziliensis and L. 525 

amazonensis, it has been reported that there is an increased in CCR4 expression on Tregs that 526 

facilitates their recruitment and accumulation in the affected skin tissue. This accumulation of 527 

CCR4-expressing Tregs suggests a potential role for CCR4 in regulating immune responses 528 

and contributing to the immunosuppressive environment at the inflammatory sites [142,172].  529 

These cells produce significant amounts of IL-10 and TGF-β, which regulate the functions of 530 

effector T cells and thus the disease outcome [173]. CCR4-expressing Th2 cells and Treg cells 531 

promotes the development of PKDL [174]. The trafficking of CCR4 expressing CD8+ T cells 532 

in response to CCL17 and CCL22 in the dermal lesion have been reported during PKDL [106]. 533 

[142]5. CCR5  534 
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CCR5 is a chemokine receptor that specifically binds to chemokines such as regulated on 535 

activation, normal T cell expressed and secreted (RANTES), macrophage inflammatory protein 536 

1 alpha (MIP-1α), and macrophage inflammatory protein 1 beta (MIP-1β). Its expression on 537 

cells is indicative of their activation state, and it is known to be expressed at higher levels on 538 

Th1 cells [175] which can be upregulated by the cytokine interleukin-2 (IL-2) [176]. In early 539 

infection with L. donovani, mice lacking CCR5 (CCR5-/-; hybrid mice) showed impaired 540 

interferon-gamma (IFN-γ) responses following T cell receptor (TCR) stimulation [177]. This 541 

suggests that CCR5 plays a role in facilitating IFN-γ production by T cells during the early 542 

stages of Leishmania infection and participate in the host defense mechanism. CCR5 has also 543 

been identified as a crucial marker for the migration of naturally occurring regulatory T cells 544 

(Tregs) to infected dermal skin during chronic cutaneous infection caused by L. major parasite 545 

[50,178]. This indicates that CCR5 is involved in the recruitment of Tregs to sites of infection, 546 

potentially influencing immune regulation and the balance between effector and regulatory 547 

responses and promote parasite persistence. 548 

Furthermore, in other protozoan infections like Chagas disease caused by Trypanosoma cruzi, 549 

CCR5 expression has been found to be upregulated on CD4+ and CD8+ T cells. This 550 

upregulation of CCR5 is associated with increased trafficking of these T cells to pathological 551 

sites and has been correlated with pathogenic conditions [179]. Overall, CCR5 plays a role in 552 

immune responses by regulating T cell activation, migration, and cytokine production in 553 

various infectious diseases, including Leishmaniasis and Chagas disease. Its involvement in 554 

these processes highlights its significance in modulating immune cell responses and potentially 555 

impacting disease outcome. 556 

6. CCR6 557 

CCR6 is a chemokine receptor that regulates the migration of T cells during homeostatic and 558 

inflammatory responses [180]. Interaction between CCR6 and ligand CCL20 leads to an 559 

increase in intracellular calcium ion levels, which then triggers intracellular signaling and 560 

cellular responses [181]. CCR6 is expressed on both anti-inflammatory regulatory T cells 561 

(Tregs) and pro-inflammatory Th17 cells during inflammatory diseases, and promote immune 562 

regulation or inflammatory responses, respectively [182–184]. It plays a role in the recruitment 563 

and migration of T cells to specific sites of inflammation [185]. In the context of L. major 564 

infection, studies using CCR6-deficient (CCR6−/−) mice have shown that CCR6 is involved in 565 

the trafficking of Treg cells. CCR6 deficiency resulted in hampered migration of Treg cells and 566 
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increase in inflammatory responses while no effect on Th17 cell migration [186]. This indicates 567 

that CCR6 is important for the proper trafficking and localization of Treg cells to the site of 568 

infection to prevent disease severity during L. major infection. However, further research is 569 

needed to fully understand the precise mechanisms by which CCR6 influences T cell migration 570 

and the implications for the immune response to Leishmania and other inflammatory 571 

conditions. 572 

7. CCR7  573 

CCR7 is a crucial receptor involved in the homing of cells to lymph nodes and interacts with 574 

its ligands, CCL19 and CCL21. CCR7 plays a significant role in regulating the migration and 575 

homeostasis of memory T cells in lymphoid tissues where priming of antigen-specific T cells 576 

occurs [187,188]. During VL, an increase in CCR7 expression has been reported on peripheral 577 

blood mononuclear cells (PBMCs). As CCR7 is marker of naïve and central memory T cells 578 

(Tcm), the upregulated CCR7 may contribute to their trafficking in lymphoid tissues where 579 

naïve cells encounter antigen-presenting cells (APCs) during the course of the infection and 580 

Tcm cells reside within SLOs and rapidly respond upon re-exposure to antigen [158]. Reduced 581 

expression of CCR7 on activated dendritic cells (DCs) reduces their migration to the draining 582 

lymph node and found to promote pathogenesis during CL and VL [189,190]. In cured CL 583 

patients, it has been observed that CCR7- CD4+ effector memory T (Tem) cells are present in 584 

larger numbers. These cells are capable of producing interferon-gamma (IFN-γ) when 585 

stimulated with soluble Leishmania antigens (SLA). The presence of CCR7- CD4+ Tem cells 586 

producing IFN-γ suggests a potential role for these cells in the immune response and resolution 587 

of CL [191]. These studies highlight the dynamic regulation of CCR7 and its potential 588 

implications in the immune response against Leishmania parasites. 589 

Factors shaping chemokines and chemokine receptors expression during Leishmaniasis 590 

The dysregulation of the chemokine system during infection may result from a complex 591 

interplay between the parasite, host immune cells, and the local microenvironment. Interaction 592 

between the host and the Leishmania parasite can lead to the modulation of the chemokine 593 

system. Leishmania has been reported to secrete molecules that can degrade chemokines, such 594 

as CXCL1, resulting in the downregulation of their expression [192].  595 

However, various factors such as cytokine levels, epigenetic changes, and mutations contribute 596 

to the modulation of chemokine receptor expression and downstream signaling pathways. 597 
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These factors can directly or indirectly influence the behavior of the chemokines profile during 598 

infection. The possible causes for the altered chemokines profile during Leishmania infection 599 

has been discussed below:  600 

1. Cytokines 601 

There is a complex interplay between cytokines and the expression of chemokines and 602 

chemokine receptors, which contributes to the heterogeneity observed in the immune response 603 

during Leishmaniasis. Cytokines such as IFN-γ, IL-10, TGF-β, TNF-α, IL-17, among others, 604 

play a crucial role in regulating the expression of chemokines and chemokine receptors on 605 

immune cells, ultimately shaping the cellular landscape at the site of infection (Table-4). IFN-606 

γ, for example, has been shown to induce the expression of chemokines such as CXCL9, 607 

CXCL10, and CXCL11 [193]. Therefore, changes in the expression levels of CXCL9 & 608 

CXCL10 observed during Leishmaniasis [158,194] may be due to influence of IFN-γ. 609 

Additionally, cytokines like IL-2, IL-4, IL-7, and IL-15, which utilize the common gamma c 610 

(γc) chain receptors, can induce CXCR4 expression on T cells through the JAK/STAT 611 

signaling pathway [195]. The role of IL-4 in modulating chemokine expression has also been 612 

demonstrated. Blocking IL-4 in L. major-infected dermal tissue resulted in increased 613 

expression of Th1 cell-recruiting chemokines such as CXCL9, CXCL10, CXCL11, and CCL5, 614 

coinciding with increased IFN-γ production at the inflamed region [196]. 615 

Furthermore, TGF-β, which is increased during Leishmania infection, can inhibit macrophage 616 

activation and contribute to increased susceptibility to the disease [197]. TGF-β has also been 617 

shown to inhibit CCR3 expression, which is associated with decreased Th2 cell development. 618 

Conversely, IFN-α, a type I interferon, decreases CCR3 and CCR4 expression while increasing 619 

CXCR3 and CCR1 expression, promoting Th1 cell polarization by upregulating these 620 

chemokine receptors [131]. IL-17, a proinflammatory cytokine, can induce the production of 621 

CXCL chemokines, which recruit neutrophils and Th1 cells to the site of infection, thus 622 

showing its protective role in patients with VL [76]. A positive correlation was found in 623 

between IL-17/CCL3 and IL-17/CCL4 in patients infected with L. guyanensis [88]. On the other 624 

hand, IL-10, which is responsible for impairing inflammatory immune responses, has been 625 

shown to decrease the production of chemokines such as CCL5 and CCL2 in L. amazonensis-626 

infected mice [198].  627 
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Therefore, the presence of various cytokines in the microenvironment at the site of infection 628 

directly and indirectly influences the outcome of the disease by regulating the expression of 629 

chemokines and chemokine receptors, ultimately shaping the immune response and cellular 630 

profiles observed in Leishmaniasis. 631 

2. Epigenetics 632 

The expression of chemokines and chemokine receptors can be modulated by the parasite 633 

through various mechanisms, including the alteration of host gene expression and epigenetic 634 

pathways [185]. Endogenous processes such as DNA methylation and histone modification can 635 

inhibit the expression of chemokines and chemokine receptors, resulting in decreased 636 

infiltration of immune cells [199–201]. Leishmania has been shown to produce effector 637 

molecules such as exosomes or microRNA that can modify the host immune transcriptome and 638 

induce changes in chemokine expression [202,203] . Additionally, the parasite has been shown 639 

to regulate chemokine expression through the modulation of host microRNA levels. Several 640 

chemokines, including CCL2, CCL5, CXCL10 found to be inhibited by the activity of 641 

upregulated miRNA in L. major infected macrophages [204]. These epigenetic mechanisms 642 

could contribute to the fluctuations observed in the expression levels of the chemokines profile 643 

at different stages of infection. It is likely that Leishmania employs these mechanisms to evade 644 

the host immune system and establish persistence within the host. However, the role of 645 

epigenetic regulation in parasitic diseases, including Leishmaniasis, is not yet extensively 646 

studied. Similar mechanisms have been observed in certain cancers, such as pancreatic cancer, 647 

where abnormal methylation can lead to lower expression of CXCR4 [205]. 648 

Further research into the epigenetic modulation of the chemokine system during Leishmaniasis 649 

and other parasitic diseases is necessary to better understand the mechanisms employed by the 650 

parasite to manipulate the host immune response as evasion strategy, or by the host that employ 651 

epigenetic mechanisms as a protective response against parasitic disease.  652 

3. Mutation  653 

The N-terminal region of chemokines is crucial for their biological activities and interaction 654 

with chemokine receptors [206], mutations in this region can disrupt their binding to their 655 

respective receptors, rendering them unable to activate the receptors.  For instance, mutation at 656 

a phosphorylation site can reduce receptor phosphorylation, impair β-arrestin binding, and 657 

subsequently reduce receptor internalization in response to ligand binding [207]. Mutation in 658 
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residues of two CKRs failed to oligomerize together and cells expressing such receptors not 659 

migrate even in the presence of their cognate antigens as observed in the case of CCR7 and 660 

CCR5 [70,208]. 661 

Mutation at gene level is also capable to make changes in chemokines/and chemokine receptors 662 

expression, potentially resulting in their aberrant expression. It has been reported that 663 

Trypanosoma cruzi infected patients with no cardiac disease showed lower CCR5 expression 664 

than those with cardiac disease due to a higher frequency of point mutations found in the 665 

promoter region [209]. As it is known that CCR5 expression is associated with protective Th1 666 

cells, an increased frequency of mutation in CCR5/Δ32 alleles have been reported in the lesions 667 

of american CL (ACL) patients which suggest that this mutation may reduce Th1 cells 668 

trafficking to the lesions and contribute to the pathogenesis in ACL patients [210].   669 

While mutations have not been extensively studied in the context of Leishmaniasis, they have 670 

the potential to play a role in modulating the immune response. Further research is needed to 671 

elucidate the specific roles of mutations in the context of Leishmaniasis and their impact on 672 

the chemokines profile and immune response. 673 

Modulation of chemokine machinery: plausible mechanisms 674 

In addition to the factors that have been discussed above, there are some other mechanisms that 675 

influence the expression of chemokine machinery which includes chemokine availability, 676 

receptor desensitization, decoy receptors, allosteric effects, post-translational modification etc. 677 

However, these aspects have not been investigated in the context of Leishmaniasis, and they 678 

may be plausible mechanism of aberrant expression observed in the chemokine profiles which 679 

should be further investigated. The most significant mechanisms which have not been explored 680 

yet are discussed below: 681 

1. Chemokine availability and desensitization 682 

The process of desensitization is an important mechanism for regulating chemokine receptors 683 

(CKRs). Phosphorylation of CKRs triggers a series of events that regulate their signaling and 684 

trafficking. Upon phosphorylation, CKRs become uncoupled from G proteins and recruit β-685 

arrestin. β-arrestin binding blocks further coupling to G proteins and facilitates the 686 

internalization of the receptor via clathrin-coated pits [211]. This internalization process is 687 

important to prevent chemokine overstimulation and allows for directional cell migration. 688 
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Homologous desensitization, which is chemokine-dependent, involves the internalization and 689 

degradation or redistribution of the receptor. It plays a crucial role in regulating the chemokine 690 

receptor response and maintaining appropriate chemotactic responses [212]. Heterologous 691 

desensitization, on the other hand, is chemokine-independent and leads to the uncoupling of 692 

G-protein and downregulation of chemokine receptors. It is usually due to cross-talk between 693 

two CKRs, where signaling of one CKRs on chemokine binding impacting another chemokine 694 

free CKRs and modulating their chemotactic response towards chemoattractant by 695 

downregulating them [213]. [14] It was shown that CCL2 caused a reduction in the expression 696 

of CCR2 on the surface of monocytes over time, due to desensitization mechanism [214]. 697 

Another study on human cells revealed the existence of desensitization mechanism where 698 

CCL22 binding leads to internalization of CCR4 and hence reduces surface expression on Th2 699 

cells [215]. However, no studies have been performed in case of Leishmaniasis. It is possible 700 

that the reduction in chemokine receptor expression and the lower number of T cells recruited 701 

to the infected tissue during Leishmaniasis may be attributed to these desensitization 702 

phenomena. The expression of chemokines and chemokine receptors are interdependent. It has 703 

been reported previously that high chemokine levels lead to lower CKR expression specific to 704 

that chemokine [136].  Particularly for chemokines that signal through multiple receptors, the 705 

absence of one receptor can result in high levels of circulating chemokines, which may reduce 706 

the availability of alternate receptors due to ligand-mediated desensitization [216]. These 707 

processes highlight the dynamic interplay between chemokines and their receptors, and the 708 

regulation of chemokine receptor expression and responsiveness is critical for appropriate 709 

immune cell recruitment and migration during other inflammatory responses. 710 

2. Chemokine scavenging decoy receptors 711 

The presence of non-signaling or silent chemokine receptors acting as ‘decoy and scavengers’   712 

play an important role in suppressing host inflammatory responses and immunity. The silent 713 

receptors compete with the signaling chemokine receptors by binding their ligands with high 714 

affinity and thus preventing the cell from activation [217]. Functional decoy receptor has been 715 

reported for inflammatory chemokine receptors such as CCR1, CCR2 and CCR5, in monocytes 716 

and dendritic cells and despite increased expression of these chemokine receptors, they do not 717 

respond to their ligands [218,219]. It has been reported previously that IL-10 may generate 718 

chemokine decoy receptors in monocytes and dendritic cells in an inflammatory environment, 719 

leading to the termination of the early inflammatory phase in the brain of L. donovani infected 720 
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mice [220]. Despite little knowledge about decoy receptors in the context of Leishmaniasis and 721 

other parasitic disease, investigating their role will contribute to our understanding of infection 722 

and the progression of the disease. 723 

The higher expression of chemokine receptors observed during Leishmaniasis may be a host 724 

strategy to address the urgent requirement for receptor-based signaling and prevent disease 725 

progression. However, the presence of related decoy receptors limits the responsiveness of 726 

immune cells to these chemokines. Consequently, despite the higher expression of chemokine 727 

receptors, migration to the inflamed zone may be limited. Decoy receptors also act as 728 

"scavengers" for chemokines, reducing their availability through intracellular degradation. This 729 

mechanism helps regulate proinflammatory chemokines and chemokine receptors. The 730 

presence of decoy and scavenger receptors highlights the complexity of the chemokine system 731 

and its regulation during infection. Understanding the interplay between signaling and decoy 732 

receptors is crucial for deciphering the immune response dynamics.  733 

Future Prospects and Concluding Remarks 734 

The chemokines and chemokine receptors play a crucial role in immune cell trafficking and 735 

the inflammatory responses associated with Leishmania infection. Dysregulation of the 736 

chemokine system is observed during Leishmaniasis, and investigating the involvement of 737 

chemokines and their receptors in disease symptoms helps us understand how the effective 738 

immune responses are orchestrated and how the pathological inflammation develops. The 739 

redundancy and large production of multiple chemokines during infection may contribute to 740 

the effectiveness of the immune response. Alterations in the expression levels of chemokines 741 

and chemokine receptors can potentially serve as diagnostic markers and immunotherapeutic 742 

targets. Blocking chemokines and their receptors, particularly the CXC- and CC-chemokines, 743 

could be an attractive strategy for immunotherapy, especially during the chronic phase of 744 

infection. While the role of the chemokine system in other immune cells in Leishmaniasis has 745 

been extensively studied, further exploration of its involvement in T cell trafficking is needed. 746 

Additionally, the understanding of the factors responsible for the altered profile of chemokines 747 

and chemokine receptors in leishmaniasis is still limited and requires investigation. 748 

Future research should focus on identifying the factors, both derived from Leishmania and the 749 

host, that contribute to the changes observed in the chemokines and chemokine receptors 750 

expression. The properties of the recruited immune cells will ultimately determine the 751 
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pathogenic condition of the host, making it important to elucidate the underlying mechanisms. 752 

In recent past, targeting chemokines and chemokine signaling pathways using agonistic or 753 

antagonistic monoclonal antibodies has emerged as an effective and promising therapeutic 754 

approach in cancer patients. This targeted approach, either alone or in combination of 755 

conventional drug therapy has shown promising result in modulating the immune response and 756 

enhance anti-tumor immunity. Therefore, targeting the chemokine system as an 757 

immunotherapeutic approach also holds promise for the treatment of leishmaniasis. However, 758 

further studies, including those specifically investigating T cell chemokine machinery and its 759 

role in PKDL, are warranted to advance our understanding and develop effective interventions 760 

for this neglected tropical disease. 761 
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Figure 1. Chemokine signaling pathway.  1504 

 1505 

Legend: Chemokine receptor (CKR) remains in an inactive stage in which chemokine is not 1506 

associated with it, and G-protein is in inactive state and bound with GDP. CKR on interaction 1507 

with specific chemokine triggers the activation of the bound heterotrimeric G-protein 1508 

composed of αβγ subunits which leads to exchange of GDP with GTP and dissociation of the 1509 

heterotrimeric G protein complex into Gα and Gβγ subunits where GTP remains attached to 1510 

Gα subunit. Depending on the nature of inducing signal and types of Gα protein, different 1511 

signaling pathways get activated. (a) Gαi inhibit the activity of adenylate cyclase enzyme and 1512 

reduces the cAMP generation; (b) Gαs stimulate the activity of adenylate cyclase enzyme and 1513 

stimulate the production of cAMP which further activate PKA; (c) Gα12/13 activate rho-family 1514 

GTPase and regulate the actin cytoskeleton remodeling; (d) Gαq (or Gβγ) activate PLC-β 1515 

enzyme which cleaves PIP2, located in plasma membrane, into DAG molecules and 1516 

intracellular secondary messenger IP3. DAG further activate PKC and IP3 binds to its receptor 1517 

on ER causes Ca2+ release into the cytoplasm; (d) Gβγ can also activate Akt pathway, MAP 1518 

kinase pathway, Ca2+ dependent pathway. (d) Both the Gα and Gβγ subunit capable to initiate 1519 

downstream signaling cascade that results in a range of cellular activities, including changes in 1520 

cytoskeleton dynamics and cell migration that ultimately regulate the physiological and 1521 

pathological response of the cells. 1522 
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Figure 2: Activation and differentiation of CD4+T and CD8+T cell subsets during 1524 
leishmaniasis.   1525 

 1526 

Legend: Leishmania antigens are presented by APCs or infected macrophages (1,2) to naïve 1527 
CD4+ T cells through MHC class II molecules, leading to their activation. Depending on the 1528 
cytokine environment, naïve CD4+ T cells can differentiate into various T-helper subsets (3). 1529 
Interleukin-12 (IL-12) facilitates the differentiation of Th1 cells, which produce IFN-γ and 1530 
TNF-α, promoting the clearance of intracellular parasites. Th17 cells, on the other hand, 1531 
produce IL-17 and IL-22, contributing to anti-leishmanial and inflammatory responses (4). Th2 1532 
cell differentiation occurs under the influence of IL-4, leading to the production of IL-10 and 1533 
IL-4 which can result in parasite persistence by inhibiting macrophage activation. Similarly, 1534 
TGF-β promotes the differentiation of T-regs, which produce IL-10 and TGF-β, contributing 1535 
to immune regulation and further supporting parasite persistence (5). Naïve CD8+ T cells are 1536 
activated via MHC class I molecules and can differentiate into CTLs, producing perforin and 1537 
granzyme B to target infected cells. They also produce IFN-γ and TNF-α, which support the 1538 
Th1 response for effective parasite clearance (6). 1539 

[CTL- Cytotoxic T lymphocytes, APC- Antigen presenting cell, MHC- Major 1540 
Histocompatibility complex, Gzm B-Granzyme-B, TGF β- transforming growth factor-β, T-1541 
regs - Regulatory T cells] 1542 
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Figure 3. Formation of Granuloma.  1544 

 1545 

Legend: Granulomas are formed as a response to infection, such as around Kupffer cells in the 1546 

liver, to elicit a targeted immune response to eliminate parasites and prevent dissemination. 1547 

Kupffer cells post infection via phagocytosis (a) gets activated thereafter releases chemokines 1548 

such as CCL2, CCCL3, CXCL10 that assist in recruitment of immune cells like monocytes, T 1549 

cells, neutrophils, and iNKT cells to the site of infection (b) leading to accumulations of 1550 

immune cell around site of infection (c). iNKT cells are essential for the expression of 1551 

CXCL10, an inflammatory chemokine, which recruits iNKT cells and initiates granuloma 1552 

formation (d). Similarly, altogether recruited cells secrete chemokines that attract lymphoid 1553 

cells, contributing to immune defense against leishmania parasites. Hepatic CD4+ and CD8+ T 1554 

cells are crucial in the liver immune response against leishmaniasis by formation of granuloma 1555 

around site of infection (e).  1556 

[CCL3: chemokine ligand 3; CCL2: chemokine ligand 2; CXCL10: C-X-C motif chemokine 1557 

ligand 10; CCR: beta-chemokine receptors; iNKT: invariant natural killer T cells]. 1558 
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Table 1: CD4+ T cell subsets expressing chemokine receptors and their subsequent ligands 1560 

 1561 

No. 
CKRs 
types 

Chemoki
ne 

receptor
s 

(CKRs) 

Chemokines 
(correspondin

g ligands) 

T-subsets 
expressing 

CKRs 

Inflammator
y conditions 

References 

1 

CCRs 

CCR1 
CCL3, CCL5-
9, CCL13-16, 

CCL23 

Th1, Th2, 
Th9, Th17, 

Trm 

rheumatoid 
arthritis, 
allergic 

rhinitis, tumor 

[221,222] 

2 CCR2 

CCL2, CCL7, 
CCL8, 
CCL12, 
CCL13 

Th1, Treg, 
Th17 

tumor, 
melanoma, 
pancreatic 

cancer 

[223–231] 

3 CCR3 

CCL5-8, 
CCL11, 
CCL13, 
CCL15, 
CCL24, 
CCL26 

Th2, Th9, 
Treg 

atopic 
dermatitis, 

cancer, 
experimental 

colitis, 
allergic 

inflammation 

[223–
229,232,23

3] 

4 CCR4 
CCL17, 
CCL22 

Th2, Treg, 
Th17, Th22, 

CD8 

melanoma, 
atopic 

dermatitis, 
cancer, 
allergic 

inflammation 

[223–
231,234] 

5 CCR5 

CCL3-5, 
CCL11, 
CCL14, 
CCL16 

Th1, Th9, 
Treg, Th17 

melanoma, 
atopic 

dermatitis, 
HIV-infection 

[231,234,23
5] 

6 CCR6 CCL20 
Th17, Treg, 
Th9, Tfh, 

Th22 

melanoma, 
tumor, 

pancreatic 
cancer, 

lymph-borne 
pathogenic 

[223–
231,236–

239] 
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response, skin 
inflammation 

7 CCR7 
CCL19, 
CCL21 

Tcm, Trcm, 
Treg, Naïve 

T cell 

melanoma, 
homeostasis, 
self-tolerance 

[231,240] 

8 CCR8 CCL1, CCL18 
Th2, Treg, 
Skin CD4 

Trm 

allergic 
inflammation, 
lung cancer, 
skin disease  

[234,241,24
2] 

9 CCR9 CCL25 Th17, Th22 
viral infection, 

intestinal 
inflammation 

[243,244] 

10 CCR10 CCL27 Th17, Th22 

malignant 
ascites, skin 

pathophysiolo
gy 

[223–
230,245–

248] 

11 

 

CXCR
s 

 

 

 

 

 

CXCR1 
CXCL8, 
CXCL6, 
CXCL1 

CD4, CD8 

leukemia, 
homeostasis, 

viral and 
tumor 

inflammation, 
allergic 
disease 

[249–256] 

12 CXCR2 
CXCL1-3, 
CXCL5-8 

CD4, CD8 

multiple 
sclerosis, 
cancer, 

experimental 
autoimmune 

encephalomye
litis (EAE) 

[249,252,25
3,257,258] 

13 CXCR3 CXCL9-11 

Th1, Treg, 
Th9, Tfh, 

Th17, CD8 
Tcm & Tem 

melanoma, 
atopic 

dermatitis 

[223–
231,253,25

9] 
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14 

 

 

 

 

 

 

 

 

 

 

CXCR4 CXCL12 CD4, CD8 

homeostasis, 
HIV-infection, 

tumor, 
prostate 
cancer, 

pancreatic 
cancer 

[223–230] 

15 CXCR5 CXCL13 
Th17, Tcm, 
Tem, Tfh, 

CD8 

humoral 
responses, 
rheumatoid 

arthritis, 
autoimmune 

disease 

 

[260–262] 

16 CXCR6 CXCL16 
Th1, Th17, 

CD8 

inflamed 
human liver, 
experimental 
autoimmune 

encephalomye
litis (EAE), 
alzheimer 
disease, 

[231,239,26
3,264] 

[CCL= chemokine ligand; CXCL= C-X-C motif chemokine ligand; CCR= β-chemokine receptors; 1562 
CXCR= α-chemokine receptors; Tcm= central memory T cells; Tem= effector memory T cells; Tfh= 1563 
follicular helper T cells; Treg= regulatory T cells; Th= helper T cells] 1564 
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Table 2: G alpha protein subunits and their corresponding signaling pathways 1566 

S.No. G alpha 

subunit 

Signaling Pathway 

1. Gαs 

(‘s’ stimulatory) 

Activate adenylate cyclase and cAMP-dependent protein kinase A 

(PKA) [60,61] 

2. Gαi  

(‘i’ inhibitory) 

Inhibit adenylate cyclase and protein kinase A (PKA) [60,265,266] 

3. Gαq/11 Stimulate phospholipase C (PLC-β) to cleave PIP2 into DAG and 

IP3 and activate Protein Kinase C (PKC) and Ca2+ dependent 

pathway [64] 

4. Gα12/13 Activate Rho-family GTPase and regulate the actin 

cytoskeletal remodeling [267] 
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Table 3: Cytokine profiles of different CD4+ T cell subsets during Leishmaniasis 1569 

 1570 

S.No. CD4+ T cell 
subsets 

Cytokine profiles in Leishmania 
infected patients 

References 

1 Th1  IFN-γ, TNF-α, IL-12 [174] 

2 Th2  IL-4, IL-5, IL-13, IL-10 [91] 

3 Tfh  IL-21, IL-4 [79,268,269] 

4 Th17  IL-17, IL-22, IL-9 [174,270,271] 

5 Th22  IL-22 [272] 

6 Th9  IL-9 [273] 

7 Treg  IL-10, TGF-β, IL-35, IL-9 [90,91] 

 1571 
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Table 4: Influence of cytokines on chemokines/and receptors, T cell profiles, and outcome 1573 

of infection during Leishmaniasis. 1574 

S.No. Cytokines Affect 
chemokines/

and 
chemokine 
receptors 
expression 

Impact on 
specific T-cell 

subset 

Outcome of 
Leishmania 

infection 

References 

1 IFN-γ CXCL9, 
CXCL10, 

CXCL11 (↑) 

more CXCR3+ 
Th1 cells 

trafficking 

resolution of 
infection  

[274–278] 

2 IL-2, IL-7, 
IL-15 

CXCR4 (↑) express on 
central 

memory T 
cells (CD4+ T 
cell subset); 

induces T cell 
chemotaxis 

parasite may 
facilitate HIV-

infection of CD4+ 
T cells during 

Leishmania-HIV 
coinfection  

[279–281] 

3 IL-4 CXCR4 (↑);  

CXCL9, 
CXCL10, 
CXCL11, 

CCL2, 
CCL5, CCR5 

(↓) 

less trafficking 
of Th1 cells 

less IFN-γ 
production in L. 
major infected 
dermal tissue; 

shows pathogenic 
T cell response  

[279,280,282,283] 

4 IL-17  C-X-CL 
types 

recruit more 
Th1 cells 

protective role in 
VL patients; skin 

inflammation in CL 

[271,284,285] 

5 IL-10 CCL5, CCL2 
(↓) 

less Th1 cells 
migration 

reduces Th1 cell 
development and 
effector functions; 
promote parasite 
persistence and 
pathogenesis  

[286,287] 
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