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Abstract. The presence of a co-orbital companion induces the splitting of the well known
Keplerian spin-orbit resonances. It leads to chaotic rotation when those resonances overlap.
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1. Introduction and Notations

Given an asymmetric body on a circular orbit, denoting € its rotation angle in the
plane with respect to the inertial frame, the only possible spin-orbit resonance is the
synchronous one 6 = n, n being the mean motion of the orbit. On an Keplerian eccentric
orbit, Wisdom et al. (1984) showed that there is a whole family of spin-orbit eccen-
tric resonances, the main ones being 6 = pn/2 where p is an integer. In 2013, Correia
and Robutel showed that in the circular case, the presence of a coorbital companion in-
duced a splitting of the synchronous resonance, forming a family of co-orbital spin-orbit
resonances of the form § = n+ kv /2, v being the libration frequency in the coorbital res-
onance. Inside this resonance, the difference of the mean anomaly of the two coorbitals,
denoted by (, librates around a value close to +7/3 (around the L4 or L5 Lagrangian
equilibrium - tadpole configuration), around 7 (encompassing L3, L4 and L5 - horseshoe
configuration) or 0 (quasi-satellite) configuration. We generalize the results of Correia
and Robutel (2013) from the case of circular co-orbital orbits to eccentric ones.

2. Rotation

The rotation angle 6 satisfies the differential equation:
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where A < B < C are the internal momenta of the body, (r, f) the polar coordinates of
the center of the studied body and a its instantaneous semi-major axis.
Let us consider that the orbit is quasi-periodic. As a consequence, the elliptic elements

of the body can be expended in Fourier series whose frequencies are the fundamental

(2.1)

frequencies of the planetary system. In other words the time-dependent quantity (%)3 e'2f
that appears in equation (2.1) reads:
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Figure 1. Poincaré surface of section in the plane (§ — ¢, 0/n) near the 3/2 spin-orbit eccen-
tric resonance. (left): Cmaz — Cnin = 35° - tadpole configuration. (right): (maez — Gnin = 336°
horseshoe configuration.

Where 7; are linear combinations with integer coefficients of the fundamental frequen-
cies of the orbital motion (here n and v) and ¢; their phases. Thus (2.1) becomes:
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For a Keplerian circular orbit, the only spin orbit resonance possible is the synchronous
one, since pg = 1, np = 2n, and p; = n; = 0 for j > 0. In the general Keplerian case we
have the spin-orbit eccentric resonances, n; = pn and the p; are the Hansen coefficients
X, %2 (e) (see Wisdom et al.). For the circular coorbital case, Correia and Robutel (2013)
showed that a whole family results from the splitting of the synchronous resonance of
the form 7; = 2n & kv. For small amplitudes of libration around L4 or L5 (tadpole), the
width of the resonant island decreases as k increases.

In the eccentric coorbital case, each eccentric spin-orbit resonance of the Keplerian
case splits in resonant multiplets which are centred in 6 = pn/2 + kv /2. For relatively
low amplitude of libration of ¢, the width of the resonant island decreases as k increases,
see Figure 1 (left). But for higher amplitude, especially for horseshoe orbit, the main
resonant island may not be located at k = 0. In Figure 1 (right), the main islands are
located at § = 3n/2 + 51/2 and § = 3n/2 & 61/2. These islands overlap, giving rise to
chaotic motion for the spin, while the island located at § = 3n/2 is much thinner.

3. Conclusion

The coorbital spin-orbit resonances populate the phase space between the eccentric
resonances. Generalised chaotic rotation can be achieved when harmonics of co-orbital
spin-orbit resonances overlap each other, which is a different mechanism than the one
described by Wisdom et al. (1984), where the eccentricity harmonics overlap.
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