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Abstract

Recently, we analysed spontaneous symmetry breaking (SSB) of solitons in linearly
coupled dual-core waveguides with fractional diffraction and cubic nonlinearity. In a
practical context, the system can serve as a model for optical waveguides with the
fractional diffraction or Bose–Einstein condensate of particles with Lévy index α < 2.
In an earlier study, the SSB in the fractional coupler was identified as the bifurcation
of subcritical type, becoming extremely subcritical in the limit of α→ 1. There, the
moving solitons and collisions between them at low speeds were also explored. In
the present paper, we present new numerical results for fast solitons demonstrating
restoration of symmetry in post-collision dynamics.

2020 Mathematics subject classification: primary 35Q55; secondary 35Q51, 35Q60,
35S05, 35S16, 60G65.

Keywords and phrases: fractional diffraction, nonlinear Schrödinger equation, cou-
pled waveguides, fractional derivatives, Lévy index, spontaneous symmetry breaking,
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1. Introduction

For a particle moving by way of Lévy flights, Laskin derived the Schrödinger equation
with the kinetic energy operator represented by a fractional derivative [7]. It was
assumed that stochastic motion of the respective classical particle in one dimension is
characterized by mean distance from the initial position growing with time as |x| ∼ t1/α,
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where α < 2 is the Lévy index (LI) [13]. After rescaling, the Schrödinger equation has
the form

i
∂ψ

∂t
=

1
2

(
− ∂2

∂x2

)α/2
ψ, (1.1)

where the fractional operator represents the Riesz derivative [1],
(
− ∂2

∂x2

)α/2
ψ(x) =

1
2π

∫ +∞
−∞

dp|p|α
∫ +∞
−∞

dx′eip(x−x′)ψ(x′). (1.2)

The fractional operator is constructed via the direct and inverse Fourier transforms
incorporating fractional differentiation. In the limit of α = 2, the operator (1.2) reduces
to the usual second derivative.

The fractional quantum mechanics description in terms of wave equations was also
applied to Lévy crystals [17] and polariton condensates [16]. There were recent reports
of experimental realization of the fractional group-velocity dispersion in a fibre-laser
cavity [9]. Theoretical models involving the fractional diffraction were extended
to situations with external potentials (in particular, parity-time (PT ) symmetric
ones [23]) and the Airy waves in two dimensions. In optical waveguide models, the
fractional diffraction/dispersion is included in conjunction with the self-focusing Kerr
nonlinearity leading to the fractional nonlinear Schrödinger equations (FNLSEs) [12].

The analyses of FNLSEs revealed the modulational instability of continuous
waves [22], critical or supercritical collapse [2] and other effects. Spontaneous
symmetry breaking (SSB) in double-well potentials produced by self-trapping
nonlinearity [11] was studied in [3] and experimentally in [4] in various physical
contexts. A recent focus of fractional diffraction was in the study of nonlinear systems
with symmetric potentials [8].

It is well known that SSB might arise in dual waveguides in the form of
two-component solitons [10]. Such a setting is relevant for modelling double-core
optical fibres. In fibres, the SSB bifurcation of symmetric solitons into asymmetric
two-component solitons was studied theoretically in a number of works including [19],
and it was demonstrated in an experiment [14]. In a recent work [21], families
of symmetric and asymmetric solitons were found in the double-core system with
fractional diffraction.

Recently, Strunin and Malomed [18] identified the SSB bifurcation of two- com-
ponent solitons in the fractional dual-core waveguide. This was done both analyti-
cally, by means of the variational approximation (VA), and by systematic numerical
computations. The comparison demonstrated that a relatively simple VA, based on
the straightforward sech ansatz, produces quite accurate results. An essential finding
was that deeper system’s fractionality (that is, smaller LI α in (1.2)) enhances the
subcritical character [5] of the soliton bifurcation, which is its characteristic feature in
the usual (nonfractional) double-core system [10]. Thus, the fractionality makes the
SSB of two-component solitons a more strongly pronounced phase transition of the
first kind.
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In this paper, we address the linearly coupled system of FNLSEs with the cubic
self-focusing nonlinearity and the same fractional diffraction as in (1.1),

i
∂u1

∂t
=

1
2

(
− ∂2

∂x2

)α/2
u1 − |u1|2u1 − u2,

i
∂u2

∂t
=

1
2

(
− ∂2

∂x2

)α/2
u2 − |u2|2u2 − u1,

(1.3)

where the coupling coefficient in front of terms (−u2) and (−u1) in the first and second
equations is set to be 1 by means of scaling. The only irreducible control parameter
of the normalized system (1.3) is LI α, and intrinsic parameters of soliton solutions
will be the propagation constant k and velocity (tilt) c (see (2.1) and (2.4) below).
Throughout the paper, we call solutions with equal components, u1 = u2, symmetric.
Solutions with unequal components are called asymmetric.

The paper is organized as follows: the framework for the construction of soliton
solutions, and analysis of their stability and dynamics are presented in Section 2;
numerical results, for quiescent and moving solitons, are summarized in Section 3;
the conclusion is given in Section 4.

2. Soliton solutions

Stationary solutions to (1.3) with propagation constant k are looked for in the form

u1,2(x, t) = U1,2(x)eikt (2.1)

with real functions u1,2(x). These solutions must satisfy

kU1 +
1
2

(
− ∂2

∂x2

)α/2
U1 − U3

1 − U2 = 0,

kU2 +
1
2

(
− ∂2

∂x2

)α/2
U2 − U3

2 − U1 = 0.
(2.2)

As is well established, the single one-dimensional FNLSE generates stable solitons for

1 < α ≤ 2, (2.3)

while at α ≤ 1, the solitons are unstable because of the collapse [12], and hence we
consider values of LI belonging to interval (2.3) as was done in [18].

In the case of the usual diffraction, α = 2, a simple solution of (2.2) in the form of
symmetric solitons is

U1 = U2 =
√

2(k − 1)sech
(√

2(k − 1)x
)
.

The norm (power) of this solution is

N =
∫ +∞
−∞

[(U1(x))2 + (U2(x))2] dx = 4
√

2(k − 1).
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With the increase of N, the symmetric states become unstable through SSB, and stable
asymmetric solitons appear. The SSB is caused by the lowest energy level achieved
through asymmetric solution, which manifests itself as a new ground state of the
system. While there are no exact solutions for the asymmetric solitons, the SSB point,
at which they emerge, can be found exactly for α = 2 [19]:

(NSSB)exact(α = 2) = 8/
√

3.

Strunin and Malomed [18] confirmed this criterion to a high accuracy.
Solutions of (1.3) for solitons moving with speed c are sought for as

u1,2 = u1,2(ξ ≡ x − ct, t). (2.4)

In terms of (ξ, t), (1.3) take the form

i
∂u1

∂t
− ic

∂u1

∂ξ
=

1
2

(
− ∂2

∂ξ2

)α/2
u1 − |u1|2u1 − u2,

i
∂u2

∂t
− ic

∂u2

∂ξ
=

1
2

(
− ∂2

∂ξ2

)α/2
u2 − |u2|2u2 − u1.

(2.5)

Solutions to (2.5) are further looked for as u1,2(ξ, t) = U1,2(ξ)eikt [see (2.1)], with
complex functions U1,2(ξ) satisfying the system of stationary equations

kU1 + ic
dU1

dξ
+

1
2

(
− d2

dξ2

)α/2
U1 − |U1|2U1 − U2 = 0,

kU2 + ic
dU2

dξ
+

1
2

(
− d2

dξ2

)α/2
U2 − |U2|2U2 − U1 = 0.

(2.6)

The stability of solitons is analysed by considering solutions including small
perturbations a1,2 and b1,2,

u1,2(x, t) = [U1,2(x) + a1,2(x)eλt + b∗1,2(x)eλ
∗t]eikt,

where λ is the eigenvalue with real part Re(λ) responsible for the growth/decay rate,
and ∗ stands for the complex conjugate. The linearization of (1.3) for the perturbations
leads to the system of Bogoliubov–de Gennes (BdG) equations:

[−(k − iλ) − 1
2

(
− d2

dξ2

)α/2
+ 2|U1,2|2

]
a1,2 + U2

1,2b1,2 + a2,1 = 0,

[
− (k + iλ) − 1

2

(
− d2

dξ2

)α/2
+ 2|U1,2|2

]
b1,2 + (U∗1,2)2a1,2 + b2,1 = 0.

(2.7)

The BdG equations can be straightforwardly updated for the moving soliton case
(c > 0). The solitons are (neutrally) stable, if solutions of (2.7) produce only eigen-
values with Re(λ) = 0 [20]. We support the stability outcome derived from the BdG
equations, by direct simulations of the evolution of perturbed solitons.
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(a)

(b) (c)

FIGURE 1. (a) The stationary profile of a stable symmetric soliton, (b) the respective spectrum of
perturbation eigenvalues and (c) perturbed evolution of the soliton, for α = 1.6, k = 1.5 and N = 3.721.
The amplitudes U1(x) (blue line) and U2(x) (red circles) are shown in panel (a); the functions |u1(x, t)| and
|u2(x, t)| are shown in panel (c). Similar labels are used in Figures 2 and 3.

3. Numerical simulations

First, we present some typical results for the quiescent soliton solutions and their
stability. Soliton solutions of (2.2) are obtained by the squared-operator iteration
method [20]. The stability eigenvalues λ are computed by solving (2.7) using the
Fourier collocation method. Both algorithms were realized in Matlab [20]. When
implementing the Fourier collocation method, we represented the functions of interest
as Fourier series [18], which was convenient for our purposes, as the action of
fractional derivative (1.2) in the Fourier space amounts to multiplication by factor |p|α.
Direct simulations of (1.3) are performed by means of the pseudospectral method [20],
based on the discrete Fourier transform and the Runge–Kutta time-stepping method.

Strunin and Malomed [18] presented an example of unstable asymmetric solitons. In
Figures 1, 2 and 3, we show typical examples of stable and unstable symmetric solitons
and stable asymmetric solitons. The latter lead to particularly interesting collision
results as described further below. Each figure displays profiles of two components
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(a)

(b) (c)

FIGURE 2. The same as in Figure 1, but for an unstable symmetric soliton, with α = 1.6, k = 1.8 and
N = 4.438.

of the stationary solution, the spectrum of its stability eigenvalues (recall the stability
implies that all eigenvalues must have zero real parts) and direct simulations of the
perturbed evolution of the solitons.

From Figure 2, we observe that the instability of the symmetric soliton sponta-
neously turns it into an asymmetric one, with residual internal oscillations. Shortly
after the start of the dynamic, one of the components, namely u1 in this case, increases
due to the positive eigenvalue, while u2 decreases due to the negative eigenvalue.

Once moving stable solitons are produced, they can be used to explore collisions of
soliton pairs. For this purpose, two solitons were numerically constructed as solutions
of (2.6), u±1,2, with velocities ±c. Then, direct simulations of (1.3) are run, with the
input in the form of the pair of solitons u±1,2(x) placed respectively at x < 0 and x > 0,
with a sufficiently large distance between them.

In this paper, we focus on the collisions between mutually symmetric solitons, with
equal values of the propagation constant, k: (1) two stable symmetric solitons; (2) two
stable asymmetric solitons, with the same k, in the flipped configuration, where soliton
u+1,2 has a larger component u1 and a smaller one u2, and vice versa for u−1,2 (see [15]).
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(a)

(b) (c)

FIGURE 3. The same as in Figure 1, but for a stable asymmetric soliton, with α = 1.6, k = 2.5 and
N = 3.726.

In [18], the outcomes of collisions between stable symmetric solitons, at gradually
increasing speeds ±c, were presented. In all cases, the colliding solitons bounced
back – naturally, remaining far separated for smallest speeds and approaching closer to
each other for larger c. Up to c = 0.06, the entire picture remains fully symmetric,
with respect to both the two components in each soliton and the two colliding
solitons as well. Next, starting from c = 0.08, the simulations demonstrated the onset
of collision-induced SSB, which became obvious at c = 0.10. In the latter case,
the collision broke the symmetry between the components, as well as between the
colliding solitons. It is worth noting that the post-collision amplitude of component u2
in the left soliton is much larger than before the collision. The collision-induced SSB
effect was explained by the instability of the transient state formed by the colliding
solitons when they are separated by a relatively small distance.

In the present paper, our main interest is the collisions at significantly higher
speeds [6]. We observe an interesting effect of restoration of symmetry as illustrated
in Figure 4. The restoration is observed starting from c = 0.34. At the highest speed
presented, c = 0.40, the collision is seen to be fully elastic, with the post-collision
solitons being identical to their counterparts before the collision.
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FIGURE 4. Gradual restoration of the symmetry at high speeds in collisions of symmetric solitons for
α = 1.6, k = 1.4. The norm of each soliton is N = 3.303 (c = 0.2), N = 3.152 (c = 0.3), N = 3.075
(c = 0.34), N = 2.939 (c = 0.4).

Next, in Figure 5, we demonstrate results of collisions between stable asymmetric
solitons in the flipped state, as defined above. The general picture is similar to
that outlined above for the collisions between symmetric solitons. Namely, at low
speeds, c ≤ 0.04, the solitons bounce back, without breaking the symmetry between
the colliding ones. In fact, in this case, each soliton switches from the intrinsic
asymmetric shape into a nearly symmetric one, as concerns the relation between its
two components. Then, starting from c = 0.06, the collision-induced SSB effect sets
in, leading to strong symmetry breaking at c = 0.1, with a dominant u1 component
of the left soliton in the post-collision state. Then, Figure 5 demonstrates that strong
SSB persists, with the increase of the speed, up to c = 0.40. Starting from c = 0.60,
the further increase of the speed gradually leads to the restoration of the symmetry
between the colliding solitons and at the speed c = 0.80, the collision appears to be
quasi-elastic.
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FIGURE 5. Gradual restoration of the symmetry at high speeds in collisions of the mutually flipped
asymmetric solitons for α = 1.6, k = 2.6. The norm of each soliton is N = 3.638 (c = 0.4), N = 3.576
(c = 0.5), N = 3.500 (c = 0.6), N = 3.483 (c = 0.62), N = 3.466 (c = 0.64), N = 3.312 (c = 0.80).
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4. Conclusion

We analysed solitons in systems with fractional diffraction, especially the SSB
(spontaneous symmetry breaking) in the one-dimensional dual-core configuration.
The systems involve the Riesz fractional derivative, cubic self-focusing acting in the
cores and inter-core linear coupling. The corresponding system of FNLSEs (fractional
nonlinear Schrödinger equations) models tunnel-coupled planar optical waveguides
with the fractional diffraction, as well as coupled waveguides with the fractional
group-velocity dispersion in the temporal domain [9]. Using numerical methods, we
obtained static and moving solitons of symmetric and asymmetric shapes. Collisions
between the moving solitons are explored, demonstrating restoration of symmetry at
high soliton speeds.
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