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A BRANCHING RANDOM WALK IN THE PRESENCE OF A HARD WALL
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Abstract

We consider a branching random walk on a d-ary tree of height n (n ∈N), in the pres-
ence of a hard wall which restricts each value to be positive, where d is a natural number
satisfying d � 2. We consider the behaviour of Gaussian processes with long-range inter-
actions, for example the discrete Gaussian free field, under the condition that it is positive
on a large subset of vertices. We observe a relation with the expected maximum of the
processes. We find the probability of the event that the branching random walk is positive
at every vertex in the nth generation, and show that the conditional expectation of the
Gaussian variable at a typical vertex, under positivity, is less than the expected maximum
by order of log n.
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1. Introduction

We consider a tree of n levels, where n ∈N. We assume that the root node of this tree has d
children, who in turn each have d children, and so on, till generation n, which are leaf nodes.
Here we assume that d ∈N, with d � 2, since the case d = 1 is really trivial. This is a d-ary
tree, and we refer to it as Tn. We refer to the subset of all the leaf nodes of this tree as Tn. So
|Tn| = dn.

We consider a particle starting from 0 ∈R, which dies at time 1, and splits into d children.
Each of these children travels a distance given by independent standard Gaussian random vari-
ables. Then, at time 2, each of these children die and give rise to d children, which in turn
follow the same process, the displacements at each step being independent of the displace-
ments at the previous time points. At time n we have dn particles, each having a displacement.
The positions of these particles are collectively called a branching random walk at time n. We
can equivalently define a branching random walk (BRW) as a Gaussian process on Tn. The
origin stands for the root, and the displacements at each step are attached to the edges. So the
d displacements at the first generation are attached to the edges between the root and its d
children. To each vertex we attach a quantity equal to the sum of the Gaussian variables that
we encounter while looking at the shortest path between itself and the root. The collection of
displacements of the dn particles at time n is given by the Gaussian variables attached to all
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FIGURE 1. Branching random walk on a binary tree.

the vertices in Tn. We denote it by {φn
v : v ∈ Tn}. This is the branching random walk at time

n. Two particles at time n having the last common ancestor at time k (k ≤ n) are equivalent to
two leaf nodes that have branched out from the same vertex at level k of the tree. Each of these
displacements is a sum of n independent standard Gaussian random variables. Figure 1 gives a
pictorial representation of the branching random walk for the case d = 2, i.e. on a binary tree.
The collection

{Xi,j : j = 1, 2, . . . , di, i = 1, 2, . . . , n}
represents independent displacements, and these are independent and identically distributed
(i.i.d.) standard Gaussian random variables. There are dn leaf nodes in the tree, and we can
fix an ordering of the vertices from 1 to dn. For any v ∈ Tn, i.e. v ∈ {1, 2, . . . , dn}, we define
ai(v) = �v/dn−i� for i = 1, 2, . . . , n. Then we can define φv

n =∑n
j=1 Xj,aj(v). This is another

way of constructing the BRW.
The covariance structure of this Gaussian process is given by

Var(φn
v ) = n for all v ∈ Tn,

Cov(φn
u, φn

v ) = n − 1

2
dT (u, v) for all u �= v ∈ Tn.

(1.1)

where dT denotes the graph distance. So essentially the BRW is a multivariate normal distribu-
tion of dimension dn, with all means 0, and variances and covariances given by (1.1). We call
the corresponding probability measure P( · ).

We wish to find bounds on the order of the probability of a branching random walk being
positive at the leaf nodes (v ∈ Tn). This is also the event that all the particles are on the right
of the starting point of the first particle. We also wish to find the expected value of the field
at a typical vertex in generation n, under the condition that the BRW is positive at all the leaf
nodes. The behaviour we consider is that of entropic repulsion for this Gaussian field, which
is its phenomenon of drifting away when pressed against a hard wall so as to have enough
room for local fluctuations, as is referred to by Lebowitz and Maes [15]. The phenomenon of
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BRW in the presence of a hard wall 3

entropic repulsion for the Gaussian free field (GFF) has been studied in the literature for some
time now. The entropic repulsion for an infinite GFF on Z

d, d ≥ 3, was studied by Bolthausen,
Deuschel, and Zeitouni [3]. As a continuation, Deuschel [9] studied the GFF on a finite box
with Dirichlet boundary conditions, for dimension 3 or more. For the GFF on a finite box, the
positivity was looked at from two different angles, one involving the interior only, while the
other considered the whole box. Both looked at the phenomenon of positivity of the field in
a box of size N. Although the typical behaviour of a vertex was similar, the order was not,
when positivity for the entire box was considered. But on removing the positivity condition
for a layer near the box, the order was the same as in [3]. Further, Bolthausen, Deuschel, and
Giacomin [2] stated that the probability of positivity for a GFF in a box of dimension 2 decays
exponentially, and this is really a boundary phenomenon. So in order to look into the long-range
correlations and local fluctuations, the boundary effect has to be removed. This approach was
taken in [2] to look into the behaviour of a typical vertex when pressed against this hard wall for
a GFF.

Studies of a GFF in a box of size n in dimension 2 since Bolthausen, Deuschel, and
Giacomin [2] have utilised the covariance of a GFF in the interior of the box. The connection
between the covariance structure of a 2D-GFF and a BRW was made by Bramson and Zeitouni
[4] to show tightness for the maximum of the GFF. It was observed to be log-correlated. To
further refine the results on entropic repulsion of the GFF in dimension 2, it is imperative to
consider similar behaviour for the BRW on a tree. Our calculations heavily rely on the tail
behaviour of a BRW, as shown in Section 2. The connection between the tail behaviours of
a 2D-GFF and a BRW have already been mentioned above. The multi-scale analysis, hinting
towards the tree structure, is used extensively to study the extremal properties of a GFF in
dimension 2, as shown by Bramson et al. [4–6]. Similar strategies were used by Kurt [14] to
study the entropic repulsion of the Gaussian membrane model for the critical dimension 4.
Roy [16] and Schweiger [17] worked out that the Gaussian membrane model in the critical
dimension is log-correlated. The work of Ding, Roy, and Zeitouni [13] further exhibits strong
relations between the BRW and log-correlated Gaussian fields, the branching number varying
according to the dimension of the box.

In the context of these studies, we consider the behaviour at a typical vertex of a branch-
ing random walk on a d-ary tree. This is especially relevant bearing in mind the covariance
structure of the BRW and that of the GFF in dimension 2, in the interior.

Entropic repulsion for a GFF on Sierpinski carpet graphs has been covered by Chen and
Ugurcan [8]. More recently, Caputo et al. [7] considered entropic repulsion in |∇φ|p surfaces.

We are interested in P(φn
v ≥ 0 ∀ v ∈ Tn) as well as E(φn

u | φn
v ≥ 0 ∀ v ∈ Tn). We are essentially

interested in the conditional distribution of a BRW at a typical vertex under the condition of
positivity at all vertices of level n. The computation of the expectation is the first step in that
direction.

In regard to the behaviour of the branching random walk in the presence of a hard wall, we
recall similar results for other Gaussian processes, such as [2], [7], [8], [10], [11], and [14].
The leading-order term in the exponent of the probability of positivity is estimated, while we
estimate both the leading-order term and the second leading term in the exponent. This also
helps us to find the second-order term in the expected value of a typical vertex, under the hard
wall condition.

We know from [19, Theorem 4] that E( maxv∈Tn φv) is of the form c1n − c2 log n + O(1).
We define mn = c1n − c2 log n, and σ 2

d,n = (1 − d−n)/d − 1. In fact we have explicit values of
c1 and c2 as

√
2 log d and 3/(2

√
2 log d) respectively.
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The main result of this paper, in regard to the probability of positivity, is as follows.

Theorem 1.1. (Positivity probability.) There exists λ′ = √
2 log n/

√
log d + O(1), such that for

n sufficiently large we have, for K1, K2, K3 > 0 independent of n, and K4 = 1/(cσ 2
d,n log d),

K1 exp

(
− 1

2σ 2
d,n

(mn − λ′)2 − K3(mn − λ′)
)

≤ P(φn
v ≥ 0 ∀ v ∈ Tn)

≤ K2 exp

(
− 1

2σ 2
d,n

(mn − λ′)2 − K4(mn − λ′)
)

. (1.2)

Bolthausen, Deuschel, and Giacomin [2] showed that the conditional expectation under
positivity is roughly close to the expected maximum for the discrete GFF in two dimensions.
Similarly, for the membrane model in dimension d = 4, Kurt [14] computed that a lower bound
on the conditional expectation of a typical vertex under positivity is close to the expected
maximum. Here, however, we show that for a branching random walk the conditional expecta-
tion is at least a constant times log n less than the expected maximum. The second main result
of this paper is as follows.

Theorem 1.2. (Expected value.) We have for u ∈ Tn, and n sufficiently large,

mn − 3
√

2√
log d

log n + O(1) ≤E(φn
u | φn

v ≥ 0 ∀ v ∈ Tn) ≤ mn −
√

2√
log d

log n + O(1).

The approach we take to prove this is that we raise the average value of the Gaussian process
and then multiply by a compensation probability. We optimise this average value so as to
maximise the probability of positivity. The value at which this probability is maximised should
ideally be the required conditional expectation.

In order to prove this in detail, we invoke a model called the switching-sign branching
random walk, which is similar in structure to the original branching random walk. The model
is motivated by a similar model introduced in [12] for a BRW on the lattice Z

2, which was
effectively a construction on a 4-ary tree. We have provided a more general construction of this
on a d-ary tree in Section 3. We begin our calculations with a preliminary upper bound on the
left tail of the maximum of the BRW in Section 2. Section 3 contains the definition of the new
model of the switching-sign branching random walk, followed by a comparison of positivity
for the branching random walk with this model using Slepian’s lemma. A left tail computation
for the maximum of this model gives us the ingredients for the proof of Theorem 1.1, which
is in the concluding part of Section 4. Section 5 contains the proof of Theorem 1.2. The upper
bound follows from Section 3, while for the lower bound we also have to invoke Bayes’ rule
and tail estimates to arrive at our result.

Notation. We let �+
n denote the event {φn

v ≥ 0 ∀ v ∈ Tn}. We also let Sn be the sum of all
the Gaussian variables at the level n. In mathematical terms Sn =∑

v : v∈Tn
φn

v , where the sum
contains dn terms.

Remark 1.1. The representation of the BRW as a sum of two Gaussian fields, in the setting of
entropic repulsion, is a key point of the article. The constant part, which represents the typical
value of the field, helps us to obtain the height under entropic repulsion, while the covariance
fluctuations are kept unchanged in the remaining part. This representation helps us to optimise
over the set of possible values for the typical height of the field under positivity.
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Remark 1.2. Future directions along the line of this work include firstly the distributional
behaviour and convergence of the branching random walk under positivity. Deuschel and
Giacomin [10] have shown that the infinite GFF for d ≥ 3 under positivity, on removing the
conditioned height, converges weakly to the lattice free field. It is worth considering whether
a similar phenomenon can be observed for the BRW.

Remark 1.3. Continuing our work, we can also consider the similar phenomenon for gen-
eral log-correlated Gaussian fields. The splitting of the covariance matrix into two parts, one
involving a constant Gaussian field, is not immediate for log-correlated Gaussian fields as in
the form considered in [13].

2. Left tail of maximum of BRW

This section is dedicated to proving an exponential upper bound on the left tail of the
maximum of a BRW. We first begin with a comparison lemma by Slepian [18] for Gaussian
processes.

Lemma 2.1. Let A be an arbitrary finite index set and let {Xa : a ∈A} and {Ya : a ∈A} be
two centred Gaussian processes such that E(Xa − Xb)2 ≥E(Ya − Yb)2 for all a, b ∈A and
Var(Xa) = Var(Ya) for all a ∈A. Then P( maxa∈A Xa ≥ λ) ≥ P( maxa∈A Ya ≥ λ) for all λ ∈R.

The main result of the section is as follows.

Lemma 2.2. There exist constants C̄, c∗ > 0 such that, for all n ∈N and 0 ≤ λ ≤ (n)2/3,

P

(
max
v∈Tn

φn
v � mn − λ

)
≤ C̄e−c∗λ. (2.1)

Proof. From [19, Section 2.5] we have tightness for {maxv∈Tn φn
v − mn}n∈N, where

mn =√
2 log dn − 3

2
√

2 log d
log n.

So there exists β > 0 such that for all n ≥ 2

P

(
max
v∈Tn

φn
v � mn − β

)
� 1/2. (2.2)

Further, we also have that, for some κ > 0 and for all n ≥ n′ ≥ 2,

√
2 log d(n − n′) − 3

2
√

2 log d
log (n/n′) − κ � mn − mn′ �

√
2 log d(n − n′) + κ . (2.3)

Now we fix λ′ = λ/2, and

n′ =
⌈

n − 1√
2 log d

(λ′ − β − κ)

⌉
,

where λ′ satisfies λ′ � β + κ + √
2 log d. From (2.3) it then follows that mn − mn′ � λ′ − β.

We consider a tree of height n rooted at 0. We consider all subtrees rooted at vertices v ∈ Tn

such that dT (0, v) = n − n′. They are individually trees of height n′. The total number of such

subtrees we have is dn−n′
. We call their leaf nodes

{
T (1)

n′ , T (2)

n′ , . . . , T (dn−n
′
)

n′
}
.
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Now, for all v ∈ Tn, we define

φ̄n
v = gn′

v + φ,

where (gn′
v )v∈Tn are the BRWs obtained by adding the Gaussians for the edges only in the

subtrees of height n′, and φ is an independent Gaussian of mean 0 and variance n − n′. Clearly

Varφn
v = Varφ̄n

v and Eφn
v φn

u ≤Eφ̄n
v φ̄n

u for all u �= v ∈ Tn.

So by Lemma 2.1, we have

P

(
max
v∈Tn

φn
v ≤ t

)
≤ P

(
max
v∈Tn

φ̄n
v ≤ t

)
for all t ∈R. (2.4)

Using (2.2) and (2.3), we have for all i ∈ {1, 2, . . . , dn−n′ }

P

(
sup

v∈T(i)

n
′

gn′
v ≥ mn − λ′

)
= P

(
sup

v∈T(i)

n
′

gn′
v ≥ mn′ + mn − mn′ − λ′

)

≥ P

(
sup

v∈T(i)

n
′

gn′
v ≥ mn′ − β

)

≥ 1

2

and thus

P

(
sup
v∈Tn

gn′
v < mn − λ′

)
≤
(

1

2

)dn−n
′

.

Therefore

P

(
sup
v∈Tn

φ̄n
v ≤ mn − λ

)
≤ P

(
sup
v∈Tn

gn′
v < mn − λ′

)
+ P(φ ≤ −λ′) ≤ C̄e−c∗λ

for some C̄, c∗ > 0. Now, in conjunction with (2.4), the lemma is proved. Note that we choose
C̄, c∗ > 0 such that the inequality holds for λ� 2(β + κ + √

2 log d) as well as λ < 2(β + κ +√
2 log d). �

3. Switching-sign branching random walk

At this juncture we define a new Gaussian process on the tree, which we call the switching-
sign branching random walk. This was used to approximate the branching random walk in
[12] for a 4-ary tree. We have generalised the process for a d-ary tree. The switching-sign
branching random walk consists of two parts: one that varies across vertices and another that
is fixed over vertices. The first part of the process, which is not fixed over vertices, is different
from the normal branching random walk in the sense that, instead of the d edges coming out of
it being associated with independent normal random variables, they are associated with linear
combinations of d − 1 independent Gaussians, such that the covariance between any two of
them is the same, and all of them add up to zero. The existence of this is guaranteed by the
following lemma.

Lemma 3.1. There exists A ∈R
(d−1)×(d−1) such that for W ∼ N(0, σ 2I(d−1)×(d−1)), the covari-

ance matrix of Ỹ = (Y1, Y2, · · · , Yd−1)� = AW has diagonal entries equal to σ 2 and all its
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FIGURE 2. Node of the varying part of a switching-sign branching random walk.

off-diagonal entries equal (say η). Further, Var(1�AW) = σ 2 and Cov( − 1�AW, (AW)i) = η

for all i ∈ {1, 2, . . . , d − 1}. Here 1 denotes the column vector of size d − 1 with all entries
equal to 1, and 1� is its transpose.

Proof. We know that the covariance matrix for Ỹ is σ 2AA�. Further, from the condition that
Var(1�AW) = σ 2, we get η = −σ 2/(d − 1). So in order for A to exist we must have

AA� =

⎡
⎢⎢⎢⎣

1 − 1
d−1− 1

d−1 . . .− 1
d−1

− 1
d−1 1 − 1

d−1 . . .− 1
d−1

...
...

...
. . .

...

− 1
d−1− 1

d−1− 1
d−1 . . . 1

⎤
⎥⎥⎥⎦ ∈R

(d−1)×(d−1)

Since the matrix on the right-hand side is a symmetric matrix with non-negative eigenvalues,
by Cholesky decomposition we obtain the existence of such an A. In particular, we have a
specific choice of

A =
√

d

d − 1
I(d−1)×(d−1) −

√
d − 1

(d − 1)3/2
J(d−1)×(d−1),

where Jk×k is the square matrix of order k with all entries equal to 1. �

We now define Yd = −1�Ỹ , and Y = (Y1, Y2, . . . , Yd)�. This Y is a degenerate multivariate
normal, with variance–covariance matrix given as follows:

Var(Yi) = σ 2 for all i ∈ {1, 2, . . . , d},

Cov(Yi, Yj) = − σ 2

d − 1
for all i �= j ∈ {1, 2, . . . , d} .

(3.1)

A pictorial representation of a node for the SSBRW process is given in Figure 2.
We now provide a few heuristic descriptions of the SSBRW, followed by a formal definition.
We consider a particle starting from a random point X ∈R, which dies at time 1 and splits

into d children. The joint distribution of the distances travelled by these children is given by
(3.1), with a choice of σ 2 = 1 − d−n. Then, at time 2, each of these children die and give rise
to d children, which in turn follow the same process, the displacements at each step being
independent of the displacements in the previous time points, except for the variances and
covariances at level l being 1 − d−(n−l+1) and −(1 − d−(n−l+1))/(d − 1) respectively. At time
n we have dn particles, each having a displacement. The displacements of the collection of
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these particles are called a switching-sign branching random walk at time n. The random term
X is normally distributed, with mean 0 and variance (1 − d−n)/(d − 1), and is independent of
everything else.

We can equivalently define a switching-sign branching random walk as a Gaussian process
on Tn. The root is fixed at a random point X, and the displacements at each step are attached
to the edges. So the first d displacements are attached to the edges between the root and its
d children. To each vertex we attach a quantity equal to the sum of the Gaussians that we
encounter while looking at the shortest path between itself and the root, plus the random vari-
able attached to the root. Then the collection of the displacements of the dn particles at time n
is given by the Gaussians attached to all the vertices in Tn. We denote it by {ξn

v : v ∈ Tn}. This
is the switching-sign branching random walk at time n. Two particles at time n descended from
the same ancestor at time k (k ≤ n) are equivalent to two leaf nodes that have branched out from
the same vertex at level k of the tree. Each of these displacements is a sum of n independent
Gaussians, plus the random term X which is independent of everything else.

We now provide a formal definition of the SSBRW.

Definition 3.1. The collection {Yi,j : j = 1, 2, . . . , di, i = 1, 2, . . . , n} represents displace-
ments, and consists of Gaussian random variables. But unlike the BRW, we have Var(Yi,j) =
1 − d−(n−i+1). Also, the collection of {Yi,j : j = 1, 2, . . . , di, i = 1, 2, . . . , n} does not repre-
sent a collection of independent random variables. Rather, we have

∑d
j′=1

Yi,md+j′ = 0, for all

m = {0, 1, . . . , di−1 − 1}, i = {1, 2, . . . , n}. However, we do still have that Yi1,j1 and Yi2,j2 are
independent if i1 �= i2. Also, Yi,j1 and Yi,j2 are independent if �j1/d� �= �j2/d�. Otherwise, if
�j1/d� = �j2/d�, then Yi,j1 and Yi,j2 are not independent, and

Cov(Yi,j1 , Yi,j2 ) = −1 − d−(n−i+1)

d − 1
.

There are dn leaf nodes in the tree, and we can fix an ordering of the vertices from 1 to dn.
For any v ∈ Tn, i.e. v ∈ {1, 2, . . . , dn}, we define ai(v) = �v/(dn−i)� for i = 1, 2, . . . , n. Then
we can define φ̃n

v =∑n
j=1 Yj,aj(v). The switching-sign branching random walk is given by

ξn
v = φ̃n

v + X,

where X is an independent Gaussian variable with mean zero and variance (1 − d−n)/
(d − 1).

Figure 3 gives a pictorial representation of the switching-sign branching random walk for
the case d = 2, i.e. on a binary tree. All the Yi,j represent displacements and are distributed as
Gaussian. In this figure we show the dependence described in the paragraph above by replacing
one of the dependent random variables with the relevant function of the others with which it
correlates.

In this construction, unlike the BRW, we have a different variance for each level l (1 ≤ l ≤
n). Here, level 1 denotes the edge connecting the root to its children and level n denotes the
edges joining the leaf nodes to their parents. We denote this switching-sign branching random
walk on the leaf nodes Tn as {ξn

v : v ∈ Tn}. For v ∈ Tn we let Yl,al(v), as defined earlier, denote
the Gaussian variable that is added on level l, on the path connecting v to the root. We have
Var(Yl,al(v)) = 1 − d−(n−l+1) as stated in the formal definition. The switching-sign branching
random walk will consist of two parts, the first coming from the contribution at different levels

in the tree, which is φ̃n
v

def= ∑n
l=1 Yl,al(v). The second part is the random variable X, which is an
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FIGURE 3. Switching-sign branching random walk on a binary tree.

independent Gaussian variable with mean zero and variance (1 − d−n)/(d − 1). The two parts
are summed together to get ξn

v .
The covariance structure for this new model closely resembles that of the branching random

walk. The following lemma deals with this comparison.

Lemma 3.2. The Gaussian fields {ξn
v : v ∈ Tn} and {φn

v : v ∈ Tn} are identically distributed.

Proof. First we show that the variances are identical for the two processes. To this end, we
begin by computing the variance of ξn

v as follows:

Var(ξn
v ) = 1 − d−1 + 1 − d−2 + · · · + 1 − d−n + 1 − d−n

d − 1

= n − 1 − d−n

d − 1
+ 1 − d−n

d − 1
= n.

Next, for the covariances we consider u, v ∈ Tn, u �= v, such that they have the last common
ancestor at generation n − k, i.e. Cov(φn

u, φn
v ) = n − k. Then we have

ai(u) = ai(v) for 1 ≤ i ≤ n − k,

ai(u) �= ai(v) for n − k + 1 ≤ i ≤ n,

�an−k+1(u)/d� = �an−k+1(v)/d�,
�aj(u)/d� �= �aj(v)/d� for n − k + 2 ≤ i ≤ n.

(3.2)

We know that

Cov(φ̃n
u, φ̃n

v ) =
n∑

i=1

Cov(Yi,ai(u), Yi,ai(v))
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from the fact that Yi1,j1 and Yi2,j2 are independent if i1 �= i2. From (3.2) we have

Cov(φ̃n
u, φ̃n

v ) =
n−k∑
i=1

Var(Yi,ai(u)) + Cov(Yn−k+1,an−k+1(u), Yn−k+1,an−k+1(v)).

Plugging in the values, we get

Cov(φ̃n
u, φ̃n

v ) = −1 − d−k

d − 1
+

n∑
l=k+1

(1 − d−l) = n − k − 1 − d−n

d − 1
.

Hence
Cov(ξn

u , ξn
v ) = Var(X) + Cov(φ̃n

u , φ̃n
v ) = n − k.

So the covariance structures for the fields ξ and φ match, and hence they are identically
distributed. �

A simple corollary of Lemma 3.2 is the following, based on the fact that the two processes
have identical distributions.

Corollary 3.1. We have the following equality:

P(φn
v ≥ 0 ∀ v ∈ Tn) = P

(
max
v∈Tn

φ̃n
v ≤ X

)
. (3.3)

Corollary 3.2. From [19, Theorem 4] we have

E max
v∈Tn

φn
v = n

√
2 log d − 3

2
√

2 log d
log n + O(1).

Therefore

E max
v∈Tn

φ̃n
v = n

√
2 log d − 3 log n

2
√

2 log d
+ O(1).

Corollary 3.3. There exist constants C̄′, c∗ > 0 such that, for all n ∈N and 0 ≤ λ ≤ (n)2/3,

P

(
max
v∈Tn

φ̃n
v � mn − λ

)
≤ C̄′e−c∗λ. (3.4)

Proof.

1

2
P

(
max
v∈Tn

φ̃n
v � mn − λ

)
= P

(
max
v∈Tn

φ̃n
v � mn − λ, X ≤ 0

)
≤ P

(
max
v∈Tn

φn
v � mn − λ

)
.

Now, using (2.1) and with C̄′ = 2C̄, we arrive at (3.4). �

4. Estimates on left tail and positivity

From equation (3.3) we understand that the probability of positivity for the branching ran-
dom walk can be computed using bounds on the left tail of the maximum of φ̃n

. , a part of
the switching-sign branching random walk, as the left tail is heavily concentrated around the
maximum. This motivates the following computations on the left tail of the maximum.

Lemma 4.1. We let c = 1/
√

2 log d, where

mn =√
2 log dn − 3

2
√

2 log d
log n,
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denote the constant such that |mn−cλ − mn + λ| → 0 as n → ∞, where λ = λ(n) = o(n) is pos-
itive. Then there exist constants C′, C′′, K′, K′′ independent of n such that for sufficiently large
n we have

K′ exp ( − K′′dcλ) ≤ P

(
max
v∈Tn

φ̃v ≤ mn − λ
)

≤ C′ exp ( − C′′dcλ). (4.1)

Proof. We work with P( maxv∈Tn φ̃v ≤ mn−cλ), as due to our definition of c, for sufficiently
large n this probability is close to P( maxv∈Tn φ̃v ≤ mn − λ). From [6] and [13] we can see
that {maxv∈Tn φ̃v − mn} converges in distribution, as it is equivalent in distribution to a BRW,
after adding the same independent Gaussian to all points. Hence P( maxv∈Tn φ̃v ≤ mn−cλ) and
P( maxv∈Tn φ̃v ≤ mn − λ) converge to the same point. We know that the BRW is a Gaussian
field obtained by adding the same Gaussian to all vertices of an SSBRW. This helps us find
bounds on lower and upper tails of the maximum of an SSBRW using results on convergence
of the maximum of a BRW, as proved in [1] and [6], etc.

We also force λ to be such that cλ is an integer. For other values of λ, we can adjust for the
constants by looking at �cλ� and �cλ�. We first consider the tree only up to the level cλ and
consider the cumulative sum of the Gaussian variables at these vertices till the level cλ. We
rename all these Gaussian variables at level cλ of this new tree to be A1, A2, . . . , Adcλ . Then
each Ai is essentially of the form

∑cλ
j=1 Yj,aj(v) for some v ∈ Tn. We know that the definition in

Section 3 of the SSBRW model guarantees
∑dcλ

i=1 Ai = 0. We consider the subtrees rooted at
the vertex which has values Ai and call its maximum Mi. These are trees of height n − cλ, and
hence we have

EMi = mn−cλ + O(1) for all i and M := max
v∈Tn

φ̃v = dcλ

max
i=1

(Mi + Ai).

We want to obtain bounds for the probability P( maxv∈Tn φ̃v ≤ mn−cλ). We condition on the
values of A1, A2, . . . , Adcλ , which in turn breaks down the required probability in a product
form since the maxima for the dcλ subtrees are independent and have identical distributions.
We have the following:

P

(
max
v∈Tn

φ̃v ≤ mn−cλ | A1, A2, . . . , Adcλ

)
= P

(
dcλ

max
i=1

(Mi + Ai) ≤ mn−cλ | A1, A2, . . . , Adcλ

)
.

This can be further broken down from independence as

P

(
dcλ

max
i=1

(Mi + Ai) ≤ mn−cλ | A1, A2, . . . , Adcλ

)
=

dcλ∏
i=1

P(Mi + Ai ≤ mn−cλ | Ai). (4.2)

The right-hand side of (4.2) satisfies the following inequality:

dcλ∏
i=1

P(Mi + Ai ≤ mn−cλ | Ai) ≤
dcλ∏

i : Ai>0

P(Mi ≤ mn−cλ − Ai | Ai),

which happens since for the cases where Ai < 0 we bound the terms in the product by 1. The
right-hand side of the last inequality is further bounded by

(C̄′ ∨ 1)dcλ
exp

(
−c∗

dcλ∑
i=1

A+
i

)
= exp

(
dcλ log (C̄′ ∨ 1) − c∗

dcλ∑
i=1

A−
i

)
. (4.3)
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In the final two steps we first make use of (3.4), followed by the fact that
∑

i Ai = 0. We
consider two different cases:

(1) A−
i ≤ 2Ā for at least dcλ/2 many i, where Ā is a positive constant to be chosen later on;

(2) case (1) does not happen and thus
∑dcλ

i=1 A−
i ≥ Ādcλ.

Even for case (1) we break it down into two parts according to whether or not
∑dcλ

i=1 A−
i ≥

Ādcλ.
When (2) holds then clearly (4.3) is bounded by exp ( − (c∗Ā − log (C̄′ ∨ 1))dcλ), and now

on choosing Ā such that c∗Ā − log (C̄′ ∨ 1) > 0, we have c∗∗ > 0 such that our required term is
bounded by exp ( − c∗∗dcλ).

In the other case also

P(Mi ≤ mn−cλ − Ai | Ai) ≤ P(Mi ≤ mn−cλ + 2Ā)

for those i for which A−
i ≤ 2Ā. From the lower bound on the right tail of the maximum of a

branching random walk (see [19, eq.(2.5.11)]), we can find p, independent of n, where 0 < p <

1 such that P(Mi ≤ mn−cλ + 2Ā) < p for all sufficiently large n and so the probability

dcλ∏
i=1

P(Mi + Ai ≤ mn−cλ | Ai)

is bounded by exp ( − c̄dcλ). Now, from this c̄ and c∗∗ we select one unified C′, C′′ so that

P

(
max
v∈Tn

φ̃v ≤ mn−cλ

)
≤ C′ exp ( − C′′dcλ).

Again for the lower bound we have

P

(
max
v∈Tn

φ̃v ≤ mn−cλ

)
=
∫
Rdcλ

dcλ∏
i=1

P(Mi ≤ mn−cλ − Ai) dPA1,...,Adcλ

≥ (p̄)dcλ
∫

[−1,1]dcλ
dPA1,...,Adcλ ,

where p̄ is chosen to be a lower bound on P(Mi ≤ mn−cλ − 1) for all sufficiently large n, which
can be obtained from using convergence results on the maximum of the branching random
walk. Now {A1, A2, . . . , Adcλ} are obtained by linear combinations of cλ independent Gaussian
random variables

{Yi,j : j = 1, 2, . . . , di, i = 1, 2, . . . , cλ}.
One way to force all the Ai to be in the range [−1, 1] is to take the absolute value of
the contribution at the jth level (i.e. Yj,av(j)) to be bounded by 1/(10(cλ + 1 − j)2), for j =
1, 2, . . . , cλ. Each of these Yj,av(j) comes from translation of independent standard Gaussians,
which we bounded. So the independent standard Gaussians for level j are bounded by
1/(10

√
d(cλ + 1 − j)2). For some constant K > 0, this gives

P

(
max
v∈Tn

φ̃v ≤ mn−cλ

)
≥ (p̄)dcλ

cλ∏
j=1

(
1

10K
√

d(cλ + 1 − j)2

)(d−1)dj−1

.
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We take a logarithm of this term above, which leads to a sum. Approximation of the sum, as
shown below in Lemma 4.2, proves (4.1). �

Lemma 4.2.
∑n

j=1 ( log |n + 1 − j|)dj is of order 
(dn).

Proof. We begin with an upper bound on the sum. We use a trivial bound of log |x| ≤ |x| for
|x| ≥ 1, followed by a few series summations:

n∑
j=1

(log |n + 1 − j|)dj ≤
n∑

j=1

(|n + 1 − j|)dj

= (n + 1)
n∑

j=1

dj −
n∑

j=1

jdj

= (n + 1)
dn+1 − d

d − 1
− ndn+2 − (n + 1)dn+1 + d

(d − 1)2

= dn+2 − (n + 1)d2 + nd

(d − 1)2
.

This gives an upper bound of order dn. The lower bound follows easily. �

We now return to our question of the branching random walk being positive at all vertices.
We know that the maximum of the BRW is heavily concentrated around the expected maxi-
mum. Using this fact, in a neighbourhood around the maximum, we further try to maximise
the probability of the maximum being there. The point where this occurs will also roughly be
the typical value of a vertex. This motivates the proof of Theorem 1.1.

Proof of Theorem 1.1. Upper bound. From (3.3) we have an upper bound on the probability
of positivity based on the switching-sign branching random walk. We optimise this bound
by first raising the mean to a level and look at the corresponding compensation we have to
apply. We optimise over these two to obtain our bound. We use a similar strategy to obtain the
lower bound as well. We recall (3.3) at this juncture along with X, and the variance of X to
be σ 2

d,n = (1 − d−n)/(d − 1). Let us recall the event �+
n defined before as {φn

v ≥ 0 ∀ v ∈ Tn}. In
(3.3) we condition on the value of X to obtain the following:

P(�+
n ) = 1

σd,n
√

2π

∫ ∞

−∞
P

(
max
v∈Tn

φ̃n
v ≤ x

)
exp (−x2/2σ 2

d,n) dx.

Instead of integrating over x we may as well replace x with mn − λ, and then integrate over λ.
We split the integral into three parts, the first with {−∞ < λ ≤ 0}, the second {3c−1 logd n ≤
λ < ∞}, and the third {0 < λ ≤ 3c−1 logd n}. From tail estimates of a Gaussian, the first part is
bounded by

O

(
exp

(
− 1

2σ 2
d,n

(mn − λ)2
))

.

From (4.1), we know that the second part is bounded by C′ exp ( − C′′n3). The remaining part
has the upper bound

C′

σd,n
√

2π

∫ 3c−1 logd n

0
exp (−C′′dcλ) exp (−(mn − λ)2/2σ 2

d,n) dλ. (4.4)
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We maximise the integrand in (4.4), over the range of the integral, to obtain an optimal λ, say
λ′, which is of order log n. It satisfies the equation

mn − λ′ = σ 2
d,nC′′cdcλ′

log d.

Recalling from Lemma 4 that

mn =√
2 log dn − 3

2
√

2 log d
log n and c = 1/

√
2 log d,

we can see that
2n − 3 log n

2 log d − √
2λ′/

√
log d

dcλ′ −→
n→∞

C′′

d − 1
.

This implies that

λ′ =
√

2 log n√
log d

+ O(1).

Substituting, we obtain an upper bound as in (1.2).
Lower bound. Again recalling (4.1), we obtain that

P(�+
n ) ≥ K′

√
2πσd,n

∫ λ
′+1

λ
′ e−K′′dcλ

exp
(−(mn − λ)2/2σ 2

d,n

)
dλ.

The integrand here is in fact a decreasing function of λ in the range λ ∈ [λ′, λ′ + 1], where λ′
is from the first part of the proof. This gives a lower bound of

K′
√

2πσd,n
e−K′′dcdcλ

′
exp

(−(mn − λ′ − 1)2/2σ 2
d,n

)
.

So we obtain the required lower bound in (1.2). �

5. Expected value of a typical vertex under positivity

Proof of Theorem 1.2. We want to compute

E

(
Sn

dn
| �+

n

)
.

Due to Lemma 3.2, this is equivalent to computing

E

(∑dn

v=1 ξn
v

dn
| ξn

u ≥ 0 ∀ u ∈ Tn

)
=E

(
X | max

v∈Tn
φ̃n

v ≤ X
)

.

The conditioning events {ξn
u ≥ 0 ∀ u ∈ Tn} and {maxv∈Tn φ̃n

v ≤ X} are equivalent, since (φ̃n
v )v∈Tn

is symmetric around 0. Also,
∑dn

v=1 ξn
v /dn equals X since

∑dn

v=1 φ̃n
v = 0. So the above equality

holds.
Upper bound. We first split the expectation into two parts: one concerning the contribution

of the right tail in the integral, and the remainder. We aim to show that the contribution of
the right tail is negligible, thereby implying that the main contribution is from the remainder,
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which gives an upper bound on the expectation. The tail here is motivated by the maximiser in
Theorem 1.1. Thus

E

(
X | max

v∈Tn
φ̃n

v ≤ X
)

= 1√
2πσd,n

∫ ∞

−∞
xe−x2/2σ 2

d,n
P
(
maxv∈Tn φ̃n

v ≤ x
)

P
(
maxv∈Tn φ̃n

v ≤ X
) dx

= 1√
2πσd,n

∫ mn−a log n

−∞
xe−x2/2σ 2

d,n
P
(
maxv∈Tn φ̃n

v ≤ x
)

P
(
maxv∈Tn φ̃n

v ≤ X
) dx

+ 1√
2πσd,n

∫ ∞

mn−a log n
xe−x2/2σ 2

d,n
P
(
maxv∈Tn φ̃n

v ≤ x
)

P
(
maxv∈Tn φ̃n

v ≤ X
) dx.

We denote the first term by J1 and the next one by J2. We first want to show that the contribution
of J2 in the conditional expectation is negligible. We use a trivial upper bound on the tail
probability in the numerator. Then we compute the integral, which is the tail expectation of a
normal random variable, that is,

J2 ≤ 1√
2πσd,n

∫ ∞

mn−a log n
xe−x2/2σ 2

d,n
1

P
(
maxv∈Tn φ̃n

v ≤ X
) dx

= 1√
2πσd,nP

(
maxv∈Tn φ̃n

v ≤ X
) ∫ ∞

mn−a log n
xe−x2/2σ 2

d,n dx

= σd,ne−(mn−a log n)2/2σ 2
d,n√

2πP
(
maxv∈Tn φ̃n

v ≤ X
) .

So we end up showing that the contribution from the right tail is negligible. We now move on
to the remainder and obtain an upper bound for it. We use a general upper bound on x from
the range of the integral, which we can do since the integral exists and is finite by the fact that
absolute expectation of a normal exists. Thus

J1 ≤ mn − a log n√
2πσd,n

∫ mn−a log n

−∞
e−x2/2σ 2

d,n
P
(
maxv∈Tn φ̃n

v ≤ x
)

P
(
maxv∈Tn φ̃n

v ≤ X
) dx

≤ mn − a log n√
2πσd,n

∫ ∞

−∞
e−x2/2σ 2

d,n
P
(
maxv∈Tn φ̃n

v ≤ x
)

P
(
maxv∈Tn φ̃n

v ≤ X
) dx

= mn − a log n.

From (1.2) it is clear that on choosing a such that a log n ≤ λ′, the upper bound on the
conditional expectation is mn − a log n. Hence we can choose a = √

2/
√

log d.
Lower bound. We apply a technique similar to that for the upper bound, the only difference

being that we look at the left tail instead, motivated by the left tail of the maximum of the
Gaussian process. Thus

E

(
X | max

v∈Tn
φ̃n

v ≤ X
)

= 1√
2πσd,n

∫ ∞

−∞
xe−x2/2σ 2

d,n
P
(
maxv∈Tn φ̃n

v ≤ x
)

P
(
maxv∈Tn φ̃n

v ≤ X
) dx

= 1√
2πσd,n

∫ mn−3c−1 logd n

−∞
xe−x2/2σ 2

d,n
P
(
maxv∈Tn φ̃n

v ≤ x
)

P
(
maxv∈Tn φ̃n

v ≤ X
) dx

+ 1√
2πσd,n

∫ ∞

mn−3c−1 logd n
xe−x2/2σ 2

d,n
P
(
maxv∈Tn φ̃n

v ≤ x
)

P
(
maxv∈Tn φ̃n

v ≤ X
) dx.

We denote the first term by I1 and the second by I2.
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When x ∈ ( − ∞, mn − 3c−1 logd n], then

P

(
max
v∈Tn

φ̃n
v ≤ x

)
≤ C′ exp ( − C′′n3)

following (4.1). Also, we have a lower bound on the probability of positivity, which gives the
following bounds on I1 and I2:

|I1|� C∼ exp

(
1

2σ 2
d,n

(mn − λ′)2 + dcλ′
( log λ′ − log p̄/K) − C′′n3

) ∫ ∞

−∞
|x|e−x2/2σ 2

d,n dx,

where C∼ > 0 is a constant not depending on n. This shows that this term is negligible. Further,

I2 ≥
(

mn − 3

c
logd n

)
1√

2πσd,n

∫ ∞

mn−3c−1 logd n
e−x2/2σ 2

d,n
P
(
maxv∈Tn φ̃n

v ≤ x
)

P
(
maxv∈Tn φ̃n

v ≤ X
) dx

=
(

mn − 3

c
logd n

)
1√

2πσd,n

∫ ∞

−∞
e−x2/2σ 2

d,n
P
(
maxv∈Tn φ̃n

v ≤ x
)

P
(
maxv∈Tn φ̃n

v ≤ X
) dx − o(1)

= mn − 3
√

2√
log d

log n − o(1).

In the last step we used the value of c = 1/
√

2 log d, as fixed earlier in Lemma 4.1. �
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