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Carbon nanotubes (CNT) and carbon nanofibers (CNF) are two widely used carbon nanomaterials for 

various industrial applications. The airborne particles released from of these materials during the handling 

and manufacturing of CNT/CNF products in workplaces has potential health impact on humans when 

exposed through inhalation [1-2]. In order to evaluate the potential exposure hazards of these materials, 

the airborne nanoparticulate samples were collected and analyzed by transmission electron microscopy 

(TEM) to determine their types, sizes, and specific morphological properties. After samples were obtained 

and imaged, individual particles were identified and classified based on aspect ratios and degree of 

agglomeration, among other descriptors. However, manual identification and classification of nanoscale 

structures require significant technical expertise and can be highly time-intensive for complex 

nanostructures [2-3]. Therefore, we introduced transfer learning-based machine learning algorithms and 

incorporated computer vision approaches to classify a dataset that consisted of 5,323 greyscale TEM 

images of airborne carbon/non-carbon nanomaterials (see representative images in Fig. 1) to improve 

classification accuracies and enable automatic processing of nanostructured micrograph data. 

The primary transfer learning training pipeline [4] for our convolutional neural network (CNN) model 

was constructed with a vgg16 architecture based on ImageNet pre-trained dataset and followed by using 

hyper-column representation to collect matrix computation results from five convolutional (Conv) blocks. 

We constructed a K-means library as a grid and quantified it with vector of locally aggregated descriptors 

(VLAD) as an encoder, and finally trained with the gradient boosting algorithm for an optimized classifier. 

In addition, data augmentation techniques, by 90-degree rotation transformation to the original images, 

were used as pre-processing to mitigate the overfitting of the model on the majority classes ( > 80%) over 

the minority ones. Other than the classification model, we designed different hierarchical learning 

structures to reduce the model complexity by dividing an all-in-one task into hierarchical or stepped binary 

classifications. We designed two different hierarchical structures for 4-class pure carbon sets: (1) easy-to-

hard mode that first classifies 4 classes into morphologically similar groups and further identifies each 

binary group; (2) hard-to-easy mode that applies in an opposite sequence to distinguish the mixed groups. 

The total probability to correctly predict the labeled images is equal to the probability of making the right 

decision on the first-level groups, multiplied by the conditional probability of making the correct 

prediction of the second-level group given the prior first-level determination. 

In conclusion, both two-level hierarchical structures achieved comparable classification performance for 

the 4-class pure carbon dataset, 89.7% and 85.6% respectively, compared to the original vgg16 

hypercolumn model with 90.9% cross-validation accuracy (as seen in Fig. 2). And these hierarchically 

structured learning approaches have shown promising directions in identifying different levels of 

information, such as specific matrix/matrix-surface structures. Future improvement may be achieved by 

implementing more combinations of learning structures to either a 4-class or 8-class dataset with 

approaches based on other Deep Convolutional Neural Network architectures. 
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Figure 1. Fig.1 Sample images of 8 types of nanostructures from the TEM dataset. CNT structures are classified 

as (a) Cluster (Cl), (b) Fiber (Fi), (c) Matrix (Ma) and (d)Matrix-Surface (MS). Non-CNT structures are classified 

as (e) Graphene Sheet (GS), (f) Soot Particles (SP), (g) High-Density Particles (HDP), and (h) Polymer Residues 

(PR). 

 
Figure 2. Fig.2. Average classification accuracies of 4 individual types and the pure carbon dataset obtained from 

three transfer learning approaches: VGG16 Hcol (original), easy-to-hard mode, and hard-to-easy mode. 
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