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Abstract

The Severi degree is the degree of the Severi variety parametrizing plane curves of degree
d with δ nodes. Recently, Göttsche and Shende gave two refinements of Severi degrees,
polynomials in a variable y, which are conjecturally equal, for large d. At y = 1, one of
the refinements, the relative Severi degree, specializes to the (non-relative) Severi degree.
We give a tropical description of the refined Severi degrees, in terms of a refined tropical
curve count for all toric surfaces. We also refine the equivalent count of floor diagrams
for Hirzebruch and rational ruled surfaces. Our description implies that, for fixed δ, the
refined Severi degrees are polynomials in d and y, for large d. As a consequence, we
show that, for δ 6 10 and all d > δ/2 + 1, both refinements of Göttsche and Shende
agree and equal our refined counts of tropical curves and floor diagrams.

1. Introduction

A δ-nodal curve is a reduced (not necessarily irreducible) curve with δ simple nodes and no
other singularities. The Severi degree Nd,δ is the degree of the Severi variety parametrizing
plane δ-nodal curves of degree d. Equivalently, Nd,δ is the number of δ-nodal plane curves of
degree d through (d+ 3)d/2− δ generic points in the complex projective plane P2.

Severi degrees are generally difficult to compute. Their study goes back to the midst of the
19th century, when Steiner [Ste48], in 1848, showed that the degree Nd,1 of the discriminant
of P2 is 3(d − 1)2. In 1998, Caporaso and Harris [CH98] computed Nd,δ for any d and δ, by
their celebrated recursion (involving relative Severi degrees Nd,δ(α, β) counting curves satisfying
tangency conditions to a fixed line), see also [Ran89].

Di Francesco and Itzykson [DFI95], in 1994, conjectured the numbers Nd,δ to be polynomial
in d, for fixed δ and d large enough. In 2009, Fomin–Mikhalkin [FM10] showed that, for each
δ > 1, there is a polynomial Nδ(d) in d with Nd,δ = Nδ(d), provided that d > 2δ. The polynomials
Nδ(d) are called node polynomials.

More generally, for S a projective algebraic surface, and L a line bundle on S, the Severi
degree N (S,L),δ is the number of δ-nodal curves in the complete linear system |L| through
dim |L|−δ general points of S . In [Göt98] it was conjectured that the Severi degrees of arbitrary
smooth projective surfaces S with a sufficiently ample line bundle L are given by universal
polynomials. Specifically the conjecture predicts for each fixed δ, the existence of a polynomial
Ñ (S,L),δ in the intersection numbers L2, LKS , K2

S , c2(S) such that N (S,L),δ = Ñ (S,L),δ for L

sufficiently ample. We call the Ñ (S,L),δ the curve-counting invariants. In addition the Ñ (S,L),δ
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were conjectured to be given by a multiplicative generating function, i.e., there are universal
power series A1, A2, A3, A4 ∈ Q[[q]], such that∑

δ>0

Ñ (S,L),δqδ = AL
2

1 ALKS
2 A

K2
S

3 A
c2(S)
4 . (1.1)

Furthermore A1 and A4 are given explicitly in terms of modular forms. This conjecture was
proved by Tzeng [Tze12] in 2010. A second proof was given shortly afterwards by Kool
et al. [KST11]. In the latter proof, the authors identified the numbers Ñ (S,L),δ as coefficients
of the generating function of the topological Euler characteristics of relative Hilbert schemes
(see § 2). This is motivated by the proposed definition of the Gopakumar Vafa (BPS) invariants
in terms of Pandharipande–Thomas invariants in [PT10]. Thus the curve-counting invariants
can be viewed as special cases of BPS invariants. By definition for S = P2 and L = O(d), the
curve-counting invariants coincide with the node polynomials: Ñ (P2,O(d)),δ = Nδ(d).

Inspired by this description, in [GS14] refined invariants Ñ (S,L),δ(y) are defined as coefficients
of a very similar generating function, but with the topological Euler characteristic replaced by the
normalized χ−y-genus, a specialization of the Hodge polynomial. They are Laurent polynomials
in y, symmetric under y 7→ 1/y. In [GS14] a number of conjectures are made about the refined
invariants Ñ (S,L),δ(y). In particular they are conjectured to have a multiplicative generating
function (as in (1.1)), where now two of the universal power series are explicitly given in terms
of Jacobi forms. This fact was proven in the meantime in [GS13] in the case where the canonical
divisor KS is numerically trivial.

In this paper we will concentrate on the case that S is a toric surface, and sometimes we
restrict to the case that S = P2, L = O(d), and denote Ñ (P2,O(d)),δ(y) = Ñd,δ(y). In the case that
S is a toric surface and L a toric line bundle, we will change slightly the definition of the Severi
degrees. We denote N (S,L),δ the number of cogenus δ curves in |L| passing though dim |L| − δ
general points in S, which do not contain a toric boundary divisor as a component. This is
done because, as we will see below, with this new definition (and not with the old one) the
Severi degrees can be computed via tropical geometry and by a Caporaso–Harris type recursion

formula. The Severi degrees as defined before we denote by N
(S,L),δ
∗ , but we will not consider

them in the sequel.
If L is δ-very ample (see below for the definition) it is easy to see (Remark 2.1) that N (S,L),δ =

N
(S,L),δ
∗ . In the case S = P2 it is easy to see that Nd,δ = Nd,δ

∗ . By definition the Caporaso–Harris
type recursion of [CH98, Vak00] always computes the invariants N (S,L),δ for P2 and rational ruled
surfaces.

If S is P2 or a rational ruled surface, in [GS14] refined Severi degrees N (S,L),δ(y) are defined
by a modification of the Caporaso–Harris recursion. These are again Laurent polynomials in
y, symmetric under y 7→ 1/y. Again, in the case of P2, we denote the refined Severi degrees
by Nd,δ(y). The recursion specializes to that of [CH98, Vak00] at y = 1, so that N (S,L),δ(1) =
N (S,L),δ.

In this paper we will relate the refined Severi degrees N (S,L),δ(y) and Nd,δ(y) to tropical
geometry. Mikhalkin [Mik05] has shown that the Severi degrees of projective toric surfaces can
be computed by toric geometry. Fix a lattice polygon ∆ in R2, i.e., ∆ is the convex hull of a
finite subset of Z2. Then ∆ determines via its normal fan a projective toric surface X(∆) and an
ample line bundle L = L(∆) on X(∆) (and H0(X(∆), L(∆)) can be identified with the vector
space with basis ∆ ∩ Z2). Conversely a pair (X,L) of a toric surface and a line bundle on X
determines a lattice polygon. We denote by N∆,δ the number of (possibly reducible) cogenus δ
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curves of degree ∆ in (C∗)2 passing through |∆∩Z2|−1− δ general points, as defined in [Mik05,
Definition 5.1]. By definition N (X(∆),L(∆)),δ = N∆,δ. The invariants N∆,δ can be computed in
tropical geometry.

If X(∆) is P2 or a rational ruled surface, we will in the future also write N∆,δ(y) :=
N (X(∆),L(∆)),δ(y) for the corresponding (refined) Severi degrees as defined in [GS14]. By our
definition we then have N∆,δ(1) = N∆,δ.

In tropical geometry the Severi degrees N∆,δ can be computed as the count of simple
tropical curves C in R2 through dim |L(∆)|−δ general points, counted with certain multiplicities
multC(C). Roughly speaking, a simple tropical curve is a trivalent graph C immersed in R2, with
some extra data. From this data, one assigns to each vertex v of C a multiplicity multC(v), and
defines the multiplicity multC(C) as the product

∏
v vertex of C multC(v).

For any integer n, and a variable y, we introduce the quantum number [n]y by

[n]y =
yn/2 − y−n/2

y1/2 − y−1/2
= y(n−1)/2 + · · ·+ y−(n−1)/2. (1.2)

By definition [n]1 = n. We introduce a new polynomial multiplicity mult(C; y) ∈ Z>0[y1/2, y−1/2]
for tropical curves by mult(C; y) =

∏
v vertex of C [multC(v)]y, and define the tropical refined Severi

degrees N∆,δ
trop(y) as the count of simple tropical curves C in R2 through dim |L(∆)| − δ general

points with multiplicity mult(C; y). By definition N∆,δ
trop(y) ∈ Z>0[y1/2, y−1/2]. By definition

[multC(v)]1 = multC(v), and thus we see that N∆,δ
trop(1) = N∆,δ.

A priori, N∆,δ
trop(y) should depend on a configuration Π of dim |L(∆)| − δ general points in R2

but Itenberg and Mikhalkin show in [IM13] that N∆,δ
trop(y) is a tropical invariant, i.e., independent

of Π.
We will prove that in the case of the plane and rational ruled surfaces, when the refined

Severi degrees have been defined in [GS14], they equal the tropical refined Severi degrees.

Theorem 1.1. Let X(∆) be P2 or a rational ruled surface or P(1, 1,m). Then the tropical refined
Severi degrees satisfy the recursion (2.7) for the refined Severi degrees.

Thus N∆,δ
trop(y) = N (X(∆),L(∆)),δ(y).

We also determine a Caporaso–Harris type recursion formula for X(∆) the weighted
projective space P(1, 1,m) (cf. Theorem 7.5).

The computation of the Severi degrees via tropical geometry and the proof of the existence
of node polynomials Nδ(d) uses a class of decorated graphs called floor diagrams. The new
refined multiplicity mult(C; y) on tropical curves gives rise to a y-statistics on floor diagrams,
which allows us to adapt the arguments to the tropical refined Severi degrees. This statistic is
a q-analog of the one of Brugallé and Mikhalkin [BM09], who gave a combinatorial formula for
the Severi degrees Nd,δ. Theorem 1.1 is a q-analog of their [BM09, Theorem 3.6] for the refined
Severi degrees Nd,δ(y).

Using our combinatorial description, we show that the refined Severi degrees become
polynomials for sufficiently large degree.

Theorem 1.2. For fixed δ > 1, there is a polynomial Nδ(d; y) ∈ Q[y, y−1, d] of degree 2δ in d
and δ in y and y−1, such that

Nδ(d; y) = Nd,δ(y),

provided that d > δ.
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We call the Nδ(d; y) refined node polynomials.

The refined invariants Ñ (S,L),δ(y) were computed in [GS14] for δ 6 10, and there it was

conjectured that the refined Severi degrees Nd,δ(y) agree with the refined invariants Ñd,δ(y) for

d > δ/2 + 1. If we assume this conjecture, it would follow from Theorem 1.2 that Ñd,δ(y) =

Nδ(d; y), in particular conjecturally the bound on d can be considerably improved. We use the

refined Caporaso–Harris recursion formula to compute Nd,δ(y) for δ 6 10 and d 6 30. Together

with Theorem 1.2 this gives the following.

Corollary 1.3. For δ 6 10 and any d > δ/2 + 1, we have Ñd,δ(y) = Nd,δ(y) = Nδ(d, y).

Corollary 1.4. For δ 6 10 and any d > δ/2 + 1, Ñd,δ(y), as a Laurent polynomial in y, has

non-negative integral coefficients.

Our combinatorial description of the Laurent polynomials Nd,δ(y) allows for effective

computation of the refined node polynomials; for details see Remark 6.1. For δ 6 3, the

polynomialsNδ(d; y) are explicitly given by Remark 6.1. For δ 6 10 they are given by Theorem 4.4

(proving the formula of Conjecture 2.7 for δ 6 10).

Göttsche and Shende also observed a connection between refined invariants and real algebraic

geometry. Specifically, they conjectured that Ñd,δ(−1) equals the tropical Welschinger invariant

W d,δ
trop (for the definition and details see [IKS09]), for d > δ/3 + 1. Furthermore, by definition

Nd,δ(−1) =W d,δ
trop, i.e., the refined Severi degree specializes, at y =−1 and for all d, to the tropical

Welschinger invariant. The numbersW d,δ
trop, in turn, equal counts of real plane curves (i.e., complex

plane curves invariant under complex conjugation), counted with a sign, through particular

configurations of real points [Shu05, Proposition 6.1]. Indeed, at y = −1, the new y-statistic

on floor diagrams specializes to the ‘real multiplicity’ of Brugallé and Mikhalkin [BM09], and

Theorem 1.1 becomes [BM09, Theorem 3.9] for the numbers Nd,δ(−1) = W d,δ
trop.

The recursion formula 2.7 simplifies considerably if we specialize y = −1. Therefore we have

been able to use the recursion to compute Nd,δ(−1) for δ 6 15 and d 6 45. As by Theorem 1.2

Nδ(d,−1) is a polynomial in d of degree at most 2δ, this determines Nδ(d,−1) for d 6 15. On

the other hand in [GS14] the Ñ (S,L),δ(−1) are computed for all S, L and δ 6 14.

Corollary 1.5. Ñd,δ(−1) = Nδ(d,−1) = W d,δ
trop for δ 6 14 and all d > δ/3 + 1.

We expect our methods to compute refined Severi degrees also for other toric surfaces.

Specifically, we expect the argument to generalize to toric surfaces of ‘h-transverse’ polygons,

along the lines of [AB13] (see Remark 5.8). Notice that such surfaces are in general not smooth

and are thus outside the realm of the (non-refined) Göttsche conjecture [Göt98].

One may speculate about the meaning of refined Severi degrees at other roots of unity. At

y = −1, we obtain a (signed) count of complex curves invariant under the involution of complex

conjugation, at least in genus 0. This shows the occurrence of a cyclic sieving phenomenon [Sag11]

of order 2. At least for y = i, the imaginary unit, the refined Severi degree again specializes to

an integer N∆,δ(i) ∈ Z. It would be interesting to find a non-tropical enumerative interpretation

for these numbers.

This paper is organized as follows. In § 2, we review, following Göttsche and Shende, the

refined invariants and refined Severi degrees, the latter for the surfaces P2, Σm, and P(1, 1,m).

In § 3, we introduce a refinement of tropical curve enumeration for toric surfaces and extend

the notion of refined Severi degrees to this class. In § 4 we discuss various polynomiality and

other properties of the refined Severi degrees. In § 5, we refine the floor diagram technique of
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Brugallé and Mikhalkin and template decomposition of Fomin and Mikhalkin, and use it in § 6
to prove the results stated in § 4. Finally, in § 7, we introduce tropical refined relative Severi
degrees and show that they agree with the refined Severi degrees of the Göttsche and Shende.

2. Refined invariants and refined Severi degrees

In this section we review the definition of the closely related notions of the refined invariants
and the refined Severi degrees from [GS14]. In § 3 we will show that the refined Severi degree
also has a simple combinatorial interpretation in terms of tropical geometry.

Recall that the Severi degree Nd,δ is the degree of the Severi variety parametrizing δ-nodal
plane curves of degree d in P2. Equivalently, Nd,δ is the number of such curves through
(d+ 3)d/2 − δ generic points in P2. More generally, given a line bundle L on a surface S, one
can define the Severi degree N (S,L),δ as the number of δ-nodal reduced curves in the complete
linear system |L| = P(H0(S,L)) passing through dim |L| − δ general points.

2.1 Refined invariants
For a line bundle L on S we denote by g(L) := L(L+KS)/2 + 1 the arithmetic genus of a curve
in |L|. For δ > 0, let Pδ be a general δ-dimensional subspace of |L|. Let C→ Pδ be the universal
curve, i.e., C is the subscheme

C = {(p, [C]) : p ∈ C} ⊂ S × Pδ

with a natural map to Pδ. Here, [C] denotes the curve C viewed as a point of Pδ. Thus the fiber
of C → Pδ over [C] ∈ Pδ is the curve C. Let S[n] = Hilbn(S) be the Hilbert scheme of n points
in S. Finally, let Hilbn(C/Pδ) be the relative Hilbert scheme

Hilbn(C/Pδ) = {([Z], [C]) : Z ⊂ C} ⊂ S[n] × Pδ.

Here, [Z] is the subscheme Z viewed as a point of S[n] and Z ⊂ C means that Z is a subscheme
of C.

Recall that a line bundle L on S is called δ-very ample if the restriction map H0(S,L) →

H0(L|Z) is surjective for all zero-dimensional subschemes Z ∈ S[δ+1]. In the introduction we had
changed the definition of the Severi degrees for toric surfaces, defining N (S,L),δ to be the count
of δ-nodal curves in |L| through generic points, which do not contain a toric boundary divisor.

The count of curves without this condition we denoted N
(S,L),δ
∗ .

Remark 2.1. Let L be δ-very ample on a surface S, then the curves in |L| containing a given
curve as a component occur in codimension at least δ + 1. In particular if L is a δ-very ample

toric line bundle on the toric surface S, then N (S,L),δ = N
(S,L),δ
∗ .

Proof. Let C be a curve on S. Let Z be any zero-dimensional subscheme of C of length δ + 1.
Then by δ-very ampleness the canonical restriction map ρ : H0(S,L) → H0(L|Z) is surjective.
The sections s of L such that Z(s) contains C as a component lie in the kernel of ρ, and thus
curves having C as a component occur in codimension at least δ + 1 in |L|. 2

We review the definition of the refined invariants Ñ (S,L),δ(y) in the case where Hilbn(C/Pδ)
is non-singular of dimension n + δ for all n. A sufficient condition for this is that L is δ-very
ample, see [GS14, Theorem 46].

In their proof [KST11] of the Göttsche conjecture [Göt98, Conjecture 2.1], Kool et al. showed,
partially based on [PT10], that, if L is δ-very ample, the Severi degrees N (S,L),δ can be computed
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from the generating function of their Euler characteristics. Specifically, they show [KST11,
Theorem 3.4] that, under this assumption, there exist integers nr, for r = 0, . . . , δ, such that

∞∑
i=0

e(Hilbi(C/Pδ))ti =

δ∑
r=0

nrt
r(1− t)2g(L)−2−2r. (2.1)

Here, e(−) =
∑

i>0(−1)i rkH i(−,Z) denotes the topological Euler characteristic. Furthermore,

they showed that the Severi degree N (S,L),δ equals the coefficient nδ in (2.1).
Inspired by this description, Göttsche and Shende [GS14] suggest to replace in (2.1) the Euler

characteristic e(−) by the χ−y-genus

χ−y(−) =
∑
p,q>0

(−1)p+qyqhp,q(−), (2.2)

where hp,q(−) are the Hodge numbers. The polynomial χ−y is the Hodge polynomial H(x̃, ỹ)(−) =∑
p,q>0 x̃

p ỹq hp,q(−), at x̃ = −y and ỹ = −1. They prove the following.

Proposition 2.2. Assume Hilbn(C/Pδ) is non-singular for all n. Then there exist polynomials
n0(y), . . . , ng(L)(y) such that

∞∑
i=0

χ−y(Hilbn(C/Pδ))tn =

g(L)∑
r=0

nr(y)tr((1− t)(1− ty))g(L)−r−1. (2.3)

This is a weak form of an analogue of (2.1). They conjecture that a precise analogue holds.

Conjecture 2.3. Under the assumptions of Proposition 2.2, we have that nr(y) = 0 for r > δ.

Definition 2.4. Under the assumptions of Proposition 2.2 we put Ñ (S,L),δ(y) := nδ(y)/yδ, where

nδ(y) is the polynomial in (2.3). Following [GS14], we call the polynomials Ñ (S,L),δ(y) the refined
invariants of S,L (there they are called normalized refined invariants). It is easy to see from the
definition that Ñ (S,L),δ(y) is a Laurent polynomial in y, symmetric under y 7→ 1/y.

Finally we extend the definition of the refined invariants Ñ (S,L),δ(y) to arbitrary L and δ,
when the Hilbn(C/Pδ) might be singular, or they might not even exist (e.g. if δ > dim |L|).

Let f(z) := z(1− ye−z(1−y))/(1− e−z(1−y)) ∈ 1 + zQ[y][[z]]. Now let S be smooth projective
surface, L a line bundle on S. Let Zn(S) ⊂ S × S[n] be the universal family with projections
p : Zn(S) → S[n], q : Zn(S) → S. Let L[n] := p∗q

∗L, a vector bundle of rank n on S, denote
l1, . . . , ln its Chern roots, and denote t1, . . . , t2n the Chern roots of the tangent bundle TS[n] . The
following is proven in [GS14, Proposition 52].

Proposition 2.5. Assume Hilbn(C/Pδ) is non-singular for all n. Then

χ−y(Hilbn(C/Pδ)) = res
x=0

[(
f(x)

x

)δ+1 ∫
S[n]

2n∏
i=1

f(ti)
n∏
j=1

lj
f(lj + x)

]
. (2.4)

(By definition
∏2n
i=1 f(ti)

∏n
j=1 lj/f(lj + x) ∈ H∗(S[n],Q)[y][[x]], and thus the term in square

brackets on the left-hand side of (2.4) is a Laurent series in x with coefficients in Q[y].)

Definition 2.6. Let L be a line bundle on a projective surface S, let δ ∈ Z>0. The refined
invariants Ñ (S,L),δ are defined by replacing χ−y(Hilbn(C/Pδ)) by the right-hand side of (2.4) in
Definition 2.4 and (2.3).

We write Ñd,δ(y) = Ñ (P2,O(d)),δ(y) for the refined invariants of P2.
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At y = 1 we have χ−1(−) = e(−), and thus recover the Severi degree as the special case
Ñ (S,L),δ(1) = N (S,L),δ, for Hilbn(C/Pδ) non-singular, from [KST11, Theorem 3.4]. The Ñ (S,L),δ(y)
satisfy universal polynomiality [GS14]: for each δ, there is a polynomial Ñδ(x1, x2, x3, x4; y), such
that Ñ (S,L),δ(y) = Ñδ(L

2, LKS ,K
2
S , e(S); y). In particular there exist polynomials Ñδ(d; y) in d

and y such that Ñδ(d; y) = Ñd,δ(y) for all d, δ. Assuming Conjecture 2.3, these polynomials have a
multiplicative generating function: there exist universal power series A1, A2, A3, A4 ∈ Q[y±1][[q]],
such that ∑

δ>0

Ñ (S,L),δ(y)qδ = AL
2

1 ALKS
2 A

K2
S

3 A
e(S)
4 .

More precisely, in [GS14, Conjecture 67] a conjectural generating function for the refined
invariants Ñ (S,L),δ(y) is given. Let

∆̃(y, q) := q

∞∏
n=1

(1− qn)20(1− yqn)2(1− y−1qn)2 = q − (2y + 2 + 2y−1)q + · · · ,

D̃G2(y, q) :=
∞∑
m=1

qm
∑
d|m

[d]2y
m

d
= q + (y + 4 + y−1)q2 + · · · .

Denote D := q(∂/∂q).

Conjecture 2.7. There exist universal power series B1(y, q), B2(y, q) in Q[y, y−1][[q]], such
that ∑

δ>0

Ñ (S,L),δ(y)(D̃G2)δ =
(D̃G2/q)

χ(L)B1(y, q)K
2
SB2(y, q)LKS(

∆̃(y, q)DD̃G2/q2)χ(OS)/2
. (2.5)

Here, to make the change of variables, all functions are viewed as elements of Q[y, y−1][[q]].

Equivalently, letting

g(y, t) = t− (y + 4 + y−1)t2 + (y2 + 14y + 30 + 14y−1 + y−2)t3 + · · ·

be the compositional inverse of D̃G2, (2.5) says∑
δ>0

Ñ (S,L),δ(y)tδ = (t/g(y, t))χ(L) B1(y, q)K
2
SB2(y, q)LKS

(∆̃(y, q)DD̃G2/q2)χ(OS)/2

∣∣∣∣
q=g(y,t)

. (2.6)

In [GS14] this conjecture is proven modulo q11 and the power series B1(y, q), B2(y, q) are
determined modulo q11 (the result can be found directly after [GS14, Conjecture 67]). Here we
list B1(y, q), B2(y, q) for completeness modulo q6:

B1(y, q) = 1− q − ((y2 + 3y + 1)/y)q2 + ((y4 + 10y3 + 17y2 + 10y + 1)/y2)q3

− ((18y4 + 87y3 + 135y2 + 87y + 18)/y2)q4

+ ((12y6 + 210y5 + 728y4 + 1061y3 + 728y2 + 210y + 12)/y3)q5 +O(q6),

B2(y, q) =
1

(1− yq)(1− q/y)
(1 + 3q − ((3y2 + y + 3)/y)q2

+ ((y4 + 8y3 + 18y2 + 8y + 1)/y2)q3 − ((13y4 + 53y3 + 76y2 + 53y + 13)/y2)q4

+ ((7y6 + 100y5 + 316y4 + 455y3 + 316y2 + 100y + 7)/y3)q5 +O(q6)).

This gives a formula for the Ñ (S,L),δ(y) as explicit polynomials of degree at most δ in L2, LKS ,

K2
S , χ(OS) proven for δ 6 10. The Ñd,δ(y) are obtained from this by specifying χ(L) =

(
d+2

2

)
,

LKS = −3d, K2
S = 9, χ(OS) = 1, giving them as polynomials of degree at most 2δ in d.
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2.2 Refined Severi degrees
Throughout this section we take S to be P2, a rational ruled surface, or a weighted projective
space P(1, 1,m). In the case S = P2, let H be a line in P2; in the case where S is a rational ruled
surface Σm = P(OP1 ⊕ OP1(−m)), let H be the class of a section with H2 = m, and let E be
the class of the section with E2 = −m and F the class of a fibre on Σm. We denote H the class
of a line in P(1, 1,m) with H2 = m. For a rational ruled surface Σm we can also allow m to be
negative. In this case Σm = Σ−m, but the role of H and E is exchanged. Therefore below, in the
case of Σm, we actually represent two different recursion formulas.

Caporaso and Harris showed that the Severi degrees Nd,δ satisfy a recursion formula [CH98].
A similar recursion formula computes the Severi degrees N (S,L),δ on rational ruled surfaces
[Vak00]. In [GS14] a refined Caporaso–Harris type recursion formula is used to define Laurent
polynomials N (S,L),δ(y), which the authors call refined Severi degrees. By definition for y = 1
these polynomials specialize to the Severi degrees: N (S,L),δ(1) = N (S,L),δ. We now briefly review
this recursion and also extend it to P(1, 1,m).

By a sequence we mean a collection α = (α1, α2, . . .) of non-negative integers, almost all of
which are zero. For two sequences α, β we define |α| =

∑
i αi, Iα =

∑
i iαi, α + β = (α1 + β1,

α2 + β2, . . .), and
(
α
β

)
=
∏
i

(
αi
βi

)
. We write α 6 β to mean αi 6 βi for all i. We write ek for the

sequence whose kth element is 1 and all other ones 0. We usually omit writing down trailing
zeros.

For sequences α, β, and δ > 0, let γ(L, β, δ) = dim |L| − HL + |β| − δ. The relative Severi
degree N (S,L),δ(α, β) is the number of δ-nodal curves in |L| not containing H, through γ(L, β, δ)
general points, and with αk given points of contact of order k with H, and βk arbitrary points
of contact of order k with H.

Definition 2.8 [GS14, Recursion 76, Proposition 78]. Recall the definition of the quantum
numbers [n]y = (yn/2 − y−n/2)/(y1/2 − y−1/2). Let L be a line bundle on S and let α, β be
sequences with Iα+ Iβ = HL, and let δ > 0 be an integer. We define the refined relative Severi
degrees N (S,L),δ(α, β)(y) recursively as follows: if γ(L, β, δ) > 0, then

N (S,L),δ(α, β)(y) =
∑

k:βk>0

[k]y ·N (S,L),δ(α+ ek, β − ek)(y)

+
∑

α′,β′,δ′

(∏
i

[i]
β′i−βi
y

)(
α

α′

)(
β′

β

)
N (S,L−H),δ′(α′, β′)(y). (2.7)

Here the second sum runs through all α′, β′, δ′ satisfying the condition

α′ 6 α, β′ > β, Iα′ + Iβ′ = H(L−H),

δ′ = δ + g(L−H)− g(L) + |β′ − β| − 1 = δ −H(L−H) + |β′ − β|. (2.8)

Initial conditions: if γ(L, β, δ) = 0 we have N (S,L),δ(α, β)(y) = 0 unless we are in one of the
following cases.

(i) In the case S = P2 we put NH,0((1), (0))(y) = 1.

(ii) In the case S = Σm, let F be the class of a fibre of the ruling; we put NkF,0((k), (0))(y) = 1.

(iii) In the case S = P(1, 1,m), L = dH, we put and NH,0((1), (0))(y) = 1.

We abbreviate N (S,L),δ(y) := N (S,L),δ((0), (LH))(y), and, in the case S = P2, Nd,δ(α, β)(y) :=
N (P2,O(d)),δ(α, β)(y), Nd,δ(y) := Nd,δ((0), (d))(y). The refined relative Severi degrees are Laurent
polynomials in y1/2, symmetric under y 7→ 1/y.
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Remark 2.9. As mentioned in the beginning of this section, for S a Hirzebruch surface this

recursion is defined for m ∈ Z; in this case Σ−m = Σm but the class H on Σ−m is the class E on

Σm. For m ∈ Z, we will write N (Σm,L),δ(α, β)(y) for the invariants obtained by this recursion.

Below in Theorem 7.5 we will see that N (Σm,L),δ(y) = N (Σ−m,L),δ(y). In general we do not have

N (Σm,L),δ(α, β)(y) = N (Σ−m,L),δ(α, β)(y), because (expressed on Σm) the first counts curves with

contact conditions along H and the second with contact conditions along E.

Remark 2.10. The recursions for the refined Severi degrees are chosen so that they specialize
at y = 1 to the recursion for the usual Severi degrees. Furthermore the recursions of [IKS09]

(see [GS14, Recursion 92]) for the tropical Welschinger numbers W
(S,L),δ
trop (α, β) are obtained by

specializing instead to y = −1. Thus (as already noted in [GS14, Proposition 93]) we get:

N (S,L),δ(α, β)(1) = N (S,L),δ(α, β), N (S,L),δ(1) = N (S,L),δ,

N (S,L),δ(α, β)(−1) = W
(S,L),δ
trop (α, β), N (S,L),δ(−1) = W

(S,L),δ
trop .

(2.9)

This result also follows from Theorem 7.5 below, which says that the tropical refined Severi

degrees are equal to the Severi degrees.

According to [KS13], if the general Pδ ⊂ |L| contains no non-reduced curves and no curves

containing components with negative self intersection, the Severi degrees are computed by the

universal formulas. We expect the same for refined Severi degrees.

Conjecture 2.11 [GS14]. Let S be P2 or a rational ruled surface, let L be a line bundle,

and assume Pδ ⊂ |L| contains no non-reduced curves and no curves containing components

with negative self intersection. Then the refined Severi degrees are computed by the universal

formulas: N (S,L),δ(y) = Ñ (S,L),δ(y). Explicitly, we have the following.

(i) On P2 we have Nd,δ(y) = Ñd,δ(y), for d > δ/2 + 1.

(ii) Assume c+ d > 0. We have N (P1×P1,cF+dH),δ(y) = Ñ (P1×P1,cF+dH),δ(y), for c, d > δ/2.

(iii) On S = Σm with m > 0, assume d + c > 0. Then N (S,cF+dH),δ(y) = Ñ (S,cF+dH),δ(y) for

δ 6 min(2d, c).

Remark 2.12. For m > 2 the weighted projective space P(1, 1,m) is singular, so [GS14,

Conjecture 2.11] does not apply. In fact the refined invariants Ñ (S,L),δ(y) have not even been

defined in this case.

We instead compare the refined Severi degrees N (P(1,1,m),dH),δ(y) to the corresponding refined

invariants Ñ (Σm,dH),δ(y) on the minimal resolution Σm of P(1, 1,m).

We obtain the following conjectures.

Conjecture 2.13. There is a polynomial Nδ(d,m; y) of degree 2δ in d and δ in m, such that

N (P(1,1,m),dH),δ(y) = Nδ(d,m; y) for δ 6 min(2d− 2, 2m− 1).

Note that Theorem 4.2(3) implies a weaker form of Conjecture 2.13, assuming stronger

bounds.

Conjecture 2.14. There exist power series C1, C2, C3 ∈ Q[y±1][[q]], such that

∑
δ>0

Nδ(d,m; y)(D̃G2)δ =

(∑
δ>0

Ñ (Σm,dH),δ(y) (D̃G2)δ
)
C

(m+2)d
1 Cm+2

2 C3.
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Remark 2.15. We have used the Caporaso–Harris recursion to compute N (P(1,1,m),dH),δ(y) for
δ 6 6, d 6 5 and m 6 5. The results confirm Conjectures 2.13, 2.14. Furthermore, assuming
these conjectures, they determine C1, C2, C3 modulo q7. We list them modulo q6. Conjecturally
this gives in particular N (P(1,1,m),dH),δ(y) for δ 6 5, d > 4, m > 3:

C1 = 1− ((y2 + 3y + 1)/y)q + ((6y2 + 11y + 6)/y)q2 − ((4y4 + 36y3 + 60y2 + 36y + 4)/y2)q3

+ ((y6 + 54y5 + 243y4 + 373y3 + 243y2 + 54y + 1)/y3)q4

− ((41y6 + 525y5 + 1723y4 + 2478y3 + 1723y2 + 525y + 41)/y3)q5 +O(q6),

C2 =
1

(1− qy)(1− q/y)
(1 + 2q − ((2y2 + 2y + 2)/y)q2

+ ((y4 + 6y3 + 11y2 + 6y + 1)/y2)q3 − ((10y4 + 38y3 + 56y2 + 38y + 10)/y2)q4

+ ((7y6 + 79y5 + 241y4 + 339y3 + 241y2 + 79y + 7)/y3)q5 +O(q6)),

C3 = 1 + 2q − ((4y2 + 6y + 4)/y)q2 + ((20y2 + 32y + 20)/y)q3 − ((19y4 + 100y3 + 170y2

+ 100y + 19)/y2)q4 + ((4y6 + 154y5 + 564y4 + 824y3 + 564y2 + 154y + 4)/y3)q5 +O(q6).

Denote by N
(S,L),δ
0 the irreducible Severi degrees, i.e., the number of irreducible δ-nodal

curves in |L| 6= |E| passing though dim |L| − δ general points. In particular it is clear that

N
(S,L),δ
0 > 0 and N

(S,L),δ
0 = 0 if δ > g(L). In [Get97] it is noted in the case S = P2, and in

[Vak00] for rational ruled surfaces, that the N
(S,L),δ
0 can be expressed by a formula in terms of

the Severi degrees N (S,L),δ. In [GS14] irreducible refined Severi degrees N
(S,L),δ
0 (y) are defined

by the same formula∑
L,δ

zdim |L|−δ

(dim |L| − δ)!
vLN

(S,L),δ
0 (y) = log

(
1 +

∑
L,δ

zdim |L|−δ

(dim |L| − δ)!
vLN (S,L),δ(y)

)
. (2.10)

Here {vL}L effective, L 6=E are elements of the Novikov ring, i.e., vL1vL2 = vL1+L2 . Evidently

N
(S,L),δ
0 (y) is a Laurent polynomial in y invariant under y 7→ 1/y, and N

(S,L),δ
0 (1) = N

(S,L),δ
0 .

We will show below that N
(S,L),δ
0 (y) is a count of irreducible tropical curves with Laurent

polynomials in y with non-negative integer coefficients as multiplicities, see Theorem 4.14. In

particular, N
(S,L),δ
0 (y) ∈ Z>0[y±1]. Furthermore, N

(S,L),δ
0 (y) = 0, if δ > g(L).

3. Refined tropical curve counting

We now define a refinement of Severi degrees for any toric surface, by introducing a ‘y-weight’
into Mikhalkin’s tropical curve enumeration. For the surfaces S = Σm and S = P(1, 1,m), the
new invariants agree with the refined Severi degrees defined via the recursion in Definition 2.8.
We extend our definition to the case of tangency conditions in § 7. We denote tropical curves
and classical curves with the same notation C, as it usually will be clear which curves we are
talking about.

Definition 3.1. A metric graph is a non-empty graph whose edges e have a length l(e) ∈
R>0 ∪ {∞}.

An abstract tropical curve C is a metric graph with all vertices of valence 1 or at least 3 such
that, for an edge e of C, we have length l(e) = ∞ precisely when e is adjacent to a leaf (i.e., a
1-valent vertex) of C. We conventionally remove the (infinitely far away) leaf vertices from C.

Note that we do not require the underlying graph of a metric graph to be connected.
Connectedness will correspond to the irreducibility of algebraic curves. Let ∆ be a lattice polygon
in R2. A non-zero vector u ∈ Z2 is primitive if its entries are coprime.
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v

2

2

Figure 1. A tropical curve (left) of degree ∆ (middle) and a balanced vertex (right).

Definition 3.2. A (parametrized) tropical curve of degree ∆ is an abstract tropical curve C,
together with a continuous map h : C → R2 satisfying the following.

(i) (Rational slope) The map h is affine linear on each edge e of C, i.e., h|e(t) = t · v+ a for
some non-zero v ∈ Z2 and a ∈ R2. If V is a vertex of the edge e and we parametrize e starting at
V , then we call the above v the direction vector of e starting at V , and we write v = v(V, e) ∈ Z2.
The lattice length of v(V, e) (i.e., the greatest integral common divisor of the entries of v(V, e)) is
the weight ω(e) of e. We call the integral vector u(V, e) = (1/ω(e))v(V, e) the primitive direction
vector of e.

(ii) (Balancing) Each vertex V of C is balanced, i.e.,∑
e : V ∈∂e

v(V, e) = 0.

(iii) (Degree) For each primitive vector u ∈ Z2, the total weight of the unbounded edges with
primitive direction vector u equals the lattice length of an edge of ∂∆ with outer normal vector
u (if there is no such edge, we require the total weight to be zero).

Example 3.3. In Figure 1 (left), is an example of a (parametrized) tropical curve of degree ∆,
pictured to its right. One edge is of weight 2, all others have weight 1 (omitted in the drawing).
All vertices of C are balanced, for vertex v this means that 2

(
0
1

)
+
(−1

0

)
+
(

1
−2

)
= 0. The place

where two edges in this graph cross is not a 4-valent vertex but the image of two edges of the
underlying abstract tropical curve.

In order to define the tropical analogs of the Severi degree and its refinement, we recall the
following tropical notions (cf. [Mik05, § 2]). We sometimes abuse notation and simply write C
for the parametrized tropical curve (C, h) if no confusion can occur.

Definition 3.4. (i) We say that a tropical curve (C, h) is irreducible if the underlying topological
space of C has exactly one component. The genus g(C, h) of an irreducible tropical curve (C, h)
is the genus (i.e., the first Betti number) of the underlying topological space of C.

(ii) The dual subdivision ∆C of the parametrized tropical plane curve (C, h) is the unique
subdivision of ∆ whose 2-faces ∆v correspond to the vertices v of h(C) such that the (images
of) edges e of C are orthogonal to the edges e⊥ ∈ R2 of ∆C and, further, that the lattice length
of e⊥ equals ω(e); see Figure 2.

(iii) The tropical curve (C, h) is nodal if its dual subdivision ∆C consists only of triangles
and parallelograms.

(iv) We say that (C, h) is simple if all vertices of C are 3-valent, the self-intersections of h
are disjoint from vertices, and the inverse image under h of self-intersection points consists of
exactly two points of C.
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v

2

Figure 2. The dual subdivision of the curve of Example 3.3. The triangle ∆v is dual to the
vertex v.

(v) The number of nodes δ(C, h) of a nodal irreducible tropical curve of degree ∆ is
δ(C, h) = |∆0 ∩ Z2| − g(C, h), where |∆0 ∩ Z2| is the number of interior lattice points of ∆.

(vi) Let (C, h) be a nodal tropical curve with irreducible components (C1, h1), . . . , (Ct, ht)
(i.e., Ci are the components of C and hi are the restrictions of h to Ci), of degrees ∆1, . . . ,∆t

and number of nodes δ1, . . . , δt, respectively. (Note that the Minkowski sum ∆1 + · · · + ∆t

equals ∆.) The number of nodes of (C, h) is

δ(C, h) =
t∑
i=1

δi +
∑
i<j

M(∆i,∆j),

where M(∆i,∆j) := 1
2(Area(∆i + ∆j)−Area(∆i)−Area(∆j)) is the mixed area of ∆i and ∆j .

Here, Area(−) is the normalized area, given by twice the Euclidean area in R2.
Equivalently, δ(C, h) is the number of parallelograms, counted with their Euclidean area,

of the dual subdivision ∆C plus the number of edges of ∆C , counted with their lattice length
minus 1 (thus edges of length 1 do not contribute), if (C, h) is simple.

Example 3.3 (continued). The tropical curve of Example 3.3 has genus 1 as it is the image of
a trivalent genus-1 graph. It is not the union of two tropical curves and thus irreducible. Its
number of nodes is thus equal to |∆0∩Z2|−g = 3−1 = 2. The two tropical nodes are ‘visible’ as
the pair of edges crossing transversely as well as the edge of weight 2. (In general, a transverse
intersection of two edges e and e′ contributes |u(V, e)∧u(V ′, e′)| to δ(C), for any adjacent vertices
V and V ′, while an edge of multiplicity m contributes m− 1 to δ(C).)

Definition 3.4(v) is motivated by the classical degree–genus formula. In Definition 3.4(vi),
the formula for δ(C, h) is chosen according to Bernstein’s theorem [Ber75], so that Theorem 3.11
holds.

In [Mik05], Mikhalkin assigns to a 3-valent vertex v of a simple tropical curve (C, h) the
(Mikhalkin) vertex multiplicity

multC(v) = Area(∆v). (3.1)

To the tropical curve (C, h), he assigns the (Mikhalkin) multiplicity

multC(C, h) =
∏
v

multC(v) =
∏
v

Area(∆v), (3.2)

the product running over the 3-valent vertices v of (C, h) and ∆v is the triangle in the subdivision
∆C dual to v (cf., Definition 3.4 and Figure 2). If v has adjacent edges e1,e2, and e3, then the
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vertex multiplicity multC(v) equals the Euclidean area of the parallelogram spanned by any two

of the direction vectors starting at v.

Example 3.3 (continued). The dual subdivision of the tropical curve of Example 3.3 consists of

2 triangles of (normalized) area 2 and 9 triangles of area 1. The Mikhalkin multiplicity is thus

multC(C) = 22 · 19 = 4. (The quadrangle does not contribute to multC(C).)

We associate to a simple tropical curve (C, h) a refined weight. Recall that, for an integer n,

we denote by

[n]y =
yn/2 − y−n/2

y1/2 − y−1/2
= y(n−1)/2 + · · ·+ y−(n−1)/2

the quantum number of n. In particular, [n]1 = n. We can think about [n]y as a (shifted) q-analog

of n.

Definition 3.5. The refined vertex multiplicity of a 3-valent vertex v of a simple tropical curve

(C, h) is

mult(v; y) = [Area(∆v)]y. (3.3)

The refined multiplicity of a simple tropical curve (C, h) is

mult(C, h; y) =
∏
v

[Area(∆v)]y, (3.4)

the product running over the 3-valent vertices of (C, h).

Example 3.3 (continued). The refined multiplicity of vertex v of the tropical curve of Example 3.3

is [Area(∆v)]y = [2]y = y1/2 + y−1/2. As the dual subdivision consists of 2 triangles of area 2 and

9 triangles of area 1, the refined multiplicity of (C, h) is

mult(C, h; y) = (y1/2 + y−1/2)2 · 19 = y + 2 + y−1.

(Again, the quadrangle does not contribute.)

Remark 3.6. We emphasize that we define the refined weight only for simple tropical curves.

This is sufficient for our purposes as we only consider tropical curves passing through generic

points and such curves are necessarily simple (by [Mik05, Definition 4.7]).

We now define the tropical refinement of Severi degrees. For smooth toric surfaces, these

invariants conjecturally agree with the refined invariants Ñ (X(∆),L(∆)),δ(y), provided L(∆) is

sufficiently ample, see Conjecture 3.14.

As with classical curve counting, we require the configuration of tropical points to be in

tropically generic position; the precise definition is given in [Mik05, Definition 4.7]. Roughly,

tropically generic means there are no tropical curves of unexpectedly small degree passing

through the points. By [Mik05, Proposition 4.11], the set of such points configurations is open

and dense in the space of point configurations in R2.

An important example of a tropically generic point configuration is the following. The

combinatorics of tropical curves passing through such configurations is essentially given by the

floor diagrams of § 5.
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Definition 3.7 [Bru13]. Let ∆ be a lattice polygon. A point configuration Π = {(x1, y1), . . . ,
(xN , yN )} in R2 is called vertically stretched with respect to ∆ if, for every tropical curve C of
degree ∆, we have

min
i 6=j
|yi − yj | > max

i 6=j
|xi − xj | · |maximal slope of an edge of C| · (number of edges of C), (3.5)

where for the maximal slope we only consider non-vertical edges of C.

The notion of a vertically stretched point configuration for a fixed polygon ∆ is well defined, as
(3.5) depends only on Π and the finitely many combinatorial types of tropical curves of degree ∆.
Our definition of a vertically stretched point configuration is slightly more restricted than in
[BM09, § 5] but has the advantage of being explicit. It is sufficient for the floor decomposition
techniques of tropical curves [Bru13].

Definition 3.8. Fix a lattice polygon ∆ and δ > 0.

(i) The tropical refined Severi degree N∆,δ
trop(y) of the pair (X(∆), L(∆)) is

N∆,δ
trop(y) :=

∑
(C,h)

mult(C, h; y), (3.6)

where the sum is over all δ-nodal tropical curves (C, h) of degree ∆ passing through |∆ ∩
Z2| − 1− δ tropically generic points.

(ii) The tropical irreducible refined Severi degree of (X(∆), L(∆)) is

N∆,δ
0,trop(y) :=

∑
(C,h)

mult(C, h; y), (3.7)

the sum ranging over all irreducible tropical curves of degree ∆ with δ nodes passing through
|∆ ∩ Z2| − 1− δ tropically generic points.

In the special case, when S = P2 and ∆ = ∆(O(d)), we simply write Nd,δ
trop(y), respectively

Nd,δ
0,trop(y), for the tropical refined Severi degree, respectively tropical irreducible refined Severi

degree of P2.
By Theorem 4.14, the tropical irreducible refined Severi degree agrees with its non-tropical

version defined in (2.10) for P2, Hirzebruch surfaces and rational ruled surfaces. Itenberg and
Mikhalkin showed that both refined tropical enumerations give indeed invariants.

Theorem 3.9 [IM13, Theorem 1]. The sum (3.7), and thus N∆,δ
0,trop(y), are independent of the

tropical point configuration, as long as the configuration is generic.

Corollary 3.10. The sum in (3.6), and thus N∆,δ
trop(y), are independent of the tropical point

configuration, as long as the configuration is generic.

Proof. The refined Severi degree can be expressed in terms of the irreducible refined Severi
degrees, which are, by Theorem 3.9, independent of the specific location of the points.

Specifically, let Π ⊂ R2 be a tropically generic set of |∆ ∩ Z2| − 1− δ points. Then (see also
[AB13, § 2.3])

N∆,δ
trop(y) =

∑
Π=∪Πi

∑
(∆i,δi)

∏
i

N∆i,δi
0,trop(y), (3.8)
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where the first sum is over all partitions of Π, and the second sum is over all pairs (∆i, δi) which
satisfy

|Πi| = |∆i ∩ Z2| − 1− δi for all 1 6 i 6 t,

∆ = ∆1 + · · ·+ ∆t (Minkowski sum),

δ =
t∑
i=1

δi +
∑

16i<j6t

M(∆i,∆j).
(3.9)

Here, again M(∆i,∆j) = 1
2(Area(∆i + ∆j) − Area(∆i) − Area(∆j)) is the mixed area of the

polygons ∆i and ∆j . 2

At y = 1, we recover Mikhalkin’s (complex) correspondence theorem.

Theorem 3.11 (Mikhalkin’s (complex) correspondence theorem [Mik05, Theorem 1]). For any
lattice polygon ∆ both the following hold.

(i) The (tropical) Severi degree N∆,δ
trop(1) equals the (classical) Severi degree N∆,δ.

(ii) The (tropical) irreducible Severi degree N∆,δ
0,trop(1) equals the irreducible (classical) Severi

degree N∆,δ
0 .

At y = −1, we recover Mikhalkin’s real correspondence theorem. The classical Welschinger
invariant W∆,δ(Π) and the irreducible classical Welschinger invariant W∆,δ

0 (Π) count real
curves, respectively irreducible real curves, of degree ∆ with δ nodes through the real point
configuration Π, counted with Welschinger sign. For positive genus, unlike for Severi degrees,
both invariants depend on the point configuration Π, even for generic Π. For details see [Mik05,
§ 7.3].

Theorem 3.12 (Mikhalkin’s real correspondence theorem [Mik05, Theorem 6]). For any lattice
polygon ∆ both the following hold.

(i) The (tropical) Welschinger invariant W∆,δ
trop equals the (classical) Welschinger invariant

W∆,δ(Π) for some real point configuration Π.

(ii) The irreducible (tropical) Welschinger invariant W∆,δ
0,trop equals the irreducible (classical)

Welschinger invariant W∆,δ
0 (Π) for some real point configuration Π.

Remark 3.13. The tropical refined Severi degrees N∆,δ
trop(y) thus interpolate between Severi

degrees and Welschinger invariants. Similarly, the refined irreducible Severi degrees N∆,δ
0,trop(y)

interpolate between irreducible (classical) Severi degrees and irreducible (classical) Welschinger
invariants.

In Theorem 7.5 we will show that the (tropical) refined Severi degrees N∆,δ
trop(y) coincide with

the refined Severi degrees defined above in the case of P2, Σm and P(1, 1,m). Therefore the
following is a generalization of Conjecture 2.11.

Conjecture 3.14. Let ∆ be a convex lattice polygon, such that S = X(∆) is a smooth surface
and L= L(∆) a δ-very ample line bundle. Then the (tropical) refined Severi degrees are computed
by the universal formulas:

N∆,δ
trop(y) = Ñ (S,L),δ(y).

In [KS13, Corollary 6] the following is proven (without the restriction on toric surfaces) for
the non-refined invariants; we expect the same is true also in the refined case.
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Conjecture 3.15. Let S = X(∆) be a classical toric del Pezzo surface, and L = L(∆). Assume

the following loci have codimension more than δ in |L|:

(i) the non-reduced curves;

(ii) the curves with a (−1) curve as a component.

Then

N∆,δ
trop(y) = Ñ (S,L),δ(y).

4. From refined tropical curve counting to refined invariants

In this section, we state and show a few properties of refined tropical Severi degrees and

relate them to the refined invariants and refined Severi degrees of § 2. Specifically, we state

that the refined Severi degrees agree with the tropical refined Severi degrees in § 4.1, discuss

the polynomiality of refined Severi degrees in the parameters of ∆ in § 4.2, conjecture the

polynomiality of their coefficients (as Laurent polynomials in y) in § 4.3, discuss implications

for the conjectures of Göttsche and Shende in § 4.4, and irreducible refined Severi degrees in

§ 4.5.

4.1 Refined Severi degress equal tropical refined Severi degrees

The refined tropical Severi degrees constructed in the last section agree with the refined Severi

degrees as defined by Göttsche and Shende’s recursion 2.8. In fact, achieving this was one of

the main motivations in the construction of the tropical analog. We postpone the proof until § 7

as it relies on a generalization of tropical Severi degrees incorporating tangency conditions. The

following theorem is a special case of Theorem 7.5. It will allow us to use in the following the

refined Severi degrees and the tropical refined Severi degrees interchangeably.

Theorem 4.1. For all polygons ∆, with X(∆) = P(1, 1,m) or X(∆) = Σm, the refined tropical

Severi degrees satisfy (2.7) with L = L(∆). Therefore, the refined Severi degrees defined via the

recursion 2.8 and the tropical refined Severi degrees agree:

N∆,δ(y) = N∆,δ
trop(y).

4.2 Refined node polynomials

We will now prove Conjecture 3.14 for the projective plane P2 and δ 6 10, for P1 × P1 for δ 6 6

and for all Hirzebruch surfaces Σm for δ 6 2 and P(1, 1,m) for δ 6 2.

First we state the existence of refined node polynomials Nδ(d; y), Nδ(c, d,m; y), Nδ(d,m; y),

refining some results of [FM10, AB13]. The proof of the following theorem is in § 6.

Theorem 4.2. For fixed δ > 1 we have the following.

(i) (P2) There is a polynomial Nδ(d; y) ∈ Q[y±1][d] of degree at most 2δ in d such that, for

d > δ,

Nδ(d; y) = Nd,δ
trop(y).

(ii) (Hirzebruch surface) There is a polynomial Nδ(c, d,m; y) ∈ Q[y±1][c, d,m] of degree at most

δ in c,m and 2δ in d such that, for c+m > 2δ and d > δ

Nδ(c, d,m; y) = N
(Σm,cF+dH),δ
trop (y).
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(iii) (P(1, 1,m)) There is a polynomial Nδ(d,m; y) ∈ Q[y±1][d,m] of degree at most 2δ in d and
δ in m such that, for d > δ and m > 2δ,

Nδ(d,m; y) = N
(P(1,1,m),dH),δ
trop (y).

Note that by Theorem 4.1 we can replace Nd,δ
trop(y), N

(P(1,1,m),dH),δ
trop (y), N

(Σm,cF+dH),δ
trop (y) by

Nd,δ(y), N (P(1,1,m),dH),δ(y), N (Σm,cF+dH),δ(y) respectively.

We call the polynomials Nδ(d; y), Nδ(c, d,m; y), and Nδ(d,m; y) refined node polynomials.

Remark 4.3. Theorem 4.2 generalizes to toric surfaces from ‘h-transverse’ polygons with bounds
exactly as in Theorems 1.2 and 1.3 in [AB13]. The argument of [AB13] generalizes to the refined
setting by replacing all (Mikhalkin) weights by refined weights. As the argument is long and
technical, we do not reproduce it here and restrain ourselves to more manageable cases.

Theorem 4.4. (i) (P2) For δ 6 10 and d > δ/2 + 1 we have

Ñd,δ(y) = Nδ(d; y) = Nd,δ(y).

(ii) For δ 6 6 and c, d > δ/2, we have

Ñ (P1×P1,cF+dH),δ(y) = Nδ(c, d, 0; y) = N (P1×P1,cF+dH),δ(y).

(iii) (Hirzebruch surfaces) For δ 6 2 and d > 1, c > δ we have

Ñ (Σm,cF+dH),δ(y) = Nδ(c, d,m; y) = N (Σm,cF+dH),δ(y).

(iv) (P(1, 1,m)) For δ 6 2 and d > 2 and m > 1 we have

Nδ(d,m; y) = N (P(1,1,m),d),δ(y),

and Nδ(d,m; y) is given by Conjecture 2.14 and Remark 2.15.

Proof. In [GS14] we have computed Ñ (S,L),δ(y) for all (S,L) and all δ 6 10. It is a polynomial
of degree δ in the intersection numbers L2, LKS , K2

S and χ(OS).

(i) In the case (S,L) = (P2,O(d)) this gives Ñd,δ(y) as a polynomial of degree 2δ in d. Using
the Recursion 2.7 we computeNd,δ(y) for all δ 6 10 and all d6 30. We find thatNd,δ(y) = Ñd,δ(y)
for δ 6 10, and δ/2+1 6 d6 30. We also know by Theorems 4.2 and 4.1 thatNδ(d) is a polynomial
of degree 2δ in d, and that Nδ(d) = Nd,δ(y) for d > δ. Thus for 0 6 δ 6 10 the two polynomials
Nδ(d) and Ñd,δ(y) of degree 2δ in d have the same value for δ 6 d 6 30. Thus they are equal.

(ii) Is very similar to (i). Using the recursion 2.7 we compute N (P1×P1,cF+dH),δ(y) for c 6 18
and d 6 12 and δ 6 6. We find that in this realm N (P1×P1,cF+dH),δ(y) = Ñ (P1×P1,cF+dH),δ(y) for
c, d > δ/2. We know by Theorem 4.2 and symmetry, that Nδ(c, d, 0; y) is a polynomial of bidegree
(δ, δ) in c, d. Thus for 0 6 δ 6 6, the two polynomials Nδ(c, d, 0; y) and Ñ (P1×P1,cF+dH),δ(y) have
the same value, whenever 18 > c > 2δ, 12 > d > δ. Thus they are equal.

(iii) This case is again similar. We compute N (Σm,cF+dH),δ(y) for c 6 6 and d 6 6, m 6 4 and
δ 6 2. The claim follows in the same way as before.

(iv) We compute N (P(1,1,m)dH),δ(y) for d 6 6, m 6 6 and δ 6 2. The claim follows in the same
way as before. 2
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Corollary 4.5. The coefficients of the refined invariants Ñ (S,L),δ(y) are non-negative, i.e.,

Ñ (S,L),δ(y) ∈ Z>0[y±1]

provided:

• either S = P2, L = dH, δ 6 10, and d > d/2 + 1

• or S = P1 × P1, L = cF + dH, δ 6 6, and c, d > δ/2;

• S = Σm, L = cF + dH, δ 6 2, and d > 1, c > δ;

• S = P(1, 1,m), L = dH, δ 6 2, and d > 2, m > 1.

Proof. For any convex lattice polygon, the tropical refined Severi degree N∆,δ
trop(y) is a Laurent

polynomial in y with non-negative coefficients. The corollary follows from Theorem 4.4. 2

Conjecture 4.6. For any smooth projective surface S and δ-very ample line bundle L on S,
the refined invariants Ñ (S,L),δ(y) have non-negative coefficients.

We have the following evidence for this conjecture. In [GS13] Conjecture 2.7 is proven for
S an abelian or K3 surface, and the positivity of Ñ (S,L),δ(y) follows for all line bundles L on S.
If S is a toric surface and L is δ-very ample on S, then Conjecture 4.6 is implied by
Conjecture 3.14. Numerical computations give in all examples considered that Conjecture 4.6 is
true. Comparing with (2.6) numerical checks confirm that, in the realm checked, for l > δ all the
coefficients of (t/g(y, t))l of degree at most δ in t are positive. If L is δ-very ample we expect
χ(L) > δ and also χ(L) that is large with respect to K2

S and LKS . Therefore we would expect
that all coefficients of the left-hand side of (2.6) of degree at most δ in t are non-negative.

4.3 Coefficient polynomiality of tropical refined Severi degrees

The tropical refined Severi degrees Nd,δ
trop(y) of P2, as Laurent polynomial in y, have non-negative

integral coefficients. Furthermore, for fixed δ, these coefficients behave polynomially in d, for
sufficiently large d, by Theorem 4.2. In this section, we conjecture that particular coefficients of
the tropical refined Severi degree are polynomial in d independent of δ (Conjecture 4.9). We also
give enumerative meaning to the first leading coefficient (Proposition 4.11). For simplicity, we
consider only P2 in this section. Throughout this section, we fix the number of nodes δ > 1.

Notation 4.7. We denote the coefficients of the tropical refined Severi degree by

Nd,δ
trop(y) = pδd,0 · yδ + pδd,1 · yδ−1 + pδd,2 · yδ−2 + · · ·+ pδd,δ · y0 + · · ·+ pδd,0 · y−δ

for pδd,0, p
δ
d,1, . . . , p

δ
d,δ ∈ Z>0.

Similarly, we write the coefficients of the refined node polynomial as

Nδ(d; y) = pδ0(d) · yδ + pδ1(d) · yδ−1 + pδ2(d) · yδ−2 + · · ·+ pδδ(d) · y0 + · · ·+ pδ0(d) · y−δ

for polynomials pδ0(d), pδ1(d), . . . , pδδ(d) ∈ Z[d].

From Theorem 4.2, the following is immediate.

Corollary 4.8. For 0 6 i 6 δ, we have pδi (d) = pδd,i, whenever d > δ.

Conjecturally, we have the lower bound d > δ/2+1 (cf., Conjecture 2.11), which still depends
on δ. We conjecture that for the leading coefficients of the refined Severi degree, this dependence
disappears.
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Conjecture 4.9. For 0 6 i 6 δ, we have pδi (d) = pδd,i, whenever d > i+ 2.

In other words, the larger the order of the coefficients of the refined Severi degree, the sooner
the polynomiality kicks in. This conjecture was predicted as part of [GS14, Conjecture 89], where
in addition a formula for the coefficients pδi (d) was conjectured. Proposition 4.11 below gives a
new proof for i = 0.

Remark 4.10. (i) Conjecture 4.9 is part of [GS14, Conjecture 89(1)].

(ii) More precisely, this conjecture says that pδi (d) is a polynomial of degree 2δ in d, which is

divisible by
((d−1

2 )−3i

δ−i
)
. Moreover, [GS14, Conjectures 86, 87] give a conjectural formula for the

quotient pδi (d)/
((d−1

2 )−3i

δ−i
)

in terms of the Ñd,δ(y) with δ 6 3i. Thus, assuming these conjectures,

Theorem 4.4 gives a formula for pδi (d) for i 6 3.

(iii) Computational evidence suggests that for d > 2 the bound in Conjecture 4.9 is optimal:
pδi (d) = pδd,i, if and only if d > i+ 2. We checked this for d 6 14, δ 6 11.

We give a formula for the leading coefficient of the refined Severi degree. This result was also
obtained in [GS14, Proposition 83] (for refined Severi degrees) and [IM13, Proposition 2.11] (for
tropical refined Severi degrees).

Proposition 4.11. The leading coefficients of Nd,δ
trop(y) is given by

pδd,0 =

((d−1
2

)
δ

)
for d > 1.

The formula could be interpreted as the number of ways to choose δ of the
(
d−1

2

)
nodes of

a genus 0 nodal curve C of degree d, i.e., as the number of δ-nodal curves obtained as partial
resolutions of C.

We prove this proposition in § 6.
The same formulas hold for the coefficients of the tropical irreducible refined Severi degrees

Nd,δ
0,trop(y). Again we can write Nd,δ

0,trop(y) = pδ,0d,0y
δ+pδ,0d,1y

δ−1 + · · ·+pδ,0d,1y
−δ+1 +pδ,0d,0y

−δ. Assuming

Conjecture 4.9, a similar result also holds for the pδ,0d,i , because of the following lemma.

Lemma 4.12. Assuming Conjecture 4.9, we have pδ,0d,i = pδd,i if d > i+ 2.

Proof. If we specialize the formula (3.8) to Nd,δ
trop(y), we express Nd,δ

trop(y) −Nd,δ
0,trop(y) as a sum

of products
∏t
i=1N

di,δi
0,trop(y), with t > 2, d = d1 + · · ·+ dt and

δ =
t∑
i=1

δi +
1

2

∑
16i<j6t

((di + dj)
2 − d2

i − d2
j ).

It is an easy exercise to see that for given d the rightmost sum is minimal if t= 2 and {d1, d2}= {1,
d − 1}, and the corresponding sum is d − 1. Thus in all summands for Nd,δ

trop(y)−Nd,δ
0,trop(y) we

have δ−
∑

i δi > d− 1. As the Ndi,δi
0,trop(y) have degree at most δi in y, y−1, we see that pδd,i = pδ,0d,i

for i < d− 1. 2

The argument also shows that Nd,δ
trop(y) = Nd,δ

0,trop(y) if δ 6 d−2. Thus we obtain the following
corollary.

Corollary 4.13. For δ 6 d− 2 we have Nd,δ
0,trop(y) = Nδ(d; y).
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4.4 Numerical evidence for Göttsche and Shende’s conjectures
Theorems 4.2 and 4.4 provide strong evidence for Conjectures 2.7, 2.11: on P2 and rational
ruled surfaces, for L sufficiently ample with respect to δ, N (S,L),δ(y) is indeed given by a node
polynomial in L2, LKS , K2

S and χ(OS). Furthermore, if δ is not too large, we show that this

polynomial coincides with Ñ (S,L),δ(y). Unfortunately in the case of rational ruled surfaces we
only prove this for δ 6 2. There is, however, more and stronger numerical evidence, even if it
does not lead to a proof of formulas for higher δ. Below we list briefly some of this evidence.

(i) In [GS14] the Nd,δ(y) have been computed for d 6 17 and δ 6 32. Assuming Conjectures
2.7, 2.11 this determines the power series B1(y, q) and B2(y, q) modulo q29, and thus all the
refined invariants Ñ (S,L),δ(y) as polynomials in L2, LKS , K2

S , χ(OS) for all S, L and all δ 6 28.

Denote for the moment N̂ (S,L),δ(y) the refined invariants obtained this way (and N̂d,δ(y) the
corresponding invariants of P2). For δ 6 10 (where the Ñ (S,L),δ(y) have been computed in [GS14])
N̂ (S,L),δ(y) = Ñ (S,L),δ(y).

The computation mentioned above gives Nd,δ(y) = N̂d,δ(y) for d6 17 and δ 6 min(2d−2, 28).

(ii) We have also computed the Nd,δ(y) for d 6 20, δ 6 20, again within this realm Nd,δ(y) =
N̂d,δ(y) for δ 6 2d− 2.

(iii) We computed N (P1×P1,cF+dH),δ(y) for arbitrary δ and c, d 6 8. We find in this realm
N (P1×P1,cF+dH),δ(y) = Ñ (P1×P1,cF+dH),δ(y) for δ 6 min(2c, 2d).

(iv) We computed N (Σm,cF+dH),δ(y) for m 6 10, δ 6 10, d 6 6, c 6 10. We find in this realm
N (Σm,cF+dH),δ(y) = Ñ (Σm,cF+dH),δ(y) if δ 6 min(2d, c).

4.5 On the relation with irreducible refined Severi degrees
We show that the irreducible refined Severi degree, formally defined in (2.10) for P2, Hirzebruch
surfaces and rational ruled surfaces, agrees with the refined enumeration of irreducible tropical
curves. It therefore follows that also the irreducible refined Severi degree has non-negative
coefficients.

Theorem 4.14. The tropical irreducible refined Severi degree N∆,δ
0,trop(y) agrees with the

irreducible refined Severi degree defined in (2.10).

The refined multiplicity of an irreducible tropical curve by definition has non-negative integer
coefficients in y±1. Therefore, we have shown the following.

Corollary 4.15. N∆,δ
0 (y) has non-negative integer coefficients.

Proof of Theorem 4.14. Recall the relation (3.8) between tropical refined Severi degrees and their
tropical irreducible analog

N∆,δ
trop(y) =

∑
Π=∪Πi

∑
(∆i,δi)

∏
i

N∆i,δi
0,trop(y), (4.1)

where the first sum is over all partitions of Π, and the second sum is over all pairs (∆i, δi) which
satisfy (cf. (3.9))

|Πi| = |∆i ∩ Z2| − 1− δi, for all 1 6 i 6 t,

∆ = ∆1 + · · ·+ ∆t (Minkowski sum),

δ =

t∑
i=1

δi +
∑

16i<j6t

M(∆i,∆j).
(4.2)
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Here, again M(∆i,∆j) = 1
2(Area(∆i + ∆j) − Area(∆i) − Area(∆j)) is the mixed area of the

polygons ∆i and ∆j .
Any collection of lattice polygons ∆1,∆2, . . . ,∆t,∆ and non-negative integers δ1, . . . , δt, δ

satisfying the second and third condition of (4.2) also satisfy

t∑
i=1

(dim ∆i − δi) = dim ∆− δ,

where we write dim ∆ = |∆∩Z2|− 1. Indeed, both sides equal the number of point conditions of
a tropical curve of degree ∆ with δ nodes which has irreducible components of degrees ∆i with
δi nodes, respectively. Furthermore, we have mult(C; y) =

∏t
i=1 mult(Ci; y).

The exponential generating functions of the tropical refined Severi degrees N∆,δ
trop(y) and the

tropical irreducible refined Severi degree N∆,δ
0,trop(y) thus satisfy

exp

(∑
∆,δ

zdim ∆−δ

(dim ∆− δ)!
v∆N∆,δ

0,trop(y)

)
= 1 +

∑
∆,δ

zdim ∆−δ

(dim ∆− δ)!
v∆N∆,δ

trop(y), (4.3)

where we define v∆ ·v∆′ := v∆+∆′ for lattice polygons ∆ and ∆′, and both sums are over all lattice
polygons ∆ (up to translation) and δ > 0. Comparing (4.3) and (2.10) and using Theorem 4.1,
the result follows. 2

5. y-Weighted floor diagrams and templates

Floor diagrams are purely combinatorial representations of tropical curves. They exist for all
‘h-transverse’ polygons ∆. We focus mostly on the cases S = P2, Σm, and P(1, 1,m), all of whose
moment polygons are h-transverse. More specifically, if we consider tropical curves through
a vertically stretched point configuration (see Definition 3.7) the tropical curves are uniquely
encoded by a ‘marking’ of a floor diagram and, vice versa, every marked floor diagram corresponds
to a tropical curve. This gives a purely combinatorial way to compute refined Severi degrees for
toric surfaces with h-transverse polygons. Floor diagrams were invented (in the unrefined setting)
by Brugallé and Mikhalkin [BM07, BM09].

5.1 Floor diagrams
We now briefly review the marked floor diagrams of Brugallé and Mikhalkin [BM07, BM09] for
surfaces S = P2, S = P(1, 1,m), and S = Σm, with some emphasis on the P2 case. We present
them in the notation of Ardila and Block [AB13], following Fomin and Mikhalkin [FM10]. In
each case, we fix a polygon ∆ (cf. Figure 3):

– (P2 case) ∆ = conv((0, 0), (0, d), (d, 0)), for d > 1; or

– (Σm case) ∆ = conv((0, 0), (0, d), (c, d), (c+md, 0)), for c, d,m > 1; or

– (P(1, 1,m) case) ∆ = conv((0, 0), (0, d), (dm, 0)), for d,m > 1. In this case, set c = 0.

Definition 5.1. A ∆-floor diagram D consists of:

(i) a graph on a vertex set {1, . . . , d}, possibly with multiple edges, directed such that if i → j
is an edge, then i < j;

(ii) a sequence (s1, . . . , sd) of non-negative integers such that s1 + · · ·+ sd = c (if S = P(1, 1,m)
then all si equal 0);
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c

c+dm

d d

dm

Figure 3. Lattice polygons of the Hirzebruch surface Σm with line bundle L = dH + cF (left)
and P(1, 1,m) with L = dH (right). In both cases m = 2. For S = P2, we set c = 0 and m = 1.

subject to the following condition (Divergence condition): for each vertex j of D, we have

div(j)
def
=

∑
edges e

j
e
→ k

wt(e)−
∑

edges e

i
e
→ j

wt(e) 6 m+ sj .

The last condition says that at every vertex of D the total weight of the outgoing edges is larger

by at most m+ sj than the total weight of the incoming edges.

We loosely think of ∆ as the degree of the floor diagram D. If S = P2, we say that D is of

degree d. A floor diagram is connected if its underlying graph is. If D is connected its genus is

the genus of the underlying graph. A connected floor diagram D of degree ∆ and genus g has

cogenus δ(D) equal to the number of interior lattice points in ∆ minus g.

If D is not connected, there are lattice polygons ∆1,∆2, . . . such that their Minkowski sum

equals ∆1 + ∆2 + · · · = ∆ and the ∆i are the degrees of the connected components of D. Let

δ1, δ2, . . . be the cogenera of the connected components. Similarly to the case of tropical curves,

we define the cogenus

δ(D) =
∑
i

δi +
∑
i<j

M(∆i,∆j),

where againM(∆i,∆j) := 1
2(Area(∆i+∆j)−Area(∆i)−Area(∆j)) is the mixed area of ∆i and

∆j . As before, Area(−) is the normalized area, given by twice the Euclidean area in R2.

The refined multiplicity of tropical curves (see Definition 3.5) translates to floor diagram

as follows, yielding a purely combinatorial formula for the refined Severi degrees for Σm and

P(1, 1,m) in Definition 5.6.

Definition 5.2. We define the refined multiplicity mult(D, y) of a floor diagram D as

mult(D, y) =
∏

edges e

([wt(e)]y)
2.

Notice that the weight mult(D, y) is a Laurent polynomial in y with positive integral

coefficients. We draw floor diagrams using the convention that vertices in increasing order are

arranged left to right. Edge weights of 1 are omitted.

Example 5.3. An example of a floor diagram for P2 of degree d = 4, genus g = 1, cogenus δ = 2,

divergences 1, 1, 0,−2, and multiplicity mult(D; y) = (y−1/2 +y1/2)2 = y−1 +2+y is drawn below.g g g g2- - j

*
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g g g g2 2- - - -
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Figure 4. The result of applying Steps 1–3 to the floor diagram of Example 5.3.

2 2g g g gw w w w ww w w- - - - -

-

-

-
- -

-
-

Figure 5. A marking of the floor diagram of Figure 4.

To a floor diagram we associate a last statistic, as in [FM10, § 1]. Notice that this statistic is
independent of y.

Definition 5.4. A marking of a floor diagram D is defined by the following four step process.
Step 1: For each vertex j of D create sj new indistinguishable vertices and connect them to

j with new edges directed towards j.
Step 2: For each vertex j of D create m + sj − div(j) new indistinguishable vertices and

connect them to j with new edges directed away from j. This makes the divergence of vertex j
equal to m.

Step 3: Subdivide each edge of the original floor diagram D into two directed edges by
introducing a new vertex for each edge. The new edges inherit their weights and orientations.
Denote the resulting graph D̃. See, for example, Figure 4.

Step 4: Linearly order the vertices of D̃ extending the order of the vertices of the original
floor diagram D such that, as before, each edge is directed from a smaller vertex to a larger
vertex. See, for example, Figure 5.

The extended graph D̃ together with the linear order on its vertices is called a marked floor
diagram, or a marking of the original floor diagram D.

We want to count marked floor diagrams up to equivalence. Two markings D̃1, D̃2 of a floor
diagram D are equivalent if there exists an automorphism of weighted graphs which preserves
the vertices of D and maps D̃1 to D̃2. The number of markings ν(D) is the number of marked
floor diagrams D̃ up to equivalence.

Example 5.5. The floor diagram D of Example 5.3 has ν(D) = 3 + 4 = 7 markings (up to
equivalence): in step 3 the extra 1-valent vertex connected to the third white vertex from the
left can be inserted in three ways between the third and fourth white vertex (up to equivalence)
and in four ways right of the fourth white vertex (again up to equivalence).

With these two statistics, we define a purely combinatorial notion of refined Severi degrees
for S = P2, S = Σm, and S = P(1, 1,m). The combinatorial invariants agree with the tropical

refined Severi degree N∆,δ
trop(y) of § 3 (Theorem 5.7). They also agree conjecturally with the refined

invariants of Göttsche and Shende if S is smooth and the line bundle is sufficiently ample (cf.
Conjecture 3.14 and Theorem 4.4).

See Remark 5.8 for a discussion how to generalize to a much larger family of toric surfaces
corresponding to ‘h-transverse’ ∆. Denote by FD(∆, δ) the set of ∆-floor diagrams D with
cogenus δ.
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Definition 5.6. Fix δ > 0 and let ∆ be as above. We define the combinatorial refined Severi
degree N∆,δ

comb(y) to be the Laurent polynomial in y given by

N∆,δ
comb(y) =

∑
D∈FD(∆,δ)

mult(D; y) · ν(D). (5.1)

Theorem 5.7. For ∆ as in Definition 5.6 and δ > 0, the combinatorial refined Severi degree and
the tropical refined Severi degree agree:

N∆,δ
comb(y) = N∆,δ

trop(y).

Proof. Let Π ⊂ R2 be a vertically stretched (Definition 3.7) configuration of |∆ ∩ Z2| − 1 − δ
tropical points. In [BM09, Proposition 5.9], Brugallé and Mikhalkin construct an explicit bijection
between the set of parametrized tropical curves of degree ∆ with δ nodes passing through Π and
the set of marked ∆-floor diagrams of cogenus δ. This bijection is y-weight preserving. 2

In what follows, we will usually write N instead of Ncomb even while referring to the
combinatorial defined refined Severi degree if no confusion can occur.

Remark 5.8. We expect the results in this section to also hold for toric surfaces from
‘h-transverse’ polygons ∆. Brugallé and Mikhalkin [BM09] construct marked floor diagrams
for this class of polygons. One can define a notion of combinatorial refined Severi degrees for
any toric surface from an ‘h-transverse polygon’ : simply replace the multiplicity of a ‘∆-floor
diagram’ D in [AB13, Equation (Severi1)] by the y-weight

mult(D, y) =
∏

edges e

([wt(e)]y)
2.

Theorem 5.7 can then be extended to the more general setting. We omit the details here to avoid
too many technicalities.

5.2 Templates
The following gadget was introduced by Fomin and Mikhalkin [FM10].

Definition 5.9. A template Γ is a directed graph (possibly with multiple edges) on vertices
{0, . . . , l}, where l > 1, with edge weights wt(e) ∈ Z>0, satisfying the following.

(i) If i → j is an edge, then i < j.

(ii) Every edge i
e

→ i+ 1 has weight wt(e) > 2. (No ‘short edges.’).

(iii) For each vertex j, 1 6 j 6 l − 1, there is an edge ‘covering’ it, i.e., there exists an edge
i → k with i < j < k.

Every template Γ comes with some numerical data associated with it. Its length `(Γ) is the
number of vertices minus 1. Its cogenus δ(Γ) is

δ(Γ) =
∑
i
e
→j

[(j − i)wt(e)− 1]. (5.2)

We define its y-multiplicity mult(Γ, y) to be

mult(Γ, y) =
∏

edges e

([wt(e)]y)
2.

See Figure 6 for examples.
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Γ δ(Γ) `(Γ) mult(Γ; y) ε0(Γ) ε1(Γ) κ(Γ) kmin(Γ)d d2
1 1 y−1 + 2 + y 0 0 (2) 2d d d 1 2 1 1 1 (1,1) 1d d3
2 1 y−2 + 2y−1 + 3 + 2y + y2 0 0 (3) 3d d2

2
2 1 y−2 + 4y−1 + 6 + 4y + y2 0 0 (4) 4d d d 2 2 1 1 1 (2,2) 2d d d

2 2 2 y−1 + 2 + y 0 1 (3,1) 3d d d
2 2 2 y−1 + 2 + y 1 0 (1,3) 2d d d d 2 3 1 1 1 (1,1,1) 1d d d d 2 3 1 1 1 (1,2,1) 1

Figure 6. The templates with δ(Γ) 6 2.

For 1 6 j 6 `(Γ), let κj = κj(Γ) denote the sum of the weights of edges i → k with i < j 6 k.
So κj(Γ) equals the total weight of the edges of Γ from a vertex left of j to a vertex right of or
equal to j. Define

kmin(Γ) = max
16j6l

(κj − j + 1).

For S = P2, this makes kmin(Γ) the smallest positive integer k such that Γ can appear in a floor
diagram on {1, 2, . . . } with left-most vertex k when the floor diagram is composed into templates
as explained in § 5.3 (see Example 5.10). Lastly, set

ε0(Γ) =

{
1 if all edges starting at 0 have weight 1,

0 otherwise,

and

ε1(Γ) =

{
1 if all edges arriving at l have weight 1,

0 otherwise.

Figure 6 (taken from Fomin–Mikhalkin [FM10]) shows all templates Γ with δ(Γ) 6 2.
Notice that, for each δ, there are only a finite number of templates with cogenus δ. At y = 1,

we recover Fomin and Mikhalkin’s template multiplicity
∏
e wt(e)2. It is clear that mult(Γ, y) is

a Laurent polynomial with positive integral coefficients.

5.3 Decomposition into templates
A floor diagram D with d vertices decomposes into an ordered collection (Γ1, . . . ,Γs) of templates
as follows. If S = P2 or P(1, 1,m), then we set as before c = 0. We treat S = P2 as the special
case of P(1, 1,m) for m = 1.

First, add an additional vertex 0 (<1) to D and connect it to every vertex j of D by sj many
new edges of weight 1 from 0 to j for each 1 6 j 6 d. (For S = P2 and S = P(1, 1,m), there is
nothing to do, as sj = 0 for all j.) Second, add an additional vertex d + 1 (> d), together with
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m+ sj −div(j) new edges of weight 1 from j, for each 1 6 j 6 d. The divergence sequence of the
resulting diagram D′ is a := (c,m, . . . ,m) ∈ Zd+1

>0 , after we remove the (superfluous) last entry.
Now remove all short edges from D′, that is, all edges of weight 1 between consecutive vertices.
The result is an ordered collection of templates (Γ1, . . . ,Γs), listed left to right. We also keep
track of the initial vertices k1, . . . , ks of these templates.

Conversely, given the collection of templates Γ = (Γ1, . . . ,Γs), the initial vertices k1, . . . , ks,
and the divergence sequence (c,m, . . . ,m) ∈ Zd+1

>0 , this process is easily reversed. To recover D′,
we first place the templates at their starting points ki in the interval [0, . . . ,M ], and add in all
short edges we removed from D′. More precisely, we need to add (a0 + · · · + aj−1 − κj−ki(Γi))
short edges between j − 1 and j, where Γi is the template containing j. The sequence s records
the number sj of edges between vertices 0 and j. Finally, we remove the first and last vertices
and their incident edges to obtain D.

Example 5.10. An example for S = P2 of the decomposition of a floor diagram into templates
is illustrated below. Here, k1 = 2 and k2 = 4 and all sj = 0. We see that kmin = 2 for the left
template because a floor diagram for P2 cannot have an edge of weight 2 adjacent to its leftmost
vertex because of the divergence condition.

e e e e e2- - -j

*
3-

l
D =

e e e e e e2- - -j

*
3-

-
-
-
j

*

l
D′ =

e e e e e e( ) 2- 3-

-

(Γ1,Γ2) =

We record, for each ordered template collection Γ = (Γ1, . . . ,Γs), all valid ‘positions’ ki that
can occur in the template decomposition of a ∆-floor diagram by the lattice points in a polytope.
There are two cases. If S = P2, we set

AΓ(d) = {k ∈ Rs : ki > kmin(Γi),

ki + `(Γi) 6 ki+1 (1 6 i < s), ks + `(Γs) 6 d+ ε1(Γs)}. (5.3)

If S = P(1, 1,m) or S = Σm, we set

AΓ(d) = {k ∈ Rs : k1 > 1− ε0(Γ1), ki > kmin(Γi),

ki + `(Γi) 6 ki+1 (1 6 i < s), ks + `(Γs) 6 d+ ε1(Γs)}. (5.4)

The first inequality in (5.3) says that, due to the divergence condition, templates cannot appear
too early in a floor diagram. The first inequality in (5.4) says that the first starting position
can be 0 precisely when all outgoing edges of the first vertex of Γ1 have weight 1. The second,
respectively third, inequality in (5.3) and (5.4) say that templates cannot overlap, respectively
cannot hang over at the end of the floor diagram.

We note that the lattice points in AΓ(d) in (5.4) record all template positions if the divergence
at the first vertex is at least 2δ: the quantity κj(Γ) is maximal, for a given δ(Γ) = δ, when Γ
is the template with two vertices and δ edges between them, each with weight 2, and j = 1.
The condition div(1) > 2δ implies then that every collection of lattice points in the polytope
can be the sequence of positions of templates, and vice versa. We always make the assumption
div(1) > 2δ in § 6, where we prove polynomiality of the refined Severi degrees for parameters in
this regime (cf. Theorem 4.2).
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5.4 Multiplicity, cogenus, and markings
The refined multiplicity, cogenus, and markings of a floor diagram behave well under template
decomposition, as in the unrefined case. If a floor diagram D has template decomposition Γ,
then by definition

mult(D; y) =

s∏
i=1

mult(Γi; y).

Furthermore, the decomposition of § 5.3 is cogenus preserving, i.e., δ(D) =
∑s

i=1 δ(Γi) (see [AB13,
§ 3.3.2]). The number of markings of floor diagrams is expressible in terms of the number of
‘markings of the templates’: in Step 4 in Definition 5.4, instead of linearly ordering D̃, we can
order each template individually. To make this precise, associate to each template Γ a polynomial
PΓ(c,m; k) in k, which depends also on the parameters c and m of the polygon ∆ (cf. Figure 3),
counting the number of markings for k > kmin. Specifically, let Γ(c,m,k) denote the graph obtained
from Γ by first adding

c+ (k + j − 1)m− κj(Γ)

short edges between j − 1 and j, making the divergence of all vertices m, and then subdividing
each of the resulting graphs by introducing a new vertex for each edge. Let PΓ(c,m; k) be the
number of linear extensions, up to equivalence, of the vertex poset of the graph Γ(c,m,k) extending
the vertex order of Γ. Then

ν(D) =
s∏
i=1

PΓi(c,m; ki).

We can summarize the previous discussion in the following proposition.

Proposition 5.11. The combinatorial refined Severi degree for:

(i) S = P2, any δ > 1 and d > 1; or

(ii) S = P(1, 1,m) and m, d > 1 and m > 2δ; or

(iii) S = Σm, δ > 1 and m, c, d > 1 and m+ c > 2δ

is given by

N∆,δ
comb(y) =

∑
Γ :

∑
i δ(Γi)=δ

[( s∏
i=1

mult(Γi, y)

) ∑
k∈AΓ(d)∩Zs

( s∏
i=1

PΓi(c,m; ki)

)]
, (5.5)

the first sum running over all templates collections Γ = (Γ1, . . . ,Γs) with
∑s

i=1 δ(Γi) = δ.

For y = 1 and S = P2, expression (5.5) specializes to [FM10, (5.13)]. For y = 1 and S = Σm,
respectively S = P(1, 1,m), expression (5.5) specializes to [AB13, Proposition 3.3].

6. Polynomiality proofs

We now use floor diagrams and templates to prove Theorem 4.2 and Proposition 4.11. The
argument for the former is based on the combinatorial formula (5.5). Our technique is a q-analog
extension of Fomin and Mikhalkin’s method [FM10, § 5] for the P2 and Ardila and Block’s [AB13]
for Σm and P(1, 1,m). The method provides an algorithm to compute refined node polynomials
for any δ; see Remark 6.1 for a list for δ 6 2 for P2. By Theorem 7.5 the verbatim statement of
the theorem below also holds for refined Severi degrees.
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Theorem 4.2. For fixed δ > 1 we have the following.

(i) (P2) There is a polynomial Nδ(d; y) ∈ Q[y±1][d] of degree at most 2δ in d such that, for
d > δ,

Nδ(d; y) = Nd,δ
trop(y).

(ii) (Hirzebruch surface) There is a polynomial Nδ(c, d,m; y) ∈ Q[y±1][c, d,m] of degree at most
δ in c,m and 2δ in d such that, for c+m > 2δ and d > δ

Nδ(c, d,m; y) = N
(Σm,cF+dH),δ
trop (y).

(iii) (P(1, 1,m)) There is a polynomial Nδ(d,m; y) ∈ Q[y±1][d,m] of degree at most 2δ in d and
δ in m such that, for d > δ and m > 2δ,

Nδ(d,m; y) = N
(P(1,1,m),dH),δ
trop (y).

Proof of Theorem 4.2. The proof for S = P2 is essentially the proof of [FM10, Theorem 5.1],
generalized to refined multiplicities. For S = Σm and S = P(1, 1,m) our argument is a special
(but now refined) case of the proof of [AB13, Theorem 1.2]. We first want to show that, for
S = P(1, 1,m), respectively S = Σm, and fixed δ, the expression in (5.5) is polynomial in d
and m, respectively c, d and m for appropriately large values of c, d and m. As before, for
S = P(1, 1,m), we set c = 0. The case S = P2 we treat at the end.

The number of template collections Γ = (Γ1, . . . ,Γs) with fixed cogenus
∑s

i=1 δ(Γi) = δ is
finite. The factor

∏s
i=1 mult(Γi, y) is simply a Laurent polynomial in y; it thus remains to show

that the second sum in (5.5) is polynomial for appropriately large d and m, and also c if S = Σm.
Since, for each template Γi and any j, we have κj(Γi) 6 2δ 6 c+m, each individual template

Γi can ‘float freely’ between ki = ε0(Γi) and d − `(Γi) + ε1(Γi). Thus, as c + m > 2δ, the valid
starting positions ki of all templates are given by the inequalities of AΓ(d) as in (5.4).

If d > δ then AΓ(d) is non-empty as

ε0(Γ1) + `(Γ1) + · · ·+ `(Γs)− ε1(Γs) 6 δ.

In fact, the combinatorial type of AΓ(d) does not change if d > δ: it is always combinatorially
equivalent to a simplex. The inequalities are given by A · k 6 b(d) for a unimodular matrix A
and a vector b(d) of linear forms in d.

For each lattice point (k1, . . . , ks) in AΓ(d), the number of markings PΓi(c,m; ki) of Γi at
position ki is polynomial in ki, c and m provided that c+m > 2δ [FM10, Lemma 5.8]. Thus, for
k ∈ AΓ(d) ∩ Zs,

s∏
i=1

PΓi(c,m; ki) (6.1)

is a polynomial in c,m, k1, . . . ks. From the explicit description of PΓi(c,m; ki), it is not hard to
see that the degree of PΓi(c,m; ki) in ki, in c, and in m is bounded above by the number of edges
of Γi and thus by δ(Γi). Hence, if c + m > 2δ, the number (6.1) of markings of the template
collection Γ is of degree at most δ in c and in m, and at most δ(Γi) in ki.

By [AB13, Lemma 4.9], the second sum in (5.5) is a piecewise polynomial in c, d, and m: the
second sum is a ‘discrete integral’ of a polynomial over the facet-unimodular polytope AΓ(d).
But for c + m > 2δ and d > δ, the combinatorial type of AΓ(d) does not change; AΓ(d) is a
dilation of a unit simplex by the (non-negative) number

d− (ε0(Γ1) + `(Γ1) + · · ·+ `(Γs)− ε1(Γs)) .
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Hence the second sum in (5.5) is polynomial in c, d, and m for c + m > 2δ and d > δ. This
polynomial is of degree at most δ in c and in m. As the number s of templates in the template
collection Γ is bounded by δ, we (discretely) integrate over at most δ dimensions in (5.5), and
thus the degree of the refined Severi degree in d is at most δ(Γ1) + · · ·+ δ(Γs) + s 6 2δ.

To conclude the result for S = P(1, 1,m) set c = 0.
For S = P2, the proof is identical to the proof of [Blo11, Theorem 1.3]; we only need to

replace mult(Γi)(= mult(Γi; 1)) by mult(Γi; y) throughout (e.g., (5.5) at y = 1 becomes [Blo11,
(3.1)]). The proof to further reduce the threshold value for polynomiality in d of Nd,δ(y) from
2δ to δ (as in the theorem) relies on another statistic ‘s(Γ)’ [Blo11, p. 13]. The two key [Blo11,
Lemmas 4.2 and 4.3] only involve the markings of a floor diagram and are thus verbatim in the
refined case. The degree bound follows as in the case of P(1, 1,m) (with m = 1). For S = P2, the
degree bound 2δ in d is tight: a template collection Γ with each Γj a template with δ(Γj) = 1
for 1 6 j 6 δ contributes to Nδ(d; y) in degree 2δ in d. 2

Remark 6.1. Expression (5.5) gives, in principle, an algorithm to compute refined node
polynomials. The algorithm of [Blo11, § 3], based on the algorithm of Fomin and Mikhalkin [FM10,
§ 5], easily adapts to the refined case. Below we show Nδ(d; y), for S = P2 and for δ 6 2 as
computed by this method. (Note that Theorem 4.4 determines (by another method) the Nδ(d; y)
for δ 6 10.) We have

N1(d; y) = 1
2yd

2 − 3
2yd+ y + 2d2 − 3d+ 1 + 1

2y
−1d2 − 3

2y
−1d+ y−1,

N2(d; y) = 1
8y

2d4 − 3
4y

2d3 + 11
8 y

2d2 − 3
4y

2d+ yd4 − 9
2yd

3 + 2yd2 + 21
2 yd− 9y + 9

4d
4 − 15

2 d
3

− 3
4d

2 + 21d− 15 + y−1d4 − 9
2y
−1d3 + 2y−1d2 + 21

2 y
−1d− 9y−1 + 1

8y
−2d4

− 3
4y
−2d3 + 11

8 y
−2d2 − 3

4y
−2d.

Proof of Proposition 4.11. To a floor diagram D, we associated the new statistic

i(D) =
∑
e∈D

wt(e)(len(e)− 1).

It captures how much of the cogenus is contributed by edges of length greater than 1. By degree
considerations, one can see that a floor diagram D contributes only to the coefficients pδd,i of

Nd,δ(y) with i(D) 6 i. To compute pδd,0, it thus suffices to consider only the floor diagrams of
degree d with cogenus δ and i(D) = 0. Furthermore, each such floor diagram has mult(D; y) a
degree δ polynomial in y and y−1 with leading coefficient 1. It thus suffices to show that the

number of marked floor diagrams with d(D) = d, δ(D) = δ, and i(D) = 0 equals
((d−1

2 )
δ

)
.

Each such marked floor diagram arises as follows. Let D0 be the unique floor diagram of
degree d and cogenus 0 (D0 has one edge of weight 1 between vertex 1 and 2, two edges of weight
1 between vertex 2 and 3, and so on). The genus of D0 is

(
d−1

2

)
. Subdivide each edge of D0

by introducing a new vertex and order all vertices linearly, extending the linear order of the d
original vertices. Call a cycle in D0 of length 2 contractible if the two midpoints corresponding to
the two edges are adjacent in the linear order. Choose δ contractible cycles and ‘contract’ each
cycle by identifying the two edges and the two midpoints to obtain the graph D1. To each edge
in D1 assign a weight equal to the number of edges of D0 that were identified in obtaining D1.
Note that D1 comes with a linear order on its vertices and is thus a marked floor diagram with
δ(D1) = δ and i(D1) = 0, and all such marked floor diagrams arise this way. (One can see this
by example: if a ‘white’ vertex j of D1 has four outgoing edges of weights 1, 2, 1, and 3, with the
order determined by the order of the four adjacent ‘black’ vertices, the unique choice of cycles
to contract in D0 between vertices j and j + 1 is to contract the second, fourth, and fifth cycle,
where the order of the cycles is determined by the order of the midpoints.) 2
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D

2 D

Figure 7. A tropical curve C with tangency β = (2, 1) to a tropical divisor D. The tropical
divisor corresponds to the bottom horizontal edge (also denoted D) of the polygon ∆ of the
Hirzebruch surface Σ1.

7. Refined relative Severi degrees

In this section, we generalize tropical refined Severi degrees to include tropical tangency

conditions. We then show that, in the case of the surfaces S = Σm and S = P(1, 1,m), the

resulting invariants satisfy the recursion of Göttsche and Shende (Definition 2.8) and thus both

invariants agree. Our definitions are a refinement of [GM07] for S = P2 and [IKS09] for arbitrary

toric surfaces.

Throughout this section, α = (α1, α2, . . . ) and β = (β1, β2, . . . ) denote infinite sequences of

non-negative integers with only finitely many non-zero entries. Recall the notations |α| =
∑

i>1 αi
and Iα =

∑
i>1 iαi.

Definition 7.1. Let ∆ be a lattice polygon and h : C → R2 a parametrized tropical curve of

degree ∆ (see Definition 3.2). Again we simply write C instead of h : C → R2. Let D be an edge

of ∆ and l(D) its lattice length.

(i) The tropical boundary divisor of D is a (classical) line in R2 parallel to D and sufficiently

far in the direction dual to D (so that all intersections with C are orthogonal). Abusing notation,

we denote the tropical boundary divisor by D also.

(ii) We say that the tropical curve C is tangent to D of order β if the partition of edge

weights of the unbounded edges of C orthogonal to D is β (i.e., if there are β1 such edges of

weight 1, β2 of weight 2, and so on).

See Figure 7 for an example. Throughout, we fix the following data:

(i) a tropical boundary divisor D (corresponding to an edge D of ∆);

(ii) two sequences α and β with Iα+ Iβ equal the lattice length l(D) of the edge D; and

(iii) a tropically generic point configuration Π of n = |∆ ∩ Z2| − 1 − δ − I(α + β) + |α| + |β|
points with precisely |α| points on D.
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The number of points n is chosen so that the resulting curve count is non-zero and finite (unless
δ is very large).

As in the classical case, we distinguish two types of tangencies: tangencies to D at a fixed
point (i.e., a point in Π), the number of such of multiplicity i we denote by αi. The other type
of tangency to D is at unspecified or free points; we denote the number of such of multiplicity i
by βi. The following is a refinement of [GM07, Definition 4.1].

Definition 7.2. (i) A tropical curve C passing through Π is (α, β)-tangent to D if precisely
αi + βi unbounded edges of C are orthogonal to and intersect D and have multiplicity i
and, further, αi of the edges pass through Π ∩D.

(ii) The subdivision of ∆ dual to the tropical curve C is the combinatorial type of C.

(iii) The refined relative multiplicity multα,β(C; y) of a tropical curve (α, β)-tangent to D is

multα,β(C; y) =
1∏

i>1([i]y)αi
·mult(C; y). (7.1)

(iv) The tropical refined relative Severi degree N∆,δ
trop(α, β)(y) is the number of δ-nodal tropical

curves C of degree ∆ passing through Π that are (α, β)-tangent to D, counted with
multiplicity multα,β(C; y).

(v) The tropical refined relative irreducible Severi degree N∆,δ
0,trop(α, β)(y) is the number of

irreducible tropical curves C of degree ∆ with δ nodes passing through Π that are (α,
β)-tangent to D, counted with multiplicity multα,β(C; y).

Both N∆,δ
trop(α, β)(y) and N∆,δ

0,trop(α, β)(y) in general depend on the tropical boundary divisor
D. To simplify notation, we suppress this dependence. We discuss the cases S = P(1, 1,m) and
S = Σm in detail later and will always choose D to be a horizontal line y = const, for const� 0,
cf. Figure 7.

Theorem 7.3. The tropical refined relative Severi degree N∆,δ
trop(α, β)(y) and the refined relative

irreducible Severi degree N∆,δ
0,trop(α, β)(y) are independent of the tropical point configuration if it

is generic.

Proof. The invariance of the tropical refined relative irreducible Severi degree N∆,δ
0,trop(α, β)(y)

follows from a rather straightforward modification of Itenberg and Mikhalkin’s proof [IM13,

Theorem 1] of the independence of the refined irreducible Severi degree N∆,δ
0 . We are brief here,

in order to not repeat a lengthy argument. The modification with respect to [IM13] is to allow
combinatorial types of tropical curves with arbitrary tangency conditions to one tropical divisor.
The result then follows from the observation that Itenberg and Mikhalkin’s argument also holds
in this setting.

Let Π = {p1, p2, . . . , pn} be a configuration of n = |∆∩Z2| − 1− I(α+ β) + |α|+ |β| tropical
points. It suffices to show the invariance if we smoothly perturb the points Π to Π(t) = {p1, . . . ,
pk−1, pk(t), pk+1, . . . , pn}, for some 1 6 k 6 n, and all t ∈ [−ε, ε] for some ε > 0 and Π(0) = Π
such that Π(t) is tropically generic for t 6= 0.

Fix an irreducible tropical curve h : C → R2 with genus g with Π⊂ h(C) that is (α, β)-tangent
to D. Let S±(t) be the set of tropical curves h±(t) : C → R2 that are (α, β)-tangent to D with
Π(ε) ⊂ h±(ε)(C) for ±ε ∈ [0, t] that deform to h, i.e., with h±(0) = h.

In the following, we conclude that∑
C+∈S+(t)

multα,β(C+; y) =
∑

C−∈S−(t)

multα,β(C−; y). (7.2)
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If h : C → R2 has no 4-valent vertex, then for t > 0 small enough, |S+(t)| = |S−(t)| = 1 and the
combinatorial types of C+ and C− agree and (7.2) follows. Otherwise, every 4-valent vertex of h is
perturbed as shown in [IM13, Figure 6] because for t > 0 small enough the combinatorial type of
h(t) changes only locally around the 4-valent vertex. (The detailed argument is given by Itenberg
and Mikhalkin in the proof of [IM13, Lemma 3.3]; their proof also holds if we fix multiplicity
of unbounded edges of h (to incorporate the β-tangency conditions) as well as point conditions
on these edges very far away (to incorporate the α-tangency conditions).) The refined relative
multiplicity multα,β on both sides of (7.2) equals 1/

∏
i>1([i]y)

αi times the refined (non-relative)
multiplicity mult(C; y). Thus, to show that the difference between both sides of (7.2) is zero it
suffices to show that ∑

C+∈S+(t)

mult(C+; y) =
∑

C−∈S−(t)

mult(C−; y). (7.3)

As the tropical curves on both sides of this equation differ only locally around the 4-valent
vertices of h, the argument to prove (7.3) is identical to the proof of [IM13, Lemma 3.3]. The

invariance of the tropical refined relative Severi degree N∆,δ
trop(α, β)(y) then follows from (4.1).

2

Remark 7.4. The tropical refined relative Severi degree N∆,δ
trop(α, β)(y) is a symmetric (under

y↔ y−1) Laurent polynomial in y1/2 with non-negative integer coefficients (not in y in general).

As before, one may ask what the coefficients of N∆,δ
trop(α, β)(y) count.

Theorem 7.5. For all polygons ∆, with X(∆) = P(1, 1,m) or X(∆) = Σm, the refined relative
tropical Severi degrees satisfy (2.7) with L = L(∆). Therefore, the refined relative Severi degrees
defined via the recursion 2.8 and the tropical refined relative Severi degrees agree:

N∆,δ
trop(y) = N∆,δ

trop(y).

Proof. Our proof follows closely and extends the argument of Gathmann and Markwig’s proof
of [GM07, Theorem 4.3], where they proved this result in the non-refined case (i.e., y = 1) for
the surface S = P2. Instead of points in a horizontal strip, we consider points in a vertical strip.
The Gathmann–Markwig proof rests on an observation of Mikhalkin [Mik05, Lemma 4.20] that
holds for any toric surface. We use it in generalizing their argument.

Fix a small ε > 0 and a large real number M . Consider a tropical generic point configuration
Π = {p1, p2, . . . , pn} such that the following hold.

(i) The x-coordinates of all pi (including those on the divisor D) are within the interval (−ε, ε).
(ii) The point p1 is not on the divisor D but its y-coordinate is less than −M .

(iii) All points pi 6= p1 not lying on D have y-coordinate in the interval (−ε, ε).

Let C be a tropical curve of degree ∆ with δ nodes. Then C is of the following form.

(i) All vertices of C have x-coordinate in (−ε, ε).
(ii) There are constants a and b, depending only on ∆, with −N < a < b < −ε so that C has

no vertices in the strip R× [a, b]; all edges in this strip are vertical.

See Figure 8 for an illustration. This follows directly from the verbatim argument in [GM07]; note
that their argument rests on [Mik05, Lemma 4.20] which applies to arbitrary ∆, so in particular
to S = P(1, 1,m) and S = Σm.
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2

p1

D

Figure 8. A ((1, 1), (1))-tangent curve C to a tropical divisor D. All point conditions are in a
small vertical strip, p1 is far from all other points. The curve C decomposes into the ‘upper’ part
C ′ and the ‘lower’ part containing p1. C ′ is ((0), (3))-tangent to D. C and C ′ have δ = 2 and
δ′ = 1 as can be see from the dual subdivision on the right. The shaded part of the polygon is
the difference between the degree ∆ of C and ∆′ of C ′.

There are two cases.

Case 1: p1 lies on a vertical edge with weight k > 1. Then all edges of C with y-coordinates
6 −ε are vertical by the Gathmann–Markwig argument. We can move p1 down onto the divisor
D and obtain a tropical curve with one more ‘fixed’ tangency condition. The weight of C is [k]y
times the weight of this new curve. The total contribution of tropical curves through Π with p1

on a vertical edge is thus ∑
k:βk>0

[k]y ·N∆,δ
trop(α+ ek, β − ek)(y).

Case 2: p1 does not lie on a vertical half-ray. Then C can be broken into two pieces: let
C ′ be the curve with bounded edges in the vicinity of the points p2, . . . , pn that do not lie on
D. The other piece, containing p1, consists of the bounded edges of C in the vicinity of p1,
one unbounded edge in direction (−1, 0) and (1,m), respectively, and some vertical edges. See
Figure 8 for an illustration of this decomposition. By construction, the degree ∆′ of C ′ is the
lattice polygon obtained from ∆ by removing a horizontal strip of width one at the bottom of ∆.

Next, we determine in how many ways C ′ can be extended to a tropical curve of degree
∆ that is (α, β)-tangent to the divisor D and passes through Π. We know that C ′ is (α′, β′)
tangent to D, for some α′ 6 α and β′ > β. There are

(
α
α′

)
ways to choose which vertical edges

of C through a point in Π ∩ D belong to C ′. Similarly, there are
(
β′

β

)
ways to choose which
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vertical edges of C ′ intersecting D but not containing a point in Π belong to C (for more details
see [GM07]).

To show that the tangency conditions α′ and β′ satisfy Iα′ + Iβ′ = H(L − H), recall that
degree ∆′ of C ′ is the polygon obtained from ∆ by removing from ∆ the bottom strip of lattice
width 1. Furthermore, Iα′+ Iβ′ equals the lattice length of the bottom edge of ∆′. We argue for
each surface separately.

(a) S = P2: here H is the class of a line and L is the class of a degree d curve. Thus, we have
H(L−H) = d− 1, the length of the bottom edge of ∆′.

(b) S = Σm: in this case, we defined H as the class of a section with H2 = m. Then H(L−H) =
c+ (d− 1)m. Recall that ∆ = conv((0, 0), (0, d), (c, d), (c+ dm, 0)). The bottom edge of ∆′

has lattice length c+ (d− 1)m = H(L−H).

(c) S = P(1, 1,m): here H is the class of a line, and we have H(L − H) = (d − 1)m. As
∆ = conv((0, 0), (0, d), (dm, 0)), H(L−H) is precisely the lattice length of ∆′.

Next, we relate the y-multiplicities of C and C ′. We have

mult(C; y) =
∏
i>1

([i]y)
αi−α′i+β′i−βi mult(C ′; y)

and, therefore,

multα,β(C; y) =
1∏

i>1([i]y)αi
mult(C; y) =

∏
i>1

([i]y)
β′i−βi multα′,β′(C

′; y).

Now, we show that the cogenus δ′ of C ′ satisfies

δ − δ′ = Iα′ + Iβ′ − |β′ − β|.

By definition, δ− δ′ counts the number of parallelograms in the horizontal bottom strip of width
1 in the dual subdivision ∆C , where we count each parallelogram with its Euclidean area. This
number equals the number of unbounded edges of C ′ that intersect D and are unbounded in C.
But this number is precisely the length of the upper edge of the width 1 strip minus the number
of edges of C ′, that become bounded as edges in C, and thus equals Iα′ + Iβ′ − |β′ − β|.

The recursive formula now follows: by the balancing condition, the (α′, β′)-tangent curve C ′

can be completed to a (α, β)-tangent curve C with p1 ∈ C\C ′ in a unique way, once we choose
which vertical edges of C through a point in Π ∩D belong to C ′ and which vertical edges of C ′

intersecting D but not containing a point in C belong to C (giving
(
α
α′

)
·
(
β′

β

)
choices).

Checking the initial conditions is trivial. 2

Remark 7.6. Note that in the case of rational ruled surfaces Σm, the above proof works also if
we allow m to be negative. Then Σm = Σ−m, but with the role of E and H exchanged (this
corresponds to exchanging the top and the bottom edge of ∆). Expressed on Σm, the proof thus
also shows the recursion (2.7), with the same initial conditions, but everywhere with H replaced
by E and α, β specifying contacts along E instead along H.

7.1 Refined relative node polynomials for plane curves
We now extend the floor diagram technique to refined relative Severi degree for S = P2. Then we
show a polynomiality result (Theorem 7.8) about refined relative Severi degrees of P2, refining
the result of [Blo12, Theorem 1.1]. We expect a similar, more technical argument to work also for
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S = Σm and S = P(1, 1,m), but restrict ourselves to P2 for simplicity. The following definitions
are a quite straightforward refinement of [FM10, § 3.2].

As we are only concerned with S = P2, we denote by FD(d, δ) the set of ∆-floor diagrams
with ∆ = conv((0, 0), (0, d), (d, 0)) and cogenus δ, for any d > 1. Also, let FDconn(d, δ) denote
the collection of connected such floor diagrams. Let α and β be two sequences of non-negative
integers with only finitely many non-zero entries.

To each floor diagram D ∈ FD(d, δ), there is a statistic να,β(D), counting the number of
‘(α, β)-markings’ of D as in the non-relative case. The precise definition is given in [Blo12,
Definition 2.3], a reformulation of [FM10, Definition 3.13]. Intuitively, να,β(D) counts the number
of tropical curves of degree ∆ that satisfy the following.

(i) They are (α, β)-tangent to D = {y = const}, where const � 0 (so D is a very far down
horizontal line).

(ii) They ‘correspond’ to the floor diagram D (in the sense of [FM10, Theorem 3.17]).

(iii) They pass through a vertically stretched point configuration.

The refined relative Severi degree of P2 can be expressed purely combinatorially in terms of
the y-weighted floor diagrams of § 5: to simplify the formula, define (cf., [FM10, (3.6)] for the
unrefined setting)

multβ(D, y) =
∏
i>1

([i]y)
βi ·mult(D, y).

Proposition 7.7. (i) For any d > 1 and δ > 1, the refined relative Severi degree of P2 is given
by

Nd,δ(α, β)(y) =
∑

D∈FD(d,δ)

multβ(D, y) · να,β(D).

(ii) For any d > 1 and δ > 1, the refined irreducible relative Severi degree of P2 is computed by

Nd,δ
0 (α, β)(y) =

∑
D∈FDconn(d,δ)

multβ(D, y) · να,β(D).

Proof. We first prove part (ii). We may assume, by Theorem 7.3, that the tropical point
configuration is vertically stretched. By [FM10, Theorem 3.17], there is a bijection f between
irreducible tropical curves of degree d and cogenus δ that are (α, β)-tangent to D and (α, β)-
marked floor diagrams D with D ∈ FDconn(d, δ), where we used that these tropical curves have
genus g =

(
d−1

2

)
−δ. By [FM10, Theorem 3.17] (see also [FM10, Theorem 3.7] for the non-relative

case but with more details), the map f preserves the unrefined multiplicity (y = 1) for any such
tropical curve C with corresponding floor diagram D:

multα,β(C, 1) = multβ(D, 1).

By definition of the refined multiplicities of tropical curves and floor diagrams (Definitions 3.5
and 5.2 and (7.1)), the bijection f preserves also the refined multiplicities,

multα,β(C, y) = multβ(D, y),

as (1/
∏
i>1([i]y)

αi) mult(C, y) =
∏
i>1([i]y)

βi ·mult(D, y), and part (ii) follows.
Part (i) follows from part (ii) by a straightforward refined extension of the inclusion–exclusion

procedure of [FM10, § 1] that was used to conclude [FM10, Corollary 1.9] (the non-relative
unrefined count of reducible curves via floor diagrams) from [FM10, Theorem 1.6] (the non-
relative unrefined count of irreducible curves via floor diagrams). 2
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Theorem 7.8. For any δ > 1, there is a polynomial

Nδ(α;β; y) ∈ Q[y±1][α1, . . . , αδ;β1, . . . , βδ]

in αi and βi with coefficients in Q[y±1] such that, for any α and β with |β| > δ, we have

Nd,δ(α;β)(y) =
∏
i>1

([i]y)
βi

(|β| − δ)!
β1!β2! · · ·

·Nδ(α;β; y).

The coefficients of the polynomial Nδ(α;β; y) are preserved under the transformation y ↔ y−1.

We call Nδ(α;β; y) the refined relative node polynomial of P2.

Proof. The proof is identical to the non-refined argument in [Blo12, Theorem 1.1] but with
the unrefined multiplicity of a floor diagram replaced by the refined multiplicity of the present
paper. 2
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