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A first-order model is derived for quasisymmetric stellarators where the vacuum field
due to coils is dominant, but plasma-current-induced terms are not negligible and can
contribute to magnetic differential equations, with β of the order of the ratio induced
to vacuum fields. Under these assumptions, it is proven that the aspect ratio must be
large and a simple expression can be obtained for the lowest-order vacuum field. The
first-order correction, which involves both vacuum and current-driven fields, is governed
by a Grad–Shafranov equation and the requirement that flux surfaces exist. These two
equations are not always consistent, and so this model is generally overconstrained, but
special solutions exist that satisfy both equations simultaneously. One family of such
solutions is the set of first-order near-axis solutions. Thus, the first-order near-axis model
is a subset of the model presented here. Several other solutions outside the scope of
the near-axis model are also found. A case study comparing one such solution to a
VMEC-generated solution shows good agreement.

Keywords: fusion plasma, plasma confinement, plasma devices

1. Introduction

Quasisymmetry, along with quasi-isodynamicity, is one of the two main approaches to
confining particle orbits inside a stellarator (Boozer 1998; Helander 2014). Quasisymmetry
is usually defined as a stellarator configuration where the magnitude of the magnetic
field satisfies |B| = B(ψ,Mθ − Nφ) for some integers M,N, where (ψ, θ, φ) is a straight
field line coordinate system (Helander 2014). Thus, the magnetic field magnitude is
two-dimensional, but the full vector can still be three-dimensional. Such a device can
be modelled using the near-axis expansion (Garren & Boozer 1991a,b; Landreman &
Sengupta 2018), which consists of Taylor-expanding all quantities of interest in either
the distance from the magnetic axis (direct coordinates) or the square root of toroidal
flux (inverse coordinates) (Jorge, Sengupta & Landreman 2020), and balancing the
coefficients in the magnetohydrodynamics (MHD) equilibrium equations at each order in
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the Taylor expansion, resulting in a system of coupled ordinary differential and algebraic
equations. However, the imposition of the quasisymmetry constraint, in addition to force
balance, results in the system being overconstrained at all orders beyond the first in the
near-axis expansion (Garren & Boozer 1991a). At second order, this can be rectified
by not imposing quasisymmetry directly, but rather optimizing for it. Unlike traditional
optimization, second-order near-axis optimization is much faster due to the significantly
reduced parameter space (Landreman 2022). Beyond second order, there is evidence that
the Taylor series of the near-axis model begins to diverge (Rodriguez 2022).

Magnetic shear appears at third order in the near-axis expansion, and thus depends on
third-order quantities. While, in some cases, setting the third-order quantities to zero and
evaluating the shear based on just lower-order quantities provides a reasonable estimate,
in other cases, such an approach produces large deviations from the shear calculated in
numerical solutions (Rodriguez 2022). This presents a challenge for the modelling of
quasisymmetric devices, as shear is an important quantity that affects ballooning stability
of equilibria, among other things (Connor, Hastie & Taylor 1978).

A complementary model for quasiaxisymmetric stellarators near axisymmetry that can
incorporate shear has been derived in a previous paper (Sengupta et al. 2024a). In this
paper, we propose a more general model that is applicable to both quasiaxisymmetric and
quasi-helically symmetric stellarators far from axisymmetry. In both cases, the difficulties
related to shear are avoided by not using Taylor expansions like the near-axis model
does. Instead, we perform an asymptotic expansion around a vacuum magnetic field ∇χ ,
where χ is the magnetic scalar potential. The dominance of the vacuum field is a natural
assumption, given the design principles of stellarators, which aim to confine the plasma
without having a large plasma current (Freidberg 2014). Our approach is inspired by
Strauss’ derivation of reduced MHD (Strauss 1997), who also expanded around a vacuum
field, with the main difference being that Strauss assumes p = O(ε2), whereas we allow
for a higher β with p = O(ε), where ε is a small parameter. We will show that such an
ordering requires χ to have a specific form. In the limit of low β, our model will reduce to
the equilibrium limit of Strauss’ equations under the assumption of quasisymmetry with
our choice of χ . The derivation will closely follow that of the Freidberg high-β stellarator
model (Freidberg 2014), except that Freidberg expands around a purely toroidal field B0φ̂,
whereas we allow for a more general zeroth-order field. Once the model is derived, we will
present several solutions and a numerical validation of one of those solutions.

2. Derivation

To begin, we expand the magnetic field around a vacuum magnetic field ∇χ , where
∇2χ = O(ε2):

B =
(

1 + B1

Bv

)
∇χ + B⊥1 + O(ε2). (2.1)

We will order relative to the ∇χ term: Bv = |∇χ | = O(1), B1 = O(ε) and B⊥1 = O(ε),
where ε = max |B − ∇χ |/Bv � 1 and B⊥1 ⊥ ∇χ . In addition, the derivative along the
vacuum field must be ordered as ∇χ · ∇ = O(ε), whereas ∇⊥ = ∇ − B−2

v ∇χ∇χ · ∇ =
O(1). The derivative ordering can be justified as follows. The the perpendicular length
scale will be ∼ r0, whereas the length scale along ∇χ will be ∼ 2πR0, where r0 and R0
are the minor and major radii, respectively. Thus, the ratio of the length scales must be
less than 1/2π, and no more than 0.1 for any realistic aspect ratio.

Taking the divergence of (2.1), we have ∇ · B = ∇χ · ∇(B1/Bv)+ ∇ · B⊥1 =
∇⊥ · B⊥1 + O(ε2). Since ∇⊥ is two-dimensional, a stream function A = O(ε) can be
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introduced: B⊥1 = ∇A × ∇χ . Note that Strauss uses the symbolψ for his stream function,
but we will use A instead to avoid confusion with the flux surface label.

Following Strauss, we can write the current density as follows:

j = B × ∇p
B2

+ j‖
B
B

= ∇χ × ∇p
B2
v

− B
μ0
Δ∗A + O(ε2), (2.2)

where Δ∗ = B−2
v ∇ · (B2

v∇⊥), as defined by Strauss (1997), and the expression for j‖ is
easily obtained by dotting the curl of (2.1) with ∇χ and using the identity ∇f · ∇ × U =
−∇ · (∇f × U). An alternate expression can be obtained by taking the curl of (2.1):

j = 1
μ0

∇
(

B1

Bv

)
× ∇χ − ∇χ

μ0
∇2A + 1

μ0
(∇χ · ∇)∇A − 1

μ0
(∇A · ∇)∇χ. (2.3)

The last two terms are both O(ε2). This becomes more obvious for the last term if
we write it as (∇A · ∇)∇χ = ∇(∇χ · ∇A)− (∇χ · ∇)∇A. Equating the perpendicular
components of the current at lowest order, we obtain[

∇
(

B1

μ0Bv

)
+ 1

B2
v

∇p
]

× ∇χ = 0. (2.4)

Unless the second term is a gradient, both terms are linearly independent and must be
individually zero at order ε (see Appendix A for details). If the second term is a gradient,
we must have either Bv = Bv( p) or Bv = B0 + O(ε) where B0 = const; however, the
former cannot be true as |B| can only be a flux function in axisymmetry (Schief 2003), and
since |B| = Bv + O(ε2), Bv cannot be a flux function either. Thus, to satisfy the equation,
we must either ensure that both terms are individually zero, i.e. p = O(ε2) and B1 = 0,
or let Bv = B0 + O(ε). The former corresponds to the equilibrium limit of the Strauss
equations, and so we focus on the latter. The equation then yields:

B0B1

μ0
+ p = 0. (2.5)

This is simply the lowest-order radial pressure balance condition; similar expressions
appear in most reduced MHD models that assume p = O(ε) (Freidberg 2014; Zocco,
Helander & Weitzner 2020; Kruger, Hegna & Callen 1998). Taking the divergence of
(2.2) then gives the generalized version of Strauss’ (26) in the equilibrium limit:

B · ∇
(

j‖
B

)
+ ∇ ·

(
B × ∇p

B2

)
= −1
μ0

B · ∇Δ∗A + ∇
(

1
B2
v

)
· (∇χ × ∇p)+ O(ε3) = 0.

(2.6)
The only other equation of Strauss’ reduced MHD that is non-trivial in the equilibrium
limit can be written simply as B · ∇p = 0.

Equation (2.6) can be further simplified by exploiting the two-term quasisymmetry
condition, the imposition of which is equivalent to demanding that |B| = B(ψ,Mθ − Nφ)
(Helander 2014): (B × ∇ψ) · ∇B = F(ψ)B · ∇B, where ψ is the toroidal flux. Applying
the ordering, this condition can be written in one of two equivalent ways:

(∇χ × ∇Ψ ) · ∇Bv = B · ∇Bv, (2.7a)

(∇Bv × ∇χ) · ∇(Ψ + A) = ∇χ · ∇Bv, (2.7b)

where an alternate flux surface labelΨ = ∫
dψ/F(ψ) is defined to absorb the F(ψ) factor.

Note that F(ψ) is O(ε−1) (Helander 2014), so Ψ = O(ε). Using (2.7a), the second term in
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(2.6) can be rewritten as p′(∇χ × ∇Ψ ) · ∇B−2
v = p′B · ∇B−2

v , which results in both terms
in the equation having B · ∇ acting on something. Since p′ commutes with B · ∇, we can
remove the B · ∇ operator, obtaining a Grad–Shafranov-like equation:

Δ∗A − μ0
dp
dΨ

(
1

B2
v

− 1
B2

0

)
= H(Ψ ), (2.8)

where H and μ0p′/B2
0 are functions of Ψ that appear due to the integration. Although H is

arbitrary, the B0 term cannot be absorbed into it as it is necessary to cancel the O(1) part
of 1/B2

v so that all terms are of the same order. Further, note that H is a degree of freedom
that allows us to specify the toroidal current profile; its axisymmetric equivalent is the FF′

term in the standard Grad–Shafranov equation.
To make further progress, χ has to be specified explicitly. The constraint Bv = B0 +

O(ε), which, as we have seen, arises from the high-β assumption, requires that χ = B0l.
This can be seen by writing B2

v in orthogonal Mercier coordinates (ρ, ω, l) aligned to a
magnetic axis with curvature κ and torsion τ (Solov’ev & Shafranov 1970; Jorge et al.
2020):

B2
v =

(
∂χ

∂ρ

)2

+ 1
ρ2

(
∂χ

∂ω

)2

+ 1
h2

(
∂χ

∂l

)2

= B2
0 + O(ε), (2.9)

where h = 1 − κρ cos θ , θ = ω − ∫ l
0 τdl. On the axis, we must have ∂χ/∂ρ|ρ=0 =

limρ→0 ρ
−1∂χ/∂ω = 0, since the axis is a field line. Thus, the constant B2

0 can only come
from the last term. It then follows that κρ = O(ε), so that 1/h2 = 1 + O(ε); otherwise, χ
would have depended on ρ and ω at the lowest order, which is a contradiction. With that in
mind, we can integrate at the zeroth order, obtaining χ = B0l + O(ε). We can ignore the
O(ε) correction to χ without loss of generality; as will be shown at the end of the section,
it can be absorbed into the ∇A × ∇χ term. Note that we can now give ε a more intuitive
meaning: given that ρ ∼ r0 and κ, τ ∼ 1/R0, we should order r0 = O(1) and R0 = O(ε),
and hence we have a large aspect ratio expansion with ε acting as the inverse aspect ratio.
Finally, it should be emphasized that the only arbitrary assumption made in this derivation
is that p = O(ε). The rest of the ordering, while not rigorous, is still justified by heuristic
arguments.

As a sanity check, we will demonstrate that χ = B0l only breaks the divergence-free
condition at second order, which is acceptable, since this is a first-order model. Using the
Laplace operator in orthogonal Mercier coordinates (see (3.4) of Sengupta et al. (2024b)),
we have

∇2χ = 1
ρh

∂

∂ρ

(
ρh
∂χ

∂ρ

)
+ 1
ρ2h

∂

∂ω

(
h
∂χ

∂ω

)
+ 1

h
∂

∂l

(
1
h
∂χ

∂l

)
= −B0

h3

∂h
∂l

= O(ε2),

(2.10)

since h = 1 + O(ε) and ∂/∂l = B−1
0 h2∇χ · ∇ = O(ε).

Throughout the rest of the paper, we will use non-orthogonal Mercier coordinates
(x, y, l), where x = ρ cos θ and y = ρ sin θ . The metric tensor is as follows (Solov’ev &
Shafranov 1970):

gik = 1
h2

⎛
⎜⎝

h2 + τ 2y2 −τ 2xy τy

−τ 2xy h2 + τ 2x2 −τx

τy −τx 1

⎞
⎟⎠ , h = 1 − κx. (2.11)
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Using the metric tensor and χ = B0l, which implies Bv = B0/h, (2.7b) can be written as

B2
0
∂

∂y
(Ψ + A) = −B2

0

(
τy + 1

κ

dκ
dl

x
)
. (2.12)

The non-orthogonal Mercier coordinates have simplified the equation such that it can now
be integrated:

Ψ + A = −τy2

2
− 1
κ

dκ
dl

xy + a(x, l), (2.13)

where a is an arbitrary function. This allows us to write (2.8) as an equation for Ψ :

Δ⊥Ψ + τ − ∂2a
∂x2

= 2μ0

B2
0

dp
dΨ

κx − H(Ψ ), (2.14)

where we have used Bv = B0|∇l| = B0/(1 − κx) and Δ∗ = Δ⊥ + O(ε), and dropped
terms of order ε2 and higher.

Although we now have an equation for Ψ , solving it is non-trivial, as Ψ is
overconstrained, due to also having to satisfy the equation B · ∇Ψ = 0, which, after
inserting A from (2.13), can be written in Mercier coordinates as

∂Ψ

∂l
− 1
κ

dκ
dl

x
∂Ψ

∂x
+
(

1
κ

dκ
dl

y − τx − ∂a
∂x

)
∂Ψ

∂y
= 0, (2.15)

where we have inserted the expression for A from (2.13). The characteristics of this
equation are given by

κx = C1; y
κ

= −C1

∫
τ

κ2
dl −

∫
1
κ

∂a
∂x

∣∣∣∣
x=C1/κ

dl + C2. (2.16a,b)

For Ψ to satisfy (2.15), it must be a function of only C1 and C2, as defined in (2.16a,b).
One must then ensure that the function also satisfies (2.14) at all values of l.

Having derived the model, we now show that adding an O(ε) correction to χ will not
change it. Thus, if the assumption that the B0l is the dominant term in χ holds, the model
is fully general. Indeed, suppose that we add a correction χ1 = O(ε) to χ , then at order ε,
this term can be absorbed into the ∇A × ∇χ term by replacing A 
→ A + Ã, where ∇χ1 =
B0∇Ã × ∇l. The fact that such an Ã exists can be seen by writing out the contravariant x
and y components of this relation:

∂χ1

∂x
= B0

∂Ã
∂y

+ O(ε2),
∂χ1

∂y
= −B0

∂Ã
∂x

+ O(ε2). (2.17a,b)

These are just the Cauchy–Riemann equations; since χ1 must satisfy the Laplace equation
at order ε, a corresponding Ã is guaranteed to exist.
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3. Consistency with the first-order near-axis model

The simplest ansatz for Ψ that will work in this model is a quadratic polynomial in C1
and C2, which are defined in (2.16a,b):

Ψ = s1C2
1 + s2C1C2 + s3C2

2 = s1(κx)2 + s2(κx)
( y
κ

+ κxΛ
)

+ s3

( y
κ

+ κxΛ
)2

= (s1 + s2Λ+ s3Λ
2)(κx)2 + (s2 + 2s3Λ)xy + s3

( y
κ

)2
, (3.1)

whereΛ = ∫
κ−2(τ + a2) dl; and a was chosen as a = a2(l)x2/2. This represents a plasma

with an elliptic cross-section that rotates about the magnetic axis as l varies. Inserting this
expression into the Grad–Shafranov equation (2.14), we obtain an equation expressing a2
in terms ofΛ. Note that, when inserting (3.1) into the Grad–Shafranov equation, all terms
on the left-hand side of (2.14) will depend only on l, whereas terms on the right-hand side
can depend on all three variables. Thus, we further assume p = O(ε2) and H(Ψ ) = H0 =
const; this is consistent with the near-axis model, where pressure enters only at the second
order. Proceeding, we have

2(s1 + s2Λ+ s3Λ
2)κ2 + 2

s3

κ2
+ τ − a2 + H0 = 0. (3.2)

Finally, we can combine dΛ/dl = (τ + a2)/κ
2, which follows from the definition of Λ,

with the above equation, resulting in a Riccati equation for Λ:

dΛ
dl

− 2(s1 + s2Λ+ s3Λ
2)− 2s3

κ4
− 2τ
κ2

− H0

κ2
= 0. (3.3)

The last step is to enforce periodicity on Λ. Averaging the above equation over l removes
the derivative term, resulting in the following constraint:

− 2(s1 + s2〈Λ〉 + s3〈Λ2〉)− 2s3

〈
1
κ4

〉
− 2

〈 τ
κ2

〉
− H0

〈
1
κ2

〉
= 0, (3.4)

where 〈f (l)〉 = L−1
∫ L

0 f (l)dl, with L being the axis length. Thus, only two of the si
constants are free, with the remaining one determined by the above constraint. In practice,
since Λ is not known a priori, (3.3) and (3.4) must be solved iteratively: first, one makes
an initial guess for the unknown si, then (3.3) is solved forΛ, which allows one to calculate
the corrected value of the unknown si from (3.4); this cycle is repeated until convergence
is achieved. This same method is used in the near-axis model to solve the σ -equation while
simultaneously finding the correct rotational transform that is compatible with periodicity
(Landreman, Sengupta & Plunk 2019).

Now consider the lowest order near-axis expression for Ψ (Jorge et al. 2020):

Ψ  ψ

F0
 πB0

F0
ρ2[cosh η + sinh η cos 2(θ + δ)]

= πB0

F0
[(cosh η + sinh η cos 2δ)x2 − 2 sinh η sin 2δ xy + (cosh η − sinh η cos 2δ)y2],

(3.5)

where x = ρ cos θ , y = ρ sin θ , F0 is the value of F(ψ) on axis and η and δ are functions
of l. Note that F0, as defined here, is the inverse of the F0 of Jorge et al. (2020).
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In quasisymmetry, we have cosh η − sinh η cos 2δ = η̄2/κ2 (Jorge et al. 2020). Since
η̄ = const1 , the y2 term of (3.1) agrees with that of (3.5) and s3 = πB0η̄

2/F0. Further,
taking 4(coef. of x2)(coef. of y2)− (coef. of xy)2 from (3.5), we see that the l-dependent
terms cancel and we are left with just a constant, 4π2B2

0/F
2
0. Likewise, when using the

corresponding coefficients from (3.1), the terms with Λ cancel and we get 4s1s3 − s2
2 =

4π2B2
0/F

2
0.

Next, we show that (3.3) is equivalent to the σ -equation of Jorge et al. (2020). A relation
between Λ and σ can be obtained by comparing the coefficients of xy in (3.1) and (3.5).
Since σ = sinh η sin 2δ (Jorge et al. 2020), we have

Λ = −πB0

F0s3
σ − s2

2s3
. (3.6)

Inserting this into (3.3) and replacing the si variables with near-axis variables, we get

dσ
dl

+ 2πB0

F0

(
1 + σ 2 + η̄4

κ4

)
+ 2τ

η̄2

κ2
+ H0

η̄2

κ2
= 0. (3.7)

In the case where H0 = 0, this equation reduces to (29) of Jorge et al. (2020).
To conclude this section, we show that when s2 = 0, there is a simple relationship

between the characteristics and Boozer angles. Choosing a value for s2 is similar to gauge
fixing, since a non-zero s2 simply represents a deviation of the ellipse from the upright
position in the (C1,C2) plane. The orientation of the ellipse in real space is determined by
σ , which is unaffected by changes in s2, as long as the initial condition for Λ is changed
accordingly. The coordinates x and y can be written in terms of C1,C2 as

x = C1

κ
, y = κC2 − κΛC1. (3.8a,b)

Meanwhile, (1) and (54) from Jorge et al. (2020) give

r = r0 + xn + yb = r0 +
√
ψ

πB0

[
η̄

κ
cosϑn + κ

η̄
(sinϑ + σ cosϑ)b

]
. (3.9)

Equating the two and using the relations between Λ and σ as well as s3 and η̄, we arrive
at the following:

C1 = F0

πB0

√
s3Ψ cosϑ, C2 =

√
Ψ

s3
sinϑ, (3.10a,b)

where ϑ = θB − NφB, with θB and φB being the Boozer angles.

4. New classes of solutions

We now present three classes of exact and approximate solutions to (2.14) and (2.15)
that fall outside the scope of the near-axis model. We will begin with a cubic polynomial
solution with constant H and then proceed to a non-polynomial solution and a solution
with variable H.

1In the near-axis literature, η̄ is a parameter that controls the extent of the flux surfaces in the normal direction for
a given curvature. The maximum x for a flux surface ψ is xmax(l) = η̄

√
ψ/(κ(l)

√
πB0); see figure 2 of Rodríguez &

Bhattacharjee (2021) for an illustration.
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4.1. Cubic solution with finite pressure
Consider the following cubic polynomial in C1 and C2:

Ψ = s1C2
1 + s2C1C2 + s3C2

2 + rC3
1

= (s1 + s2Λ+ s3Λ
2)(κx)2 + (s2 + 2s3Λ)xy + s3

( y
κ

)2
+ r(κx)3. (4.1)

Inserting this ansatz into (2.14), the following is obtained:

2(s1 + s2Λ+ s3Λ
2)κ2 + 2s3

κ2
+ 6rκ3x + τ − a2 = 2μ0p1

B2
0
κx − H0, (4.2)

where we have additionally assumed that dp/dΨ = p1 = const, H(Ψ ) = H0 = const and
a = a2(l)x2/2. Only two terms in the above equation depend on x; equating those two
terms, we get

r = μ0p1

3B2
0κ

2
, (4.3)

while the remaining terms match (3.2). Thus, a solution is obtained by first finding
a quadratic solution, as discussed in § 3, and then adding a cubic term r(κx)3 with r
given by (4.3). Equation (4.3) also imposes the constraint that κ = const, but, since τ
is unconstrained, we can still get non-planar closed curves. At this point, we can see why
rC3

1 is the only cubic term that we can include in (4.1). If we were to add cubic terms that
involve C2, then (4.2) would also have terms that depend on y and we would end up with
an additional equation that would constrain τ , meaning that we would not be able to ensure
that the axis is closed.

Finally, note that while this cubic solution seems to be superficially similar to a
second-order near-axis solution, there is a fundamental difference. Namely, the near-axis
model assumes that the cubic term is a correction that is much smaller than the quadratic
terms, whereas the present solution allows the cubic term to be of the same order as the
quadratic ones. Also, unlike the second-order near-axis model, where the quasisymmetry
error is O(ε3), the present solution is still first order, so the quasisymmetry error will be
O(ε2).

4.2. Non-polynomial approximate solutions
In this subsection, we will show an approximate solution that consists of a rotating
ellipse, which, as we have seen in the previous section, can be represented as
a quadratic polynomial, and a non-polynomial perturbation. As we will perform a
subsidiary expansion, it is convenient to rescale all quantities to be zeroth order
in ε. Thus, after performing the following replacement: {κ, η̄, τ, a2,H0, Ψ, d/dl} 
→
ε{κ, η̄, τ, a2,H0, Ψ, d/dl} and F0 
→ F0/ε, we see that the ε parameter is cancelled in
(2.14) and the rotating ellipse solution (3.1).

Now consider the case when s2 = 0; then, using the expressions for the si variables and
Λ that we found in § 3, we have s3 = πB0η̄

2/F0, s1 = πB0/(F0η̄
2) and Λ = −σ/η̄2. The

rotating ellipse solution can be represented as

Ψre = πB0

F0

(
1
η̄2

C2
1 + η̄2C2

2

)
= πB0

F0
(c2

1 + c2
2), (4.4)
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where the integration constants of the characteristics (2.16a,b) have been rescaled with
respect to η̄:

c1 = C1

η̄
= κx

η̄
, c2 = η̄C2 = η̄y

κ
+ η̄κxΛ = η̄y

κ
− κxσ

η̄
(4.5a,b)

yielding the normal form representation. We add to (4.4) a non-polynomial perturbation
f , and use the relation F−1

0 = (ι0 − N)/(2πB0r0), which was found by Jorge et al. (2020),
with ι0 being the rotational transform on axis and N the helicity of the quasisymmetry.
Here, the axis length L was replaced with the characteristic value of the minor radius
r0 = εL/(2π), due to F0 having been rescaled with respect to ε. The resulting ansatz is as
follows:

Ψ = ι0 − N
2r0

[
(c2

1 + c2
2)+

(
η̄

κ0

)2

f (c2 + σ0c1)

]
, (4.6)

where κ0 is the minimum value of κ . Inserting this ansatz into the Grad–Shafranov
equation (2.14), multiplying everything by (η̄/κ)2 and using a2 = κ2 dΛ/dl − τ =
−(κ/η̄)2 dσ/dl − τ , the following is obtained:

ι0 − N
2r0

[
2(1 + σ 2)+ 2

(
η̄

κ

)4

+
(
η̄

κ0

)2
(
(σ0 − σ)2 +

(
η̄

κ

)4
)

f ′′
]

+ dσ
dl

+
(
η̄

κ

)2

(2τ + H0) = 0. (4.7)

We can now carry out a subsidiary expansion in the limit of small η̄2, i.e. (η̄/κ0)
2 � 1, but

(η̄/κ0)
4 > ε since we keep terms at that order in (4.6). This corresponds to the limit of a

high aspect ratio stellarator with a highly elongated cross-section. Given that σ ∼ η̄2 and
ι0 − N ∼ η̄2 (Rodriguez 2022), the two lowest orders of the above equation are as follows:

O

((
η̄

κ0

)2
)

:
dσ2

dl
+ ι0,2

r0
= −

(
η̄

κ

)2

(2τ + H0),

O

((
η̄

κ0

)6
)

:
dσ6

dl
+ ι0,6

r0
= − ι0,2

r0

[
σ 2

2 +
(
η̄

κ

)4
]
,

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(4.8)

where σ = σ2 + σ6 with σn ∼ η̄n, and ι0 = N + ι0,2 + ι0,6 with ι0,n ∼ η̄n. The values of
ι0,n are determined by enforcing periodicity on σn: (4.8) is averaged over l, which removes
dσn/dl; the ι0,n term must then be equal to the average of the right-hand side. Since we
only solve (4.7) up to O((η̄/κ0)

6) and f does not appear until O((η̄/κ0)
8), we can treat f as

a free function. If we were to attempt to solve this equation at O((η̄/κ0)
8), then only the

trivial solution f ′′ = const (i.e. f is a quadratic polynomial) would be permitted.

4.3. Approximate solution with variable H
We conclude this section by presenting a rotating ellipse approximate solution where
H(Ψ ) = H0 + H1Ψ . We also add a quartic term to a: a = a2(l)x2/2 + a4(l)x4/24, so the
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rescaled characteristics become

c1 = κx
η̄
, c2 = η̄y

κ
+ η̄κxΛ+ η̄κ3x3

6
V,

Λ =
∫
τ + a2

κ2
dl, V =

∫
a4

κ4
dl.

⎫⎪⎪⎬
⎪⎪⎭ (4.9)

Just like in the previous subsection, we rescale all quantities to be zeroth order in ε and let
s2 = 0. In addition, we order H1 ∼ η̄2 and a4 ∼ η̄2. It can now be seen that in the rotating
ellipse ansatz (4.4), terms with x or y raised to a power higher than two only appear at
order (η̄/κ0)

6 and higher. Thus, up to O((η̄/κ0)
4), it is still purely a rotating ellipse.

Inserting the rotating ellipse solution (4.4) with the new characteristics (4.9) into the
Grad–Shafranov equation (2.14) and multiplying everything by (η̄/κ)2, the following
equation is obtained:

ι0 − N
r0

[
(1 + σ 2)+

(
η̄

κ

)4
]

+ dσ
dl

+
(
η̄

κ

)2 (
2τ − a4

x2

2
+ H0

)

+ ι0 − N
2r0

H1x2 + O

((
η̄

κ0

)8
)

= 0, (4.10)

where we have again used a2 = −(κ/η̄)2 dσ/dl − τ . Just as in the previous subsection, the
above equation can be solved order by order. The three lowest orders are as follows:

O

((
η̄

κ0

)2
)

:
dσ2

dl
+ ι0,2

r0
= −

(
η̄

κ

)2

(2τ + H0),

O

((
η̄

κ0

)4
)

:
(
η̄

κ

)2

a4 = ι0,2

r0
H1,

O

((
η̄

κ0

)6
)

:
dσ6

dl
+ ι0,6

r0
= − ι0,2

r0

[
σ 2

2 +
(
η̄

κ

)4
]
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.11)

Thus, σ is still determined by the same equations as (4.8); in addition to that, we also have
an equation to determine a4.

5. Numerical example

While the model presented in this paper was derived with high-β equilibria in mind,
the only high-β equilibrium that we have been able to find analytically is the constant
curvature one presented in § 4.1. In this section, we will instead illustrate the approximate
solution discussed in § 4.2 with a numerical example of a quasiaxisymmetric (N = 0)
device. This approximate solution has another important property that we wanted our
model to include: non-zero shear. We were unable to get a numerical equilibrium with
high β because VMEC failed to find a solution for all of the non-planar constant curvature
axes that we could find, due to their high shaping. We leave the numerical verification of
the analytical solution in § 4.1, as well as the numerical search for other high-β solutions
for future work.

The example is constructed by numerically solving (4.8), and is then compared with
both VMEC (Hirshman & Whitson 1983) results and the closest near-axis approximation,
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FIGURE 1. The outermost flux surface of the VMEC equilibrium based on the solution with a
sixth-order polynomial perturbation. Colour represents |B|.

which is identical to taking f = 0. The pyQSC code (Landreman et al. 2020–2023) was
used to solve the σ equations and generate VMEC input files, based on the method
described by Landreman & Sengupta (2019).

While the solution in § 4.2 allows for arbitrary f , here we will consider a sixth-order
polynomial, f (c) = (0.3 m−2)c4 + (0.3 m−4)c6, where c = c2 + σ0c1; this is higher order
than the cubic polynomials of the second-order near-axis model. We consider a
four-field-period solution with η̄ = 2.01735426 × 10−2 m−1, B0 = 1 T, H0 = 0. Equations
(4.8) result in rotational transforms ι0,2 = 0.188923174 and ι0,6 = −0.031115615. The axis
shape given by

R(φ) = 29.7794783 − 3.63597602 × 10−1 cos 4φ + 1.47477208 × 10−1 cos 8φ

+1.35576435 × 10−2 cos 12φ,

z(φ) = 1.93173817 sin 4φ + 2.38762327 × 10−2 sin 8φ − 7.72243217 × 10−3 sin 12φ,

⎫⎪⎪⎬
⎪⎪⎭

(5.1)

where R and z are the cylindrical coordinates in metres. The value of (η̄/κ0)
2 for this axis is

approximately 0.3. The VMEC equilibrium, obtained by constructing the F0Ψ/π = 4 T m2

surface using (4.6) and passing it to VMEC as the boundary, is shown in figure 1. The
aspect ratio of the resulting stellarator is 16.5. The assumption dp/dΨ = 0, made when
constructing the base solution in § 3, and the choice of H0 correspond to pressure and
toroidal current profiles of zero; this was specified in the VMEC input. The total toroidal
flux in the VMEC input was determined by multiplying B0 by the plasma cross-section
area in the plane perpendicular to the axis.

Figure 2(a,b) compares the flux surfaces of the present Grad–Shafranov model, obtained
from (4.6), to both the flux surfaces calculated by VMEC and the flux surfaces of
the closest near-axis approximation, as given by (4.4). All flux surfaces are shown
on the φ = 0 poloidal plane. As expected, near the axis, the near-axis flux surfaces
closely match those of the Grad–Shafranov model, but further away from the axis,
the Grad–Shafranov surfaces become non-elliptic as the contribution from f becomes
non-negligible. Figure 2(c) compares the ι profiles in the near-axis and Grad–Shafranov
models. These are computed numerically by first calculating the toroidal flux ψ at each
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(a) (b) (c)

FIGURE 2. (a) A comparison of the flux surfaces computed from (4.6) (lines) to the closest
near-axis approximation (dots). (b) Flux surfaces computed from (4.6) (lines) compared with
the flux surfaces computed by VMEC (dots). The flux surfaces are shown for F0Ψ/π =
0.1, 0.3, 0.5, 1, 2, 4 T m2. (c) ι profiles computed in the Grad–Shafranov model, the near-axis
model and the constant ι0.

value of Ψ , then finding F = dΨ/dψ and using the formula

F(ψ) = G(ψ)+ NI(ψ)
ι(ψ)− N

, (5.2)

which is given by Helander (2014) as an unnumbered equation. Again, these agree well
with each other and the ι0 constant near the axis, but the Grad–Shafranov solution has
a noticeable shear. The ι profiles calculated by VMEC (not shown here) do not match
the Grad–Shafranov and near-axis profiles shown in figure 2(c), with the ι on axis in
the corresponding VMEC solutions being greater by approximately 0.06 and 0.024,
respectively. A similar mismatch with VMEC has been observed by Sengupta et al.
(2024b); it likely appears because the boundary (and not the axis) is fixed in VMEC, so
for a finite aspect ratio, the VMEC axis does not match the axis given by (5.1). There are
also additional complications arising from VMEC having a coordinate singularity on the
axis (Panici et al. 2023a). Just as was reported by Sengupta et al. (2024b), the agreement
between the ι on axis in VMEC and that predicted by the Grad–Shafranov model improves
as the aspect ratio is increased. Finally, figure 3 shows that the maximum quasisymmetry
error, defined as

max
ψ

√∑
n�=0

B̂n,m(ψ)2/
∑
n,m

B̂n,m(ψ)2, (5.3)

and calculated in VMEC equilibria with varying aspect ratios, scales as ε2. Here, B̂n,m(ψ)
are the Fourier modes of |B| on flux surface ψ . This behaviour is to be expected, since we
have only ensured quasisymmetry at order ε.

6. Conclusion

We have derived a first-order asymptotic model for high-β (β = O(ε)) quasisymmetric
stellarators under the assumption that the vacuum magnetic field is dominant (ε � 1),
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FIGURE 3. Maximum quasisymmetry error (black dots) scales as ε2 (dashed blue line is 10ε2).

but non-vacuum effects can still contribute (∇χ · ∇ = O(ε)). We have shown that
these assumptions require the aspect ratio to be large and a simple expression is
obtained for the lowest-order vacuum field (∇χ = B0∇l). The first-order correction, which
involves both vacuum and current-driven fields, is then governed by a Grad–Shafranov
equation and the requirement that flux surfaces exist (B · ∇Ψ = 0). Unlike the more
simple near-axisymmetric case considered in our previous work (Sengupta et al. 2024a),
which is a special case of the present model, the overconstraining problem cannot be
resolved in general. Thus, one must look for special solutions that satisfy both equations
simultaneously. One family of such solutions, and thus another special case of this model,
is the first-order quasisymmetric near-axis solutions.

We also provide several new solutions which are outside the scope of both the near-axis
model and our previous near-axisymmetric model, and show a numerical example of one
of these new solutions. When comparing the numerical results from the present model to
VMEC, the flux surfaces match well, but the ι profiles show a mismatch which decreases
as the aspect ratio is increased. The mismatch is most likely due to VMEC shifting the
axis during minimization, so the VMEC axis does not exactly match the axis used when
solving the Grad–Shafranov equation. We plan to use DESC in future work to re-evaluate
the agreement between ι profiles. DESC has the option of fixing the axis (Panici et al.
2023b) and avoids large errors on axis, which are typical for VMEC, by using Zernike
polynomials (Panici et al. 2023a). Finally, DESC can handle highly shaped axes better than
VMEC, and is a more appropriate tool for doing a numerical verification of the analytical
solution in § 4.1, as all of the non-planar constant curvature axes that we have found so far
are highly shaped.

We expect that the analytical solutions found in this paper are only a small subset of
all possible solutions to the model we derived. In future work, we plan to implement a
numerical solver that will look for solutions by constructing a function basis in C1,C2
space and looking for functions and boundary shapes that minimize the residual in the
Grad–Shafranov equation (2.14).

Another line of work that we intend to pursue is the construction of a similar model
in the low-β (β = O(ε2)) regime. As discussed in § 2, in the low-β regime, there are no
constraints on χ , aside from satisfying the Laplace equation. This allows for a richer set
of solutions, including compact stellarators, at the expense of analytical progress being
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more difficult. Nevertheless, as will be shown in a future publication, some analytical
progress, such as finding the characteristics of the B · ∇Ψ = 0 equation, is still possible.
Finally, the low-β model is closely related to the reduced MHD model implemented in
the JOREK code (Hoelzl et al. 2021; Nikulsin 2021; Nikulsin et al. 2021), with the
main difference being that the JOREK models use an ansatz instead of an ordering.
Implementing a numerical solver for this model will allow one to initialize JOREK
simulations of quasisymmetric stellarators from the Grad–Shafranov solutions instead of
importing GVEC equilibria.

Acknowledgements

The authors thank P. Helander, S. Buller, E. Paul, E. Rodriguez, A. Brown, S. Hudson,
M. Landreman, F.P. Diaz, H. Zhu and V. Duarte for fruitful discussions.

Editor Per Helander thanks the referees for their advice in evaluating this article.

Funding

This research was supported by a grant from the Simons Foundation/SFARI (560651,
AB) and the Department of Energy Award No. DE-SC0024548.

Declaration of interests

The authors report no conflict of interest.

Appendix A. Perpendicular force balance terms with general Bv
In this appendix, we will provide a rigorous proof that the two terms in (2.4) are linearly

independent when Bv �= B0 + O(ε). First, suppose that the two terms are not linearly
independent; then we can write

∇
(

B1

μ0Bv

)
+ 1

B2
v

∇p = f ∇g, (A1)

where f and g are some functions to be determined. If the above equation holds, then the
left-hand side should be orthogonal to its own curl:

0 =
[
∇
(

B1

μ0Bv

)
+ 1

B2
v

∇p
]

· ∇ ×
[
∇
(

B1

μ0Bv

)
+ 1

B2
v

∇p
]

= 2
μ0B4

v

∇B1 · (∇p × ∇Bv).

(A2)

Thus, B1 must be a function of only p and Bv. Using this fact and dotting (A1) with
∇p × ∇Bv, we get ∇g · (∇p × ∇Bv) = 0 if f �= 0; thus g must also be a function of only
p and Bv.

For (2.4) to be satisfied, we must have either f = 0 or g = const or g = g(χ). Consider
the latter case first. Since g(χ) = g( p,Bv), this is an equation that can be solved for
Bv, giving Bv = Bv( p, χ). If we insert this into the quasisymmetry condition (2.7a), we
will get B · ∇χ ∂Bv/∂χ = 0 since B · ∇p = 0, meaning that Bv must be a flux function,
which is a contradiction since |B| = Bv + O(ε2) and |B| can only be a flux function in
axisymmetry (Schief 2003).

Alternatively, if either f = 0 or g = const, (A1) will have the following two components
in the ∇p and ∇Bv directions:

1
μ0Bv

∂B1

∂p
+ 1

B2
v

= 0,
1

μ0Bv

∂B1

∂Bv
− B1

μ0Bv
= 0. (A3a,b)
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These two equations for B1 are incompatible. Integrating the first one, we get B1/μ0 =
−p/Bv + u(Bv), where u is an arbitrary function. Inserting this into the second equation,
we get u′ − u/Bv = −2p/B2

v, which is a contradiction since u cannot depend on p. Finally,
note that the contradiction is resolved if Bv = B0 + O(ε), since ∇Bv = O(ε) in that case,
which will remove the second equation, while the solution to the first equation will become
the pressure-balance relation (2.5).

Appendix B. Near-axisymmetric and near-helically-symmetric solutions

Previously (Sengupta et al. 2024a), we derived a condition for consistency between
the Grad–Shafranov equation and the B · ∇Ψ = 0 equation, and then used it to obtain a
condition on a under which the two equations are consistent for all solutions Ψ . We can
attempt a similar approach for the present model, but it will exclude many solutions of
interest, including all solutions discussed in §§ 3 and 4.

To obtain the consistency condition, we apply the B · ∇ operator to (2.14), and commute
B · ∇ with Δ⊥:

Δ⊥B · ∇Ψ + [B · ∇,Δ⊥]Ψ + B · ∇
(
τ − ∂2a

∂x2
− 2μ0

B2
0

dp
dΨ

κx
)

= 0. (B1)

The whole equation must be satisfied if (2.14) is satisfied; however, the first term must
be individually zero since B · ∇Ψ = 0. Removing the first term and working out the
commutator, the following consistency condition is obtained:

2
∂2Ψ

∂x∂y

(
τ + ∂2a

∂x2

)
+ 2

(
∂2Ψ

∂x2
− ∂2Ψ

∂y2

)
1
κ

dκ
dl

+ ∂3a
∂x3

(
∂Ψ

∂y
+ 1
κ

dκ
dl

x
)

+ ∂

∂�

(
τ − ∂2a

∂x2

)
= 0. (B2)

The only case where it is satisfied independent of Ψ is if a(x, l) = a0(l)+ xa1(l)− τx2/2
and dτ/dl = dκ/dl = O(ε3). When τ = 0 and κ = 1/R0, this consistency condition
reduces to that derived previously (Sengupta et al. 2024a), which limited the stellarator
to being a perturbed tokamak. In addition to the vertical perturbation discussed previously
(Sengupta et al. 2024a), the condition above explicitly allows the tokamak to be perturbed
in the R-direction; such a perturbation, if it is of the order of the minor radius, will result
in an O(ε2) correction to κ , which still satisfies dκ/dl = O(ε3). Finally, when τ �= 0, the
axis becomes an open helix, which corresponds to the straight stellarator limit. Similar
to the tokamak, the straight stellarator can be perturbed in both the normal and binormal
directions by manipulating κ and a1.
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