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Abstract

As global warming increases with the frequency of extreme weather, the distribution of species
is inevitably affected. Among them, highly damaging invasive species are of particular con-
cern. Being able to effectively predict the geographic distribution of invasive species and future
distribution trends is a key entry point for their control. Opisina arenosella Walker is an inva-
sive species, and its ability to live on the backs of foliage and generate canals to hide adds to
the difficulty of control. In this paper, the current and future distributions of O. arenosella
under three typical emission scenarios in 2050 and 2090 are projected based on the
MaxEnt model combining 19 bioclimatic variables. Filter through the variables to find the
four key environment variables: BIO 1, BIO 6, BIO 11 and BIO 4. The results show that
O. arenosella is distributed only in the eight provinces of Tibet, Yunnan, Fujian, Guangxi,
Taiwan, Guangdong, Hong Kong and Hainan in the southeastern region. Its high suitability
area is concentrated in Taiwan and Hainan. In the long run, highly suitable areas will continue
to increase in size, while moderately suitable areas and poorly suitable areas will decrease to
varying degrees. This paper aims to provide theoretical references for the control of
O. arenosella.

Introduction

Opisina arenosella Walker (Lepidoptera: Oecophoridae) is also known as the coconut black-
headed caterpillar (BHC). BHC is an essential quarantine leaf-feeding pest native to Sri
Lanka and India in South Asia (Lu et al., 2023). BHC was first detected and recorded in
1909 in the coastal cities of southern India, and since 1920 it has been reported as an econom-
ically relevant pest in Sri Lanka, Hindustan, Bengal Republic, Indonesia, Thailand and
Malaysia (Perera et al., 2009). By August 2013, BHC damage was first detected in China in
Wanning City, Hainan Province. Subsequently, BHC damage to palms was also reported in
Fangchenggang City, Guangxi Province and Foshan City, Guangdong Province (Tang, 2017).
According to current research, BHC can harm about 34 species of palms (Li et al., 2021)
such as coconut (Cocos nucifera), royal palm (Roystonea regia (HBK.) O.F. Cook), Chinese
fan palm (Livistona chinensis), date palm (Phoenix dactylifera L.), Oredoxa oleracea Kurth.,
Metroxylon sagu Rottboell., Caryota urens L., Hyphaene thebacia L., Elaeis guineensis Jacq.
and others (Jin et al., 2019). In Hainan Province, China, it mainly includes 21 species of plants
that are affected by this pest, such as R. regia, Phoenix sylvestris, Wodyetia bifurcata, L. chinensi,
Butia capitat, Hyophore lagenicauli,Washingtonia robusta, Latania lontaroide, Prithchardia paci-
fica, Bismarckia nobilis, Corypha umbaculifera, Chrysalidocarpus lutescen, Arenga catechu,
Archontophoenix alexandrae, Latania verschaffeltii, Arenga pinnat, Licuala grandis, Borassus
flabellife, Saccharum sinensis and Musa paradisiaca. However, it is the palms that it mainly
harms (Tang, 2017). Regarding the BHC, the damage area is mainly concentrated on the leaves
of the plant. The females lay their eggs on the underside of the leaf blades and the eggs success-
fully hatch into larvae, which hide on the underside. The larvae feed on the thin-walled tissues of
the leaves and leave behind leaf debris and excreta, and use their excreta and spider threads on
the underside of the coconut leaves to construct galleries (Kumar, 2002; Perera et al., 2009). This
causes mechanical damage to the leaves, while shading by leaf litter and excreta causes a reduc-
tion in photosynthetic area (Nasser and Abdurahiman, 2001). Not only that, the insect will dam-
age the leaves 2–3 days later, and the leaves will automatically roll down and fold closed,
providing a hiding place for the insect (Li et al., 2021). Also, because the BHC feeds only in
the canopy, often at heights of 10m or more, it is difficult to detect in the early stages of the
infestation (Lu et al., 2023). It is worth mentioning that only the upper epidermis is left after
feeding by the larvae, which, together with the fact that it is a group feeding, results in a
large damaged area that externally looks burned. This not only affects the appearance but
also leads to a reduction in fruit yield, even early fruit drop and slow growth (Lever, 1969;
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Mao and Kunimi, 1994). For coconuts in particular, coconut yields
are reduced by 45.4% in coconuts infested with the insect, and
13.8–21% of coconut leaves are damaged. Studies have shown
that, in cases of severe damage, it can take up to 4 years to recover
normal yields (Mohan et al., 2010). With regard to the spread of
the BHC, in addition to its own superior flight ability (at night),
the trade transportation of the host plant (palm) and the develop-
ment of the coconut chain are the main reasons for it (Jingjing
et al., 2023). With regard to the control of the BHC, tall palms
make it difficult to spray pesticides, as the leaves are not easy to
spray comprehensively, and it also increases labour costs. Also,
due to the pest’s characteristic of hiding behind the leaves to
feed, most of the pesticides fall on the front side of the leaves
and fall by gravity. This makes spraying difficult and at the same
time, greatly reduces the contact rate between the BHC and the
pesticide (Jin et al., 2019). Nowadays, all kinds of science and tech-
nology are developed interactively, especially the combination of
the distribution of various types of pests with modelling software
and geographic software. It can predict the future distribution
trend and geographic direction of pests, which plays a good role
in pointing out control work.

The description and understanding of a species are inextric-
ably linked to its distribution and drivers, which are the basis of
both ecology and geography (Barker and MacIsaac, 2022).
Species distribution models (SDMs) are critical modelling tools
for studying the direction of species’ geographic distributions,
linking and combining species occurrence data with environmen-
tal predictors and utilizing them in a variety of ways (Guisan and
Zimmermann, 2000). The results derived from SDM can be used
to study and excavate the target species in depth in terms of
response to the environment, the most critical environmental fac-
tors, the predicted probability of occurrence of the species in time
and space and the predicted presence or absence of the species.
From the above aspects, hypotheses related to determining eco-
logical conditions for the distribution of target species can be for-
mulated (Bradie and Leung, 2017). With the rapid development of
SDM, many more methods have been derived, including CART
(Breiman et al., 1984), MARS (Friedman, 1991), GARP
(Stockwell, 1999), GLMS (Guisan et al., 2002) and GAMS
(Guisan et al., 2002). In addition to this, it is worth mentioning
that the most noteworthy algorithms for machine learning include
random forest (Breiman, 2001), artificial neural network (Olden
et al., 2008), gradient boosting (De’Ath, 2007), support vector
machine (Guo et al., 2005) and maximum entropy (MaxEnt)
(Phillips et al., 2004). In this context, MaxEnt has been widely
used for species prediction and is one of the most popular meth-
ods in climate modelling studies (Elith et al., 2006). It can pro-
duce relatively robust results with only a small number of
presence/absence (or pseudo-absence) samples (Guisan et al.,
2007; Elith et al., 2011). MaxEnt distinguishes between the pres-
ence and absence of environmental conditions for the classifica-
tion of the target species through maximum entropy (Elith
et al., 2011), and then finds the probability distribution of max-
imum entropy under a set of constraints based on the occurrence
data of the target species (Phillips et al., 2006). As a purely mod-
elling algorithm, it can be integrated with predictive variables
such as climate and remote-sensing variables. These data are
used to predict the relative occurrence rate of a target species in
a designated landscape (Rhoden et al., 2017).

Therefore, in this study, MaxEnt modelling was used to com-
bine the occurrence data of the target species, BHC, with 19 biocli-
matic variables to predict the habitat areas in China. This work was

able to obtain the most important environmental variables affecting
its distribution, which in turn allowed us to predict the geographic
distribution of the pest under three climate scenarios for the next
two periods. This provides some ideas for the control of BHC in
the future, both in terms of climate and geographic distribution.

Materials and methods

Sources and processing of BHC occurrence data

In this study, data on the occurrence of BHC in China and other
countries were selected. These data were mainly obtained by
searching websites on the Internet, published related literature,
and newspapers and books. The website is powered by the
European and Mediterranean Plant Protection Organization
(EPPO, https://gd.eppo.int) and Global Biodiversity Information
Network (GBIF, http://www.gbif.org/) databases for BHC occur-
rence data. The rest of the data were obtained through CNKI
and Web of Science in the relevant literature. Of these avenues,
data for which precise latitude and longitude were available
were recorded, and those that provided only geographic location
names were obtained through Google Earth (http://ditu.google.cn),
using county location descriptions for latitude and longitude.
Then, all the points are filtered, duplicates and errors are removed
and they are carefully checked. Finally, the geographic coordinates
(latitude and longitude) were converted into an Excel spreadsheet
according to the requirements of the MaxEnt model and then
saved in ‘CSV’ format. In order to avoid overfitting, ENMTools ver-
sion 1.0.4 of the R platform was used to spatially filter the data
according to longitude, retaining only one point in each grid cell
(5 × 5 km). Finally, a total of 106 BHC distribution points were
obtained.

Acquisition and processing of environment variable data

MaxEnt version 3.4.4 and ArcGIS version 10.4.1 were used in this
study. The input MaxEnt data required environmental variable
data in addition to the geographic coordinates (latitude and lon-
gitude) of the point of occurrence. Environmental data were
obtained from WorldClim (http://www.Worldclim.org), contain-
ing 19 bioclimatic variables and 48 monthly climatic variables,
and the data were in ASC format for use in ArcGIS software.
Current climate data (2020s) and future climate data (2050s
and 2090s) were obtained from the World Climate Data website
(https://www.worldclimatedata.org/), and the spatial resolution
of the above data is 2.5 arc-minutes (about 4.5 km2). The Sixth
International Coupled Model Comparison Program (CMIP6)
model proposes several shared socio-economic pathways (SSPs)
designed based on different socio-economic assumptions, and
in this study, three SSP emission scenarios based on the simula-
tion of the CanESM 5 model were selected (2.6Wm−2

(SSP1-2.6), 4.5Wm−2 (SSP2-4.5) and 8.5Wm−2 (SSP5-8.5))
under the climate data.

Regarding the way these data were handled, the first step was
to take these environmental variables and use the Jackknife test
in MaxEnt to determine the extent to which each environmental
variable contributes to the construction of the model and to
exclude variables with a contribution of 0. The first step was to
compare the environmental variables with their Pearson correl-
ation coefficients. To avoid overfitting and improve model accur-
acy, the remaining variables were compared for their Pearson
correlation coefficients and the two environmental variables
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with absolute values greater than 0.8 were removed. This is
because it indicates a strong linear relationship between them.
Finally, the remaining environmental variables were used to
model predictions of current and future fitness ranges.

MaxEnt modelling methodology and accuracy assessment

The BHC geolocation information converted to CSV format was
entered into the MaxEnt software along with the environmental
variable data after harmonizing the projection and resolution.
Seventy-five per cent of the distribution records were used as a ran-
domised training dataset to build the predictive model, and 25% of
the remaining distribution records were used as a test dataset. The
number of iterations was then chosen as 1000, the number of back-
ground points was chosen as 10,000 and the model was repeated
ten times for averaging using the cross-validation method.
Finally, this work plots the receiver operating characteristic curve
(ROC) and area under curve (AUC) to evaluate the model fit.
The ROC curve is a graphical tool used to evaluate the performance
of a binary classification model. The AUC takes values ranging
from 0 to 1, with values of 0–0.6 indicating extremely poor predict-
ive performance; values between 0.7 and 0.8 indicate fair predictive
performance; values between 0.8 and 0.9 indicate good predictive
performance; and values between 0.9 and 1.0 indicate excellent pre-
dictive performance. Overall, the closer the value is to 1, the better
the model fits (Wang et al., 2023).

Criteria for delineating BHC potential habitat areas

The MaxEnt model result file was imported into the ArcGIS soft-
ware and reclassified by the software’s reclassification function so

as to derive the possible geographic distribution areas of BHC in
China. The distribution values were classified according to the
method of assessing probability in the IPCC report, and the suit-
ability areas were categorised into four classes based on the suit-
ability index P: high suitability areas (P≥ 0.66), medium
suitability areas (0.33≤ P < 0.66), low suitability areas (0.05 ≤ P
< 0.33) and unsuitable areas (P < 0.05) (Wang et al., 2023). The
number of rasters in each area was then calculated to obtain the
area of suitable habitat in each category for different time periods
and climate scenarios. The comparative data and calculated differ-
ences were then graphed for more visual analysis.

Results

MaxEnt modelling and accuracy testing

In this work, the MaxEnt model successfully predicted the current
and future suitable habitats for BHC. The model ran for a total of
ten iterations, achieving an AUC of 0.993. The training AUC and
test AUC were 0.9936 and 0.9931, respectively, with a standard
deviation of 0.006. The value then performs excellently according
to the criterion of the AUC mentioned in 2.3 (fig. 1). This indi-
cates that the prediction results of the model have a very satisfac-
tory level of reliability. It can scientifically simulate and reflect the
geographical distribution of BHC in China, thus providing a basis
for further research.

Key environmental factors affecting the geographic
distribution of BHC

In MaxEnt’s modelling, for key environmental factors, the mean
percentage contribution (PC) is usually used to describe their

Figure 1. Receiver operating characteristic curve and AUC result of MaxEnt modelling.
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importance. According to the screening method mentioned in
section ‘Acquisition and processing of environment variable
data’, screening was performed using the Jackknife test and
Pearson correlation coefficient. Table 1 presents the PC values
of each environmental factor after screening. Among them are
the values of four environmental variables, BIO 1 (annual mean
temperature), BIO 6 (minimum temperature of the coldest
month (°C)), BIO 11 (mean temperature of the coldest quarter
(°C)) and BIO 4 (temperature seasonality (standard deviation ×
100)), which are four environmental variables with values of 88,
4.9, 3.7 and 3.4%, respectively. It can be seen that they are all
closely related to temperature. It is interesting to note that BIO
1 has the highest PC value, 88% for this one alone. This is a
huge difference from the other three environmental factors.
Figure 2 shows the Jackknife test plot for the MaxEnt model.
When used independently, the gain values provided by BIO 1,
BIO 11 and BIO 6 all show high values, and only BIO 4 has a
large gap in value. It can be concluded that the geographic distri-
bution of BHC in China is largely influenced by these four
temperature-related factors, especially BIO 1.

Analysis of response curves for environmental factors

Based on the identification of key environmental factors, this
work further investigates them. Response curves were used for
each key environmental factor to evaluate its relative impact on
MaxEnt predictions. Figure 3 shows the response plots of the
MaxEnt model with respect to the key environmental factors.
These curves give a good picture of how the different key variables
affect the course of the probability of BHC existence while main-
taining the average sample values of all other variables. The values

of the response curves in the figure are averaged over ten repeated
runs of MaxEnt. The response curve of BIO 1 (annual mean tem-
perature) can be seen in fig. 3A. The curve starts to show an
upward trend when the temperature rises to about 17.0°C.
Above 20.0°C the curve rises sharply until it reaches about 25.0°
C, where it remains steady and its output value stabilises at
about 0.96. The output value is more informative when it is
greater than 0.6. That is to say, when the temperature is greater
than 23.6°C and less than 25.0°C, the interval is suitable for the
survival of BHC. Moreover, its survival probability is positively
correlated with the increase in temperature in this interval, and
the survival of the insect is most suitable when the annual
mean temperature is 25.0°C. For BIO 4 (temperature seasonality
(standard deviation × 100)) (fig. 3B), after the temperature sea-
sonality value of 300, the output value starts to drop off a cliff.
Until the temperature seasonality value stabilises around 750,
the output value will be 0. This indicates that the temperature sea-
sonality value between 300 and 400 is the most suitable for the
survival of the insect, but with the rise of this value, there is a
negative correlation with the output value. However, minimum
temperature of the coldest month (fig. 3C) is different. As can
be seen from the figure, the whole curve shows an increasing
trend, with a positive correlation between the higher temperature
and the higher output value. The temperature starts to curve up
from 5.0°C and reaches a plateau around 17.5°C. When the tem-
perature rises to 13.6°C, the output value is 0.6. It shows that min-
imum temperature of the coldest month is suitable for the
survival of this worm in the interval of 13.6–17.5°C. Similarly,
BIO 11 (mean temperature of the coldest quarter) (fig. 3D)
showed a positive correlation between the increase in temperature
and output values. The interval between 10.0 and 21.8°C was suit-
able for the survival of BHC.

Projections of BHC suitable habitat (current/future)

Figures 4 and 5 show the contemporary and future distribution
of suitable habitat at BHC, respectively. The colouring patterns
are mainly in red, orange, yellow and white to indicate highly
suitable areas, moderately suitable areas, poorly suitable areas
and unsuitable areas, respectively. In general, at any given
time, the highly suitable area is mainly found in the island pro-
vinces of Hainan and Taiwan. Almost the entire island of
Hainan Province is covered by highly suitable areas, especially
the sea-rimmed areas, except for a small amount of moderately
suitable and poorly suitable areas, of which the poorly suitable
area is the smallest.

Table 1. Per cent contribution (%) and permutation importance (%) of
environmental variables in predicting the occurrence of O. arenosella in the
MaxEnt model.

Code

Per cent
contribution

(%)

BIO 1 (annual mean temperature (°C)) 88

BIO 6 (minimum temperature of coldest month (°C)) 4.9

BIO 11 (mean temperature of coldest quarter (°C)) 3.7

BIO 4 (temperature seasonality (standard
deviation × 100))

3.4

Figure 2. Importance of environmental variables to O. arenosella by jackknife test.
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In terms of the contemporary area of suitable distribution
areas, table 2 shows us the area of different suitable areas and
the percentage of each province. Table 2 shows that not many
provinces are suitable for BHC distribution, mainly Tibet,
Yunnan, Fujian, Guangxi, Guangdong, Hong Kong, Taiwan and
Hainan, of which only a small amount of moderately suitable
area, poorly suitable area and poorly suitable area exist in Tibet,
Yunnan and Guangdong, while only a small amount of moder-
ately suitable area, poorly suitable area and poorly suitable area
exist in Fujian, Guangxi and Hong Kong. Among them, only a
few moderately suitable and poorly suitable areas exist in Tibet,
Yunnan and Guangdong, while only a few poorly suitable areas
exist in Fujian, Guangxi and Hong Kong. The highly suitable
areas coincide with those presented in fig. 4, with highly suitable
areas existing only in Hainan and Taiwan Provinces. The percen-
tages of highly suitable areas in Hainan and Taiwan Provinces
were 59.6 and 5.8%, respectively, of the province, with the highest
percentage in Taiwan Province. In terms of the future size of the
suitable distribution area, table 3 shows the distribution of the
area for two future periods and three climate scenarios, as well
as the increase or decrease in comparison with contemporary
data. Notably, the highly suitable area of BHC showed an increase
under all three climate scenarios in the 2050s (SSP1-2.6, SSP2-4.5
and SSP5-8.5), while the other two suitable areas showed an over-
all decrease in area. Interestingly, the overall trend was consistent
in the 2090s compared to the 2050s, although the area did not
increase or decrease as consistently across climate scenarios as it
did in the 2050s. Of these, the highly suitable area has the largest

increase in area under the 2090s SSP5-8.5 scenario, with an
increase of 24.03%. The largest decrease in area was in moderately
suitable area under the 2090s SSP2-4.5 scenario, with a decrease
of 49.40%. Overall, the highly suitable area will continue to
increase in size in the future, while the moderately suitable area
and poorly suitable area will decrease to varying degrees.

Discussion

In today’s scientific research, SDM has been applied in a variety of
scientific fields, such as ecology, biology and geography (Elith and
Leathwick, 2009). It provides a key approach to the control of
harmful invasive species (Bowen and Stevens, 2020) and the con-
servation of rare and endangered species (Escalera et al., 2018),
and can also be used to predict potential impacts on target species
by assessing changes in climate (Nneji et al., 2019). Most SDM
methods can be used to form statistical relationships between spe-
cies occurrence data and environmental variables and for predic-
tion. However, in this study, the MaxEnt model was selected as a
prediction tool for the invasive species BHC among many SDMs.
MaxEnt is an integration of environmental variables as a simula-
tion of the general environment, and the presence and location of
the target species can be predicted using very little species occur-
rence data. It includes the density probability of presence location
and further derives the proportion of area present in different
provinces and survival suitability (Elith et al., 2011). Because of
these superiorities of MaxEnt as a predictive model, the model
was chosen to predict its geographic distribution for BHC.

Figure 3. Response curves of the environmental variables that contributed most to the MaxEnt models. (A) Annual mean temperature (Bio 1); (B) temperature
seasonality (standard deviation × 100) (Bio 4); (C) coldest month minimum temperature (Bio 6); (D) mean temperature of coldest quarter (°C) (Bio 11).
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Figure 4. Current suitable climatic distribution of O. arenosella in China. The probability of O. arenosella is shown by the colour scale in the area. Red indicates a
highly suitable area with a probability of higher than 0.66, orange indicates a moderately suitable area with a probability of 0.33–0.66, yellow indicates a poorly
suitable area with a probability ranging from 0.05 to 0.33, and white represents unsuitable areas.

Figure 5. Potential distribution of suitable areas of O. arenosella under different climate change scenarios in China. The probability of O. arenosella is shown by the
colour scale in the area. Red indicates a highly suitable area with a probability of higher than 0.66, orange indicates a moderately suitable area with a probability of
0.33–0.66, yellow indicates a poorly suitable area with a probability ranging from 0.05 to 0.33, and white represents unsuitable areas.
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However, all models have certain shortcomings based on their
strengths, and MaxEnt is no exception, with certain recognised
performance limitations. For example, in terms of background
samples, although a small sample size is sufficient to support
the completion of the modelling, the representativeness of the
sample selection affects the prediction results. But the model’s
currently known limitations can be mitigated relatively well. For
example, screening for environmental factors effectively avoids the
question of whether the background sample is representative. For
example, for missing species occurrence data, MaxEnt can be

modelled with easily accessible presence-only datasets (Elith
et al., 2011).

The predicted results for BHC show that temperature is an
important factor influencing the distribution of this pest. The
key four environmental factors (BIO 1, BIO 6, BIO 11 and
BIO 4) were all related to temperature, with BIO 1 (Annual
Mean Temperature) being the most influential factor. There is
an effect of climate change on the population dynamics of BHC
in the field (Ramkumar et al., 2006; Shameer et al., 2018). It
has been shown that lower temperatures can have a negative effect

Table 2. Analysis of main suitable distributions of O. arenosella in China.

Province
Highly suitable
area (104 km2)

Moderately suitable
area (104 km2)

Poorly suitable
area (104 km2)

Unsuitable area
(104 km2)

Total (104

km2)a
Percentage of high-suitable
area in the province (%)

Heilongjiang / / / 47.30 47.30 0

Inner
Mongolia

/ / / 118.30 118.30 0

Xinjiang / / / 166.49 166.49 0

Jilin / / / 18.74 18.74 0

Liaoning / / / 14.80 14.80 0

Gansu / / / 41.53 42.58 0

Hebei / / / 18.88 18.88 0

Beijing / / / 1.64 1.64 0

Shanxi / / / 15.67 15.67 0

Tianjin / / / 1.20 1.20 0

Shaanxi / / / 20.38 20.56 0

Ningxia / / / 5.27 6.64 0

Qinghai / / / 71.34 72.23 0

Shandong / / / 15.39 15.58 0

Tibet / 0.07 0.35 113.90 122.84 0

Henan / / / 16.13 16.70 0

Jiangsu / / / 9.75 10.72 0

Anhui / / / 13.36 14.01 0

Sichuan / / / 45.53 48.60 0

Hubei / / / 17.56 18.88 0

Chongqing / / / 7.74 8.24 0

Shanghai / / / 0.59 0.63 0

Zhejiang / / / 9.46 10.555 0

Hunan / / / 19.39 21.18 0

Jiangxi / / / 15.27 16.69 0

Yunnan / 0.02 2.89 31.37 39.41 0

Guizhou / / / 15.96 17.62 0

Fujian / / 0.23 10.76 12.40 0

Guangxi / / 3.32 17.64 23.76 0

Taiwan 0.21 0.61 1.01 1.36 3.60 5.8

Guangdong / 0.42 7.43 7.76 17.97 0

Hong Kong / / 0.09 / 0.11 0

Hainan 2.11 0.56 0.24 0.01 3.54 59.6

aIndicates the total area of the corresponding province.
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on population growth. At lower temperatures, the spawning per-
iod of BHCs is prolonged, which reduces population growth
(Muralimohan et al., 2013). This happens to also corroborate
the response curve for the most influential BIO 1 environmental
factor (PC = 88%), i.e. temperature is positively correlated with
the probability of presence when the average temperature of the
year is in the interval 23.6–25.0°C.

In summary, there are not many highly suitable areas for
BHC in China, nor is there a trend of rapid expansion. The
suitable areas are mainly located in the cities along the south-
east coast, with the highly suitable areas existing mainly in
Hainan Province and Taiwan Province. It is noteworthy that
the whole province of Hainan and the southern part of
Taiwan Province have a tropical monsoon climate. This coin-
cides with the distribution of high suitability areas of BHC in
these two provinces. Regarding areas with a tropical monsoon
climate, the temperature is mainly characterised by high tem-
peratures throughout the year, which again confirms the previ-
ous point. For invasive pests, early detection is an important
method for effective containment, eradication and control of
target species. Therefore, the prediction work in this study pro-
vides directions for prevention in places where invasive pest
species have not yet been detected. Places that may have suitable
areas for BHC in the future should be detected in time to
strengthen the precaution. According to the habit of this pest,
it usually provides a protective barrier by making channels on
the surface under the leaves using excreta. Therefore, the use
of insecticides to control this pest is not very desirable, either
in terms of cost or feasibility. As early as 1924, attempts at bio-
logical control were made in India (Jayanth and Nagarkatti,
1984). In the future, rigorous testing of areas where this is likely
to occur and the timely placement of natural enemies will be a
more effective program.

This study combines 19 bioclimatic variables modelled using
the MaxEnt model to explore both the contemporary and future
geographic distribution of BHC in China. The bioclimatic
variables are mainly composed of two elements: temperature
and precipitation. It can well simulate the climate conditions in
different situations and is also a more scientific indicator of cli-
mate nowadays. Meanwhile, the collection of data on the occur-
rence of BHC was screened and integrated. On this basis, the
MaxEnt model was used to predict the potential distribution
area of BHC in China and effectively reflect the changes in the
size of the suitable area.

Conclusion

In this study, we successfully simulated the potential geographic
distribution of the BHC under three climate change scenarios
(SSP1-2.6, SSP2-4.5 and SSP5-8.5) for the current and future per-
iods (2050s and 2090s) based on the MaxEnt model. Under the
current climate conditions, the BHC is distributed only in the
provinces of Tibet, Yunnan, Fujian, Guangxi, Taiwan,
Guangdong, Hong Kong and Hainan. Among them, high suitabil-
ity zones existed only in Hainan and Taiwan. The total areas of
high, medium and low suitability zones were 2.32 × 104, 1.68 ×
104 and 15.56 × 104 km2, respectively. The environmental factor
that had the greatest impact on the geographic distribution of
the bug was BIO 1 (annual mean temperature), followed by
BIO 6 (minimum temperature of the coldest month), BIO 11
(mean temperature of the coldest quarter) and BIO 4 (tempera-
ture seasonality). All these factors are related to temperature. In
other words, temperature has an important effect on the distribu-
tion of BHCs, which is also consistent with other related studies.
The expected temperature increase is projected to lead to the geo-
graphic expansion of this pest’s distribution. Also, the potential
suitable distribution areas predicted by the BHC were generally
consistent with the actual distribution areas. This work aims to
provide new control perspectives for the invasive pest, the BHC.

Data

The data supporting the results are available in a public repository
from: Zhiling Wang. List of locations used for Opisina arenosella,
with longitude, latitude and sources. figshare. Dataset. https://doi.
org/10.6084/m9.figshare.25188527.v1. EPPO (2023) Opisina are-
nosella. EPPO datasheets on pests recommended for regulation.
https://gd.eppo.int (accessed 21 May 2023), and GBIF.org (08
February 2024) GBIF Occurrence Download https://www.gbif.
org/occurrence/download/0007921-240202131308920.
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