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Abstract
We estimate the economic value of birding, which is an important ecosystem service
produced by bird populations in recreation areas. Our research identifies the link between
values and species richness as well as the abundance of the sandhill crane (Grus
canadensis), which migrates each year through our study area. Sandhill crane stopovers at
state and federal wildlife areas can attract many birders. We estimate this nonmarket value
using the zonal travel cost method and data from the eBird project on wildlife areas in
Indiana. We compare crane counts based on eBird with those from the Indiana
Department of Natural Resources (DNR). We find important differences depending on
whether we use eBird or DNR counts. On average, birders are willing to pay $28 per trip to
sites in the study area and less than $1 per trip to see an additional species, while the value
of 1000 more cranes is either about $1 or $10 per trip depending on how abundance is
measured.

Keywords: Nonmarket valuation; ecosystem services; zonal travel cost method; eBird

Introduction

This paper measures the economic value of bird watching in Indiana using the travel cost
method. We propose that the demand for birding at recreation areas is a function of
species richness and bird abundance. We estimate a demand model of birding visits using
data from eBird, a citizen science database that tracks species distributions, habitat use and
population abundance using checklists submitted by birdwatchers (Sullivan et al. 2014).
We use eBird’s sampling event and bird sighting databases to generate panel data on trips
and site attributes. We also measure population abundance of the sandhill crane (Grus
canadensis), a charismatic migratory species in the study area. Focusing on crane
abundance helps shed light on different abundance measures in valuation studies, because
the Indiana Department of Natural Resources (DNR) has a unique weekly crane count
program, which allows us to compare eBird-based estimates with those generated by
the DNR.
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Few valuation topics have been studied as extensively as wildlife, with hundreds of
published estimates on the value of hunting, fishing, and wildlife watching (Rosenberger
2016). One common approach applies the travel cost method to a recreation demand
model describing site visits (Haab and McConnell 2002; Lupi et al. 2020). Ideally, this
model includes species abundance or related measures, such as harvest rates, as site
attributes, which allows a researcher to measure the effect of wildlife on demand (e.g.
Adamowicz et al. 1997). In practice, though, collecting this data is challenging. Wildlife
populations, if they are even measured, may vary little between sites or suffer from
collinearity with other site attributes (von Haefen and Phaneuf 2008). Except for
applications to recreational fishing, which benefit from the availability of harvest statistics
and creel surveys (Melstrom et al. 2015; Hunt et al. 2019), few valuation studies
measurably account for the effect of wildlife populations per se on demand (Fenichel et al.
2018). This is a crucial knowledge gap because natural capital and income accounting relies
on marginal population values (Fenichel and Abbott 2014). This has pushed researchers
toward stated preference methods (e.g. Naidoo and Adamowicz 2005; Grilli et al. 2018),
which can identify the effect of wildlife populations on demand but obviously not in situ
values for wildlife in settings where such data are missing.

One promising solution to this missing data problem is citizen science in which
volunteers enter descriptions of their wildlife experiences to a database. Several of the
earliest citizen science efforts focused on documenting bird populations, such as the
Audobon Society’s Christmas Bird Count, which continues to this day. One increasingly
popular project is eBird. Recent research has used eBird to estimate the economic value of
birdwatching (Kolstoe and Cameron 2017; Chen et al. 2022; Jayalath et al. 2023). These
studies show that researchers can use citizen science data to link economic values to
wildlife populations, although the reliability of estimates based on voluntary data remains
unclear.

Our research contributes to this literature in three ways. First, it provides information
about the value of birdwatching in an area not previously studied. Prior research on the
value of birdwatching may not be suitable for policy evaluations or benefit transfer in all
contexts, including Indiana or the US Midwest (Newbold and Johnson 2020). Our research
could support future recreational policy and benefit transfer applications in this region.
Second, we explore differences using eBird and DNR abundance data, which helps shed
light on the reliability of voluntary reporting to value wildlife populations. Third, our
research provides evidence that demand for wildlife viewing depends on population
abundance because we find that birding trips generally increase in locations with more
cranes. This addresses a key research gap in the recreation demand and valuation
literatures (Fenichel et al. 2018).

Methods

Model
This section describes the zonal travel cost method, which begins with a demand model of
the form:

tripsijt=Ni � eρtcij�δjt�αj�τt (1)

where tripsijt is the number of trips to site j from residential zone i at time t, Ni is the
population of birders living in i, and tcij is the travel cost between i and j (Willis and
Garrod 1991). In our application, δjt describes the effect of time-varying site quality, αj is a
site fixed effect, and τt is a time fixed effect. These fixed effects will control for site

2 Melstrom et al.
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attributes or time-varying shocks not explicitly included in the model, such as the presence
of a lake, parking, or weather. Our application pools trips across several sites and
characterizes time-varying site quality using measures of species richness and crane
abundance.1

We modify eq. (1) so that quantity demanded is trips per zone rather than trips per
zonal resident:

tripsijt � eln Ni� ��ρtcij�δjt�αj�τt (2)

which we estimate using Poisson regression. This means that we can interpret the
parameters in terms of changes in trips rather than trips per resident. Note that eq. (2)
takes the form of a count data model, which is similar to traditional single-site recreation
demand models (Parsons 2003). We briefly discuss this similarity further below. Although
it is common in the recreation demand literature to estimate count data models using
negative binomial regression to avoid problems with “overdispersion” (Holmes and Englin
2010), this is not necessary. Trips do not need to be Poisson distributed for the regression
to produce consistent parameters, which are robust to distributional misspecification.
Overdispersion can, however, severely bias Poisson standard errors. We correct this bias by
reporting “robust” standard errors using the sandwich estimator recommended by
Wooldridge (1999).2

Our approach identifies the effect of site attributes in δjt because we estimate eq. (2)
using data pooled across months and sites. The zonal method also implicitly pools trip data
across individuals coming from the same residential location. In contrast, traditional
single-site demand models use data on individuals’ seasonal trips. This allows researchers
to identify the effect of travel cost and individual characteristics on demand but not site
attributes. So, it is not possible to value quality changes with traditional single-site demand
models. However, researchers can value attributes by pooling trips over time, when quality
changes, or by stacking visitation and attribute data from multiple sites (Parsons 2003).
Our approach does both.

We estimate several specifications for δjt . The first is

δjt � β1richnessjt � β2anycranesjt (3)

where richnessjt is the count of species present and anycranesjt is an indicator that equals
one if sandhill cranes are among those present and zero otherwise. We follow Kolstoe and

1As pointed out by a reviewer, there are other methods to estimate values related to birding.
Contemporary valuation research prefers discrete choice models based on random utility maximization
(RUM) theory, which typically identifies the effects of site attributes using variation in a large number of
substitute sites. Recent studies on the value of birding apply RUM models to revealed preference data
(Kolstoe and Cameron 2017; Jayalath et al. 2023). Other research uses count data models of individual trips
(Edwards et al. 2011). Both RUM and count data models use the travel cost method to value trips. In
addition, many researchers have used contingent valuation (Bowker and Stoll 1988; Hvenegaard et al. 1989;
Heberlein et al. 2005; Stoll et al. 2006; Lee et al. 2009). There is also a literature on the expenditure value of
birding (Eubanks and Stoll 1999; Eubanks et al. 2004; Callaghan et al. 2018). We use a count data model and
the zonal travel cost method because we can summarize individual trips as a zonal count and the study area
is limited to a narrow list of sites. Although we do not estimate a RUM model, there is a link between our
approach and utility theory (Guimaraes et al. 2003; Schmidheiny and Brülhart 2011).

2Note that fixed effects negative binomial regression applied to panel data can fail to control for
individual effects (Guimarães 2008). We avoid the negative binomial for this reason, although we do note
that in trial regressions it produced similar parameters to the Poisson.
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Cameron (2017) and Jayalath et al. (2023) by including the number of species as a site
attribute.3 The parameter β1 measures the average effect of an additional species on trips
per zone, while the parameter β2 measures the contribution of cranes relative to other
species. A positive β1 would indicate that trips increase with the number of species, and a
positive β2 would indicate an even larger increase occurs if cranes are present. Put
differently, β2 > 0 implies that cranes have a larger positive effect than the presence of
another species, on average, while β2 < 0 means that cranes have a smaller effect than
another species.4

The next specification replaces the anycranesjt indicator with a measure of abundance,

δjt � β1richnessjt � β2cranesjt: (4)

where cranesjt is the population of cranes at j at time t. Crane abundance could affect trips
if birders prefer sites with more rather than fewer cranes, in which case β2 > 0. Of course,
by modeling this preference linearly, eq. (4) implicitly assumes that abundance has a
constant marginal effect. The third specification allows for nonlinear effects by separating
abundance into four bins,

δjt � β1richnessjt � β2Φ25jt � β3Φ50jt � β4Φ75jt � β5Φ100jt : (5)

where Φpjt is an indicator for population in quartile p, conditional on the presence of
cranes. Parameters β2 through β5 can shed light on the effect of cranes at different
population levels. For example, β5 � β4 � β3 > β2 > 0 implies that the effect of
abundance saturates when the population surpasses the median population at sites.

In the application that follows, we estimate equations (2)–(5) twice. First, we use
measures of richness and crane abundance generated from eBird. Second, we replace the
abundance variable with data from the Indiana DNR. The goal of eBird is to measure
populations that organizations do not have the resources to track professionally, but using
volunteers could lead to bias. Comparing DNR and eBird crane counts can shed light on
the accuracy of transferring models and welfare estimates based on one type of data to
another.

We can use the parameters to calculate consumer surplus for site access and quality
changes. The formula for access value, expressed in terms of willingness to pay (WTP), is

WTP � � 1
ρ

(6)

which is denominated in dollars per trip (Parsons 2003). In our application below, we also
estimate the value of a one-unit increase in species, WTPijt � � 1

ρ
eβ1 � 1
� �

tripsijt , and a
10% increase in the number of species,WTPijt � � 1

ρ
eβ1richnessijt × 0:1 � 1
� �

tripsijt , where the
terms in brackets measure the proportional change in trips in the location and time period
that experienced the change. Denominated per trip, the value of a one-unit increase is

WTP � � 1
ρ

eβ1 � 1
� �

; (7)

3In addition, Kolstoe and Cameron (2017) and Jayalath et al. (2023) allow for individual-specific and
seasonal heterogeneity in the effect of species richness. Similar to Jayalath et al. (2023), we found in trial
regressions some evidence of seasonal heterogeneity, with the smallest richness parameters in winter and the
largest parameters in summer. These results are available upon request. We also note that Jayalath et al.
(2023) find that there can be discrete effects associated with the presence of endangered birds.

4This interpretation also depends on whether β2j j < β1 or not. In particular, β2 < 0 and β2j j > β1 means
that trips decrease when cranes are present and hence birders have a distaste for cranes.

4 Melstrom et al.
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and for a 10% increase,

WTP �
X

i

X
j

X
t

1
ρ

eβ1richnessijt × 0:1 � 1
� �

=Ψ; (8)

whereΨ is the number of observations. Additionally, we use the form of eq. (7) and eq. (8)
to value unit and percentage changes in cranes when the effect of abundance is measured
as in eq. (4).

Study area
We apply the demand model to three areas in Indiana that experience large increases in

migratory species in the fall and spring. One of these species, the sandhill crane, is popular
with birders because it travels in large flocks and has a loud, distinct call. Like the
endangered whooping crane (Grus americana), sandhill cranes are large, standing about
three feet tall with a wingspan of six feet, although unlike their biological cousin, they are
not at risk of extinction. Public locations in Indiana with ideal habitat for cranes include
the Jasper-Pulaski, Goose Pond, and Muscatatuck wildlife areas (A. Phelps, DNR, personal
communication). These are also the properties where the Indiana DNR operates crane
counts, and thus where we apply the demand model. The remainder of this section briefly
describes these areas.

Jasper-Pulaski is a state fish and wildlife area that protects about 8200 acres of habitat in
northwest Indiana. Developed in the 1930s as a hunting and fishing preserve, large parts of
the wildlife area are now managed by the Indiana DNR as waterfowl habitat. The site
includes a crane observation platform and viewing scopes. DNR biologists have recorded
migration events that can bring as many as 30,000 cranes to the area on some days. The
media attention this generates makes this one of the best-known birdwatching locations in
the state, particularly during the fall (Greene 2020; Zorn 2021).

Goose Pond is a state fish and wildlife area that includes about 9000 acres of prairie and
marshland in southwest Indiana. After purchasing the property in 2005, the DNR restored
a wetland complex that had originally been drained for farming. In 2016, the DNR opened
a visitor center with an observation deck. The area provides habitat for a variety of wildlife,
with over 260 different types of birds documented. This makes it popular with
birdwatchers year-round (A. Phelps, DNR, personal communication).

Muscatatuck National Wildlife Refuge covers 7700 acres in south central Indiana.
Unlike the other two sites, Muscatatuck is a federally protected area. The US Fish &
Wildlife Service manages the site primarily as migratory waterfowl habitat and for wildlife
viewing. Visitors have access to hiking trails and a driving loop. Similar to Goose Pond, the
area provides ideal habitat for a large number of species that attracts birdwatchers
throughout the year, while the number of sandhill cranes during the migration season is
comparable to Jasper-Pulaski (Freedman 2023).

Although located in different areas, Jasper-Pulaski, Goose Pond and Muscatatuck are
similar in terms of size and habitat, which consists of a mix of wetland, prairie, and
bottomland forest. This similarity makes them potential substitutes for birdwatchers and
good candidates for a pooled site demand model. To be clear, there are many other wildlife
viewing areas in Indiana popular with birders. One concern is that excluding potential
substitutes from the model could lead to bias. However, in Appendix A, we show that
expanding the group of sites does not qualitatively affect the estimates. This suggests that
our conclusions are robust to a larger number of choice alternatives. In fact, as we discuss
below, WTP for site access and species richness from the model compare favorably with
estimates from existing, more complex RUM models of birdwatching in the literature.

Agricultural and Resource Economics Review 5
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Data
The primary data set comes from eBird, which tracks bird observations recorded through a
mobile application. After an observation or “sampling event,” volunteers submit a checklist
that indicates whether birding was the primary purpose and the birds they identified by
sight or sound. We downloaded the 2022 eBird database in two files: eBird data (EBD) and
sampling event data (SED). The EBD records the species data from sampling events,
including common and scientific name, number observed, location details, travel protocol,
date, an observed identifier, a group identifier, and a sampling event ID code. The location
data specifies state, county, and an eBird locality. Localities are geocoded and classified as
either personal or hotspot. Personal localities, which are observer-specific, can range from
an apartment balcony to the side of a county road. Hotspot localities are public areas
frequently used by birders. Travel protocol records whether a volunteer made an
observation while traveling, stationary, or incidentally. We used this data to drop
incidental trips.5 The SED contains the same variables as the EBD except that it is
organized by checklist rather than species, which we used to zero-fill crane counts, as
described below.

We used hotspots, the three wildlife areas and county boundaries to define sites in the
model. We identified five hotspots in Jasper-Pulaski, eight in Goose Pond, and sixteen in
Muscatatuck. We followed eBird’s recommendation to group hotspots in the same vicinity
by aggregating those in the same wildlife area and county. This is because wildlife areas can
have several hotspots with similar coordinates (e.g. different trails). Our approach ensures
that localities in the same vicinity are grouped to a common site. This produced two sites
for Jasper-Pulaski, one for Goose Pond, and three for Muscatatuck.

Next, we measured trips by counting the number of sampling events in the SED. To
separate trips by residential zone, we assigned each event to a ZIP code tabulation area in
three steps nesting an iterative procedure. The first step linked a sampling event to the ID
code assigned to each eBirder. In the second step, we searched through sampling events for
personal localities the eBirder named “Home” or included “home,” “residence,” etc. in the
name. We used the latitude-longitude for this locality as the eBirder’s residential location.
For the remainder, though, we had to interpolate home locations, using either the
coordinate of an eBirder’s modal personal locality or, for anyone who never submitted a
personal locality, the average latitude-longitude of visited hotspots.6 This is necessary to
avoid skewing the sample toward birders willing to identify their home, which could
exacerbate bias. Of course, the interpolation itself could lead to bias, and in Appendix B we
present estimates after applying a more conservative interpolation procedure. Third,
we assigned each sampling event to the corresponding observer’s home location and hence
ZIP code. ZIP codes not assigned as a residential location for any Indiana eBirder were
dropped from the model. Finally, we summed trips by ZIP code and site in each biweekly
period.

An important concern, as noted by Kolstoe et al. (2018), is that eBird volunteers self-
report and may not be representative of the population overall. Recent research appears to

5Dropping incidental trips is consistent with Lupi et al.’s (2020) recommendation to focus on trips whose
primary purpose is recreation. Note that eBird defines traveling and stationary trips as primarily for the
purpose of birdwatching. Traveling refers to an event in which, at the destination, the observer walks, drives,
or boats more than 100 feet and generally less than five miles. In our data, 30% of trips are stationary, 50%
are traveling, and 20% are incidental.

6The idea here is that an eBirder’s residential location should lie near the center of their birding activity.
We dropped eBirders who submitted fewer than three sampling events without naming their home, to limit
bias from this imputation.

6 Melstrom et al.
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validate this concern. Cameron and Kolstoe (2022) find that a representative sample were
less willing to consider traveling to more distant sites compared with eBird volunteers.
Similarly, Rosenblatt et al. (2022) conclude that eBird volunteers are more avid than the
average birder. Volunteers also have a higher average income relative to the general
population (Grade et al. 2022), although birders on the whole tend to have above-average
incomes (Carver 2019). We address this concern using weights. First, we correct for
differences in representation by geography by weighting the data by the number of
households relative to the number of eBirders in a ZIP code. This stratifies the sample so
that it matches the population in each zone. Second, we use the income distribution from a
nationally representative sample of birders (Carver 2019) to construct sample selection
weights that account for response differences by income. Finally, we use statistics on the
eBird volunteering rate as a function of birdwatching distance (Cameron and Kolstoe
2022) to construct zonal-site weights that limit the share of individuals in a zone who
would travel to more distant locations.7

Next, we calculated species richness and crane abundance. After pooling the hotspot
data by site, we counted the number of unique species observed in the EBD in each
biweekly period, which includes the days up to the 15th or after the 15th of each month. We
then calculated the abundance of sandhill cranes by merging the EBD and SED data sets.
Most volunteers who reported seeing cranes counted the number observed. We assume an
observer saw no cranes if their checklist appeared in the SED but they reported no cranes
in the EBD. Thus, if a sampling event occurred at one of the hotspots (in the SED) in our
study area but did not count any sandhill cranes (in the EBD), we assigned it a count of
zero.8 In hotspots where volunteers reported different numbers at the same time, we used
the median. We then measured the eBird crane population by summing the (median
observed) number of cranes across hotspots at a site. We explore alternative methods of
measuring abundance in the discussion section below.

We filled in missing species richness and crane abundance data using imputation.
While the study area includes hundreds of sampling events, occasionally a site had no
sampling events in a biweek. We imputed these data by applying Poisson regression to the
model sjt � exp λj � µt

� �
, where sjt is either richnessjt or cranesjt , λj is a county effect, and

µt is a time effect. To leverage observations from other hotspots in the same counties as
our study sites, which could correlate with species richness and crane abundance, we
estimated the model using data on all j in Indiana, rather than just the sites in the model.

We aggregated the DNR crane counts to the same biweekly periods as the eBird data.
Property staff perform these counts weekly during the migration season, which runs from
the last week of August to the last week of January. The counts are made when cranes leave
their roost in the morning. After estimating the number remaining in the roost, the counts
are aggregated across staff. We did not impute the DNR’s missing values as we did for
eBird because the DNR counts appeared complete during the migration season. To address
any concerns that the timing of this season could skew the comparison between eBird and
DNR data, one of our robustness checks restricts all of the eBird observations to the
migration season.

We calculated travel cost using latitude-longitudes, fuel and mileage-related
depreciation costs, and an estimate of the value of travel time. We calculated travel

7Cameron and Kolstoe (2022) show that eBird volunteers but not birders in general are willing to travel
more than 100 miles on a typical trip. They also show 11% of birders use eBird. We use these statistics to
reweight the data so that the number of households in a zone willing to take a trip declines 89% if the
distance is more than 100 miles.

8We set the count to missing if the sampling event reported seeing but did not count sandhill cranes.

Agricultural and Resource Economics Review 7
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distances distij and travel times timeij between the centroid of each ZIP code i and the
average latitude-longitude of site j’s hotspots. We used AAA’s 2022 Your Driving Cost
report to calculate the cost per mile of driving, by subtracting the average cost of driving
10,000 miles from the cost of driving 15,000 miles, and then dividing by 5,000. We then
estimated the value of travel time by dividing the median household income incomei in a
ZIP code by 2000 multiplied by one-third, which assumes working 2000 hours in a year
and that travel time is valued at one-third the wage rate (Parsons 2003). Finally, we
calculated travel cost using the formula:

tcij � 2 distij × 0:2718� 1
3
× timeij ×

incomei
2000

� �� 	

In Appendix C, we present results after setting the value of travel time equal to one-half
the wage rate.

Table 1 summarizes the data. Between six sites, 24 biweekly periods, and 540 ZIP codes,
there are 77,760 observations. The average number of trips is 0.017; this is less than one
because there are zero trips in most ZIP code-site-biweek combinations. The average travel
cost is $117 across all observations, or $75 after weighting on trips. Using eBird, the
average number of species is 43 and the average crane count is 206. The average eBird
crane count is substantially less than the maximum, which exceeds 5,000. The average
DNR count is 6,570 cranes and the maximum is 31,536.

Table 1. Summary statistics of variables used in the pooled site demand model

Variable Description Mean St. dev. Min Max

Trips Count of trips between ZIP code and
site.

0.017 0.187 0 11

Birders Count of eBirders in ZIP code. 3.965 6.844 1 122

Distance Travel distances in miles; used in the
travel cost calculation

118.711 59.011 2.2 276.1

Time Travel time in minutes; used in the
travel cost calculation

148.919 66.785 4.5 382.5

Income Median ZIP code income; used in the
travel cost calculation

64245.759 19161.709 20755 250001

Travel cost Travel cost 117.382 57.577 3 540

Richness Species richness measured as number
of unique species.

42.823 35.276 1 170

Cranes Crane abundance based on eBird;
summed across hotspots at site,
measured in thousands of birds.

0.206 0.707 0 5.5

Cranesany =1 if one or more cranes present and 0
otherwise, based on eBird.

0.528 0.499 0 1

Cranes Crane abundance based on Indiana
DNR; summed across hotspots at site,
measured in thousands of birds.

6.570 9.955 0 31.5

Cranesany =1 if one or more cranes present and 0
otherwise, based on Indiana DNR.

0.769 0.421 0 1

The number of observations is 77,760 except that the DNR cranes data has 35,100 observations.

8 Melstrom et al.
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Before turning to the results, we should clarify that a trip in our data is taken primarily
for the purpose of birding but could include multi-destination trips. Lupi et al. (2020)
recommend excluding multi-destination trips. Unfortunately, eBird checklists do not
indicate whether a single trip covered multiple sites. However, we can infer multi-
destination trips by identifying eBirders who submitted more than one checklist on the
same day. Twenty-three percent of trips could be multi-destination following this
approach. Appendix D presents estimates after dropping these trips, which we find does
not qualitatively affect the results.9

Results

Table 2 shows the parameters from each of the three specifications applied to the eBird
data. We refer to these as the benchmark results. Note that in each case we estimated the
coefficient on ln(birders) – that is, ln Ni� � in eq. (2) – rather than fixing it to one, although
the estimate indicates that we cannot reject the hypothesis that it is one. Turning to the
other estimates in column (1), the travel cost parameter indicates that for a $1 increase
there is a 100% × (exp(–0.036) – 1) = –4% change in trips per zone. The species richness
parameter implies that an additional species is associated with 2%more trips per zone. The
crane indicator is not significantly different from zero, so we cannot reject the possibility
that cranes have the same effect on trips as other species on average.

Now consider the estimates in column (2). When we replace the dummy variable for
crane presence with the variable for cranes, the parameters on the other variables are
largely unchanged. In particular, the species richness parameter continues to imply that an
additional species is associated with about 2% more trips. The parameter on cranes is
positive and statistically significant, implying that an additional 1000 cranes is associated
with 39% more trips per zone.

Column (3) replaces the cranes variable with four indicators. In contrast to the linear
effect in column (2), which implies that visitation scales with abundance, this regression
provides little evidence that visitation is greater at sites with more cranes. None of the
indicators are individually significantly different from zero, and a test of joint significance
fails to reject the null hypothesis that all are zero (p= 0.978).

Table 3 presents the results when we use the DNR data. In column (1), the parameter
on ln(birders) is not significantly different from 1, the travel cost parameter implies that a
$1 increase is associated with 3% fewer trips per zone, and the richness parameter indicates
that an additional species is associated with 2%more trips per zone; all of which are similar
to the benchmark estimates in Table 2. Furthermore, the crane indicator remains
insignificantly different from zero. Turning to the estimates in column (2), the positive and
significant parameter on cranes implies that an additional 1000 cranes is associated with
about 1% more trips per zone. This effect is an order of magnitude smaller than its
counterpart in Table 2. We also see a notable change in column (3), where the first
indicator is now significantly negative while the fourth indicator is significantly positive,
which implies that birders visit sites more (less) frequently when the crane population
there is toward the upper (lower) end of the distribution.

Let us take the estimates for the second specification, which appear in column (2) of
Tables 2 and 3, as the baseline. The travel cost parameter in Table 2 indicates that average
birder WTP for a trip is –1/(–0.036), or $27.67. This implies that birders are willing to pay

9A slight drawback with defining multi-destination trips based on same-day checklists is that a birder
could have visited one site, returned home, and then visited another site that day, for two separate, single-
destination trips.
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$27.67 more than they spend in travel costs to visit one of the sites in the study area. The
mean number of trips by an eBirder to these sites is 1.435, which implies an annual
consumer surplus of $39.76 per birder. In Table 3, the travel cost parameter implies WTP
of –1/(–0.033), or $30.30, which is just slightly larger than the benchmark WTP per trip.
Next, we calculate consumer surplus for four hypothetical changes in birding quality.
Applying eq. (7) to the benchmark estimates, we find birder WTP is $0.58 per trip for one
additional species and $10.84 per trip for an additional 1000 cranes. Using eq. (8), the same
results imply that on average birder WTP is $2.64 per trip for 10% more species and $0.20

Table 2. Results of the demand model using eBird for species richness and crane abundance

Variable (1) (2) (3)

Ln(birders) 1.110*** 1.110*** 1.110***

(0.062) (0.066) (0.062)

Travel cost −0.036*** −0.036*** −0.036***

(0.003) (0.003) (0.003)

Richness 0.016*** 0.021*** 0.016***

(0.005) (0.005) (0.005)

Cranesany −0.012

(0.203)

Cranes 0.331***

(0.074)

Cranes (<p25) −0.0921

(0.368)

Cranes (p25-p50) 0.077

(0.250)

Cranes (p50-p75) −0.082

(0.238)

Cranes (>p75) 0.048

(0.339)

Constant −3.852*** −3.783*** −3.297***

(0.488) (0.500) (0.520)

Site fixed effects Yes Yes Yes

Biweek fixed effects Yes Yes Yes

Log likelihood −696412.8 −690331.5 −696251.2

R-squared 0.316 0.322 0.317

Observations 77,760 77,760 77,760

Robust standard errors in parentheses below parameters. *, **, and *** indicate significance at 10, 5 and 1% levels.
R-squared calculated as the squared correlation coefficient between the actual and predicted number of trips.
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per trip for 10% more cranes. Applying the same welfare calculations to Table 3, WTP is
$0.45 per trip for an additional species, $1.09 per trip for an additional 1000 cranes, $2.04
per trip for 10% more species and $0.73 per trip for 10% more cranes. Keep in mind that
these are experience values and not nonuse or existence values. The total value from
additional species or cranes could be much larger after accounting for the values held by
those who do not visit the study area.

Table 3. Results using Indiana DNR crane abundance during migration season

Variable (1) (2) (3)

Ln(birders) 1.083*** 1.083*** 1.083***

(0.098) (0.098) (0.097)

Travel cost −0.033*** −0.033*** −0.033***

(0.004) (0.004) (0.004)

Richness 0.018** 0.015* 0.022**

(0.008) (0.008) (0.008)

Cranesany −0.055

(0.399)

Cranes 0.036**

(0.016)

Cranes (<p25) −1.159**

(0.537)

Cranes (p25-p50) 0.213

(0.603)

Cranes (p50-p75) 0.045

(0.530)

Cranes (>p75) 1.219***

(0.491)

Constant −3.373*** −3.423*** −4.253***

(0.671) (0.646) (0.749)

Site fixed effects Yes Yes Yes

Biweek fixed effects Yes Yes Yes

Log likelihood −319833.3 −318252.6 −312127.7

R-squared 0.279 0.283 0.296

Observations 35,100 35,100 35,100

Robust standard errors in parentheses below parameters. *, **, and *** indicate significance at 10, 5 and 1% levels.
R-squared calculated as the squared correlation coefficient between the actual and predicted number of trips.
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Discussion

The results confirm the important role that species presence plays in the demand for
recreation. The positive and significant effect of species richness provides evidence that
birdwatchers are significantly more likely to visit sites with more birds. As the number of
species increase at a site, so does the frequency and value of birding trips. When we allowed
the effect of crane presence to vary systematically from species richness, the estimate was
statistically indistinguishable from zero. This insignificance held regardless of whether we
used crane data from eBird or the Indiana DNR. Note that this does not mean the effect or
value of cranes is zero. Taken as a whole, these results indicate that birders like additional
species, including cranes, but that the presence of cranes is not more influential than any
other species, on average.

The results also provide evidence that populations matter. The positive and significant
relationship between the number of sandhill cranes and trips turned up using both eBird
and Indiana DNR counts. The effect lost significance when we modeled trips as a function
of four abundance ranks using the eBird counts, which suggests the relationship in this
case could be spurious or driven by outliers. However, using the DNR counts, the rank
effects moved sequentially from significantly negative, to insignificant, to significantly
positive. This sign pattern implies that, conditional on an additional species, the expected
change in trips is smaller when the addition is a small population of cranes – in such a case,
birders prefer a different species on the margin – about the same as other species when the
addition is a modest population of cranes, and greater than other species when the addition
is a large population of cranes. Put another way, birders prefer cranes to other species if it
means seeing a particularly large number of cranes.

The eBird and DNR crane counts imply substantially different demand effects and
welfare estimates. For a unit change, the DNR count produced a WTP 90% smaller than
the eBird count ($1.09 versus $10.84 per trip for 1000 more cranes), while for a
proportional change it was larger ($0.73 versus $0.20 per trip for 10% more cranes). One
explanation for this difference is that eBird volunteers underreport the number of cranes.
Summary statistics suggest that the eBird count is about one-tenth smaller than the DNR
count on average. It should not by too surprising, therefore, that WTP for a unit change
also differs by a factor of ten.

We ran several additional regressions to assess the robustness of the differences implied
by the eBird and DNR counts. Table 4 presents coefficients and Table 5 presents WTP
estimates from these regressions. The first robustness check uses eBird counts again, but
this time restricting the study period to the immigration season, matching the period
covered by the DNR data. The estimates in Table 4, column (1), are largely unchanged
from those in Table 2, column (2). Table 5 shows that the implied WTP is little changed,
too. Second, we measured crane abundance with the eBird data differently, using
the maximum observed count rather than the median across sampling events.10 The
coefficient on cranes is much smaller and in fact approaches the magnitude of the
coefficient based on the DNR data. WTP per trip is $1.71 for an additional 1000 cranes,
which is 84% smaller than the baseline estimate of $10.84 and much closer to the estimate

10Recall that the baseline estimates are based on the median number of cranes reported by eBirders at
hotspots, which we then summed across the hotspots at a site. This approach should work well if the crane
count is measured with random error and normally distributed. However, some eBirders may be more
accurate at counting and exhibit less error. If these eBirders tend to find more cranes, then the correct
statistic will be in the upper half of the distribution. We designed the second sensitivity analysis to measure
these greater counts. We also examined using the maximum observed number of species rather than the
median, but found the species richness parameter to be little changed.

12 Melstrom et al.
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of $1.09 based the DNR data. Third, we narrowed the pool of sites and time periods to
those with reported cranes in the eBird data rather than imputing missing counts.
Parameters and WTP estimates are little changed with this adjustment, though, which
suggests that imputation is not contributing bias.

This sensitivity analysis shows that the eBird data produces an abundance effect
comparable to professional and presumably accurate DNR counts when abundance is
based on the maximums reported by eBird volunteers. Otherwise, additional changes to
the data or study design do little to align the estimates between these two potential data
sources. Of course, measuring the effect of wildlife on recreation demand is a complicated
exercise, and there may be factors the baseline estimates do not account for. In particular,
abundance could be correlated across species and thus omitting the populations of other
birds could produce omitted variables bias. Appendix E shows that the results are little
changed when we include the abundance of great egrets – another large water bird – which
should reduce concern about the abundance of other species. Nevertheless, this bias cannot
be ruled out entirely, which in practice could depend on the strength of many cross-species
correlations as well as with species richness. This should be addressed in future research.
Other potential criticisms could focus on how we identified home locations, the value of
travel time and accounting for multi-destination trips. Note that the appendix to this paper

Table 4. Results using alternative measures of crane abundance from eBird

Variable

(1)
Restrict data to
migration season

(2)
Use maximum
hotspot counts

(3)
No imputation for
missing counts

Ln(birders) 1.083*** 1.110*** 1.110***

(0.098) (0.062) (0.066)

Travel cost −0.033*** −0.036*** −0.036***

(0.004) (0.003) (0.003)

Richness 0.024*** 0.016*** 0.019***

(0.008) (0.005) (0.005)

Cranes 0.289*** 0.060*** 0.294***

(0.073) (0.011) (0.072)

Constant −4.068*** −3.349*** −3.618***

(0.715) (0.486) (0.497)

Site fixed effects Yes Yes Yes

Biweek fixed effects Yes Yes Yes

Log likelihood −315523.5 −688385.1 −685297.2

R-squared 0.289 0.324 0.292

Observations 35,100 77,760 59,400

Mean of Cranes (in thousands) 0.366 0.915 0.246

Robust standard errors in parentheses below parameters. *, **, and *** indicate significance at 10, 5, and 1% levels.
R-squared calculated as the squared correlation coefficient between the actual and predicted number of trips.
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Table 5. Welfare estimates under alternative assumptions

WTP per trip for 1000 more
cranes in study area

Percent change
from baseline

Baseline estimate based on self-reported crane
counts from eBird (Table 2, Column 2)

$10.84

Benchmark assumption Alternative assumption

Use self-reported eBird crane counts Uses DNR crane counts $1.09 −90%

Use one year of data Use data from crane migration season $10.15 −6%

Use median crane counts at hotspots Use maximum crane counts at hotspots $1.72 −84%

Impute missing crane counts Drops missing crane counts $9.49 −12%

Include three wildlife areas Include six wildlife areas $10.23 −6%

Impute missing home locations using modal
personal locations or centroid of all trips

Drop birders who do not volunteer home location or do not
have common centroid and personal locations

$21.87 102%

Value of travel time is 33% of wage Value of travel time is 50% of wage $14.01 29%

Include multi-destination trips Drops probable multi-destination trips $8.91 −18%

Include self-reported species richness and crane
counts

Include self-reported species richness, crane counts and egret
counts

$11.54 6%
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explores several potential alternative designs, which for the most part affect the results in
intuitive ways. Table 5 shows WTP estimates from these alternatives.

Finally, as pointed out by a reviewer, the demand for trips could be more closely related
to sightings than population size or the number of species per se. By presenting estimates
based on professional and citizen science counts, our results show that this distinction is an
important one. Professional counts may accurately describe ecological characteristics but
not how they are experienced by users. This could lend greater credibility to using the
median or mean numbers submitted by eBirders. Our research aims to measure use values,
so the number of birds actually seen by people could be interpreted as the more relevant
measure.

How do our results compare with prior research? Kolstoe and Cameron (2017) find
median birder WTP per trip is $278.40 ($340.26 in 2022 dollars) to access rural sites in the
Puget Lowland region ofWashington state, and that WTP for an additional species is $3.38
($4.13). Myers et al. (2010) use contingent behavior data to estimate that birder WTP per
trip is $96 ($134.98 in 2022 dollars) for Delaware beaches. Our estimates are smaller, as
they indicate WTP per trip of $27.67 to access sites in Indiana, with an additional species
worth $0.58. These differences could be due to differences in study setting.11 Our estimates
align more closely with Jayalath et al. (2023), who use eBird data, too, and find WTP per
trip for an additional species to be CAN$0.68 on average (US$0.64 in 2022 dollars) or CAN
$0.92 (US$0.86 in 2022 dollars) at the 25th percentile (39 species, which is near the average
in our sample). Furthermore, Jayalath et al.’s model implies that birder WTP per trip is
CAN$36.30 (US$34.10 in 2022 dollars) to access sites in Alberta. Our estimate of access
value also lies near the center of the range in the valuation literature. One set of estimates,
the Recreational Use Values Database, reports an averageWTP of $51.96 ($65.09 in 2022$)
for wildlife viewing trips in the Midwest (Rosenberger 2016).

Stoll et al. (2006) use contingent valuation to measure the value of preserving riparian
habitat in the Platte River region, using scenarios with different levels of species diversity
and sandhill crane abundance. They find birders are willing to pay $14.82 ($27.22 in 2022
dollars) for 10% more sandhill cranes relative to the status quo. This is much larger than
the values implied in our study for a similar percentage increase. However, Stoll et al.’s
baseline is much greater – around 500,000 birds – and includes nonuse values, whereas
ours reflects the value of recreation only. Nevertheless, both Stoll et al. (2006) and this
study provide evidence that willingness to pay for cranes scales with abundance.

We can use the pooled site demand model to measure the aggregate value of areas in the
study region. For example, the annual number of visitors to Muscatatuck is about 180,000,
of whom 62,000 went to see wildlife (Muscatatuck National Wildlife Refuge 2020).12 Using
the WTP per trip from the baseline specification ($27.67), the aggregate annual value of
Muscatatuck for birding is $1,715,540. If we apply the average WTP per trip for recreation
in the Midwest ($65.41) from the Recreational Use Values Database (Rosenberger 2016) to
the other trips, then the value for Muscatatuck as a whole is $9,433,920.

11They could also be due to underlying differences in the eBird samples. The number of sampling events
has increased nearly exponentially since the project’s launch in 2002 (Zhang 2020), so population coverage
could be much better now than just a few years ago. It is also possible that earlier eBird samples were of more
avid birders.

12Although Muscatatuck does not distinguish birders from other wildlife viewers, it is safe to assume that
wildlife viewing in this context is nearly synonymous with bird watching because the refuge is managed
primarily for waterfowl.
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Conclusion

This study measured the economic value of birdwatching using a recreation demand
model and the zonal travel cost method. In our application to wildlife areas in Indiana, we
estimated that a birding trip is worth about $28, that visitors are willing to pay higher
amounts to access sites with more species, and that visitors value larger populations of
sandhill cranes. Of course, this relationship may not hold in other contexts. The sandhill
crane is a large, migratory waterfowl, and the abundance of other, less-charismatic birds
may not factor as strongly in recreation demand. Nevertheless, the results provide evidence
that wildlife factor into recreation decisions and that protecting species diversity and
abundance is valuable. This study does not account for nonuse and existence values, which
would be additional to the welfare measures described here.

We measured birdwatching trips and site characteristics using eBird, which provides a
rich source of citizen science data. Birder WTP per trip was about $0.50 for an additional
species, which is lower than other published estimates for birds. We also leveraged
professional counts from the Indiana DNR to examine the reliability of counts recorded by
eBird volunteers. Using the median counts from eBird, WTP was $11 for an additional
1000 cranes, whereas using the DNR counts WTP was just $1 for the same increase. This
large difference shows that wildlife populations reported in citizen science data should be
handled with caution. When we used maximum counts from eBird, though, WTP per trip
was a little under $2 for an additional 1000 cranes, which aligned better with the estimates
based on the DNR counts. However, using eBird comes with other caveats, including
representativeness, whether trips may be targeting specific species, the portion of total
recreational value captured among all birders, and the role of other ecosystem services.
These will be important topics for future research.

The differences between citizen science and professionally generated data have
important implications for informing decision makers. Using citizen science for wildlife
data or transferring values from studies relying on such data should be done cautiously.
Our research showed that the effect of abundance on birding trips was not robustly
estimated when based on observations from eBird volunteers. Our research also suggests
that naively transferring values from citizen science to professionally generated data could
lead to bias, although calibrating for differences in population levels between contexts
could help mitigate this issue. Applications of benefit transfer that must rely on citizen
science should therefore consider adjusting for different population scales. Otherwise,
research could significantly over or underestimate the value of changes in wildlife
populations.
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Appendix A. Expanding the pool of sites.

This section presents the results after expanding the study area. The original analysis includes three wildlife
areas divided into six sites that compose the destinations in the demand model. We focus on these areas
because they are where the Indiana DNR measures crane populations. However, we are not restricted to
these sites if we use cranes counts from eBird. We therefore examine the sensitivity of the estimates to
changes in the study area. Table A1 presents the results using the baseline specification after adding
Atterbury Fish & Wildlife Area (one site), Big Oaks National Wildlife Refuge (two sites), and Glendale Fish
&Wildlife area (one site). In all three regressions, the implied willingness to pay for 1 more species and 1000
more cranes is only about 5% different from the baseline estimate.

Table A1. Results of expanded demand model using eBird species and crane counts

(1) (2) (3)

Variable

Adding
Atterbury hot-

spots
Adding Atterbury and
Big Oaks hotspots

Adding Atterbury, Big Oaks
and Glendale hotspots

Ln(birders) 1.138*** 1.134*** 1.131***

(0.062) (0.062) (0.061)

Travel cost −0.039*** −0.040*** −0.040***

(0.003) (0.003) (0.003)

Richness 0.023*** 0.024*** 0.024***

(0.005) (0.005) (0.005)

Cranes 0.337*** 0.341*** 0.343***

(0.071) (0.070) (0.070)

Constant −3.944*** −3.998*** −4.031***

(0.458) (0.453) (0.449)

Site fixed effects Yes Yes Yes

Biweek fixed effects Yes Yes Yes

Log likelihood −7765566.3 −780456.0 −790383.3

R-squared 0.330 0.352 0.355

Observations 90,720 116,640 129,600

Robust standard errors in parentheses below parameters. *, **, and *** indicate significance at 10, 5, and 1% levels.
R-squared calculated as the squared correlation coefficient between the actual and predicted number of trips.
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Appendix B. Narrowing the sample to those with more credible home
locations.

This section presents estimates after dropping a large portion of the sample. The original analysis identified
an eBirder’s residential location using either the location of their home locality – if one was named – or else
their modal personal locality – if any were present – or finally the average latitude-longitude of visited
hotspots. This imputation could lead to biased travel costs if the modal personal localities or the centroid of
visited hotspots do not align with actual residential locations. To address this concern, we restricted the
sample to eBirders who self-identified their homes or whose modal personal locality was in the same ZIP
code as the centroid of visited hotspots. Intuitively, this should produce a sample with less biased residential
locations. Unfortunately, it reduces the number of trips to the study area by 75%.
The results appear in Table B1. The parameters are qualitatively similar to those in Table 2, although most of
the estimates are less precise and insignificant. The loss of precision is not surprising given the reduction in
the sample size. The exception is travel cost, which is much closer to zero and more precisely measured. This
could be because most of the sample is now composed of eBird volunteers who intentionally use personal
localities and tend to be more active than other birders (Rosenblatt et al. 2022). More activity could reflect a
lower marginal disutility from travel cost and therefore, among this sample, a smaller travel cost parameter.

Table B1. Results after filtering the sample to eBirders with more credible home locations

Variable (1) (2) (3)

Ln(birders) 1.258*** 1.258*** 1.258***

(0.180) (0.180) (0.180)

Travel cost −0.012*** −0.012*** −0.012***

(0.003) (0.003) (0.003)

Richness 0.006 0.014 0.014

(0.013) (0.014) (0.012)

Cranesany 0.244

(0.516)

Cranes 0.233

(0.184)

Cranes (<p25) 0.575

(1.167)

Cranes (p25-p50) 0.279

(0.550)

Cranes (p50-p75) −0.304

(0.501)

Cranes (>p75) −0.231

(0.690)

Constant −5.396 *** −6.103 *** −4.854***

(Continued)
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Appendix C. Increase the value of travel time.

This section presents the estimates after increasing the value of travel time from one-third to one-half of the
wage rate, following English et al. (2018). Table C1 presents the results. The travel cost parameter indicates
that WTP for a trip is −1/(−0.028), or approximately $36, which is 29% more than in the benchmark
analysis.

Table B1. (Continued )

Variable (1) (2) (3)

(1.361) (1.319) (1.177)

Site fixed effects Yes Yes Yes

Biweek fixed effects Yes Yes Yes

Log likelihood −217420.7 −216944.8 −216819.5

R-squared 0.275 0.277 0.277

Observations 77,760 77,760 77,760

Robust standard errors in parentheses below parameters. *, **, and *** indicate significance at 10, 5, and 1% levels.
R-squared calculated as the squared correlation coefficient between the actual and predicted number of trips.

Table C1. Results assuming a larger value of travel time

Variable (1) (2) (3)

Ln(birders) 1.127*** 1.127*** 1.127***

(0.067) (0.067) (0.067)

Travel cost −0.028*** −0.028*** −0.028***

(0.003) (0.003) (0.003)

Richness 0.016*** 0.021*** 0.016***

(0.005) (0.005) (0.005)

Cranesany −0.012 −0.092

(0.203) (0.368)

Cranes 0.331***

(0.075)

Cranes (<p25) −0.0921

(0.368)

Cranes (p25-p50) 0.077

(0.250)

Cranes (p50-p75) −0.082

(0.238)

Cranes (>p75) 0.048

(Continued)
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Appendix D. Excluding probable multi-destination trips.

This section presents the estimates after dropping a portion of the sample that may have multi-destination
trips. In the original analysis, we defined trips as all sampling events that occurred at one of the study sites,
which could include eBird volunteers who visited other sites on the same trip. To examine the sensitivity of
the results to excluding multi-destination trips, we ran the analysis again after dropping a volunteer’s
sampling events on the days they submitted multiple checklists. These results appear in Table D1. The
resulting willingness to pay for an additional species is $0.62, which is only 8% larger than in the baseline
analysis; and willingness to pay for 1000 more cranes is $9, which is 18% less than the baseline.

Table C1. (Continued )

Variable (1) (2) (3)

(0.339)

Constant −3.399*** −3.899*** −3.413***

(0.512) (0.500) (0.520)

Site fixed effects Yes Yes Yes

Biweek fixed effects Yes Yes Yes

Log likelihood −702148.4 −696067.1 −701986.8

R-squared 0.311 0.317 0.311

Observations 77,760 77,760 77,760

Robust standard errors in parentheses below parameters. *, **, and *** indicate significance at 10, 5, and 1% levels.
R-squared calculated as the squared correlation coefficient between the actual and predicted number of trips.

Table D1. Results after excluding probable multi-destination trips

Variable (1) (2) (3)

Ln(birders) 1.134*** 1.134*** 1.134***

(0.072) (0.072) (0.072)

Travel cost −0.037*** −0.037*** −0.037***

(0.003) (0.003) (0.003)

Richness 0.019*** 0.023*** 0.019***

(0.006) (0.006) (0.006)

Cranesany −0.010

(0.253)

Cranes 0.285***

(0.078)

Cranes (<p25) −0.195

(Continued)
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Appendix E. Including variables for other bird populations.

This section presents the results after adding great egret (Ardea alba) counts. We assembled these counts
following the same procedure for sandhill cranes described in the main text. We use egrets because they are
similar to cranes in a number of ways, so excluding their population from the model could lead to omitted
variables bias. Like cranes, egrets are large, migratory water birds with seasonal habitat in Indiana. These
results appear in Table E1. The resulting willingness to pay for one additional species is $0.59, which is very
similar to the baseline estimate; and willingness to pay for 1000 more cranes is $11.54 and therefore 6%more
than in the baseline analysis. The effect of egret counts is not statistically significant.

Table D1. (Continued )

Variable (1) (2) (3)

(0.427)

Cranes (p25-p50) 0.087

(0.304)

Cranes (p50-p75) −0.067

(0.325)

Cranes (>p75) −0.061

(0.414)

Constant −3.748*** −4.193*** −3.720***

(0.618) (0.594) (0.606)

Site fixed effects Yes Yes Yes

Biweek fixed effects Yes Yes Yes

Log likelihood −554325.7 −551036.1 −554110.0

R-squared 0.316 0.322 0.318

Observations 77,760 77,760 77,760

Robust standard errors in parentheses below parameters. *, **, and *** indicate significance at 10, 5, and 1% levels.
R-squared calculated as the squared correlation coefficient between the actual and predicted number of trips.

Table E1. Results of the demand model that includes egret abundance

Variable (1) (2) (3)

Ln(birders) 1.110*** 1.110*** 1.110***

(0.062) (0.066) (0.066)

Travel cost −0.036*** −0.036*** −0.036***

(0.003) (0.003) (0.003)

Richness 0.017*** 0.021*** 0.017***

(0.005) (0.005) (0.005)

(Continued)
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Table E1. (Continued )

Variable (1) (2) (3)

Egrets 2.164 3.763 2.469

(2.405) (2.363) (2.496)

Cranesany −0.040

(0.202)

Cranes 0.348***

(0.073)

Cranes (<p25) −0.146

(0.379)

Cranes (p25-p50) 0.051

(0.252)

Cranes (p50-p75) −0.076

(0.232)

Cranes (>p75) 0.102

(0.324)

Constant −3.313*** −3.868*** −3.376***

(0.510) (0.492) (0.510)

Site fixed effects Yes Yes Yes

Biweek fixed effects Yes Yes Yes

Log likelihood −696116.5 −689441.7 −695898.5

R-squared 0.317 0.323 0.317

Observations 77,760 77,760 77,760

Robust standard errors in parentheses below parameters. *, **, and *** indicate significance at 10, 5, and 1% levels.
R-squared calculated as the squared correlation coefficient between the actual and predicted number of trips.
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