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Introduction. A number of combinatorial problems may be regarded as 
particular instances of the following rather general situation. Given a set X 
composed of n elements and m subsets Xiy X2, . . . , Xm of X, 
find a minimal system of representatives for Xi, X2, . . . , Xm. That is, single 
out a subset X* of X such that Xt C\ X* is non-empty for i = 1,2, ... ,m, 
and no subset of X containing fewer elements than X* has this property. To 
illustrate, each of the following can be thought of in these terms. 

(a) Find the fewest number of nodes that touch all arcs in a linear graph. 
Thus the sets Xh X2, . . . , Xm are the arcs of the graph, each set consisting 
of two elements, its end nodes. A famous example of this is the eight queens 
chessboard problem. Here one forms a graph by connecting two cells of the 
board if a queen can move from one cell to the other. Then the complement 
of a minimal system of cells that touch all arcs represents positions in which 
the maximal number of queens can be placed so that no two attack each 
other. 

(b) Given two distinct nodes in a graph, find a set of arcs, minimal in 
number, that cut all chains leading from one node to the other. Here the 
elements %\, x2, . . . , xn are the arcs of the graph, and the sets Xi, X2, . . , Xm 

are all chains that join the two given nodes. A similar problem is to find the 
fewest number of arcs that cut all directed cycles in a directed graph. 

(c) Given the truth table for a proposition letter formula F in r proposition 
letters pi, p2, . . . , pr, find a disjunctive normal form of F that has the fewest 
number of terms. That this problem, which arises, for example, in the design 
of switching circuits, falls in the category of minimal set representative 
problems, can be seen as follows: As elements of the fundamental set X, admit 
all terms having one of the forms gi} g^gj, gig^g^ . . . , gig2 . . . gn, where gt 

is either pt or its negation piy and such that the term takes the value t (true) 
only if F {pi, p2> . . . , pr) does also, for all values of the proposition letters 
Pii P2, • • . , Pr- I n other words, a t in the truth table for an admissible term 
implies a tin the same position for the F truth table. The subsets to be repre
sented are formed by grouping together, for each assignment of values to 
pi, p2, . . . , pr that makes F {pi, p2, . . . , pr) true, all of the admissible terms 
that are also true for this assignment of values. For example, suppose 
that F {pi, p2, pz) is given by the truth table below (Table I). 
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TABLE I 

Pi P2 P* F 

f f f f 
f f t f 
f t f t 

f t t f 
t J f t 
t f t t 
t t f t 
t t t f 

Then the elements of X are 

Plp2, Plp3, p2pZy Plp2pZ, Plp2pt, Plp2p3, Plp2p?» 

and the four subsets to be represented are 

Xi = {p2pz, P\p2pz\ 

X2 = {Plp2, plpZ, P\V2pz\ 
XZ = {Plp2, Plp2pz\ 
X± = {plpZ, p2pZ, Plp2pz}. 

A minimal system of representat ives is given by selecting the terms pip2, 

p2pz, t h a t is, 

F(Pli P2, Pz) = Plp2 + p2pZ 

and F cannot be represented by a disjunctive normal form having fewer terms. 
Alan}' other combinatorial problems can be viewed as minimal representat ive 

problems. (But doing so is unlikely to make the problem any easier.) Of the 
three listed above, only one, so far as we know, might properly be termed 
solved. This is the first problem mentioned under (b), for which the max flow 
min cut theorem provides a theoretical answer on the one hand, and on the 
other hand, an algori thm based on network flow considerations can be used 
to construct , in a highly efficient manner , a minimal cut set of arcs for any 
part icular graph (2). For undirected graphs, the second problem under (b) 
is easy, the answer being the cyclomatic number of the graph, bu t for directed 
graphs, very little seems to be known. T h e problem in this la t ter form has 
been proposed by Moore (cf. 14). Berge (1) has obtained some results on 
problem (a), and Roth (9) has studied problems of type (c) using combina
torial topological methods. 

From the computat ional s tandpoint , any minimal set representat ive 
problem can be pu t in the form of an integer linear programme, for which 
Gomory (6) has devised promising algori thms. Thus , for example, we may 
take the constraint matr ix A = [atj] for the programme to be the incidence 
matr ix of sets vs. elements, t h a t is, atJ = 1 if x3- is in Xu atj = 0 otherwise. 
Then the minimal set representat ive problem asks for non-negative integers 
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Wi, w2} . . . , wn t h a t minimize the linear form ^^Wj over all selections of 
non-negative integers satisfying the constraints 

n 

]C atjWj > 1, i = 1, 2, . . . , m. 

In general, however, the incidence matrix A is much too large to make such 
a computat ion feasible. Sometimes one can obtain other linear programmes 
t ha t are not so formidable in size, and in certain cases, the programme may 
even be formulated so t ha t optimal solutions are always integral. This is the 
si tuation, for example, in the first problem listed under (b), for which an 
appropr ia te formulation (not in terms of the incidence matrix A of chains vs. 
arcs) can be described t h a t is both reasonable in size and automatical ly yields 
integer answers. 

T h e results of this paper are not aimed a t a solution of the minimal set 
representat ive problem per se, bu t may be viewed as providing some informa
tion on this problem. Specifically, we are interested in obtaining bounds on 
the minimal number of representatives by allowing the incidence matr ix to 
vary over all matrices of zeros and ones having the same row and column 
sums as the given A, t h a t is, the class 21 generated by A (10). From this 
s tandpoint , the present paper may be regarded as a continuation of (4; 7; 
11 ; 12), in which other combinatorially significant quanti t ies associated with 
an incidence matr ix A have been so studied. 

In order to avoid repeating the cumbersome phrase ' ' the number of 
elements in a minimal set of representatives for A" we call this simply the 
4 'width" of A, or more precisely, the "1-width" of A, since we generalize the 
problem to «-widths, t ha t is, we insist t ha t each subset be represented a t 
least « times. Throughout we let e(«) denote the «-width of a specified A; 
£(«) and ê(«) then denote, respectively, the minimum and maximum «-widths 
taken over all A in 21. The problem of determining i(«) in terms of the given 
row and column sums t ha t characterize 21 is completely solved in the sequel, 
bu t our efforts to pin down ë(«) have so far been unsuccessful.* In solving 
the e(«) problem, an auxiliary notion, the "«-height" of A, turns out to be 
impor tant . This , and the other notions introduced informally above, will be 
defined more precisely in §1. 

Throughout the paper we use purely combinatorial methods in establishing 
results. I t should be mentioned, however, t ha t the formula obtained for e(«) 
can also be derived using network flows, and was in fact first obtained in this 
way. From the viewpoint of flow theory, the function N(e, e J) introduced 
in § 4 can be interpreted as representing possible minimal cut capacities in 
an appropr ia te flow network. 

*Since the results of this paper were obtained, it has been shown by one of the authors 
that a solution to the ë(l) problem would settle the existence question for finite projective 
planes. See (13). Thus the maximal width problem appears to be considerably deeper and 
more important than the minimal width problem. 
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1. C o n c e p t s a n d n o t a t i o n . Let A be a matr ix of m rows and n columns 

and let each ent ry of A be 0 or 1. We call A a (0, 1)-matrix of size m by n. 

Let the sum of row i of A be denoted by rt and let the sum of column j of A 

be denoted by Sj. We call R = (rh r2, . . . , rm) the row sum vector and 

5 = (si, ^2, . . . , sra) the column sum vector of A. T h e vectors i£ and 5 deter

mine a class 

(1.1) 21 = n(R,S) 

consisting of all (0, 1)-matrices A of size m by n, with row sum vector R 
and column sum vector S. Simple necessary and sufficient conditions on R 
and S are available in order t h a t the class 21 be non-empty (5; 10). Let A 
be in 21 and consider the 2 by 2 submatr ices of A of the types 

A1 = 
1 0 , 

.0 l j a n d A* L i 0 J Li o. 
An interchange is a t ransformation of the elements of A t h a t changes a minor 
of type Ai into A2, or vice versa, and leaves all other elements of A unal tered. 
The interchange theorem (10) asserts t h a t if A and A' belong to 21, then A 
is t ransformable into A' by interchanges. In our s tudy we may suppose wi thout 
loss of generality t h a t 21 is non-empty and t h a t 

(1.2) r i > r2 > . . . > rm > 0, 

(1.3) Sl > s2 > . . . > sn > 0. 

Such a class is called normalized. Henceforth we take 21 normalized. 
Let a be an integer in the interval 

(1.4) 0 < a < rm, 

and let e be an integer in the interval 

(1.5) 1 < e < n. 

Let A be a matr ix in the normalized class 21 (R, S) and suppose A has an 
m by e submatr ix £ * each of whose row sums is a t least a. An integer a ful
filling these requirements is said to be compatible with e in A. 

Suppose now t h a t a is positive and compatible with e in A. If this is the 
case, then we say t h a t the e columns of our m by e submatr ix £ * of T form 
an a-s et of representatives for the matr ix A. Le t e(a) be the minimal number 
of columns of A t h a t form an a-set of representat ives for A. Such a column 
set is called a minimal as et of representatives for A and e(a) is called the 
a-width of .4. T h e integer a and the matr ix A uniquely determine e(a). We 
note a t the outset t h a t the a-width e(a) of A is invar iant under a rb i t ra ry 
permuta t ions of the rows and columns of A. However, the a-width of AT, 
the transpose of Ay may differ drastically from t h a t of A. 

Let JE* be a submatr ix of A of size m by e(a) t h a t yields a minimal a-set 
of representat ives for A. Let E be the submatr ix of £ * composed of all of 
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the rows of E* t h a t contain a l ' s and e(a) — a 0's. T h e matr ix E is called 
a critical a-submatrix of A. Note t h a t E cannot be empty since if all row 
sums of E* exceed a, then deletion of any column of £ * yields an a-set of 
representatives for A, contradicting the minimality of e(a). 

T H E O R E M 1.1. The matrix A has an a-width e(a) for each a in the interval 
1 < a < rm. A critical a-submatrix E of A associated with an a-width e(a) 
contains no zero columns. 

Proof. Suppose t h a t • a critical a-submatrix E of A associated with an 
a-width e(a) contains a zero column. Let £ * be the m by e(a) submatr ix of 
A containing E. The column of E* containing the 0 column of E may be deleted 
and this yields an m by e(a) — 1 matrix with minimal row sum a. Bu t this 
contradicts the minimali ty of e(a). 

Each of the critical a-submatrices E of A must contain e(a) columns. Bu t 
the number of rows in the various critical a-submatrices need not be fixed. 
Let E be a critical a-submatrix containing the minimal number of rows 5(a). 
T h e positive integer 5(a) is called the a-height of A. Both e(a) and 5(a) are 
basic invariants of the matrix A. Evident ly 

(1.6) e(l) < 6(2) < . . . < e(rm) 

and by Theorem 1.1, 

(1.7) 6(1) > 6(1). 

T h u s far we have discussed for the most par t a specified matr ix A in the 
normalized class 21 (R, S). We now turn our a t tent ion to properties of the 
class 21 (R, S). Let a and e be fixed and let a be compatible with e. This means 
t h a t a and e are restricted by (1.4) and (1.5). Moreover, there exists an A 
in 21 (R, S) with an m by e submatr ix £ * whose minimal row sum is a t least 
a. Now consider the class of all m by e submatrices E" of the matrices A in 
21 (R, S) with the row sums of E" greater than or equal to a. Let h" denote 
the number of row sums in E" equal to a. The non-negative integer h equal to 
the minimum of the integers h" is called the multiplicity of a with respect t o 
e. An a compatible with e may be of multiplicity 0 with respect to e. Th is 
will be the case whenever there exists an m by e E" with all of its row sums 
greater than a. 

Let 1 < a < rm. Then each A in 21 (i£, S) determines an a-width e(a) and 
a is compatible with e(a). For each a let the minimum of these e(a) 's over 
all A in 21 (R, S) be denoted by 

(1.8) e = e(a). 

Then a is compatible wi th e(a) and , by the minimali ty of e(a), if /3 > a, then 
j# is not compatible with i (a ) . We call i = e(a) the minimal a-width of the 
class %(R,S). Let 

(1.9) <5 = 5(a) 
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denote the multiplicity of a with respect to e(a). T h e integer <5(a) is positive 
and is equal to the minimum of the <5(a)'s for all matrices A\ in 31 (i£, S) of 
a-width i ( a ) . I t is clear t h a t 

(1.10) 

and 

(LID 

i ( l ) < i(2) < . . . < i(rm) 

0(1) > i ( l ) . 

Similarly for each a let the maximum of the e(a) 's over all A in %(R, S) be 
denoted by 

(1.12) 6 = ê(a). 

We call ë = ë(a) the maximal a-width of the class 21 C#, 5 ) . A direct applica
tion of the interchange theorem allows us to prove t h a t if e is an integer in 
the interval 

(1.13) € < € < 

then there exists a matr ix Ae in %(R, S) of a-width e (see § 3). 
In § 2 we take an a compatible with e and of multiplicity <5 with respect 

to e. Under these conditions we establish the existence of a (0, 1)-matrix in 
%(R, S) with an unusually simple block decomposition. An application of this 
theorem yields matrices of a-width e and a-height 8 in SI(i?, S) called canonical 
matrices. Their s tudy in §§ 3 and 4 leads to simple and explicit formulas for 
bo th i and 8. A straightforward construction for a canonical matr ix is given 
in § 5. Section 6 concludes with applications to the special classes of (0, 1)-
matrices containing k l ' s in each row or k Vs in each column. 

2. A b lock d e c o m p o s i t i o n t h e o r e m . Let 0 < a < rm and let 1 < e < n. 
Let a be compatible with e and of multiplicity 8 with respect to e. We now 
prove the block decomposition theorem t h a t plays a fundamental role in our 
subsequent investigations involving ê and 8. 

T H E O R E M 2.1. Let a be compatible with e and of multiplicity 8 with respect 
to e. Then there exists a matrix A in the normalized class %(R, S) of the form 

(2.1) A = 

M 
F 

J 
* 

* M 
F 

J 
* 0 

E 

J 
* 0 

Here E is of size 8 by e with exactly a Vs in each row. M is a matrix of size 
e by e with a + 1 or more Vs in each row. F is a matrix of size m — (e + 8) by e 
with exactly a + 1 Vs in each row. J is a matrix of Vs of size e by f — e and 0 
is a zero matrix. The degenerate cases e = 0,eJr8 = m, 8 = 0,f= e, andf = n 
are not excluded. 
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Proof. Let A be a matr ix in the normalized class 21 (R, S) and let A contain 
a submatr ix E* of size m by e with 5 row sums equal to a and the remaining 
m — ô row sums > a. Let 771,772, . . . , 77 € be the column vectors of E*. The 
matr ix A is selected so t ha t the vectors 771,772, . . . , T7C are to the left as far 
as possible among all matrices A in 2Ï containing an m by e submatr ix E* of 
the type described. Let 77 be a column vector of A and suppose t h a t 77 appears 
to the left of rjt1 where 771 is one of 771, 772, . . . , T7C. N O W the class 21 is nor
malized, so the column sums of A are non-increasing. We apply interchanges 
involving only the two columns 77 and rjt, and replace 77 by 77', and 771 by 77/. 
T h e column 77' is to have l ' s in all of the positions in which 771 has l ' s . These 
interchanges yield a new matrix A' in 21. Now columns 77', 771, . . . , 77^1, 
Vt+u • • • » Ve of A' form an m by 6 submatr ix of A' with row sums > a. More
over, the number of row sums in this submatr ix equal to a is < 5. Hence the 
matr ix A may be selected so t ha t the m by e submatr ix £ * is confined to the 
first e columns. 

If 8 = 0, then A is of form (2.1) with e = m, f = e. Let 3 be positive and 
suppose t h a t in the first e columns of A a row vector of JE* of sum a occurs 
above a row vector of £ * of sum > a. Since the row sums of A are non-
increasing, we may apply interchanges to A and lower the row vector of £ * 
of sum a. Hence we may obtain a matr ix A in the normalized 2Ï with the 
submatr ix E of (2.1) in the lower left corner. 

We now take this matr ix and by interchanges obtain a matr ix of the 
following form 

Mi J Co 
Fr W | X 
E F | Z 1 0 

Here E is the matr ix of (2.1). Fx has exactly a + 1 l ' s in each row and Mi 
has a + 2 or more l ' s in each row. J is a matr ix of l ' s and Co has a t least 
one 0 in each column. T h e matrix 0 in the lower right corner mus t be a zero 
matr ix, since otherwise an interchange involving the blocks Mi, Co, E, and 0 
contradicts the minimality of ô. (The taci t assumption t ha t Mi and C0 both 
appear is unimpor tant . For if this were not the case, (2.2) is already a degener
a te case of (2.1).) 

Now let Z be the zero matrix of t columns t ha t appears in all matrices of 
the form (2.2) in the normalized class 21. The integer t is to be maximal, bu t 
the case t = 0 is not excluded. Then there exists a matr ix of the form (2.2) 
with a 1 in the last column of Y. (Again if Y does not appear, then (2.2) is 
a degenerate case of (2.1).) Suppose t ha t a 1 appears in row j of X and t h a t 
a 0 appears in row j of W. We may apply an interchange if necessary and 
assume t h a t a 0 appears in row j and the last column of W. Now an inter
change involving the 1 in row j of X and the 1 in the last column of Y places 
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a 1 in 0 or in Z. This contradicts either the minimali ty of ô or the presence 
of Z in all matrices of the form (2.2) in 21. T h u s if X contains a 1 in row j , 
then row j of W is a row of l ' s . This means t h a t there exists a mat r ix A in 
the normalized 9Ï of the form (2.1). 

3. The minimal a-width e(a). 

T H E O R E M 3.1. Let e = e(a) be the minimal a-width of the normalized class 
%(R,S). Let 8 = 8(a) be the multiplicity of a with respect to e(a). Then there 
exists a matrix A; of a-width i in %(R, S) of the form 

M J * 

F * 0 
E 

* 

Here E is a critical submatrix of A ; of size 8 by e. M is a matrix of size e by I 
with a + 1 or more l ' s in each row. F is a matrix of size m — (e + 8) by e with 
exactly a + 1 l ' s in each row. J is a matrix of size e by f — e consisting entirely 
of l ' s , and 0 is a zero matrix. Each of the first e columns of A; contains more 
than m — 8 l ' s . The degenerate cases e = 0, e + 8 = m, f = i, and f = n are 
not excluded. 

Proof. In Theorem 2.1 let e = e(a) and 8 = 8(a). Then (2.1) establishes the 
existence of a matr ix A; of the form (3.1). Note t h a t in Theorem 3.1 the 
integers a, e, and 8 are positive and the degenerate case 8 = 0 of Theorem 2.1 
is excluded. T h e matr ix A; is of a-width e(a). Each of the first e columns of 
AÏ contains more than m — 8 l ' s . For if this were not the case we could 
apply interchanges confined to the first e columns of A; and replace a column 
of E by 0's. Bu t this contradicts the minimali ty of ê. 

T h e special case a = 1 of Theorem 3.1 deserves mention. A (0, 1)-matrix 
M is maximal (10) provided t h a t in each row of M no 0 occurs to the left 
of a 1. We prove t h a t for a = 1 the matrices M and F of (3.1) may be selected 
as maximal matrices. Let E* be the m by e(l) matr ix composed of the first 
e(l) columns of (3.1). Let the sum of column 1 of £ be e±. We minimize e\ 
by applying interchanges to E*. This means t ha t column 1 of M and column 1 
of F mus t be columns of l ' s . We cannot have e\ = 0, for this contradicts the 
minimali ty of e ( l ) . Let the sum of column 2 of the transformed 5(1) by ê(l) 
E matr ix be e<i. W e minimize e^ by applying interchanges to the last e(l) — 1 
columns of the transformed E*. T h u s column 2 of M and column 2 of F mus t 
be columns of l ' s , and again e2 > 0. But F contains only two l ' s in each 
row and hence F is the maximal matr ix with exactly two l ' s in each row. Le t 
the sum of column 3 of the transformed <5(1) by e(l) E matr ix be e3. We mini
mize ez by applying interchanges to the last e(l) — 2 columns of the t rans
formed 22*, and continue this minimizing process until the matr ix M is 
maximal. 
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Theorem 3.1 is the basis for the simple formula for e(a) derived in § 4. 
Unfortunately the decomposition (3.1) does not have an apparen t analogue 
for a matr ix A~€ of maximal a-width ë(a). Indeed, the class generated by the 
matrix 

(3.2) A = 

0 1 1 0 
1 0 1 0 
1 1 0 0 
0 0 0 1 

has i ( l ) = 3. Columns 1, 2, and 4 intersect a critical submatr ix of A. Bu t 
it is not possible to replace A by a matr ix in its class with a critical submatr ix 
in the first three columns. 

The following information on intermediate a-widths follows wi thout diffi
culty. 

T H E O R E M 3.2. If e is an integer in the interval 

(3.3) € < € < £ , 

then there exists an A e of a-width e in the normalized class 21. 

Proof. We show tha t a single interchange applied to a matrix A e of a-width 
e in 21 cannot raise the a-width by two or more. For consider the case in which 
a matr ix Ae of a-width e is transformed by one interchange into a matr ix A' 
of a-w^idth e + 2 or more. The matr ix Ae must have a critical submatr ix E 
of size ô by e. I t is essential t h a t the single interchange remove a 1 from the 
critical submatr ix E, for otherwise we would have a matr ix of a-width e or less. 
Let the column vectors 771, 772, . . . , Ve of At intersect the critical submatr ix 
E. The interchange affects two column vectors rjt and rj of A€. Here r]t is one 
of the vectors 771, rj2, . . . , 7?e and rj is some other column vector of Ae. Let 
the interchange transform rjt into rj/ and rj into rjf. Bu t now in A' the e + 1 
columns 771, r?2, . . . , rj/, . . . , rje, 7]' are an a-set of representatives for A'. Hence 
one interchange can raise the a-width of A e by a t most 1. But by the inter
change theorem we may transform by interchanges a matr ix Ai of a-width 
ê into a matr ix A~€ of a-width e. This establishes the existence of the matr ix 
Ae of a-width e. 

4. C a n o n i c a l m a t r i c e s . For the normalized class 21 (i?, S) let 

(4.1) tef = re+1 + re+2 + . . . +rm- (si + s2 + . . . + sf) + ef. 

Here e and / are integer parameters such t ha t 

(4.2) 0 < e < w, 

(4.3) 0 < / < n. 

https://doi.org/10.4153/CJM-1961-020-3 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1961-020-3


248 D. R. FULKERSON AND H. J. RYSER 

Let A be in 31 (i?, S) and suppose that 

*•-[ r i ] 
with W of size e by / . For a (0, 1)-matrix Q let iVo(<2) denote the number 
of 0's in Q and let Ni(Q) denote the number of l 's in Q. Then (4.1) can be 
rewritten in the form 

(4.5) tef = No(W) + N1(Z). 

The invariants tef of 31 (R, S) are useful in determining the maximal and 
minimal trace (12) and the maximal term rank (11) of the matrices in 31 (7K!, S). 

We now define invariants N(e,e,f) of SI (R, S) which are generalizations 
of (4.1). These invariants turn out to be effective in determining the minimal 
a-width of the matrices in 31 (Rt S). Let 

(4.6) N(e, e,f) = re+1 + re+2 + . . . + rm - (se+1 + se+2 + . . . + sf)+e(f-e). 

Here e, e, f are integer parameters such that 

(4.7) 0 < e < w, 

(4.8) 0 < e < m, 

(4.9) e < / < ». 

Note that 

(4.10) N(0,e,f) = tef, 

and for e = 0, (4.9) reduces to (4.3). Moreover, (4.1) and (4.6) imply 

(4.11) iV(e, e,f) = ter + (si + s2 + . . . + st) - te. 

Let A be in 31 (R, S) and suppose that 

(4.12) A X 
Y 
* Z 

with X of size m — e by e and F of size e by / — e. Then by (4.6), 

(4.13) N(e, e,f) = N^X) + N0(Y) + NX(Z). 

Let A' be a matrix in the normalized class of the form 

(4.14) A' = 
M' 
F' 
E' 

J 

* 

* M' 
F' 
E' 

J 

* 0 

Here E! is a matrix of size h' by e with exactly « l's in each row. M' is a 
matrix of size er by e with a + 1 or more l's in each row. F' is a matrix of 
size m — (ef + ô') by e' with exactly a + 1 l's in each row. / is a matrix 
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of l ' s of size e' by f — e and 0 is a zero matrix. Each of the first e' columns 
of A' contains more than m — b' l ' s . We require b' and t > 0 bu t the degener
a te cases e' = 0, e' + bf = m, f = e, and f = n are not excluded. A matr ix 
fulfilling these requirements is called canonical, and ef and / ' are said to be 
decomposition numbers for A'. T h e decomposition numbers for a specified Ar 

need not be unique. 
I t is clear t h a t the matr ix A; of Theorem 3.1 is canonical with e' = ê, 

br = <5. T h e e and / of Theorem 3.1 are decomposition numbers for A;. 

T H E O R E M 4.1 . 77ze e of the canonical matrix A' of (4.14) equals the first 
non-negative integer e such that 

(4.15) N(e, e,f) > a(m - e) 

for all integer parameters e and f restricted by (4.8) and (4.9). 

Proof. Let e be fixed and restricted by (4.7) and suppose t ha t for some e 
and / restricted by (4.8) and (4.9) 

(4.16) AT(e, ej) < aim - e). 

Then 

(4.17) e < e'. 

For suppose t h a t (4.16) holds and t ha t e > e. Then the first e columns of 
A' contain a t least a l ' s in each row. Bu t then by (4.13) the e, e, a n d / o f (4.16) 
satisfy N(e, e,f) > aim — e) and this contradicts (4.16). Hence (4.16) implies 
(4.17). 

Let e be fixed and restricted by (4.7) and suppose t h a t for each e and / 
restricted by (4.8) and (4.9) 

(4.18) N(e,e,f) > a(m - e). 

Then 

(4.19) e' < e. 

For suppose t h a t (4.18) holds and t h a t e < e'. Then for the decomposition 
numbers e' a n d / ' of (4.14) 

(4.20) 0 < ef < m, 

and 

(4.21) e < e' < / ' < n. 

By (4.13), 

(4.22) N(e, e',f) = N(e', * ' , / ' ) + NQ(T) - N^U), 

where T denotes the submatr ix formed by the intersection of rows 1, 2, . . . , e' 
and columns e + l , e + 2 , . . . , e ' of A'', and U the intersection of rows 
er + 1, e' + 2, . . . , m and columns e + 1, € + 2, . . . , e of A'. Now each of 
the first e columns of A' contains more than m — br l ' s . Hence 
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(4.23) y^U) - N0(T) + e'(t' - e) = st+1 + sl+2 + . . . + * « , 

> (m - «')(«' - «). 

and 

(4.24) Nt(U) - N0(T) > m - (e' + 8'). 

Moreover, 

(4.25) N(e'}e',f) = (a + l ) ( m - e ' ) - 5'. 

Hence by (4.22), (4.25), and (4.24), 

(4.26) iV(e, e ' , / ' ) = (a + l ) ( m - *') - 5' + # 0 ( r ) - iVx(£/) 
< (a + l ) ( ra - e') - br - m + ef + ôr = a (m - e')-

Bu t this contradicts (4.18). Hence (4.18) implies (4.19) and this proves 
Theorem 4 .1 . 

T H E O R E M 4.2. Let ê be the minimal a-width of the normalized class 21 (7?, 5 ) . 

The e of the canonical matrix A' of (4.14) equals e and e is the first non-negative 

integer e such that 

(4.27) N(e,e,f)>a(m-e) 

for all integer parameters e and f restricted by (4.8) and (4.9). 

Proof. This follows from Theorem 4.1 and the fact t h a t the matr ix A; of 
Theorem 3.1 is canonical. 

Theorem 4.2 provides a simple computa t ion for ê. One can successively 
calculate the ar rays N(e, e,f) + ae, N(e + 1, e,f) + ae, . . . , each for 
appropr ia te e and / , where e is the first e such t h a t si + s2 + . . . + se > am, 
stopping when all entries of the ar ray are a t least equal to am. T h e s tar t ing 
value e in the calculation is clearly a lower bound for e. 

T h e next theorem shows t h a t all pairs of decomposition numbers e , / ' can 
be singled ou t from the a r ray N(e — 1, e,f) + ae. 

T H E O R E M 4.3. Let A' be the canonical matrix of (4.14) with e = e. Let 

(4.28) y = min [N(ë - 1, e,f) + ae]} 
e , f 

where 0 < e < m and I — 1 < / < n. Then 

(4.29) 7 = Nil - 1, e\f) +ae' 

if and only if e' and f are decomposition numbers for A'. 

Proof. Let ef and / ' be decomposition numbers for A'. Then 0 < ef < m 
and ê < f < n. We consider first the case in which e < e' and e < / < n. 
Then 

(4.30) .V(i - 1, e',f) = N{1 - 1, ej) + N0(T) - .Y^U) - N0(V) 
- Ni{W). 
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Here T is the intersection of rows e + 1, e + 2, . . . , e' and column ê of A', 
U is the intersection of rows e + 1, e + 2, . . . , e' and columns 1 , 2 , . . . , e— 1 
of A', Vis the intersection of rows 1, 2, . . . , e and columns e + 1, I + .2 , . . . , / 
of ^4', and TV is the intersection of rows e + 1, e + 2, . . . , m and columns 
/ + 1 , / + 2, . . . , w of ^4'. Now since e' and / ' are decomposition numbers 
for A\ 

(4.31) NX{U) + [e' - e- N0(T)] = (a + l)(e' - e) + p, 

where p is a non-negative integer. Hence 

(4.32) No(T) - Nt(U) = a(e - e') - p 

and 

(4.33) N(e - 1, e',/') + ae' = N(e - 1, e,f) + ae - p - N0(V) - iVi(TV). 

Thus 

(4.34) N(e - 1, e',f) + ae' < .V(i - 1, e,f) + ae 

and equality holds if and only if p = 0, .V0(T0 = 0, N^W) = 0. But p = 0, 
JVO(TO = 0, iVi(TV) = 0 if and only if e and / are decomposition numbers 
for A'. 

Next consider the case in which e' < e and i < / < n. Then 

(4.35) N(i - 1, e',f) = N(i - 1, ej) + ^ ( i / ) - \0(T) - -Y0(F) - JV,(W0. 

Here T is the intersection of rows e' + 1, e' + 2, . . . , e and column e of .4', 
t/ is the intersection of rows e' + 1, e' + 2, . . . , e and columns 1, 2, . . . , I— 1 
of -4', F is the intersection of rows 1, 2, . . . , e and columns e + 1, e + 2, . . . ,/ 
of A', and TF is the intersection of rows e + 1, e + 2, . . . , m and columns 
/ + 1 , / + 2, . . . , » of ,4'. Now 

(4.36) #i(C7) + [« - e' - .Vo(r)] = a(e - e') + g, 

where g is a non-negative integer satisfying 

(4.37) q + e' - e < 0. 

Hence 

(4.38) N(e - 1, e',f) + ae' = N(e - 1, e, f) + ae + e' ~ e + q 
- No(V) - NX(W). 

Thus 
(4.39) N(e - 1, e',/') + ae' < A7(i - 1, e,/) + ae 

and equality holds if and only if q = e — e' and i\7o(F) = Ni(W) = 0, that 
is, if and only if e and / are decomposition numbers for A'. 

We now extend the range of / to I — 1 < / < n. It suffices to show that 
if / = e — 1, then 

N{1 - 1, e,f) +ae> N(i - 1, ef,f) + ae'. 

But this follows without difficulty from the equations 
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N(e - 1, e, e - 1) = re+1 + re+2 + . . . + rm 

and 

N(e - 1, «',/') = (a + l)(m - e') - <5' + e' - s€~. 

This completes the proof of Theorem 4.3. 

THEOREM 4.4. Let 8 be the multiplicity of a with respect to e. The 8' of the 
canonical matrix A' of (4.14) equals 8 and 

(4.40) S = (a + l)m - y - s;. 

Proof. Let A' be the canonical matrix of (4.14). Then 

(4.41) N(~e, e\f) = N(e - 1, e',f) + s; - e'. 

But 

(4.42) N(e, e',f) = (a + l)(m - ef) - 8' 

and hence 

(4.43) 8' = (a + l)m - f - ê~. 

Moreover, the matrix Az of Theorem 3.1 is canonical so that 8' = 8. 
We conclude this section with a numerical example illustrating the com

putation of e(l), 5(1), and the decomposition numbers ef, f for a normalized 
class. Let 31 (R, S) be determined by 

R = (6 ,5 ,3 ,2 , 2,2, 1, 1), 

S= ( 4 , 4 , 4 , 4 , 4 , 1 , 1 ) . 

The arrays N(2, ej) + e, for 0 < e < 8, 2 < / < 7, and TV(3, e,f) + e, for 
0 < e < 8 , 3 < / < 7 , yield all pertinent information. They are shown in 
Table II. 

TABLE II 

\ / 
\ 2 3 4 5 6 7 

0 22 18 14 10 9 8 
1 17 14 11 8 8 8 
2 13 11 9 7 8 9 
3 11 10 9 8 10 12 
4 10 10 10 10 13 16 
5 9 10 11 12 16 20 
6 8 10 12 14 19 24 
7 8 11 14 17 23 29 
8 8 12 16 20 27 34 

e = 3 

\ / 
« \ 3 4 5 6 7 

0 22 18 14 13 12 
1 17 14 11 11 11 
2 13 11 9 10 11 
3 11 10 9 11 13 
4 10 10 10 13 16 
5 9 10 11 15 19 
6 8 10 12 17 22 
7 8 11 14 20 26 
8 8 12 16 23 30 
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The recursions 

(4.44) N{e, e + 1,/) = .¥(e, e,f) - r^ +f - e, 

(4.45) N(e, e,f + 1) = N(e, ej) + e - sf+1, 

(4.46) tf(€ + 1, e,f) = N(e, ej) + se+1 - e 

are useful in constructing such arrays. 
Since 

# ( 2 , 2 , 5 ) + 2 = 7 < 8, 
N(3, e,f) + e > 8, (0 < e < 8, 3 < / < 7), 

we have i( l) = 3. Also 7 = 7 corresponding to the unique decomposition 
numbers er = 2, / ' = 5, and hence §(1) = 5. A canonical matrix in the class 
is given by 

1 0 
0 1 

0 0 
0 0 
0 0 
0 0 
0 0 
0 0 

1 1 1 l 1 
1 1 0 l 1 

~T ~T 0 l 
l 

~ 0 ~ 
1 ~o~ 0 

l 
l 0 

0 1 0 0 1 
0 0 l 0 1 
0 0 l 0 0 
0 0 l 0 0 

5. Construction of canonical matrices. We are now in a position to 
give a simple procedure for the construction of a canonical matrix A'. Before 
doing so we recall some facts about the construction of a (0, 1)-matrix of size 
m by n having a specified row sum vector R = (r1} r2, . • . , rm) and column 
sum vector 5 = (si, S2, . . . , sn) (5; 7; 10). Let Ri be a row vector of r\ l's 
and n — rx 0's. Let the l's be inserted in the positions in which S has its r\ 
largest components. Let R2 be a row vector of r<i l's and n — r% 0's. Let the 
l's be inserted in the positions in which S — Rx has its r2 largest components. 
Rz is a row vector whose l's are in the positions in which S — R± — R2 has 
its r3 largest components, and so on. Now let A be a matrix with row sum vector 
R and column sum vector S. We may apply interchanges to A and replace 
row 1 of A by Ri. Then we apply interchanges to the transformed matrix 
and replace row 2 by R2. These interchanges do not involve Ri. In this way 
we transform A by interchanges into a matrix A* composed of the row vectors 
Ri, R2, . . . , Rm. But this tells us that A* has row sum vector R and column 
sum vector S, and hence we have a procedure for constructing a matrix in 
the class %(R,S). 

We now construct a canonical matrix A1 of the form (4.14) in the nor
malized class yt(R, S). The theorems of § 4 give formulas for the integers 
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e = e, 3' = 5, e and f in te rms of R and S. T h e submatr ix of A' formed 
by the intersection of rows e' + 1, e' + 2, . . . , m and columns e + 1, 
€r + 2, . . . , / ' has its row and column sum vectors determined. Hence this 
submatr ix may be inserted. 

Let 

M' G' 
F' 

0 
E' 

0 

be the m by n — (/ ' — e) submatr ix of A' formed from A' by the deletion 
of columns e + 1, e + 2, . . . , / ' . The matr ix B comprises the undeter
mined portion of A'. We know the row sums of B, F', and E' and the column 
sums of B and G'. Let 

(5.2) B' = [Mr G] 

denote the first e' rows of B and let 

(5.3) S' = (s/'+i, ^/'+2, • • • , sn) 

denote the column sum vector of G'. We apply interchanges to B' and place 
the l ' s in column 1 of Gf in those rows of B' t h a t possess the sr>+i largest 
row sums. Now we ignore column 1 of G' of the transformed B' matr ix and 
apply interchanges to column 2 of G'. These interchanges do not d is turb 
column 1 of G' and they place the l ' s in column 2 of G in those rows of B' 
t ha t possess, with column 1 of G excluded, the S/'+2 largest row sums. This 
gives a construction for G. Bu t then this determines a row sum vector for 
G and hence a row sum vector for M'. T h e construction for G is such t h a t 
each of the components of the row sum vector of M' exceed a. In fact l ' s 
are inserted in the columns of G by a procedure t h a t keeps the size of the 
row sums of M' as uniform as possible. T h e undetermined portion of B now 
consists of the first e columns of B. Bu t we know the row sum vector and 
column sum vector of this m by e matr ix, and hence we have a construction 
for a canonical matr ix A'. 

6. Spec ia l c las ses . Let 9I(i£, S) denote the normalized class of m by n 
(0, 1)-matrices having row sum vector K = (&, k, . . . , k) and column sum 
vector S = (si, s2, . . • , sn). Similarly, let 2t(i£, K) denote the normalized class 
of m by n (0, 1)-matrices having row sum vector R = (ri, r2, . . . , rm) and 
column sum vector K = (k, k, . . . , k). For these special classes, the canonical 
form (4.14) is always degenerate. 

T H E O R E M 6.1. Every canonical matrix A' of form (4.14) in %(K,S) has 
decomposition numbers e = 0 , / r = n. Every canonical matrix A' of form (4.14) 
in %(R, K) has decomposition number f — n. 
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Proof. Let A' of form (4.14) be in the normalized class 31 (K, S), and suppose 

e' > 0. Then, comparing first and last row sums of Af, we have a + 1 + / ' 

— e < k < a + / ' — e. This contradiction shows t h a t e' = 0, and hence 

/ ' = ». 

Let A' of form (4.14) be in the normalized class tyi(R,K), and suppose 

f < n. Comparing first and last column sums of A' yields e! ^ k !> m — 8f, 

a contradiction. T h u s / ' = n. 

For the class 21 (K, S), the lower bound for I mentioned following the proof 

of Theorem 4.2 is always achieved: i is the first e such tha t 

(6.1) si + s2 + . . . + s€ > am. 

For in A' of (4.14) with e' = 0, 

(6.2) Si + s2 + . . . + s; = am + (m — 8). 

Hence Si + s2 + . . . + sz-i < am and Si + s2 + . . . + s; > am. Moreover, 

8 for the normalized class %(K, S) is given by 

(6.3) 8 = (a + l)m - (Sl + s2 + . . . + s;). 
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