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AREA AND LENGTH MAXIMA FOR UNIVALENT FUNCTIONS
SHINJI YAMASHITA

Let S be the family of functions f(z) = z + a:2z® + ... which are analytic and
univalent in |2] < 1. We find the value

max / /| Nl dey

as a function of r, 0 < r < 1. The known lower estimate of

sup / |7(2)| 14!
1€5 Jiz|=r

is improved. Relations with the growth theorem are considered and the radius of
univalence of f(z)/z is discussed.

For g analytic in D = {|z| < 1}, we set -
A(r,g) = // |g'(2:)|2 dzdy, 0<r<l, z==z+1y.
jz]<r

We call g Dirichlet—finite if A(1,g9) < co. Let S be the family of functions
(1) fz)=2+)  anz"
n=2
which are analytic and univalent in D and set
Fy(2) = f(2)/z, z€D, feS.

As a consequence of the celebrated de Branges theorem: |a,] < n(n2>2) for f € §,
(see [1]) we have immediately

T A Fr) = Y nlans 12" <Y n(n +1)"" = 77 A(r, Fi),
n=1 n=1

where K(z) = z/(1 — z) is the Koebe function. Therefore
max A(r, Fy) = 202 (r? + 2)(1 — r?) -

for 0 <r < 1. For each r, 0 < r» < 1, the maximum is attained only by the rotations
of the Koebe function: Kg(z) = e~*?K (e*?z), where 8 is real. We first prove:
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THEOREM 1. We have

x}lggcA(r,l/Ff) =2m?(r? +2) for 0<r<gl

For each r, 0 < r £ 1, the maximum is attained only by Kp'’s.
PROOF: Given f € §, we can apply the area theorem [3, p.29] to

fQ/z) P =z—a + Z bpz”™ (|z|>1)
n=1

to obtain

(2) S onlba) <1

n=1
o0
Since 1/Ff(z) =1— a2z + E boz"t!, ze€ D,
n=1

it follows from (2), together with |a;| < 2, that

(o ]
77 A(r,1/Fy) = |az* 2 + 204 3 27 (n + 1) [by [ #2772
n=1
o0

< 4r% + 201 Zn|bn|2 < 21‘2(?2 + 2).
n=1

Since A(r,1/Fg,) = 2wr?(r? +2), we now have the identity. If the maximum is
attained by f, then |a;| = 2, so that f = K, for some §. 0

It follows that A(1,1/F¢) < 6. This shows that each function f € S is the
quotient of two functions, z and 1/Fy(z), both of which are bounded and Dirichlet-
finite in D; see estimate (6) for the bound |1/F| < 4.

Each f € S maps {|z| = r} onto a curve of length

L(r,f) = r/o i |f'(1-e“)| it  (0<r<1)

It is known that, for 0 < r <1,

(3) 27 nr(1 +7)(1 — )72 < L(r, K) < sup L(r, f);
fes
see [2, Theorem 2] and [3, p.39]. Now, as another application of the de Branges theorem
we have
(4) max A(r, f) = A(r,K)=7r?(r* + 47 +1) (1 - rz)—4,

for 0 < r < 1. The maximum is attained only by Kp's.
We improve (3) in
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THEOREM 2. For 0 < r <1 we have

(5) 2mr(rt +4r2 + 1)1/2 (- 1'2)—'2 < L(r,K) < sup L(r, f).
fes

ProorF: This is a consequence of the expression of A(r, K} in (4), without appeal-
ing to the expression of L(r,K) in terms of elliptic integrals (see [2]). We only apply
to K the isoperimetric inequality:

A(r, f) < w{L(r, f)/(2r)}* for f € S,

which says that, of all rectifiable Jordan curves with the given perimeter L(r, f),
(0 < 7 < 1), the circle has interior of maximum area.

Since

. 4 2 1/2 -3
oérrli;l(r +4r2 +1) (1 +7)7° = v6/8 > 1/4,

estimate (5) is better than (3).
We recall that
L(r, f) < 2nr(1 — )72 = 9(r)

for f€ S and 0 <r <1 [3, p.40]. Estimate (5) now yields
(vVB/4)2(r) < sup Lr, £) < 7(r)-
fes

Note that y(r) is the length of the boundary circle of §, = {|z| < #(1 — #)"}.
We recall the growth theorem for f € S:

(6) (14127 <IF(2)l < (- |27, z € D;

see [3, p.33]. The image f({|z] <r})(f € S) is contained in the disc §, with area
mr?(1—7)"* and

Ar, ) {xr?(1 - )"}

is at most:
(r*+4r?+1)1+7)7", 0<r<l,

which decreases from 1 to 3/8 as r increases from @ to 1. Therefore, one may say
that the upper estimate of (6) becomes “worse” as r increases because f({|z| < r})
occupies only a small part of §, in area. We next assume that F; is nonconstant.
The Riemann surface &, (@;, respectively) which is the image of {|z| < r} by Fy
(1/Fy, respectively), by (6), has projection contained in the disc with centre 0 and
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radius (1 —r)~2 ((1 +7)?, respectively). The “sheet—number” of the covering surface
&, (®:, respectively) over this disc:

A(r, F)/{x(1 =)™ H(A(r 1/Fp){x(1 +7)"}, respectively)

is at most 2r%(r? +2)(1 + #)™* which increases from 0 to 3/8 as r increases from 0 to
1. In this sense (6) yields little information on the distribution of the values of Fy(z)
(1/Fy¢(z), respectively), for |z] < r.

Let C be the family of all f € S such that f(D) is convex. With the aid of the
coefficient estimate [3, p.45, Corollary] we have

— (1 — )2
x}:leagA(r,Ff)_wr(l r)” ", 0<r<l.

For each r, 0 < r < 1, the maximum is attained only by J¢(z) = z/(l - e“’z) ,2€D,
# real. A natural conjecture is that

%aCxA(r,l/Ff)zwrz, 0<r<1,

where the maximum is attained only by Jg’s.

REMARK. If ¢; = 0 in (1) for f € S, then F(0) = a; = 0, so that Fy is not univalent
in any disc with centre 0. To consider the case a, # 0, we first note that the function

p(z) = ~log (1 - =*) + (32 = 26) (1 - )

increases from 0 to +o0o as z increases from 0 to 1. Therefore there exists a number
R = R(a;), 0 < R < 1, such that p(R) = |a;|>. We shall show that F; is univalent in
{]z| < R(a2)}. The expression for 1/F; in the proof of Theorem 1 shows that

9(z) = {1 —1/F(2)}/az = z — a;* Z bn_1z" in D.

n=2

The Schwarz inequality, together with (2), yields that

lag|™? Z nlb,_,| R*?

n=2

<lazl™ D (0= 1) [baca PP/ m?(n— 1)} (BT 12

n=2 n=2

<laa ™ @(R)? = 1.
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By [3, p.73, Problem 24 (b)] we have that R~!g(Rz) is univalent and starlike in D.
Thus g, and hence Fy, are univalent in {|2| < R} as we wished. We note that the
image of {|z| < R} under 1/F} is starlike with respect to 1 also. Unfortunately we
cannot claim that R(a;) is sharp. In fact, for the Koebe function K with a; = 2 we

have
R(2)=0.6823..... ,

while Fi is univalent in D. Finally, since |a;| < 2 for f € S, we have R(az) < R(2).
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