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A viscous, lubrication-like response can be triggered in a thin film of fluid squeezed
between a rigid flat surface and the tip of an incoming projectile. We develop a scaling
for this viscous approach stage of fluid-mediated normal impact, applicable to soft
impactors. Under the assumption of mediating fluid being incompressible, the impacting
solid displays two limit regimes: one dominated by elasticity, and the other by inertia.
The transition between the two is predicted by a dimensionless parameter, which can be
interpreted as the ratio between two time scales that are the time that it takes for the
surface waves to warn the leading edge of the impactor of the forthcoming impact, and
the characteristic duration of the final viscous phase of the approach. Additionally, we
elucidate why nearly incompressible solids feature (a) substantial ‘gliding’ prior to contact
at the transition between regimes, (b) the largest size of entrapped bubble between the
deformed tip of the impactor and the flat surface, and (c) a sudden drop in entrapped bubble
radius past the transition between regimes. Finally, we argue that the above time scale ratio
(a dimensionless number) can govern the different dynamics reported experimentally for
a fluid droplet as a function of its viscosity and surface tension.

Key words: flow-structure interactions, lubrication theory, drops

1. Introduction

Impacts between solid bodies occur daily in many natural and industrial processes. For stiff
solids, the role of ambient air is negligible; however, compliant solids can be deformed by
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the lubrication stress in an intervening fluid layer (Rallabandi 2024). In this scenario, the
lubricant can become entrained, and depending on the contact velocity, the contact area
can be reduced (Zheng, Dillavou & Kolinski 2021). Fluid mediated contact between soft
bodies governs myriad biological and physical processes, from the adhesion of hydrogel
tapes (Xue et al. 2021), to the haemodynamics of blood cells in the vasculature (Higgins
& Mahadevan 2010) and the rheology of suspensions (Coussot & Ancey 1999). Even
the mundane act of gripping a dish in the kitchen with our fingers is cushioned by the
surrounding air. Despite the ubiquity and importance of fluid-mediated contact between
soft solids, the dynamics of contact formation is not fully characterized yet when the
cushioning of the intervening fluid cannot be ignored, unlike in the case when it can be
(cf. Johnson 1985); indeed, for impact velocities of the order of metres per second, and
solids with a shear modulus similar to biological soft tissues, an observed sharp transition
of the entrained air suggests a dominant role of elastodynamics, as the deformation rates
in the solid transition from super-Rayleigh to sub-Rayleigh speeds (Zheng et al. 2021).

Contact formation between compliant solids in air is analogous to liquid droplet
impact; in this context, the lubricating air film generates the first formation of an
on-axis dimple before ultimately leading to droplet splashing or spreading (Mandre,
Mani & Brenner 2009; Mani, Mandre & Brenner 2010; Kolinski et al. 2012; Riboux
& Gordillo 2014; Josserand & Thoroddsen 2016; Wu, Cao & Yao 2021). Theoretical
models of ‘air cushioning’ have been developed (Smith, Li & Wu 2003; Hicks & Purvis
2010) and validated (Hicks et al. 2012) for low-viscosity droplets. It has been reported
that the otherwise reasonable, and usually made, assumptions of incompressibility and
negligible surface tension break down, and even the air can become rarefied (Mani
et al. 2010; Hicks & Purvis 2013). Remarkably, if these extra effects did not enter the
picture, then normal contact would be mathematically impossible (Wu & Bogy 2001;
Hillairet 2007). Experiments of highly viscous droplets impacting rigid (Langley, Li &
Thoroddsen 2017) and fluid (Langley & Thoroddsen 2019) surfaces displayed ‘gliding’
(local hovering around the tip of the droplet’s leading edge while the outward regions
continue approaching), whereas droplets impacting on a compliant surface entrain a larger
amount of air compared to the rigid case (Langley, Castrejón-Pita & Thoroddsen 2020).
Interestingly, a maximum in air bubble volume has been observed as a function of surface
tension (Bouwhuis et al. 2012).

The role played by the mediating air is far less clear for a dynamic soft elastomer
impact, and the stress distribution during the impact process remains unknown. The
case of fluid-mediated solids interacting with interfaces has been studied extensively
by tribologists (Johnson 1985) specializing in elastohydrodynamic lubrication and by
chemists interested in convective mass transport (Leal 2007). The literature contains
examples of a variety of configurations involving solids, ranging from lubrication between
a stiff sphere and a rigid interface (Cox & Brenner 1967), to two spheres immersed in
water contacting at relatively low velocity (Davis, Serayssol & Hinch 1986), a rigid sphere
denting an elastic substrate mediated by air (Balmforth, Cawthorn & Craster 2010), a
soft interface and a rigid sphere (Verzicco & Querzoli 2021; Liu et al. 2022), and a
rigid interface and a quasi-static soft sphere (Venner, Wang & Lubrecht 2016; Bertin
2024). Recently, experiments featured soft solid impactors hitting a microscopically flat
surface (Zheng et al. 2021). The maximum ‘entrapped air bubble’ was measured at the
first instances of contact, and it was shown that its radius grows as a power-law function
of the impact velocity up to a maximum value, and then drops suddenly and becomes
weakly dependent on impact velocity. It was then suggested that there exist two domains,
dominated respectively by elastic and inertial response. In both cases, there is a local
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Figure 1. (a) General scheme of the local problem. Left: leading edge of a soft solid approaches a rigid surface,
trapping a thin film in between. Right: approach is arrested around the axis of the solid by viscous pressures,
leading to deformation characterized by vertical length scale H and radial length scale L. (b) Schematic of the
impact as modelled at the beginning of the numerical simulation. The coordinate system is set such that the
top flat surface of the rigid body (dark grey) is at z = 0. The solid ball (light grey) approaches the surface with
initial velocity V starting with an initial gap h0. The surrounding fluid cushions the impact. (c) Schematic of
the lower free surface of the impactor (∂Ω−) while approaching the surface. At each time step, the point closer
to touchdown is identified, and its radial coordinate is measured (r∗(t)). The gap between this lowest point and
the surface is sometimes said to form a ‘neck’ (Gordillo & Riboux 2022) or a ‘kink’ (de Ruiter et al. 2012).

viscous pressure ‘build up’ as the air is squeezed, which leads to the formation of a
‘dimple’ around the tip. As time progresses, the dimple expands, and we define the radial
position of its edge as the ‘deformation front’ (see figure 1).

Here, we provide a scaling analysis across a wide range of impact velocities that includes
the observed sharp transition between elasticity-dominated and inertia-dominated impacts
(Zheng et al. 2021). The scaling analysis complements and provides context for numerical
simulations of the impact dynamics, which give additional insight into the pressure in the
mediating air film: a pronounced spike in the air pressure emerges as the impact transitions
to the inertia-dominant regime. The growth or decay of this pressure spike governs whether
the solid will glide over the surface, or get sufficiently close to the surface that contact
formation cuts off the gliding process, ultimately reducing the lateral scale of the entrained
lubricant.

Unlike some of the literature in impacts of drops (Mandre et al. 2009; Duchemin &
Josserand 2011; Gordillo & Riboux 2022; Sprittles 2024), in this contribution we do not
intend to quantify the minimum local thickness of the thin film or the mechanisms that
ultimately lead to ‘touchdown’; we focus on understanding the evolution of the lateral
extent of the entrapped bubble.

The text is organized as follows. Section 2 presents the geometrical setting, the
characteristic scales of the system, and the corresponding regimes. Section 3 briefly
introduces our numerical model, and tests the validity of our scaling framework with
experiments, simulations and previous literature. Section 4 explains why there is a

997 A35-3

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

82
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.820


J. Bilotto and others

Lubrication pressure:
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Figure 2. Diagram illustrating how different pressures balancing the lubrication pressure give rise to different
regimes (where Plub,Pel,Pin represent pressures based on characteristic values of lubrication, elastic forces
and inertial forces, respectively).

maximum bubble radius and why its size can change suddenly with model parameters.
It also highlights similarities and differences with droplet impacts. We close with final
remarks, including the research outlook, in § 5.

2. Scaling for fluid trapping during approach

Consider an elastic solid sphere of radius R, surrounded by a fluid, approaching with
velocity V a rigid flat surface along its normal; see figures 1(a) and 1(b). In order for
the sphere to make contact with the surface, the intervening fluid layer close to the tip
must be ejected, resulting in large lubrication pressure. If this pressure is high enough,
then it can locally halt the approach of the sphere, causing substantial deformation so that
contact will be made on an annulus, with a fluid bubble trapped in the middle. Depending
on which mechanism is predominantly responsible for balancing the lubrication stress in
the solid (deceleration or deformation), we identify two different regimes. This is sketched
in figure 2.

The condition for fluid pocket formation provides the relation L = √
RH between the

characteristic radius of the dimple L, that of the impactor R, and the characteristic gap size
H (Smith et al. 2003; see also Appendix A).

For an incompressible fluid film, the lubrication pressure is Plub ∼ μ′
mVR/H2 (Szeri

2010), where μ′
m = 12μm (Savitski & Detournay 2002), and μm is the dynamic viscosity

of the mediating fluid. We also define τ = H/V as the characteristic time of the impact
final stage. When impactor inertia is dominant, defining ρi as the solid density, the pressure
scale for the solid is Pin ∼ ρiVL/τ , which stems from decelerating the leading edge of the
impactor, with characteristic length L and initial velocity V , over a time span of order τ .
Balancing Pin with Plub and using the geometrical relation between L and H, we obtain

Lin = R St−1/3, Hin = R St−2/3, (2.1a,b)

where St = ρiVR/μ′
m is the particle Stokes number. These results have been reported

previously in the literature for droplets (Smith et al. 2003; Mandre et al. 2009).
If elasticity is dominant, then the characteristic value of strain is H/L, and the pressure

scale is thus Pel ∼ GH/L, where G is the shear modulus of the impactor. Balancing this
pressure with Plub yields

Lel = (R4μ′
mV/G)1/5, Hel = (R3/2μ′

mV/G)2/5. (2.2a,b)
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Fluid-mediated impact of soft solids

These results have also been reported previously in the literature (Davis et al. 1986; Zheng
et al. 2021), but we used the shear modulus instead of the equivalent Young’s modulus for
ease of interpretation of later results, effectively removing an order-one prefactor.

2.1. Transition between elasticity-dominated and inertia-dominated impactor response
We will use the notation Py[x] to denote that the characteristic value of the pressure Py is
evaluated using scale(s) x. The crossover between elastic and inertial regimes occurs when
Pin ∼ Pel. We notice that

(
Pin[Lin,Hin]
Pel[Lin,Hin]

)1/2

=
(

Pin[Lel,Hel]
Pel[Lel,Hel]

)5/6

= φ = V St1/3

cs
= Lin/cs

Hin/V
= τpropagation

τimpact
,

(2.3)

where cs = √
G/ρi is the shear wave speed in the solid. Recall that for most materials,

the shear and Rayleigh surface waves have comparable magnitudes, cs ≈ cR. Hence the
transition parameter φ can be interpreted as the ratio of the two characteristic time scales
of the phenomenon: τimpact = Hin/V represents the impact characteristic time span during
the viscous response phase, and τpropagation = Lin/cs is the characteristic time it takes a
wave emanating from the tip of the impactor to reach the extent of the region where the
viscous pressures develop (Hicks & Purvis 2013), i.e. where the deformation accumulates
and the dimple forms.

3. Validation of the scaling

3.1. Simulations and experiments
To validate the scaling analysis, we set up fully coupled finite-element simulations for both
the solid and thin films, solved in COMSOL Multiphysics (COMSOL Ltd., Cambridge,
UK, version 6.0), and compare our results to the experiments of soft and hard silicone
impactors (Zhermack Brand duplication silicones) against a rigid smooth glass surface
in ambient air, reported in Zheng et al. (2021). The intervening fluid is modelled using
the ‘thin-film assumption’, i.e. averaging mass conservation across the thickness. The
impactor is modelled as an almost incompressible hyperelastic solid. Once the simulations
themselves are validated against the experimental data, they will enable access to details
of the phenomenon beyond the experimental measurements.

Material properties are reported in table 1 for the impactors, while the mediating air is
assigned density ρm = 1.2 kg m−3 and viscosity μm = 1.81 × 10−5 Pa s, corresponding to
common values at standard pressure and temperature (Cimbala & Cengel 2006). Velocities
of the impactors span three orders of magnitude, from 0.05 m s−1 to approximately
6 m s−1. Note that air compressibility effects (see Appendix B) could become important
around V ≈ 1.5 m s−1; however, we choose to neglect them at the expense of losing
physical accuracy during the late approach stages. Including them could require adding
advanced stabilization techniques (e.g. streamline upwind/Petrov–Galerkin; Brooks &
Hughes 1982) in the finite-element formulation currently adopted (Habchi et al. 2008).

As we expect substantial deformation in the impactor and highly compressive strains,
the elastic Saint-Venant model would lead to non-physical softening (Sautter et al. 2022)
in the inertia-dominated regime, therefore we employ the compressible neo-Hookean
hyperelastic model (extra details in Appendix C). This way, the computations are
more stable in the high-velocity regime where compressive strains are more intense.
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Soft Hard

ρi (kg m−3) 1140 1140
E (kPa) 250 1100
ν 0.47 0.47

Table 1. Material properties of the two impactors (see Appendix C for parameters and strain-energy density
of the neo-Hookean solid formulation).

Simulations are performed with the sphere starting at height h0 > Hin,Hel. Additional
details concerning the numerics can be found in Appendix C.

During the simulations, we track the point, which may change at each time step, on the
leading edge closest to contact at any given time, whose radial coordinate we identify as
r∗. See figure 1(c) for a depiction.

The initial contact radius is extracted when the gap first closes anywhere in the domain
(rcontact), even if the exact choice of when to stop the simulation once the gap is ≈100 nm
does not significantly alter the results (see Appendix C). Nevertheless, the simulations,
especially at the later stages when the fluid layer is only a few hundred nanometres
thick, manifest non-physical high-frequency oscillations similarly to what was reported
previously by Stupkiewicz (2009). Further analyses including extra physics, such as those
carried out by Chubynsky et al. (2020) for droplets, would be needed to elucidate the
exact contact mechanism. We refrain from doing so, since we are aiming to characterize
the evolution of the entrapped air bubble length and its maximum value, a variable that
does not change significantly by the end of the simulations (we substantiate this claim
in Appendix C). Introducing tfinal to be the time when the simulation stops, the relation
between this variable and r∗ is r∗(tfinal) = rcontact.

Figure 3 shows rcontact as a function of V for the experiments performed in Zheng
et al. (2021) and our simulations. In both cases, the radius computed with the numerical
model follows a trend similar to the one observed in the experiments. The value of rcontact
increases upon increasing the impact velocity until it reaches a maximum value, and then
drops beyond a critical velocity of approximately 1.1 m s−1. For the soft impactor, there
is a slight underprediction for V < 1.1 m s−1, while the opposite occurs for the hard
impactor. Remarkably, there is a sudden drop of rcontact at values of velocity comparable
to those seen in the experiments, even though for the hard impactor the jump is less
pronounced, which could be due to the lack of fluid compressibility in the simulations.
In both cases, the trapped air bubble radius appears slightly underestimated, albeit within
experimental error, when V > 1.1 m s−1. The influence of changing the value of h0, in
the range where the lubrication approximation is valid, is noticeable only around the sharp
transition, where impactors starting closer to the surface entrap more air and manifest
the drop at slightly higher velocities. This effect is caused by the transient elastodynamic
response of the solid (see Appendix C for details).

Free-surface and pressure profiles during the approach are shown in figure 4 for values
of the impact parameter corresponding to the elastic regime φ = 0.1, the transition φ = 4,
and the inertial regime φ = 10. In order to verify the corresponding scalings, the data are
made dimensionless with the values presented in table 2. It is readily acknowledged that
the geometrical length scales of the dimple, the time scales over which the phenomenon
occurs and the corresponding pressure scales in the numerical simulations are order
unity when divided by their characteristic values as predicted by the scaling. This is
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Figure 3. The initial contact radius rcontact as a function of impact velocity V . Experimental data with error
bars from Zheng et al. (2021) and numerical data are displayed, for both the soft impactor (circles) and the
hard one (squares). Two shaded areas are shown in blue and red corresponding to the data for the soft and hard
impactors respectively. For each impactor, the shaded area is bounded by lines from simulations starting from
a higher initial gap 2h0 (bottom edge) and a smaller initial gap 0.5h0 (top edge).

5
(a) (b) (c)

–4
t(τel) =

0
4

–4
t(τin) =

0
4

–4
t(τin) =

0
4
8

4

3

2h/
H

el

1

0

5

1.0

0.5

0

4

3

2

p/
P e

l

p/
P i

n

0.5

0

p/
P i

n

1

0 1 2 3 2 4 6 2 4 64 5

1 2 3 2 4 6 2 4 64 5

2.5

2.0

1.5

1.0h/
H

in

0.5

0

2.5

2.0

1.5

1.0h/
H

in

0.5

0

r/Lel r/Lin r/Lin

Figure 4. Evolution of the impactor free-surface (top plots) and pressure profile (bottom plots) during early
stages of the impact process. Time is made dimensionless by using the characteristic times τin = Hin/V and
τel = Hel/V for the inertial and elastic regime respectively. Profiles are computed for the soft impactor at
(a) low (φ = 0.1, V = 0.07 m s−1), (b) intermediate (φ = 4.0, V = 1.01 m s−1) and (c) high (φ = 10.0,
V = 2.05 m s−1) velocity. The elastic regime characteristic values are used to make the data dimensionless
when φ < 1, the inertial regime ones otherwise (see table 2). Profiles at t = 0 would correspond to the
time of touchdown if fluid cushioning was absent. Dashed lines of the pressure profile in (a) represent the
Hertzian pressure distribution computed with indentation dHertz = Vt − h0, similarly to Bertin (2024). The
solid Poisson’s ratio is ν = 0.47 in all these simulations.
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Config. (a) Config. (b) Config. (c)

Lel (mm) 0.21 Lin (mm) 0.21 0.17
Hel (μm) 6.3 Hin (μm) 6.3 3.9
Pel (kPa) 2.5 Pin (kPa) 39 203
τel (μs) 97 τin (μs) 6.3 1.9

Table 2. Physical values of the characteristic scales for the three impact scenarios presented in
figures 4(a,b,c). By coincidence, the lateral and vertical scales for configurations (a) and (b) have similar

values.

considered proof of the validity of the analysis in § 2. We used the inertial regime scales to
non-dimensionalize the transition, but using the elastic regime scales would yield similar
results.

3.2. Comparison with previous literature
We now move on to compare our appraisals with previous literature in fluid-mediated
impact, for both solid and fluid impactors. In the elastic regime (figure 4a), the profile is
much flatter compared to the inertial one (figure 4c), with smoother curvature close to the
dimple edge. As the impactor approaches, the pressure reaches its maximum value in the
middle and evolves smoothly with time. The projectile is deformed accordingly, and the
point close to contact is significantly slowed down, resulting in low lubrication pressures at
the corresponding radial coordinate (see table 2 for dimensional data as the figure axes are
normalized). This is the regime studied in Davis et al. (1986), here presented with scales
that do not depend on the initial gap h0. The pressure profile evolves similarly to Hertzian
indentation, which predicts

P(r) = 2E
π(1 − ν2)

√
Vt − h0

R

√
1 − r2

R(Vt − h0)
(3.1)

for an indentation Vt − h0. The profiles are in qualitative accordance with those in Davis
et al. (1986), Venner et al. (2016) and Bertin (2024).

In the inertial regime (figure 4c), initially the pressure peaks at r = 0, slowing down the
material points near the axis. Information about this deformation propagates at the surface
wave speed of the material, which happens to be slower than the average rate at which
the bubble expands (more on this in the discussion in § 4.2; see figure 8(c) in particular).
The impactor response is thus highly local. During later stages, the pressure maximum
moves away from the centre, and it is in correspondence with the free-surface minima.
Qualitatively, the profiles resemble those observed in numerical simulations of droplets at
high speeds by Mandre et al. (2009), Mani et al. (2010) and Hicks & Purvis (2010), which
is not surprising as the scaling is similar.

Finally, for the transition, there is no prior literature to compare with, but it displays
features of both regimes (figure 4b). At first, the response resembles that of the inertial
regime, but later, that of the elastic regime. This transition is dictated by the impact
being initially inertia-dominated, developing intense localized forces (‘pressure spikes’)
sufficient to halt the fall locally, giving enough time for the surface wave to reach the
outward-moving deformation front. This postpones the occurrence of contact, and engages
larger portions of the solid, compared to the inertial regime. In other words, the waves
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Figure 5. Numerically computed dimple radius expressed in dimensionless form as a function of the transition
parameter φ. Data for both the ‘hard’ and ‘soft’ impactor collapse on a master curve. Simulations performed
with perturbed values of the parameters also show the same trend. The sharp drop consistently takes place at
values φ ≈ 5.

emanating from the tip reach the edge of the pressure front, ‘warn’ the material ahead
about the incoming solicitation, and bring larger portions of solid to bear the load in a
concerted deformation to resist the viscous pressures, as happens in the elastic regime. The
corresponding free-surface profile shows the ‘frozen’ dimple profile and gliding similarly
to what has been observed experimentally (Langley et al. 2017) for highly viscous drops.
It also manifests a small ‘lift-off’ angle (Kolinski, Mahadevan & Rubinstein 2014) and the
‘double kink’ as observed in de Ruiter et al. (2012). The gliding stage would be completely
averted if the information about the tip deformation transported by surface waves did not
reach the deformation front in time.

3.3. Robustness of the scaling
To check the robustness of the transition parameter, we perform additional simulations.
Taking the values ρm, ρi,R, μm as specified in § 3.1, and E = 675 kPa as an intermediate
value between the ‘soft’ and ‘hard’ cases, for each value of φ we vary each of the
above parameters independently: given a random number n, sampled from the uniform
distribution in (−0.5, 0.5), each of the previous parameters is multiplied by (1 + n),
effectively being altered by ±50 % at most. Finally, the impact velocity V is selected to
obtain the desired value of φ. Results are shown in figure 5.

In the elastic regime, rcontact collapses on the value ≈2.75Lel. The sharp transition
occurs at φ ≈ 5 in all cases. For higher values of φ, the data briefly follow the
inertial scaling law, before the effect of local elastic compressibility becomes relevant.
(Appendices D and E comment further on the effect of solid compressibility.)

4. Discussion

4.1. Maximum entrapped bubble at φ ∼ 1
In the previous section, we argued that gliding appears when the physical parameters yield
φ ∼ 1, but altering their values ever so slightly (e.g. increasing the impactor initial velocity
or decreasing the wave velocity) is enough for the deformation front to elude the surface
waves (i.e. the ‘signals’ in charge of making the rest of the leading edge aware of the
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Figure 6. Vertical strain component εzz at time t/τin = 5 for the transition parameter φ = 3.8, for (a) a highly
compressible solid (ν = 0.1), and (b) a nearly incompressible one (ν = 0.47). The compressible case displays
higher values of compressive strain, as the material can easily undergo volumetric deformation. When the bulk
modulus is higher, as the volume cannot adapt much, the material is partly pushed away by the viscous pressure,
causing tensile strain at the edge of the dimple. This feature, absent when solid compressibility is relevant, is
at the origin of the spikes observed in the pressure profile of the thin film.

changing conditions), thus preventing gliding altogether. In this occurrence, the leading
edge quickly and locally pierces the air film, no gliding takes place, and touchdown may
occur without delay. That is why there is a maximum in the radius of the entrapped bubble;
recall figure 3.

As to the apparent sudden drop in lateral scale at φ ∼ 1, we put forth a kinematic
explanation in three steps.

(i) As the tip region is arrested, the rest of the leading edge continues approaching the
surface, unaware of the sudden solicitation, until either surface waves or the viscous
pressure build-up reach it.

(ii) Just as one would expect for droplets, the nearly incompressible material pushed
by the lubrication pressure not only goes up, but also affects the bulk around it
(figure 6b). Conversely, it could just compress locally if ν ≈ 0 (figure 6a). As the
outer surrounding material keeps falling while this happens, strain accumulates
quickly at the edge of the deformation front. This is the origin of the pressure spikes
that are seen both in our nearly incompressible solids and in incompressible droplets
(Hicks & Purvis 2010, 2013).

(iii) The pressure spikes in turn can induce gliding, which delays touchdown. Surface
waves catch up with the deformation front, extending the process until it finishes in
a fashion similar to how it does in the elastic regime. Hence the greater φ, the faster
the approach process unfolds, leaving eventually no time for surface waves to catch
up and gliding to occur.

Let us stress that this behaviour is thus intimately intertwined with the lack of solid
compressibility. Further details are provided in Appendix D, devoted to effects of allowing
volumetric changes in the solid.

What we have proposed is a qualitative mechanism to explain the gliding of the solid
impactor; however, a detailed description thereof, just as done in the case of droplets
(Gordillo & Riboux 2022; Bertin 2024; García-Geijo, Riboux & Gordillo 2024), merits
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Figure 7. Numerical results for r∗ as a function of normalized impact time (cf. figure 7 in Langley et al. 2017)
for different values of the transition parameter. For all curves, the time origin is taken at the instant when r∗ > 0
for the first time. Curves in the inertial regime (φ > 5) collapse onto the geometrical law (

√
2VRt, dotted black

line), whereas as elasticity becomes dominant, curves approach the Hertzian law (dashed black line). This plot
confirms that at the transition (φ ≈ 5), the behaviour follows initially the inertial one; however, gliding occurs
abruptly, causing a jump in the profile before contact is made, indicating that curvature changes modify the
point that is closest to touchdown.

a local analysis of both the deformation and the thin film flow around the region where the
gap is minimal, i.e. around the ‘neck’ (Gordillo & Riboux 2022).

The severity of the sharp transition of the radius depends both on the velocity when
φ ∼ 1 and on the elastic modulus of the impactor. Given two impactors with the same
material properties except the stiffness as in § 3.1, we expect the transition to occur at
higher velocity for the harder one, but with a smaller overall reduction of the radius, as
confirmed by simulations.

4.2. Deformation front evolution
The sudden change in lateral scale motivates us to study the evolution of the outer edge of
the dimple during the approach process.

For a parabolic impactor, if each solid element moves freely in the vertical direction
until it encounters the rigid surface, then geometrical arguments suggest r∗(t) ≈ √

2RVt,
where we are implicitly assuming by using r∗ that this radial position also corresponds
to the edge of the dimple, and t = 0 would correspond to the moment when the sphere is
tangent to the surface.

In figure 7, simulation data of r∗ at different values of the transition parameter are shown
for the soft impactor.

In the inertial regime, the curves go with
√

2RVt as predicted by the geometrical law,
implying that each of the material points is unaware of the deformation of its neighbours.
In the elastic regime, the profile follows

√
RVt given by the Hertzian prediction of Bertin

(2024), confirming that the information about elastic deformation can spread in the leading
edge.
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Since we have an estimate r∗ = r∗(t) that approximates how long it takes for any
position of the leading edge to start experiencing the viscous effects from the moment
the tip does, we interpret its rate of change as the apparent horizontal ‘velocity’ of the
front, from the tip to the rest of the interface:

ṙ∗ = dr∗

dt
∼
√

RV
τimpact

= St1/3 V, (4.1)

in agreement with the wetting radius velocity obtained for inviscid droplet impact in
a more detailed model in Riboux & Gordillo (2014), which draws its inspiration from
the so-called Wagner solution (Wagner 1932) and might be generalizable to soft solids.
Equation (4.1) means that the deformation front can move much faster than the impact
velocity. Comparing ṙ∗ to the wave speed in the impactor offers yet another interpretation
of φ, as the ratio between the characteristic velocity of the front and the characteristic
velocity of the signals in charge of making the rest of the body aware of the solicitations
developing at the tip:

ṙ∗

cR
∼ St1/3

V
cs

= φ. (4.2)

It follows naturally that for φ � 1, the whole body becomes aware of the solicitation
and promptly adapts to any lubrication stresses, as the waves propagate over the impactor
many times in the span that it takes for the pressure distribution to change significantly.
Conversely, for φ � 1, the leading edge does not respond as a coherent whole, as the
information about the lubrication pressure build up propagates too slow within the solid.
Finally, we expect the transition φ ∼ 1 to display features of both regimes, and this is
confirmed by the results in figure 4.

The situation for the aforementioned three scenarios is also sketched in figure 8.
When φ � 1 =⇒ τimpact � τpropagation (figure 8a), the information about the impending
impact propagates much faster than the deformation front, so the whole leading
edge responds in unison. For φ ∼ 1 =⇒ τimpact ∼ τpropagation (figure 8b), initially the
deformation front moves outwards faster than the surface waves, but these eventually catch
up and engage larger portions of material to resist the lubrication pressures that halt the
approach. Finally, when φ � 1 =⇒ τimpact � τpropagation (figure 8c), the waves do not
reach the deformation front before touchdown, and the impactor response is very local.

4.3. Extension of time scale ratio for droplet impact regimes
We have highlighted throughout this work how the inertial regime for solid impactors is
akin to the one observed for droplets. Correspondingly, the elastic regime bears a strong
resemblance to the cases of highly viscous drops (Langley et al. 2017) at low impact
speeds. In the latter case, a measure of the viscous pressure in the drop is given by
Pvisc ∼ μiV/L, where μi is the viscosity of the impacting droplet. Balancing it with the
lubrication pressure, we obtain

Lvisc = R (μ′
m/μi)

1/3, Hvisc = R (μ′
m/μi)

2/3, (4.3a,b)

while the inertial scaling is identical to the one presented for the solid impactor in (2.1a,b).
By imposing Pvisc ∼ Pin and following the same line of reasoning as presented in § 2.1,
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t/τ t/τ

r/R

tfinal tfinal t/τ tfinal

Deformation front

(a) (b) (c)

Rayleigh wave

Gliding

Figure 8. Schematic comparison over time of the radial position of the surface waves versus the edge of
the deformation front, for the three potential behaviours. (a) For φ � 1, waves propagating much faster than
deformation front; slow, elasticity-dominated response. (b) For φ ∼ 1, waves catch up with deformation front:
transition regime, elastic and inertial forces of similar magnitude, gliding. (c) For φ � 1, waves propagating
much slower than deformation front: fast, inertia-dominated response.

we obtain the corresponding transition parameter:

Pin[Lin,Hin]
Pvisc[Lin]

= Pin[Lvisc,Hvisc]
Pvisc[Lvisc]

= Φ = L2
in/ηi

Hin/V
= ρiVR

μi
= τpropagation

τimpact
= Rei, (4.4)

which is the Reynolds number of the droplet (where ηi represents its kinematic viscosity).
Again, this can be interpreted as the ratio of the time scales of the phenomenon, with the
propagation time now depending on the viscous diffusion time scale (L2

in/ηi) (Batchelor
2000) instead of the wave propagation speed. Due to the parabolic geometry of the tip, the
deformation front again expands proportionally to ∼t1/2, which in this case corresponds to
the power law of signal propagation, i.e. viscous diffusion. This suggests that catching-up
of viscous stresses with the deformation front could occur only if the two phenomena arise
at different times. If this is not the case, then the dimple radius should vary smoothly when
transitioning between the two limit regimes. Experimental evidence corroborating these
hypotheses can be found in Langley et al. (2017). For example, in their figure 7, effects
of viscosity become noticeable when Rei ≈ 2 and all profiles appear smooth, contrarily to
our figure 7 at the transition.

Conversely, if surface tension γ dominates over viscosity, then the pressure scale is
given by Psurf ∼ γ κ , where κ is the interface curvature. From the dimple geometry, we
can estimate κ ∼ H/L2, and balancing this pressure with the lubrication one, we get

Lsurf = R (μ′
mV/γ )1/4, Hsurf = R (μ′

mV/γ )1/2. (4.5a,b)

Introducing the capillary number Ca = μ′
mV/γ , following the above reasoning once again,

the crossover when capillary effects and inertia become of the same order is governed
by (Pin[Lin,Hin]/Psurf [Lin,Hin])3/4 = St Ca3/4 ∼ 1, the same parameter as in Bouwhuis
et al. (2012). This dimensionless group can also be formed with the Weber number in lieu
of the capillary number (de Ruiter et al. 2012). We notice that

(
St Ca3/4

)2/3 =
(

Pin[Lsurf ,Hsurf ]
Psurf [Lsurf ,Hsurf ]

)1/2

= Ψ = Lin/ccap

Hin/V
=
(
ρ4

i V7R4

γ 3μ′
m

)1/6

= τpropagation

τimpact
, (4.6)

where τpropagation in this case depends on the capillary waves’ velocity ccap.
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We assumed a deep-water capillary wave, so the characteristic value of velocities
is ccap = (γω/ρi)

1/3 (Landau & Lifshitz 2013), plus the characteristic frequency of
the waves ω is the inverse of the characteristic time (ω ∼ 1/τin ∼ V/Hin; recall
(2.1a,b)), which entails ccap = V1/6γ 1/2R−1/3μ′−1/6ρ

−1/3
i . In turn, this implies a

characteristic wavelength Λ = R2/3μ′1/3V−1/3ρ
−1/3
i , which yields values consistent with

those measured experimentally post-impact (Li, Wang & Dong 2019). Finally, we
speculate that the ‘double dimple’ and the jump observed numerically and experimentally
in the trapped bubble volume by Bouwhuis et al. (2012) as a function of γ can be
explained within the framework that we developed in § 4.1, by replacing φ with Ψ , and
the solid’s Rayleigh waves with the droplet’s capillary ones. Specifically, the finding in
Bouwhuis et al. (2012) that the maximal air entrapment bubble happens when St Ca3/4 ∼ 1
is equivalent to saying that it happens when τimpact ∼ τpropagation, i.e. similar to other
scenarios discussed above, when signals in the impactor (capillary waves in this case) can
catch up with the pressure build up, touchdown is delayed and the bubble has more time to
grow. Both the eventual appearance of a ‘double kink’ described in de Ruiter et al. (2012)
(for low impact velocities) and the increased ‘time-to-contact’ associated with the ‘skating
impact mode’ (Sprittles 2024) could also be a manifestation of the same phenomenon.

5. Summary and outlook

The work unveiled, via numerical simulations and scaling analysis, the mechanisms
underlying the fluid-mediated dynamics of soft solids approaching a rigid smooth surface.
By matching the numerical simulations with experimental data for the dimple radius,
we verified the validity of scaling arguments proposed previously, and extended them.
Additionally, the critical parameter φ determining the crossover between the elastic and
inertial regimes was identified as the ratio of the time it takes for the lubrication to locally
slow down the impactor, to the time it takes for information about the impending impact
to propagate in the solid. Our theory predicts and characterizes the elastic and inertial
regimes. It provides an explanation for the presence of a maximum in the entrapped air
bubble radius, as seen in both experiments and simulations. The competition of time scales
may also shine new light on formerly observed phenomena in highly viscous drops. We
also offered an explanation for the abrupt reduction in the lateral scale of the bubble,
which occurs when inertial forces start to dominate the impactor response, attributed to
the parabolic geometry of the impactor tip.

Nevertheless, our numerical model is a minimal framework to study, specifically, the
bubble radius evolution to then confirm the time scale hypothesis. The simulations showed
local oscillations where the gap thickness tends to zero, and the solid is locally highly
loaded. Future work is needed to avert these oscillations, as well as to establish the physical
mechanism that leads to touchdown for soft solids. Furthermore, the analysis here has
focused on the canonical hemispherical impactor geometry; however, in general, solids
retain their shape, and often take on complex geometries that will modify the lubricating
fluid flow and resulting lubrication stresses. This begs the question – beyond the radius
of curvature of the impactor, what is the role of the impactor geometry in establishing
the lubricating stress and entrainment? And could this be exploited, for instance in
applications where large contact areas are desirable, as in end effectors for gripping
material? Our analysis highlights the critical role played by the relative time scales of
Rayleigh wave propagation and the forced deformation front velocity of the impactor. If the
impactor is viscoelastic, then is there an analogous time scale that one might envision that
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plays a similar role in governing the contact process? With our study, we have identified
a sharp transition between elasticity-dominated impacts and inertia-dominated impacts.
How this transition manifests itself in the myriad physical scenarios where soft objects are
in contact may be an essential step towards understanding the strongly nonlinear dynamics
observed in suspensions and other dense collections of particles, including biological cells.
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Appendix A. Governing equations and dimensionless groups

A solid sphere approaches with velocity (0, 0,−V) a rigid flat surface whose normal is
(0, 0, 1) in the axisymmetric coordinate system (r, θ, z), with a thin fluid layer in between;
see figure 1(a). The surface is located at z = 0, and its distance to the impactor (gap) can
be expressed as

h(r, t) = zi(t)+ r2

2R
+ w(r, t)+ O

[( r
R

)4
]
, (A1)

where the first term corresponds to the central line solid position of the impactor in the
absence of any solid deformation, and w(r, t) is the vertical deformation of the impactor
surface.

The solid momentum balance in the sphere is expressed as

ρi
∂v

∂t
= ∇ · σ , (A2)

where u is the displacement of the material points, and v = ∂u/∂t is their velocity, while
the Cauchy stress tensor is given by

σ = 2Gε +
(

K − 2
3 G
)

tr(ε) I, (A3)
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for a linear-elastic material in the small-strain limit, where G is the shear modulus, K
is the bulk modulus, and ε = (∇u + ∇uT)/2 is the infinitesimal-strain tensor, with ∇u
the spatial displacement gradient. As the sphere is surrounded by a fluid, when h is
sufficiently small, the flow between the leading edge and the flat surface can be modelled
with Reynolds lubrication equations (Szeri 2010)

r
∂(ρmh)
∂t

= ∂

∂r

(
rρmh3

μ′
m

∂pm

∂r

)
− ∂

∂r

(
rρmh

2
vr

)
, (A4)

where pm is pressure, ρm is density, and vr = vr(r, t) is the radial velocity of the material
points at the leading edge of the sphere. The lubrication pressure is directly related to the
stress in the solid impactor, σ , via the boundary conditions of stress equilibrium at the
interface (normal vector n, tangential vector t):

(σn) · n = pm, (A5a)

(σn) · t = h
2
∂pm

∂r
+ μmvr

h
, (A5b)

where the first and second terms on the right-hand side of (A5b) are, respectively, the
Poiseuille and Couette flow contributions (Sprittles 2024). The scaling presented in § 2
and Appendix D can be obtained alternatively by identifying the governing dimensionless
groups of the physical phenomenon.

The ideal gas state equation for a polytropic process reads

p
P0

=
(
ρm

ρm,0

)Γ
, (A6)

with a certain constant Γ that depends on the specific process. Finally, from (A1), the
appearance of a dimple at location r = r∗(t) is obtained by setting ∂h(r, t)/∂r = 0, leading
to

r∗(t)
R

+ ∂w
∂r

= 0, (A7)

which is where the geometry of the problem enters.
We can perform dimensional analysis by appropriately scaling the physical dimensions

around the tip of the impactor, where most of the dynamics is supposed to take place (see
figure 1b). For lubrication equations to be valid, we require H/L � 1, i.e. the height of the
gap to be much smaller than its width. This results in the radial velocity in the fluid being
much greater than the vertical one, to satisfy mass conservation. We also assume that the
gap height is set by the scale of solid vertical deformation w(r, t). The resulting scaling is

t = τ t̃, (A8a)

v = V ṽ, (A8b)[
r, r∗(t)

] = L [r̃, r̃∗(t̃)
]
, (A8c)

[h,w] = H
[
h̃, w̃

]
, (A8d)

p(r, t) = P p̃(r̃, t̃), (A8e)

σ (r,w, t) = P σ̃ (r̃, w̃, t̃), (A8f )
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where we set the same pressure for the fluid and the solid stress. To choose the appropriate
scale for vr, we make a distinction between the elastic and inertial regimes. In the
quasi-static limit, Hertzian analysis tells us that the maximum radial displacement is at
the contact radius (Johnson 1985). Assuming that the contact radius coincides with the
lateral scale of the dimple L, and the pressure is that of the elastic regime, Pel, we find
Ur ∼ PelL/E ∼ (G/E)H ∼ H, where we assume the Young’s and shear moduli to be of
the same order. Taking into account the time scale of the problem τ , it follows that vel

r ∼
H/τel. Conversely, in the inertial regime, we estimate in Appendix D that εzz ∼ V/cp. In
the nearly incompressible limit, we have εrr ∼ εzz, resulting in a velocity vin

r ∼ LV/τincp.
We proceed by plugging in the rescaled quantities in the equations discussed formerly.
Equation (A2) yields

Gi
∂ ṽ

∂ t̃
= ∇̃ · σ̃ , Gi = ρiVL

τP
, (A9a,b)

which is the ratio of the solid inertia pressure scale over the pressure scale of the problem.
From (A4), plugging in the scale vel

r gives

Gm
∂(p̃1/Γ h̃)

∂ t̃
− 1

r̃

(
r̃p̃1/Γ h̃3 ∂ p̃

∂ r̃

)
= −Gmδel

1
r̃

(
r̃p̃1/Γ h̃

Ṽr

2

)
, Gm = μ′

mL2

PτH2 ,

(A10a,b)

where δel = (μ′
mV/GR)1/5 ∼ Hel/Lel � 1, and Gm is the lubrication dimensionless

group. We conclude that the Couette term is an order δel smaller than the others, and can
be neglected. Following the same logic, using vin

r in place of vel
r , we find that the Couette

contribution has a prefactor GmV/cp, and it is negligible insofar as V/cp � 1.
The dimple geometry (A7) leads to

Gdr̃∗ + ∂w̃
∂ r̃

= 0, Gd = L2

RH
. (A11a,b)

In (A3), there are several possibilities to gauge the value of strain. If we assume the solid
to deform over the scale of the dimple, then strain can be scaled as ε = (H/L)ε̃, which
leads to

σ̃ = Ge

(
2ε̃ +

(
K
G

− 2
3

)
tr(ε̃) I

)
, Ge = GH

PL . (A12a,b)

Alternatively, for stresses manifesting where pressure waves propagate, we can write ε =
(H/cpτ)ε̃ and

σ̃ ≈ GM ε̃, GM = HM
cpτP

, (A13a,b)

where we assumed a uniaxial strain scenario, and M = 2G(1 − ν)/(1 − 2ν) is
the pressure wave (P-wave) modulus of the solid, and ν is its Poisson’s ratio.
Additionally, gas compressibility effects (A6) are described by the dimensionless group
Gc = (P/P0)

1/Γ .
Assuming dimple formation and thin-film flow in effect corresponds to imposing Gd =

1 =⇒ L = √
RH, and Gm = 1. The elastic, inertial and solid-compressible regimes are

obtained by enforcing Ge, Gi and GM being of order one, respectively. By doing so,
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we obtain the values of L,H, τ,P in each regime, and we can substitute them in the
dimensionless groups to assess their relative importance.

An analogous way of reasoning can be used to scale the droplet impact. The full
incompressible Navier–Stokes equation is

ρi
∂v

∂t
= ∇ · σ − ρi(v · ∇v), (A14)

when we used the Newtonian stress for the fluid

σ = piI + μi(∇v + ∇vT). (A15)

The normal boundary condition at the droplet–gas interface is

( p − σ · n) = γ κ, (A16)

where the mean curvature κ characteristic value can be approximated as H/L2; see § 4.3.
The gas state equation and the dimple condition remain unchanged.

By performing the same scaling, we obtain from (A14) that

Gi
∂ ṽ

∂ t̃
= ∇̃ · σ̃ − ρiV2

P
(ṽ · ∇̃ṽ), Gi = ρiVL

τP
(A17a,b)

and (ρiV2/P)/Gi = H/L � 1, which entails that the nonlinear term can be neglected.
Equation (A16) yields

p̃ − pi

P
(I · n)+ Gv((∇̃ṽ + ∇̃ṽT) · n) = Gs

h̃
r̃∗2 , Gv = μiV

LP
, Gs = γH

L2P
, (A18a–c)

where we defined the inertial and the capillary dimensionless groups. Assuming pi/P � 1,
the viscous, inertial and capillary regimes are obtained by enforcing Gv , Gi and Gs being
of order one, respectively.

Appendix B. Auxiliary parameters to assess fluid compressibility

The effects of fluid compressibility arise when the pressure becomes of the order of the
atmospheric one. The critical height (characteristic value) when the compressibility effects
become relevant is H∗ = (Rμ′

mV/P0)
1/2, where P0 is the ambient pressure; unlike Mandre

et al. (2009), we used μ′
m in place of μm. By comparing the dominant pressure scale to the

ambient one, we obtain so-called ‘compressibility parameters’ for each regime:

εel = P0

Pel
≈ P0

(R−1μ′
mG4V)1/5

, (B1a)

εin = P0

Pin
≈ P0

(Rμ′−1
m V7ρ4

i )
1/3
, (B1b)

where (B1b) is the well-known compressibility parameter for high-speed droplets (Mandre
et al. 2009), and (B1a) is relevant in the elasticity-dominated scenario.
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Appendix C. Simulation methodology

Our approach is conceptually similar to that used by Chubynsky et al. (2020) for
isothermal impacts of droplets, by Chakraborty, Chubynsky & Sprittles (2022) for soft
solids Leidenfrost levitation, and by Habchi et al. (2008) for hard solids: the complete
impactor is represented in the model, unlike some studies that consider its leading edge
as a half-space (e.g. Davis et al. 1986; Hicks & Purvis 2010; Mani et al. 2010). We
recall the methodology details in this appendix. We model the interaction between the
impacting solid particle and the fluid surrounding it by means of monolithic finite-element
simulations for the fluid–structure interaction problem. To simplify the computation,
we study the axisymmetric case as we are interested primarily in normal impacts. The
schematic of the simulation is illustrated in figure 1(b), and we define ‘∂Ω−’ as the
boundary of the impactor leading edge (the bottom half of the sphere in the figure).

For the solid mechanics, we employ the neo-Hookean model, which has been widely
used to model polymers and rubber-like materials undergoing large deformations. In
this setting, x = (r, θ, z) are the spatial coordinates, u = (ur(r, z), 0, uz(r, z)) is the
displacement field, and the deformation gradient is defined as F = I + ∇u.

Consequently, denoting by (·)T the transpose operator, the Green–Lagrange tensor is
written as in Marsden & Hughes (1994):

E = 1
2

(
F TF − I

)
. (C1)

The corresponding work-conjugate is the second Piola–Kirchhoff stress defined as

S = JF−1σF−T, (C2)

where J = det(F ), and σ is the Cauchy stress tensor. The neo-Hookean strain energy
density is defined by

ψ(E) = G (tr(E)− ln J)+ λ
2
(ln J)2, (C3)

where λ,G are the Lamé constants of the impactor material. These are related to the
Young’s modulus E and the Poisson’s ratio ν, via the usual relations:

E = G(3λ+ 2G)
λ+ G

, ν = λ

2(λ+ G)
. (C4a,b)

The neo-Hookean hyperelastic constitutive relationship is obtained by deriving the strain
energy density with respect to the Green–Lagrange strain:

S = ∂ψ

∂E
. (C5)

In the absence of volume forces, the linear momentum balance equation in the reference
configuration for a solid undergoing finite deformations is

ρ0
∂2u
∂t2

= ∇ · (FS)T, (C6)

where ρ0 is the density in the initial configuration.
For the cushioning fluid, we use the lubrication approximation in incompressible

axisymmetric form (Szeri 2010), (A4), where ρm can be simplified. The solid impactor
is assigned a homogeneous velocity field (0, 0,−V), while on ∂Ω− we enforce the
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stress continuity (A5). The rest of the boundary is stress-free. Finally, the boundary
condition pm(r = R) = 0 is enforced, effectively neglecting the contribution of ambient
pressure.

All the simulations are performed using the commercial software COMSOL
Multiphysics 6.0 and the built-in modules ‘Solid mechanics’ and ‘Thin-film flow, edge’
for the solid and fluid mechanics, respectively. An implicit backward differentiation
scheme is used, with second-order accuracy. Quadratic elements are used for the structural
mechanics, while the lubrication equation is solved on the one-dimensional boundary
∂Ω−. Quadratic interpolation functions are used for both the fluid flow and the structural
mechanics. A damped Newton method algorithm is adopted, with minimum relative
tolerance 10−5 on the weighted residual. The Parallel Sparse Direct Solver (PARDISO)
is used to solve the resulting linear algebraic system of equations.

The initial gap, h0 ≈ 12 μm, is set such that no considerable deformation takes place
in the early stages of the simulation (see the elasticity parameter (Davis et al. 1986)
ε = 4μmVR3/2(1 − ν2

i )/Eh5/2
0 ≈ 0.004–0.35, where the highest value is obtained in the

case V = 5 m s−1 for the soft impactor). A consistent initialization step is performed at
the beginning of the simulation, and we verify that the initial pressure is much smaller
than the final one. At the same time, in order to neglect inertial effects in the thin
film, we require ρiVh0/μm � 1 (Davis et al. 1986), therefore we should not increase h0
significantly. Simulations with the same time step showed limited discrepancy with values
of the initial gap approximately 6 μm and 24 μm (see figure 3), except near the transition,
where the small numerical discrepancies determine whether the solid glides on the fluid
film or locally pierces it. The influence of the parameter h0 on the simulations is due to
the fact that we need to account explicitly for wave propagation in the solid, unlike, for
example, Davis et al. (1986) and Bertin (2024). In our dynamic scenario, it would take
a wave (cp ∼ 20 m s−1) approximately ∼10−3 s to propagate through the impactor. The
impactor (V ∼ 1 m s−1) would have to move a distance hfall ∼ 1mm for a steady-state
solution to be established. At that distance from the wall, the lubrication approximation
is inadequate (ρmVhfall/μm ∼ 100) and would not reflect the actual physics, therefore
making the quasi-static approximation incorrect for our case. Performing simulations with
the full Navier–Stokes equations for the fluid, along with elastodynamics in the solid,
should yield results independent of h0 for large enough values, since lubrication stresses
would become dominant at the correct distance from the wall, and the elastodynamics
would evolve naturally. Note that also for droplets, the equations being solved in the
impactor are elliptic in nature (Hicks & Purvis 2010; Mani et al. 2010), unlike our
hyperbolic case. That is why droplet simulations can be initialized from any (high enough)
height: the boundary of the droplet adapts locally to the evolving boundary conditions, and
no wave propagation has to be resolved in the bulk. In conclusion, the chosen value of h0 is
consistent with the thin-film assumption and the elastodynamic response of the impactor,
and yields results for the lateral size of the trapped air pocket in good agreement with the
experiments.

Mesh sizes ranging from 5 μm to 40 μm on the region where contact is expected to
take place give similar results when φ � 1 and φ � 1. The same occurs for the time
step size: defining T = h0/V as the time it would take for the impactor to make contact
if no lubricant was present, time steps of the order T/10 and T/100 yield similar results
in the slow and fast impact limits. However, in the case φ � 1, a highly loaded thin film
of a few hundred nanometres leads to gliding (see figure 4b). In this case, we observe
earlier a numerical instability similar to the one reported also by Stupkiewicz (2009) in
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steady-state simulations of soft lubrication. To the best of the authors’ knowledge, the
origin of this instability for soft solids is still unclear, and to investigate it thoroughly
may require the addition of extra physics in the thin film, similarly to the work of
Chubynsky et al. (2020), which included van der Waals forces for droplets. The final
choice is to adopt a mesh size 20 μm and a time step �t = T/30, which reduces
the error tracked in the simulation, renders smooth stable results when the nanometric
film height makes the conditioning of the finite element matrix poor, and furthermore
gives results consistent with experiments; recall figure 3. The enhanced stability is
due to the numerical damping of the implicit scheme, which decreases with finer time
steps. Ultimately, we trust the simulation outcomes because they are able to reproduce
the experimental measurements in all cases, even when the gliding phenomenon takes
place.

The simulations are terminated when the impactor first makes contact with the flat
surface, i.e. hmin ≈ 0. Reaching this value is a numerical artefact, since refining mesh and
time step allows us to get ever closer to touchdown (except for the simulations displaying
gliding, as mentioned in the previous paragraph), but this leads eventually in all cases
to a singularity of stress when the gap is almost closed, featuring the aforementioned
numerical oscillations. Nevertheless, the data reported are within 8 % error from data
recorded at the first instance any point of the impactor reaches the 100 nm threshold, which
is approximately where kinetic effects would become relevant in the air (Batchelor 2000;
Mani et al. 2010). This choice allows us to compare our data directly to those of Zheng
et al. (2021) at touchdown, whose experimental error is similar to what we achieved with
simulations. For values φ < 0.1, the solver is unable to converge as a singularity of stress
is reached at approximately 400 nm, so we do not report those values, even if the observed
pressure and gap profiles are consistent with those in the elastic regime; see figure 4(a).

Appendix D. Solid compressibility effects

Figure 6(a) shows how releasing the nearly incompressible assumption for the solid
completely changes the strain distribution within it. It is speculated that the lubrication
pressure can be balanced by volumetric stresses in the case of compressible solids. We
estimate the value of these stresses (PM) by considering a uniaxial strain scenario so that
PM ∼ Mεzz, where M = 2G(1 − ν)/(1 − 2ν) is the P-wave modulus of the solid, ν is its
Poisson’s ratio, and εzz is the uniaxial strain. The vertical displacement at the tip is of the
order ∼H, while the part of the impactor that undergoes deformation is within a radius
∼cpτ from the tip, where cp = √

M/ρi is the P-wave speed within the solid. Therefore,
we can estimate PM ∼ ρicpV . Assuming that this pressure balances Plub, we obtain the
following scales associated with impactor deformation:

LM =
(

R3μ′
m

ρicp

)1/4

, HM =
(

Rμ′
m

ρicp

)1/2

, (D1a,b)

which do not depend on the impact velocity. Unlike the scales shown in § 2, these scales
have not been reported previously. We can also analyse the conditions for the inertial
regime to feature meaningful volumetric deformation by setting PM ∼ Pin. Pursuing
reasoning similar to that which led to the definition of φ (§ 2.1), we evaluate the ratio
between PM and Pin both when inertial scales (2.1a,b) are dominant and when those in
(D1a,b) are. Thus we obtain a second transition parameter by enforcing them to be of the
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Figure 9. Numerically computed dimple radius as a function of the transition parameter ψ for different values
of Poisson’s ratio. For almost incompressible impactors (ν = 0.47), the sharp drop is evident, but it fades away
as the solid becomes more easily compressible; by ν = 0.2, the drop disappears. The later scale obtained by
balancing the lubrication pressure in the thin film with the volumetric stress in the solid proves correct for
ψ > 3.
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Figure 10. Evolution of the impactor free-surface (top plots) and the pressure profile (bottom plots) during
early stages of impact for values ν = 0.1 (τin = Hin/V and τM = HM/V). In the top plots, we use the same
value of φ as in figure 4(b), which corresponds to a higher value of ψ . Compressibility prevents the formation
of the pressure spikes that would cause gliding. The time of impact is therefore shorter. In the bottom plots, the
profiles are in the solid compressible regime. Compared to the inertial case, there is flattening of the pressure
in the final stages. Here, (a) φ = 4.0, ψ = 2.7, V = 1.1 m s−1, and (b) φ = 30, ψ = 20, V = 5.2 m s−1.
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same magnitude at the said transition:(
Pin[Lin,Hin]
PM[Lin,Hin]

)3/4

= Pin[LM,HM]
PM[LM,HM]

= ψ = V St1/3

cp
= Lin/cp

Hin/V
=
τ ′

propagation

τimpact
, (D2)

which again can be interpreted as the ratio of the time it takes compressive waves to
propagate in the solid (τ ′

propagation) over the lubrication time scale in the thin film. In
addition, ψ is a function of φ:

ψ = cs

cp
φ =

√
(1 − 2ν)
2(1 − ν)

φ. (D3)

The fact that ψ < φ implies that solid compressibility can play a role only in the
inertial regime. Moreover, the transition (the point at which ψ ∼ 1) depends on the
Poisson’s ratio value: the closer to incompressibility (ν = 1/2), the greater the value
of φ (e.g. higher impact velocities) for which the solid compressibility would become
relevant.

We performed an additional set of simulations for Poisson’s ratio spanning the interval
[0.1, 0.4], and velocities in 0.1–10 m s−1, while keeping the other parameters fixed. The
simulations’ outcome of the dimple radius as a function of ψ , as defined in (D2), can be
examined in figure 9.

Remarkably, for ψ > 3, rcontact ≈ 2.9LM independently of compressibility. For low
values of the Poisson’s ratio, the bubble radius evolves smoothly and there is no sharp
drop in the transition between regimes. We have posited that the absence of pressure
spikes, which would be released immediately due to volumetric compressibility, prevents
the impactor from gliding (figure 10a). Looking at the pressure and free-surface profiles
for ψ = 20, where compressibility in the solid is fully dominant (see figure 10b), the
free-surface profiles are qualitatively similar to those observed for the inertial regime
(figures 4c); however, the pressure profile appears much flatter in the late stages of impact.
The lengths, times and pressure scales are consistent with the scaling that we proposed in
this appendix.

Finally, with regard to the time span as a function of compressibility, the case ν = 0.1
lasts until t/τin ≈ 5 (figure 10a), while ν = 0.47 reaches t/τin ≈ 10 (figure 4b). The
time scale τin = Hin/V is the same in both cases, as Hin in (2.1a,b) does not depend
on ν, which is the only value that changes between these simulations, thus a direct
comparison of times in absolute terms is warranted. Hence these results showcase
how near incompressibility alone can significantly extend the duration of the approach
phase, leading to larger entrapped air bubbles. Solid compressibility adds another layer
of complexity compared to fluid droplets, and another dimensionless parameter to
consider, ψ .

Appendix E. Verification of characteristic values from simulation data

See figure 11.
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Figure 11. (a,c,e) Dimple length and (b,d, f ) height for the (a,b) elastic, (c,d) inertial, and (e, f ) solid
compressibility regimes, made dimensionless with the respective parameters.
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