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Abstract
This paper is concerned with the development and analysis of a mathematical model that is motivated by interstitial
hydrodynamics and tissue deformation mechanics (poro-elasto-hydrodynamics) within an in-vitro solid tumour.
The classical mixture theory is adopted for mass and momentum balance equations for a two-phase system. A main
contribution of this study is we treat the physiological transport parameter (i.e., hydraulic resistivity) as anisotropic
and heterogeneous, thus the governing system is strongly coupled and non-linear. We derived a weak formulation
and then formulated the equivalent fixed-point problem. This enabled us to use the Galerkin method, and the clas-
sical results on monotone operators combined with the well-known Schauder and Banach fixed-point theorems to
prove the existence and uniqueness of results.

1. Introduction

The study of fluid flow through porous media has gained the attention of many researchers over the
years. Examples of natural porous materials are living tissues, rocks, soils, etc. On the other hand, there
are manmade porous materials, e.g., concrete, foam, ceramic, etc. Because of their wide presence and
hard-to-estimate effective properties, flow through porous material is studied by engineers and scien-
tists. This leads to a coupled phenomenon where fluid flow and solid deformation in porous materials
interplay. This is a classical problem in geomechanics and biomechanics. Recently, one of the most stud-
ied topics in the field of fluid mechanics is flow through biological tissues such as tumours, gylcocalyx
layers and articular cartilage. This paper deals with the mathematical modelling and analysis of the cou-
pled phenomena of fluid flow and solid deformation (in short poro-elasto-hydrodynamics) within an
in-vitro tumour model. Typically, a tumour is assumed to be a deformable porous medium that consists
of multiple phases, e.g., one fluid phase and many solid ones. A tumour may exist in isolation (in-vitro)
or may be present in normal tissue (in-vivo) [1]. Although the internal geometrical structure of tumours
is complicated, developing mathematical models for approximate situations is very useful. Theoretical
predictions generated from such approximate models may help to reduce the number of animal experi-
ments that need to be carried out and also suggest new experimental programmes that identify optimal
tumour therapy schedules [2].

Mathematical models of tumours in general can be divided into three categories: discrete, continuum
and hybrid. Here, we focus on continuum models that treat cells as averaged populations and are based
on the continuum mechanics approach to porous media combined with mixture theory [3]. The early
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mathematical models on the avascular tumour growth [4] assumed that tumours are made of single type
of cells having a constant density. However, various experimental, and theoretical evidence have shown
that such a description is not sufficient to study the tumour dynamics [4, 5]. Hence, multiphase models
came into play. In this case, one can consider density variations within mixture components to evaluate
the evolution of partial stresses. Biot’s theory of poroelasticity and the theory of mixture are commonly
adapted models to explore poro-elasto-hydrodynamics [1]. Alike continuum-level approaches involve
the development of a set of equations to represent the mechanical behaviour of a soft tissue such as a
tumour (which is assumed as a deformable porous material) at the macro scale, using a porous media
approach.

The first multiphase model for tumours is proposed by Please et al. [6]. The authors proposed a
diffusion equation for cell concentration and generalised Darcy equation for cells and water motion
inside the tumour. Further, such multiphase models have been studied analytically and numerically
by several authors, one can refer [5, 7, 8]. Sumets et al. [9] described a new boundary-integral repre-
sentation for biphasic mixture theory, where they solved elastohydrodynamic-mobility problems using
boundary element methods. Dey and Raja Sekhar [1] used a biphasic mixture model for poro-elasto-
hydrodynamics and nutrient transport inside an in-vitro solid tumour. The authors assumed the presence
of an unknown fluid source/sink in the model and biphasic mixture equations have been solved explic-
itly in the case of one-dimensional spherical geometry. Slvia and Wheeler [10] presented a coupled
geomechanics and unsteady reservoir flow model using the theory of poroelasticity. They established
the existence and uniqueness of a weak solution and computed a priori error estimates for the numer-
ical solution with stress-dependent permeability. In [11], a non-linear model for a poroelastic medium
(described by quasi-static Biot-equations) coupled to transport equations of substances was consid-
ered. They have modelled time and space-dependent processes in deformable cellular tissues by the
method of homogenisation, starting from a reactive flow system coupling mechanics at the pore scale.
The model was analysed and the global-in-time existence and uniqueness of the solution were shown.
Cao et al. [12] have considered a non-linear steady flow model in a deformable biological domain based
on the theory of poroelasticity (non-linearity is due to the assumption of dilation-dependent interstitial
permeability of the solid matrix). They established the existence and uniqueness of a weak solution.
Looking through mentioned literature, we observe that there is a gap in dealing with the existence
and uniqueness of corresponding biphasic mixture equations that describe the coupled phenomena of
fluid flow and solid deformation within biomaterials such as tumours. Attempting to fill such a gap,
Alam et al. [13, 14] developed a well-posedness theory and certain regularity results in 2d and 3d
for poro-elasto-hydrodynamics model inside an in-vitro solid tumour. Further, in the case of an in-
vivo solid tumour, Alam et al. [15] developed existence and uniqueness resulting in a weak sense for
poro-elasto-hydrodynamics while assuming the hydraulic resistivity is heterogeneous and deformation
dependent.

We note that, in general, poro-elasto-hydrodynamics models within a tumour may not lead directly
to linear biphasic mixture equations. In practice, due to the non-uniform blood vessel distribution, the
supply of fluids and macromolecules within a tumour is heterogeneous. As a consequence, physiological
transport parameters (e.g., hydraulic resistivity or permeability) depend on space and deformation. For
instance, in the case of soft permeable tissue and gel, Barry and Aldis [16] and Holmes and Mow [17]
considered permeability depending exponentially on the strain. Also, some of the biological tissues and
cells display anisotropic permeability [18]. In particular, articular cartilage typically exhibits anisotropic
behaviour [19]. Further, in the case of multicellular tumour tissue, Giverso and Preziosi [20] followed
Holmes and Mow [17] and considered that the permeability depends on the volumetric deformation
(or strain). Dey and Sekhar [1] assumed that the hydraulic conductivity of soft tumour depends on the
radial distance. These non-linear effects inserted in the physiological parameter yield non-linear biphasic
mixture equations. As far as we know, for non-linear biphasic mixture models, there is a lack of literature
regarding the existence, uniqueness and regularity of the solution. In this paper, we present a non-linear
biphasic mixture model that represents poro-elasto-hydrodynamics, which do not account for any new
growth of tumour cells. The physiological transport parameter (hydraulic resistivity) is assumed to be
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deformation dependent, which yields the non-linearity in the model. We develop a local weak solvability
theory.

1.1 Biphasic mixture theory

In this subsection, we introduce the generic governing equations. We use biphasic mixture theory to
represent the fluid and solid phases of the tumour. Following [1, 8, 21], we apply the conservation of
mass and momentum to the fluid and solid phases, viewing the fluid as viscous Newtonian and the solid
as deformable, and accounting for momentum exchange between the two phases. Let Vf and Vs denote
the velocities of the fluid and solid phases, respectively. The apparent densities of the fluid and solid
phases are denoted by ρ̃f and ρ̃s, respectively, and their corresponding volume fractions by φf and φs.
The true densities of the fluid and solid phases are then ρf = φf ρ̃f and ρs = φsρ̃s. Accordingly, in �, the
mass and linear momentum balance equations for the fluid phase are given by

∂(ρ̃f φf )

∂t
+ ∇ · [(ρ̃f φf )Vf ] = ρ̃f Sf , (1.1)

ρf

(
∂Vf

∂t
+ (Vf · ∇)Vf

)
= ∇ · Tf + �f + bf , (1.2)

where Tf denotes the stress tensor for the fluid phase

Tf = −[φf P − λf ∇ · Vf ]I + μf [∇Vf + (∇Vf )
T]. (1.3)

The corresponding mass and linear momentum equations for the solid phase are
∂(ρ̃sφs)

∂t
+ ∇ · [(ρ̃sφs)Vs] = ρ̃f Ss, (1.4)

ρs

(
∂Vs

∂t
+ (Vs · ∇)Vs

)
= ∇ · Ts + �s + bs, (1.5)

where Ts denotes the stress tensor for the solid phase

Ts = −[φsP − χs(∇ · Us)]I + μs[∇Us + (∇Us)
T]. (1.6)

In Equations (1.1) and (1.4), Sf and Ss are fluid and solid source terms, respectively. Us denotes the
displacement of the solid phase. Hence, Vs = ∂Us

∂t
. The average interstitial fluid pressure is P and bj

j = {1, 2} denotes the body force. Further, the volume fractions φf and φs are assumed to satisfy the
following saturation assumption

φf + φs = 1. (1.7)

We suppose that the two phases interact together via the drag forces �s and �f ,, which by Newton’s
third law, are equal and opposite. Following [7, 8], we define

−�s = �f = K(Vs − Vf ) − (∇φs)P, (1.8)

where K = μf

k
is the hydraulic resistivity or drag coefficient, where k is the permeability of the porous

matrix (the precise nature of K will be defined in the next section). Furthermore, μf (μs) is the dynamic
viscosity of the fluid phase (solid phase), while λf and χs denote the Lame coefficient and shear modulus
of the fluid and solid phases. The elastic modulli χs and μs are related to the Young’s modulus (Y) and
Poisson’s ratio (νp) via the relationship

χs = νpY
(1 + νp)(1 − 2νp)

and μs = Y
2(1 + νp)

.
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1.2 Main modelling assumptions

Having presented a more generic set of mixture theory equations in the absence of any assumptions or
boundary conditions, here we list some biologically suitable assumptions restricted to a specific tumour
model. Our choice of model is motivated by the study of an isolated (in-vitro) tumour that behaves as a
heterogeneous deformable porous medium. Usually, tumour tissues are considered incompressible flu-
ids with no voids present. It is assumed that each phase has an equal constant density. Suppose � ⊂R

d,
d = {2, 3} is a bounded Lipschitz domain that is filled by the tumour. Let ∂� be its boundary (Figure 1).
One may note that the solid tumour is essentially a multicellular spheroid. When nutrients perfuse the
interstitial space, a large number of cells receive adequate food for survival and proliferation. As a con-
sequence, the tumour grows in size. For a growing tumour, the permeability and the effective mechanics
parameters (χs and μs) may depend on the volume fraction of the cell population [8]. Moreover, the
volume fractions depend on space. Hence, it is extremely difficult to analyse mathematically the growth
model and fluid transport model simultaneously. To simplify this, we assume that the tumour tissue is
not growing and all elastic parameters (χs and μs etc.) are independent of volume fractions. Further, we
make the following modelling assumptions (A1)–(A4):

(A1) Nutrient perfusion and transport occur on much shorter timescales than the timescale for tumour
cell growth. Accordingly, we view the tumour as a static, perfused biological domain. On the
short timescale associated with nutrient transport to (and within) the tumour, cell death and
proliferation are assumed to be negligible. Therefore, we fix Ss = 0 in the tumour and nor-
mal tissue regions. Further, on the timescale of interest, the solid volume fraction φs remains
constant, and for simplicity, we assume it to be independent of spatial position and time as
(see [1]).

(A2) A fluid source is attached to the mixture, hence Sf �= 0, [1, 22].
(A3) Motion of the cells and interstitial fluid flow is so slow that the inertial terms can be neglected in

both phases, see e.g. [8, 23].
(A4) Structure of the hydraulic resistivity: Various experimental and theoretical investigations indicate

clearly that for the deformable porous medium (or soft biological tissue such as articular carti-
lage, arterial tissue and tumour), the permeability also called in this context hydraulic resistivity
depends on stress, dilatation, volume fractions (porosity), etc. There are several analytical expres-
sions for permeability that are used in literature such as k(x) = exp[mU′(x)], where m is a constant
and U′ = dU

dx
with U as displacement, while k(x) = k0/[1 − mU′(x)] or k(x) = k0[1 + mU′(x)] for

small mU′(x), or k(x) = k0(φ/φ0)n [16, 17]. Here, k0 is the permeability at reference porosity φ0

and n is a variable that may be determined by fitting experimental data. In this framework, we
propose two different cases. We assume that the hydraulic resistivity K depends explicitly on
(a) the solid phase displacement Us and (b) the strain/dilatation i.e. on ∇ · Us. In both of these
cases, we admit anisotropic effects, i.e. K is a square matrix of order d = {2, 3}. Note that in
case (a), we do not use any specific, explicit expression of K(Us) in our analysis. One may think
through the following choice

K(Us) = (α1|Us| + α3)I + (α1 − α2)
UsUT

s

|Us| ,

where αi (i = 1, 2, 3) are real constants such that α1 � 0, α2 � 0 and α3 > 0. One can easily show
that K is Lipschitz and uniformly positive [24]. For case (b), one can think of a form K(∇ · Us) =
(γ1 + γ2|∇ · Us|)I, where γi � 0 are real constants, and I is the identity matrix. One can observe
that K is Lipschitz and uniformly positive. We will state further assumptions on K in the next
Section 3, [16, 17].
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Figure 1. Geometry of the problem.

The assumptions (A1)–(A4) are taken into account in Equations (1.1)–(1.8). This helps us to define a cou-
pled non-linear system of steady-state mass and momentum balance equations in unknowns (Vf , Us, P)
as follows:

−∇ · (2μf D(Vf ) + λf (∇ · Vf )I − φf PI) + K(ς)Vf = bf in �, (1.9)

−∇ · (2μsD(Us) + χs(∇ · Us)I − φsPI) − K(ς )Vf = bs in �, (1.10)

∇ · (φf Vf ) = Sf in �, (1.11)

where ς is either ∇ · Us or Us. Further, D(·) denotes the deviatoric matrix, which is defined as D(u) =
1
2
(∇u + (∇u)t), where (∇u)t denotes the transpose of the matrix ∇u. We have made the approximation

Vs = ∂Us
∂t

≈ 0 which is consistent with the infinitesimal strain theory that is used in e.g. [1, 25]. The
mass balance equations for the fluid phase include a source term Sf , which models fluid exchange with
vasculature and lymph vessels. For a closed mixture (for instance the case of avascular tumours), we
consider Sf = 0 so that ∇ · (φf Vf ) = 0. This is the counterpart of the incompressibility constraint. Note
that in Equation (1.11), even though the density of each phase is constant, the vector Vf is not solenoidal.
On the other hand, when the external sources/sinks are attached to the mixture, we have Sf �= 0 [5, 22].
Typically, the fluid source Sf is assumed to be driven by the average transmural pressure and (trusting
[1, 22]) takes the form

Sf = −Lp

(
A

V

)
{1 + LrAr}(P − PF), (1.12)

where Lp is the average hydraulic conductivity coefficient of capillary. In (1.12), A/V denotes the cap-
illary surface area per unit tissue volume in the tumour tissue and LrAr denotes the ratio of the strength
of distributed solute source through the vasculature and solute sink through the lymph vessels and PF is
the weighted vascular pressure.

1.3 Boundary conditions

The model that we have considered here is supposed to mimic an in-vitro tumour. Accordingly, we
prescribe

Tf · n = T∞ and Us = 0 on ∂�, (1.13)

where n is the outward normal unit vector to the boundary ∂�.

2. Non-dimensional equations

Using the transformations x̂ = x
R
, ∇′ = R∇, P̂ = P

PF
, V̂f = Vf

RPF
μf

, Ûs = Us
R3PF
μf ν

, K = K̂Kd, where Kd is the

hydraulic resistivity (drag coefficient) of the tumour tissue in the absence of deformation, R is the length
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of the edge of the d-cube in which � is contained. The following dimensionless form of the governing
Equations (1.9)–(1.11) (‘hat’ is dropped for convenience) is available in �

−∇ ·
(

2D(Vf ) + λf

μf

(∇ · Vf )I − φf PI
)

+ 1

Da
K(ς)Vf = bf , (2.1)

−∇ ·
(

�t

(1 + νp)
D(Us) + νp�t

(1 + νp)(1 − 2νp)
(∇ · Us)I − φsPI

)
− 1

Da
K(ς )Vf = bs, (2.2)

∇ · (φf Vf ) = −α2
t (1 + LrAr)(P − 1). (2.3)

In (2.1) and (2.2), bf and bs are modified non-dimensional body forces, and �t =YR2ρf /μ
2
f is the

dimensionless Young’s modulus Y associated with the solid phase. It contains the response of the
solid phase (cellular phase + extracellular matrix) towards viscous drag due to interstitial fluid move-
ment. α2

t = LP(A/V)μf is the strength of solute source, and Da = Kdμf

R2 is the Darcy number (permeability
parameter). The corresponding boundary conditions are(

2D(Vf ) + λf

μf

(∇ · Vf )I − φf PI
)

· n = T∞ and Us = 0 on ∂�. (2.4)

For the sake of writing convenience, set λ = λf

μf
, α1 = �t

2(1+νp)
, α2 = νp�t

(1+νp)(1−2νp)
, and a0 = α2

t (1 + LrAr).
Observe that the system of Equations (2.1)–(2.3) is non-linear and fully coupled whenever ς is equals to
either Us or ∇ · Us, which is our primary interest for now. The main aim is to study the well-posedness
of the non-linear system (2.1)–(2.3) subject to the data (2.4).

3. Well-posedness of the auxiliary sub-problems

Vf , P, Us are the unknown functions in the system of Equations (2.1)–(2.3). We assume the following:

(A) The parameters φf > 0, φs > 0, λ� 0, α1 > 0, α2 > 0, a0 > 0, Da > 0 are known real constants,
and the functions bj ∈ L2(�)d where j = f , s, T∞ ∈ L2(∂�)d are also known. ck > 0, cp > 0,
ct > 0, cs > 0 are some real constants that appear in Korn’s, Poincare’s, trace and Sobolev’s
inequalities, respectively.1

(B) Let K : Rd →R
d2 be a symmetric, uniformly bounded and positive definite matrix. This ensures

that there exist positive constants k1 and k2 such that for all ξ , x ∈R
d, we have:

(i) k1ξ · ξ � K(x)ξ · ξ and (ii) ||K(x)||� k2, (3.1)

|| · || denotes the Euclidean norm.
(C) We assume that the hydraulic resistivity K is Lipschitz continuous. To this extent, let us assume

that there exists a constant kL > 0 such that

||K(x) − K(y)||� kL||x − y|| for all x, y ∈R
d. (3.2)

3.1 Concept of weak formulation

Choose the triplet of test functions (W, Z, q) ∈ H1(�)d × H1
0(�)d × L2(�). Taking the scalar product of

(2.1) with W, (2.2) with Z and (2.3) with q, and using the boundary conditions (2.4), we get the following
non-linear weak formulation:

1We refer to the Appendix section for details on function spaces and other preliminary results.
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Find the triplet (Vf , Us, P) ∈ H1(�)d × H1
0(�)d × L2(�) such that

2(D(Vf ) : D(W))� + λ(∇ · Vf , ∇ · W)� − φf (P, ∇ · W)� (3.3)

+ 1

Da
(K(ς)Vf , W)� = (bf , W)� + (T∞, W)∂�

φf (∇ · Vf , q)� + a0(P, q)� = (a0, q)� (3.4)
2α1(D(Us) : D(Z))� + α2(∇ · Us, ∇ · Z)� − φs(P, ∇ · Z)�

− 1

Da
(K(ς)Vf , Z)� = (bs, Z)� (3.5)

holds for all (W, Z, q) ∈ H1(�)d × H1
0 (�)d × L2(�). Here in ς is Us and ∇ · Us.

Lemma 1. (Equivalence of weak formulations) Suppose that parameters and data satisfy assumptions
(A) and (B). Then any solution (in the sense of distributions) (Vf , Us, P) ∈ H1(�)d × H1

0 (�)d × L2(�) of
the coupled problem (2.1)–(2.4) is also a solution to the variational problem (3.3)–(3.5). Conversely,
any solution to the weak problem (3.3)–(3.5) satisfies (2.1)–(2.4) in the sense of distributions.

The proof follows using standard arguments. We omit to show it.

3.2 Decoupled problem corresponding to (3.3)–(3.5), Case (a): K(ς ) = K(Us)

We note that the weak formulation (3.3)–(3.5) can be decoupled concerning the unknowns (Vf , P) and
Us. In case (a), we are dealing with K(ς ) = K(Us), which is a non-linear function of Us and satisfies
assumptions (3.1) and (3.2). In this case, we can solve (3.3)–(3.5) sequentially, that is, given ς ∈ H1

0(�)d

find (Vf , P) ∈ H1(�)d × L2(�) such that

(Qw1 (ς ))

⎧⎪⎪⎨
⎪⎪⎩

2(D(Vf ) : D(W))� + λ(∇ · Vf , ∇ · W)� − φf (P, ∇ · W)�

+ 1
Da

(K(ς )Vf , W)� + φf (∇ · Vf , q)� + a0(P, q)�

= (bf , W)� + (T∞, W)∂� + (a0, q)�

holds for all (W, q) ∈ H1(�)d × L2(�), and then for a given pair (Vf , P) ∈ H1(�)d × L2(�), find Us ∈
H1

0 (�)d such that

(Qw2 (Us))

{
2α1(D(Us) : D(Z))� + α2(∇ · Us, ∇ · Z)� = φs(P, ∇ · Z)�

+ 1
Da

(K(Us)Vf , Z)� + (bs, Z)�

holds for all Z ∈ H1
0 (�)d. For notational convenience, we denote combined problem as (Qw1 (ς )) −

(Qw2 (Us)).

3.3 Decoupled problem corresponding to (3.3)–(3.5), Case (b): K(∇ · ς ) = K(∇ · Us)

We can solve (3.3)–(3.5) sequentially, that is, for a given ς ∈ H1
0(�)d find (Vf , P) ∈ H1(�)d × L2(�) such

that

(Qw1 (∇ · ς))

⎧⎪⎪⎨
⎪⎪⎩

2(D(Vf ) : D(W))� + λ(∇ · Vf , ∇ · W)� − φf (P, ∇ · W)�

+ 1
Da

(K(∇ · ς )Vf , W)� + φf (∇ · Vf , q)� + a0(P, q)�

= (bf , W)
�

+ (T∞, W)∂� + (a0, q)�

holds for all (W, q) ∈ H1(�)d × L2(�), and then for a given pair (Vf , P) ∈ H1(�)d × L2(�), find Us ∈
H1

0 (�)d such that

(Qw2 (∇ · Us))

{
2α1(D(Us) : D(Z))� + α2(∇ · Us, ∇ · Z)� = φs(P, ∇ · Z)�

+ 1
Da

(K(∇ · Us)Vf , Z)� + (bs, Z)�
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holds for all Z ∈ H1
0 (�)d. For notational convenience, we denote combined problem as (Qw1 (∇ · ς )) −

(Qw2 (∇ · Us)).

3.4 Case (a): existence and uniqueness results for (Qw1 (ς))

In order to solve weak formulation (Qw1 (ς )), we use the following method. We rephrase the weak formu-
lation (Qw1 (ς )) into an abstract setting. Set Y= H1(�)d × L2(�). To do so, define a mapping Hς from
Y to Y by

〈Hς (Vf , P), (W, q)〉 = 2(D(Vf ) : D(W))� + λ(∇ · Vf , ∇ · W)� − φf (P, ∇ · W)�

+ 1

Da
(K(ς)Vf , W)� + φf (∇ · Vf , q)� + a0(P, q)� − [(bf , W)� + (T∞, W)∂� + (a0, q)�]. (3.6)

Using the mapping Hς , the variational formulation (Qw1 (ς )) can equivalently be written as: for a given
ς ∈ H1

0(�)d, find (Vf , P) ∈Y such that

〈Hς (Vf , P), (W, q)〉 = 0 for all (W, q) ∈Y. (3.7)

Conversely, if (3.7) holds, then (2.1) and (2.3) with the first boundary condition in the equation (2.4)
satisfy in the sense of distributions. Hence, our immediate task is to find a pair (Vf , P) ∈Y that satisfies
(3.7). In order to do so, we proceed as follows. The mapping Hς satisfies the following lemma:

Lemma 3.1. Suppose that parameters and data satisfy assumptions (A) and (B). If Hς is a mapping
from Y into itself defined by (3.6), then the following statements hold:

(i) Hς is continuous.
(ii) There exists a real number r > 0 such that

〈Hς (V), V〉 > 0, for all V ∈Y with ||V||Y = r,

i.e., Hς is coercive on a ball of radius r in Y. Here, for any V= (Vf , P) ∈Y= H1(�)d × L2(�), || · ||Y
is defined as

||V||2
Y

= ||(Vf , P)||2
Y

= ||Vf ||2
1,� + ||P||2

0,�.

Proof. (i) The continuity of the mappingHς can be shown using the continuity of scalar product. Indeed,
let {Vm}m�1 = {(Vm

f , Pm)}m�1 be any sequence inY that converges strongly toV= (Vf , P) ∈Y as m → ∞,
i.e.

||Vm
f − Vf ||1,� → 0, ||Pm − P||0,� → 0 as m → ∞. (3.8)

Relying on the definition of Hς and on Cauchy-Schwarz inequality, we get

|〈Hς (Vm) −Hς (V), (W, q)〉|� 2||D f (Vm
f − Vf )||0,�||D f (W)||0,�

+λ||∇ · (Vm
f − Vf )||0,�||∇ · W||0,� + φf ||Pm − P||0,�||∇ · W||0,�

+ k2

Da
||Vm

f − Vf ||0,�||W||0,� + φf ||∇ · (Vm
f − Vf )||0,�||q||0,�

+a0||Pm − P||0,�||q||0,�.

Using (3.8), we obtain

|〈Hς (Vm
f , Pm) −Hς (Vf , P), (W, q)〉| → 0 ∀ (W, q) as m → ∞.

This argument establishes the continuity of Hς .
(ii) For any V= (Vf , P) ∈Y, we have

〈Hς (V), V〉 = 2||D(Vf )||2
0,� + λ||∇ · Vf ||2

0,� − φf (P, ∇ · Vf )� + 1

Da
(K(ς )Vf , Vf )�

+φf (∇ · Vf , P)� + a0||P||2
0,� − [(bf , Vf )� + (T∞, Vf )∂� + (a0, P)�]. (3.9)
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Using Cauchy-Schwarz, Korn’s and trace inequalities, we obtain

〈Hς (V), V〉� α||Vf ||2
1,� + λ||∇ · Vf ||2

0,� + a0||P||2
0,�

−(||bf ||0,� + √
ct||T∞||0,∂�)||V||1,� − ||a0||0,�||P||0,�, (3.10)

where α = 1
ck

min{2, k1
Da

}. Further, (3.10) can be rewritten as

〈Hς (V), V〉� α3(||Vf ||2
1,� + ||P||2

0,�) − α4||V||1,0,�, (3.11)

where

α3 = min {α, a0} , (3.12)
α4 = [(||bf ||0,� + √

ct||T∞||0,∂�)2 + ||a0||2
0,�]1/2. (3.13)

If ||V||Y = r0 for some r0 > 0, then we have

〈Hς (V), V〉 > 0 ∀V ∈Y, when r0 >
α4

α3

. (3.14)

This completes the proof of Lemma 3.1.

Remark 3.2. Note that λ = λf

μf
(which is the ratio of the two viscosity coefficients) plays a significant

role in the coercivity proof. The literature [26, 27] suggests that researchers have debated on the sign
(or value) of λ. According to the well-known Stokes-hypothesis, λ = −2/3 [27]. On the other hand, the
existing literature also suggests that this ratio can be non-negative [26]. Thus, we consider both of these
possibilities. If λ� 0, then the coercivity of Hς , as shown by us in (3.14), holds. However, when λ < 0
(i.e. a typical Stokes hypothesis), the coercivity of Hς holds with relevant restrictions on the constants.
For instance, when λ < 0, the mapping Hς is coercive if α = 1

ck
min{2, k1

Da
} > 2/3. For convenience from

here onward, we assume λ to be a non-negative constant.

Based on Lemma A.1 (see Appendix A), we now present the following existence results.

Theorem 3.3. Suppose that (A) and (B) hold. Then for a given ς ∈ H1
0(�)d, the problem (3.7) has at

least one solution (Vf , P) ∈Y= H1(�)d × L2(�) satisfying the problems (2.1) and (2.3) with the first
boundary condition in the equation (2.4) in the sense of distributions. Moreover, the solution (Vf , P)
satisfies the following a priori bound

||Vf ||2
1,� + ||P||2

0,� �
(

α4

α3

)2

. (3.15)

Proof. To prove this result, we use the Galerkin method. The spaces H1(�)d, L2(�) are separable Hilbert
spaces. Hence, there exist corresponding bases {Wi}∞

i=1 and {qi}∞
i=1 of smooth functions. Let Ym be the

space spanned by {(Wi, qi)}m
i=1. The scalar product on Ym is induced by the scalar product of Y. We

define the approximate solution (Vm
f , Pm) as follows:

Vm
f =

m∑
i=1

aiWi, Pm =
m∑

i=1

ciqi, (3.16)

with

(Qm(ς ))

⎧⎪⎨
⎪⎩

2(D(Vm
f ) : D(W))� + λ(∇ · Vm

f , ∇ · W)� − φf (Pm, ∇ · W)�

+ 1
Da

(K(ς)Vm
f , W)� + φf (∇ · Vm

f , q)� + a0(Pm, q)�

= (bf , W)� + (T∞, W)∂� + (a0, q)�,

holding for all (W, q) ∈Ym with ai, bi, ci ∈R, for i = 1, 2, . . . , m. The task now is to ensure the exis-
tence of solutions to (Qm(ς )) and show that (Qm(ς )) recovers (Qw1 (ς)) as m → ∞. The linear structure
of (Qm(ς)) suggests that weak convergence is enough to pass the limit. Hence, in order to do so, we
define a mapping Hm inspired by the structure of mapping H as

〈Hm
ς (Vf , P), (W, q)〉 = 〈Hς (Vf , P), (W, q)〉, for all (W, q) ∈Ym (3.17)
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where Hς is defined in (3.6). From Lemma 3.1, we deduce that the mapping Hm
ς satisfies the conditions

needed for Lemma A.1 (see Appendix A) and hence, there exists a solution (Vm
f , Pm) ∈Ym for each m

such that

〈Hm
ς (Vm

f , Pm), (W, q)〉 = 0, for all (W, q) ∈Ym. (3.18)

It follows that (Vm
f , Pm) satisfy (Qm(ς)) and ai, ci can be determined.

Energy Estimates: Let W = Vm
f , and q = Pm in (Qm(ς)), then by performing calculations similar to

those leading to (3.11), we obtain

α3(||Vm
f ||2

1,� + ||Pm||2
0,�) − α4||(Vm

f , Pm)||1,0,� � 0, (3.19)

where α3 and α4 are defined in (3.12)–(3.13). Consequently,

||Vm
f ||2

1,� + ||Pm||2
0,� �

(
α4

α3

)2

. (3.20)

Inequality (3.20) implies that the sequence {(Vm
f , Pm)}m�1 is uniformly bounded in Y. Hence, it has a

sub-sequence {(Vm
f , Pm)}m�1 (for convenience, we denote it by the same symbol) and a pair (Vf , P) ∈Y

such that

(Vm
f , Pm) ⇀ (Vf , P) as m → ∞ weakly inY. (3.21)

By taking the limit in (3.18) and using the weak convergence (3.21), we get

〈Hς (Vf , P), (W, q)〉 = 0, for all (W, q) ∈Ym. (3.22)

A continuity argument shows that (3.22) holds for any (W, q) ∈Y. Hence, (Vf , P) is a solution of (3.7)
and equivalently, of the weak formulation (Qw1 (ς)). Using the lower semi-continuity property of norm
in (3.20), we can achieve the following a priori bound on solution (Vf , P) given by

||Vf ||2
1,� + ||P||2

0,� �
(

α4

α3

)2

. (3.23)

Proposition 3.4. Suppose the hypotheses of Theorem 3.3 hold. Then, the weak formulation (Qw1 (ς))
has a unique solution that depends continuously on the given data.

Proof. Uniqueness: Let (V1
f , P1) and (V2

f , P2) be two solutions that satisfy Equation (3.7) or equivalently
the weak formulation (Qw1 (ς)). Define (Vf , P) = (V1

f − V2
f , P1 − P2). Then, from (3.7), we have

〈Hς (V1
f , P1) −Hς (V2

f , P2), (W, q)〉 = 0 (3.24)

for all (W, q) ∈Y. Replace (W, q) by (Vf , P) in (3.24) and using the definition of H, we find

α||Vf ||2
1,� + λ||∇ · Vf ||2

0,� + a0||P||2
0,� � 0.

The above implies Vf = 0, Us = 0 and P = 0 almost everywhere in �. Hence, the weak formulation
(Qw1 (ς)) has a unique solution.

Continuous dependence: Let (V1
f , P1) and (V2

f , P2) be two solutions of (Qw1 (ς)) corresponding to
the two sets of data (T∞,1, bf ,1, a0,1) and (T∞,2, bf ,2, a0,2), then the difference (Vf , P) = (V1

f − V2
f , P1 − P2)

satisfies

α||Vf ||2
1,� + λ||∇ · Vf ||2

0,� + a0||P||2
0,�

−(||bf ||0,� + √
ct||T∞||0,∂�)||V||1,� − ||a0||0,�||P||0,� � 0,
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or,

||V1
f − V2

f ||2
1,� + ||P1 − P2||2

0,�

� 1

α2
3

[
(||bf ,1 − bf ,2||0,� + √

ct||T∞,1 − T∞,2||0,∂�)2 + ||a0,1 − a0,2||2
0,�

]
. (3.25)

Thus, if (T∞,1, bf ,1, a0,1) is close to (T∞,2, bf ,2, a0,2), then the left-hand side of (3.25) (the difference of
solutions) must be small. This establishes the well-posedness of the auxiliary linear problem (Qw1 (ς )).
Next, we would like to consider the sub-problem, (Qw2 (∇ · Us)).

3.5 Case (a): existence and uniqueness results for (Qw2 (Us))

We note that K(ς) = K(Us) is a non-linear function of Us (see assumption (A4) in Subsection 1.2) which
makes (Qw2 (Us)) a semilinear problem. By introducing a semilinear form B(·, ·) : H1

0 (�)d × H1
0(�)d →R

that is given by

B(Us, Z) = 2α1(D(Us) : D(Z))� + α2(∇ · Us, ∇ · Z)� − 1

Da
(K(Us)Vf , Z)� (3.26)

and a linear form L : H1
0(�)d →R defined as

L(Z) = φs(P, ∇ · Z)� + (bs, Z)�, (3.27)

weak problem (Qw2 (Us)) can be rewritten as an abstract formulation. For a given pair (Vf , P) ∈ H1(�)d ×
L2(�), find Us ∈ H1

0 (�)d such that

B(Us, Z) = L(Z) for all Z ∈ H1
0 (�)d. (3.28)

In order to show existence and uniqueness results for problem (3.28), we will use the Browder-Minty
theorem (see Thereom A.3, Appendix A), which is based on the monotone operator approach. To justify
the hypotheses of the Browder-Minty theorem, we prove the following results in the form of lemmas.

Lemma 2. The correspondence Z �→ B(Us, Z) is a bounded linear operator and L ∈ (H1
0(�)d)∗.

Proof. Clearly, the mapping Z �→ B(Us, Z) is linear (obvious) and bounded. Indeed, using Cauchy-
Schwarz, Hölder’s and Sobolev inequalities, we find

|B(Us, Z)|� 2α1||D(Us)||0,�||D(Z)||0,� + α2||∇ · Us||0,�||∇ · Z||0,�

+ 1

Da
||K(Us)||L∞(�)||Vf ||0,�||Z||0,� �

(
(2α1 + α2)||∇Us||0,�

+k2
√

cp

Da
||Vf ||0,�

)
||∇Z||0,�. (3.29)

Now, L is linear (obvious) and bounded. Indeed, we have

|L(Z)|� (φs||P||0,� + √
cp||bs||0,�)||∇Z||0,�. (3.30)

This implies L ∈ (H1
0(�)d)∗.

The Lemma 2 implies that there exists an operator (non-linear) A : H1
0 (�)d → (H1

0(�)d)∗ = H−1(�)d

with

(AUs, Z) = B(Us, Z). (3.31)

Thus, the variational problem (3.28) equivalently reduces to the operator equation: find Us ∈ H1
0(�)d

such that

AUs = L (3.32)

in the sense

(AUs, Z) = L(Z), for all Z ∈ H1
0(�)d. (3.33)
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Further, estimate (3.29) implies the non-linear operator A is bounded. Indeed,

||AUs||H−1(�)d �
[

(2α1 + α2)||∇Us||0,� + k2
√

cp

Da
||Vf ||0,�

]
. (3.34)

Lemma 3. If 2α1
ck

>
kLcs

√
cpα4

α3Da
, then the semilinear form B(·, ·) is elliptic that is there exists a constant

c > 0 such that

B(U1
s , U1

s − U2
s ) − B(U2

s , U1
s − U2

s ) � c||∇U1
s − ∇U2

s ||2
0,� for all U1

s , U2
s ∈ H1

0(�)d. (3.35)

Note: This lemma implies that A is strongly monotone.
Proof: Indeed, consider

(AU1
s −AU2

s , U1
s − U2

s ) = B(U1
s , U1

s − U2
s ) − B(U2

s , U1
s − U2

s )

= 2α1||D(U1
s ) − D(U2

s )||2
0,� + α2||∇ · U1

s − ∇ · U2
s ||2

0,�

− 1

Da
((K(U1

s ) − K(U2
s ))Vf , U1

s − U2
s )� � 2α1||D(U1

s ) − D(U2
s )||2

0,�

+α2||∇ · U1
s − ∇ · U2

s ||2
0,� − 1

Da
||K(U1

s ) − K(U2
s )||0,�||Vf ||L4(�)||U1

s − U2
s ||L4(�)

� 2α1

ck

||∇U1
s − ∇U2

s ||2
0,� − kLcs

√
cpα4

α3Da
||∇U1

s − ∇U2
s ||2

0,�

=
(

2α1

ck

− kLcs
√

cpα4

α3Da

)
||∇U1

s − ∇U2
s ||2

0,� (3.36)

To reach (3.36), we have applied Hölder’s, Poincare’s and Sobolev’s inequalities and Lipschitz
continuous property of K. Thus, if 2α1

ck
>

kLcs
√

cpα4

α3Da
, then B is elliptic with c =

(
2α1
ck

− kLcs
√

cpα4

α3Da

)
.

Lemma 4. The non-linear operator A as in (3.31) is continuous from H1
0 (�)d to H−1(�)d.

Proof. Let Un
s → Us in H1

0(�)d as n → ∞. Consider

|(AUn
s −AUs, Z)|� 2α1||D(Un

s ) − D(Us)||0,�||D(Z)||0,�

+α2||∇ · Un
s − ∇ · Us||0,�||∇ · Z||0,� + 1

Da
||K(Un

s ) − K(Us)||0,�||Vf ||L4(�)||Z||L4(�)

On applying Lipschitz continuity of K and Sobolev inequality, we find

||AUn
s −AUs||H−1(�)d � 2α1||D(Un

s ) − D(Us)||0,� + α2||∇ · Un
s − ∇ · Us||0,�

+kLcs

Da
||Un

s − Us||0,�

and ||AUn
s −AUs||H−1(�)d → 0 as n → ∞. That is, A is continuous.

Theorem 3.5. Suppose that assumptions (A), (B) and (C) hold. Further, if the given data and non-
dimensional parameters satisfy the following assumption

2α1

ck

>
kLcs

√
cpα4

α3Da
, (3.37)

then for a given pair (Vf , P) ∈ H1(�)d × L2(�)d, the problem (Qw2 (Us)) has a unique solution Us ∈
H1

0 (�)d. Moreover, if

2α1

ck

>
k2

√
cpα4

α3Da
(3.38)
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holds, then Us satisfies the following a priori estimate

||∇Us||0,� � 1(
2α1
ck

− k2
√

cpα4

α3Da

) (φsα4

α3

+ √
cp||bs||0,�

)
. (3.39)

Proof. The analysis shown in Lemmas 3 and 4 justifies that A satisfies the hypothesis of the Browder-
Minty theorem (see Theorem A.3, Appendix A). Consequently, the operator Equation (3.32) or the
problem (3.28) has a unique solution Us ∈ H1

0(�)d for any given pair (Vf , P) ∈ H1(�)d × L2(�). Further,
if (3.38) holds, then Us satisfies the apriory estimate (3.39). Indeed, from (3.28) replacing Z = Us and
using Poincare’s inequality, we have

B(Us, Us) = L(Us) � (φs||P||0,� + √
cp||bs||0,�)||∇Us||0,�

Making use of the definition of B(Us, Us) and Korn’s, Hölder’s and Sobolev inequalities and bounded-
ness property of K, we obtain

||∇Us||0,� � 1(
2α1
ck

− k2
√

cpα4

α3Da

) (φsα4

α3

+ √
cp||bs||0,�

)
.

The analysis in Subsections 3.4–3.5 describes the existence and uniqueness of problems (Qw1 (ς )) −
(Qw2 (Us)). In the next subsections, we focus on developing existence and uniqueness results correspond-
ing to (Qw1 (∇ · ς )) − (Qw2 (∇ · Us)) that is the case (b).

3.6 Case (b): existence and uniqueness of a solution to (Qw1 (∇ · ς ))

Analysis in this subsection is analogous to the arguments in the Subsection 3.4. Thus, we only state the
main theorem and omit the proof.

Theorem 3.6. Suppose that the assumptions (A) and (B) hold. Then for a given ς ∈ H1
0(�)d, the problem

(Qw1 (∇ · ς )) has a unique solution (Vf , P) ∈Y= H1(�)d × L2(�) that depends continuously on the given
data. Moreover, the solution (Vf , P) satisfies the following a priori bound

||Vf ||2
1,� + ||P||2

0,� �
(

α4

α3

)2

. (3.40)

Proof. Proof of this theorem follows from Theorem 3.3 and Proposition 3.4.

3.7 Case (b): existence and uniqueness of a solution to (Qw2 (∇ · Us))

We note that K(∇ · Us) is a non-linear function of ∇ · Us (see assumption (A4) in Subsection 1.2) which
makes (Qw2 (∇ · Us)) a semilinear problem.

By introducing a semilinear form B(·, ·) : H1
0(�)d × H1

0 (�)d →R that is given by

B(Us, Z) = 2α1(D(Us) : D(Z))� + α2(∇ · Us, ∇ · Z)� − 1

Da
(K(∇ · Us)Vf , Z)� (3.41)

and a linear form L : H1
0(�)d →R defined as

L(Z) = φs(P, ∇ · Z)� + (bs, Z)�, (3.42)

weak problem (Qw2 (∇ · Us)) can be rewritten as an abstract formulation. For a given pair (Vf , P) ∈
H1(�)d × L2(�), find Us ∈ H1

0(�)d such that

B(Us, Z) = L(Z) for all Z ∈ H1
0 (�)d. (3.43)
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Similar to Subsection 3.5 to show existence and uniqueness results for problem (3.43), we will use
the Browder-Minty theorem (see Theorem A.3, Appendix A), which is based on the monotone oper-
ator approach. We state the main theorem without proof, which can be done similarly to the proof of
Theorem 3.5.

Theorem 3.7. Suppose that assumptions (A), (B) and (C) hold. Further, if the given data and non-
dimensional parameters satisfy the following assumption

2α1

ck

>
kLcsα4

α3Da
, (3.44)

then for a given pair (Vf , P) ∈ H1(�)d × L2(�)d, the problem (Qw2 (∇ · Us)) has a unique solution Us ∈
H1

0 (�)d. Moreover, if

2α1

ck

>
k2

√
cpα4

α3Da
(3.45)

holds, then Us satisfies the following a priori estimate

||∇Us||0,� � 1(
2α1
ck

− k2
√

cpα4

α3Da

) (φsα4

α3

+ √
cp||bs||0,�

)
. (3.46)

Proof. The proof of this theorem can be done similarly to the proof of Theorem 3.5. The analysis
in Subsections 3.6–3.7 completes the existence and uniqueness of solution to problem (Qw1 (∇ · ς )) −
(Qw2 (∇ · Us)). In the next section, we focus on the development of existence and uniqueness results
corresponding to coupled non-linear problems (Qw1 (Us)) − (Qw2 (Us)) and (Qw1 (∇ · Us)) − (Qw2 (∇ · Us)),
respectively, by converting them into a fixed-point problem.

4. Case (a): reduction to a fixed-point problem for (Qw1 (Us)) − (Qw2 (Us))

We note that for a given ς ∈ H1
0 (�)d, the problem (Qw1 (ς )) has a unique solution (Vf , P) ∈ H1(�)d ×

L2(�) (see Subsection 3.4). Consequently, we can define a mapping T1 : H1
0(�)d → H1(�)d × L2(�) such

that T1(ς ) = (Vf , P). Further, for a given pair (Vf , P) ∈ H1(�)d × L2(�), the problem (Qw2 (Us)) has a
unique solution Us ∈ H1

0(�)d (see Subsection 3.5). Therefore, we can define a mapping T2 : H1(�)d ×
L2(�) → H1

0(�)d such that T2(Vf , P) = Us. Now, in order to get the fixed-point problem corresponding
to (Qw1 (Us)) − (Qw2 (Us)), we define a composition map T = T2 ◦ T1 : H1

0(�)d → H1
0(�)d such that

T(ς ) = (T2 ◦ T1)(ς) = T2(T1(ς)) = T2(Vf , P) = Us. (4.1)

Thus, a fixed-point of mapping T solves the coupled non-linear problem (Qw1 (Us)) − (Qw2 (Us)) or
equivalently, (3.3)–(3.5) when ς = Us. In order to show that the mapping T has a fixed point, we use
Schauder’s fixed-point theorem (see Thereom A.2, Appendix A).2 Thus, in the following analysis, we
prove some results in the form of lemmas to verify the hypotheses of Schauder’s fixed-point theorem.

4.1 Analysis of the fixed-point problem

Throughout this subsection, we assume that hypotheses of Theorem 3.3, Proposition 3.4 and
Theorem 3.5 hold. Then, we have

Lemma 5. Given r > 0, let Wr be a closed and convex subset of H1(�)d defined by

Wr = {w ∈ H1
0 (�)d : ||w||H1

0 (�)d = ||∇w||0,� � r},

2For the fixed-point approach, we are inspired by the working techniques used in [38, 39].
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and assume that the data satisfies
1(

2α1
ck

− k2
√

cpα4

α3Da

) (φs

α4

α3

+ √
cp||bs||0,�

)
� r. (4.2)

Then, T(Wr) ⊆ Wr.

Proof. For any w ∈ Wr, using estimate (3.39), we find

||T(w)||H1
0 (�)d = ||T2(T1(w))||H1

0 (�)d = ||T2(Vf , P)||H1
0 (�)d = ||Us||H1

0 (�)d

= ||∇Us||0,� � 1(
2α1
ck

− k2
√

cpα4

α3Da

) (φs

α4

α3

+ √
cp||bs||0,�

)
. (4.3)

The above estimate (4.3) together with the assumption (4.2) imply T(w) ∈ Wr, which proves T(Wr) ⊆
Wr.

Lemma 6. The map T1 : H1
0(�)d → H1(�)d × L2(�) satisfies

||T1(ς) − T1(ς̃ )||Y �
√

2kLα4cs

α2
3Da

||ς − ς̃ ||0,�. (4.4)

Proof. Given ς , ς̃ ∈ H1
0 (�)d, let (Vf , P), (Ṽf , P̃) ∈ H1(�)d × L2(�) be the corresponding solutions of

(Qw1 (ς)). Then, Equation (3.7) implies

〈Hς (Vf , P), (W, q)〉 = 0 for all (W, q) ∈Y, (4.5)

〈Hς̃ (Ṽf , P̃), (W, q)〉 = 0 for all (W, q) ∈Y. (4.6)

Taking the difference between the above equations, we get

〈Hς (Vf , P) −Hς̃ (Ṽf , P̃), (W, q)〉 = 0 for all (W, q) ∈Y. (4.7)

Replacing W = Vf − Ṽf and q = P − P̃ in the above equation and using the definition of Hς and Hς̃ , we
get

2||D(Vf ) − D(Ṽf )||2
0,� + λ||∇ · Vf − ∇ · Ṽf ||2

0,� + a0||P − P̃||2
0,�

= − 1

Da
(K(ς)(Vf − Ṽf ), Vf − Ṽf )� − 1

Da
((K(ς) − K(ς̃ ))Ṽf , Vf − Ṽf )�. (4.8)

Using Korn’s, Hölder’s inequalities and estimate (3.23), we obtain

||Vf − Ṽf ||2
1,� + ||P − P̃||2

0,� � α4

α2
3Da

||K(ς) − K(ς̃)||0,�||Vf − Ṽf ||L4(�).

Further, using Lipschitz continuous property of K and Sobolev’s inequality, we get(
||Vf − Ṽf ||2

1,� + ||P − P̃||2
0,�

)
� kLα4cs

α2
3Da

||ς − ς̃ ||0,�||Vf − Ṽf ||1,�,

or,

||(Vf , P) − (Ṽf , P̃)||Y =
(
||Vf − Ṽf ||2

1,� + ||P − P̃||2
0,�

)1/2

�
√

2kLα4cs

α2
3Da

||ς − ς̃ ||0,�. (4.9)

This establishes (4.4).

Lemma 7. The map T2 : H1(�)d × L2(�) → H1
0(�)d satisfies

||T2(Vf , P) − T2(Ṽf , P̃)||H1
0 (�) � β

[
||P − P̃||0,� + ||Vf − Ṽf ||1,�

]
(4.10)

where β = 1(
2α1
ck

− kLcsα4
√cp

α3Da

) max
{
φs,

k2
√

cp

Da

}
.
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Proof. Given (Vf , P), (Ṽf , P̃) ∈ H1(�)d × L2(�), let Us, Ũs ∈ H1
0 (�)d be the corresponding solutions of

(Qw2 (Us)). Then, (3.28) implies

B(Us, Z) = L(Z) for all Z ∈ H1
0 (�)d, (4.11)

B(Ũs, Z) = L(Z) for all Z ∈ H1
0 (�)d. (4.12)

Taking the difference between the above equations, we get

2α1(D(Us) − D(Ũs) : D(Z))� + α2(∇ · Us − ∇ · Ũs, ∇ · Z)�

= φs(P − P̃, ∇ · Z)� + 1

Da
(K(Us)(Vf − Ṽf ), Z)�

+ 1

Da
((K(Us) − K(Ũs))Ṽf , Z)�.

Replace Z = Us − Ũs and using Cauchy-Schwarz and Hölder’s inequalities, we get

2α1||D(Us) − D(Ũs)||2
0,� + α2||∇ · Us − ∇ · Ũs||2

0,� � φs||P − P̃||0,�||∇ · (Us − Ũs)||0,�

+ 1

Da
||K(Us)||L∞(�)||Vf − Ṽf ||0,�||Us − Ũs||0,�

+ 1

Da
||K(Us) − K(Ũs)||0,�||Ṽf ||L4(�)||Us − Ũs||L4(�).

Moreover, using Lipschitz property of K, Korn’s, Poincare’s and Sobolev’s embedding inequalities and
estimate (3.23), we get

||T2(Vf , P) − T2(Ṽf , P̃)||H1
0 (�)d = ||Us − Ũs||H1

0 (�)d = ||∇Us − ∇Ũs||0,�

� 1(
2α1
ck

− kLcsα4
√

cp

α3Da

) [φs||P − P̃||0,� + k2
√

cp

Da
||Vf − Ṽf ||0,�

]
,

or,

||T2(Vf , P) − T2(Ṽf , P̃)||H1
0 (�)d � β

[
||P − P̃||0,� + ||Vf − Ṽf ||1,�

]
(4.13)

where β = 1(
2α1
ck

− kLcsα4
√cp

α3Da

) max
{
φs,

k2
√

cp

Da

}
.

Lemma 8. The map T = T2 ◦ T1 : H1
0(�)d ⊂ L2(�)d → H1

0 (�)d satisfies

||T(ς ) − T(ς̃ )||H1
0 (�)d � 2βkLα4cs

α2
3Da

||ς − ς̃ ||0,� �
2βkLα4cs

√
cp

α2
3Da

||∇ς − ∇ς̃ ||0,�. (4.14)

Proof. From (4.13), we have

||T(ς ) − T(ς̃ )||H1
0 (�)d ) = ||T2(Vf , P) − T2(Ṽf , P̃)||H1

0 (�)d

� β
[
||P − P̃||0,� + ||Vf − Ṽf ||1,�

]
(4.15)

We achieve (4.14) with the help of (4.9) and (4.15).

Theorem 4.1. The mapping T : Wr ⊂ H1
0(�)d → Wr ⊂ H1

0(�)d is continuous and T(Wr) is compact.

Proof. The continuity of T follows in a straightforward manner from (4.14). Now, given a sequence
{ς k}k∈N of Wr which is clearly bounded, there exists a sub-sequence {ς kj

} ⊂ {ς k}k∈N and ς ∈ H1
0 (�)d

such that ς kj
⇀ ς in H1

0(�)d. In this way, thanks to the compact embedding of H1
0(�)d in L2(�)d, which

implies ς kj
→ ς in L2(�)d, which combined with (4.14) implies that T(ς kj

) → T(ς ). This proves that
T(Wr) is compact.
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Theorem 4.2. Suppose that the hypotheses of Theorem 3.3, Proposition 3.4 and Theorem 3.5 hold.
Then, the mapping T defined in 4.1 has a fixed point Us ∈ H1

0(�)d, which in turn implies that coupled
problem (Qw1 (Us)) − (Qw2 (Us)) has a solution (Vf , P) ∈ H1(�)d × L2(�) and Us ∈ H1

0 (�)d. Further, if

2βkLα4cs
√

cp

α2
3Da

< 1 (4.16)

then T has a unique fixed point Us ∈ H1
0 (�)d, which in turn implies that coupled problem (Qw1 (Us)) −

(Qw2 (Us)) has a unique solution (Vf , P) ∈ H1(�)d × L2(�) and Us ∈ H1
0 (�)d.

Proof. The above Theorem 4.1 implies that T satisfies all hypotheses of Schauder’s fixed-point theo-
rem (see Thereom A.2, Appendix A). Consequently, the mapping T has a fixed-point Us ∈ H1

0 (�). This
implies that coupled problem (Qw1 (Us)) − (Qw2 (Us)) or equivalently, (3.3)–(3.5) when ς = Us has a solu-
tion (Vf , P) ∈ H1(�)d × L2(�) and Us ∈ H1

0(�)d. Further, if (4.12) is true, then T : Wr → Wr is a strict
contraction mapping. That implies T has a unique fixed point Us ∈ H1

0 (�)d due to Banach’s fixed-point
theorem (see p. 415 [34]). This implies that coupled problem (Qw1 (Us)) − (Qw2 (Us)) or equivalently,
(3.3)–(3.5) when ς = Us has a unique solution (Vf , P) ∈ H1(�)d × L2(�) and Us ∈ H1

0(�)d.

Remark 4.3 (Continuous dependence). If the non-dimensional parameters and constants satisfy the
following assumption

2α∗Da >
kLα4cs

α3

,
4α1Da

ck

>

(
cpk2

2

k1

+ kLα4cs(cp + 2
√

cp)

α3

)
, 2α2 �

φ2
s

a0

, (4.17)

where α∗ = 1
ck

min{2, k1
2Da

}. Then, the continuous dependence (3.25) holds. Indeed, we have

||V1
f − V2

f ||2
1,� + ||∇(U1

s − U2
s )||2

0,� + ||P1 − P2||2
0,� � 1

α2
6

[(||bf ,1 − bf ,2||0,�

+√
ct||T∞,1 − T∞,2||0,∂�)2 + ||a0,1 − a0,2||2

0,� + cp||bs,1 − bs,2||2
0,�], (4.18)

where α5 = min
{
α∗ − kLα4cs

2α3Da
,
(

2α1
ck

− cpk2
2

2k1Da
− kLα4cs(cp+2

√
cp)

2α3Da

)
, a0

2

}
.

5. Case (b): reduction to a fixed-point problem to (Qw1 (∇ · Us)) − (Qw2 (∇ · Us))

We note that for a given ς ∈ H1
0 (�)d, the problem (Qw1 (∇ · ς )) has a unique solution (Vf , P) ∈ H1(�)d ×

L2(�) (see Subsection 3.6). Consequently, we can define a mapping T1 : H1
0(�)d → H1(�)d × L2(�) such

that T1(ς) = (Vf , P). Further, for a given pair (Vf , P) ∈ H1(�)d × L2(�), the problem (Qw2 (∇ · Us)) has
a unique solution Us ∈ H1

0 (�)d (see Subsection 3.7). Therefore, we can define a mapping T2 : H1(�)d ×
L2(�) → H1

0 (�)d such that T2(Vf , P) = Us. Now, in order to get the fixed-point problem corresponding
to (Qw1 (∇ · Us)) − (Qw2 (∇ · Us)), we define a composition map T = T2 ◦ T1 : H1

0(�)d → H1
0(�)d such that

T(ς ) = T2(T1(ς)) = T2(Vf , P) = Us. (5.1)

Thus, a fixed-point of mapping T solves the coupled non-linear problem (Qw1 ((∇ · Us)) and (Qw2 ((∇ ·
Us)) or equivalently, (3.3)–(3.5) when ς = ∇ · Us. In order to show that the mapping T has a fixed point,
we use Schauder’s fixed-point theorem (see Thereom A.2, Appendix A). Thus, in the following analysis,
we state some results in the form of lemmas to verify the hypotheses of Schauder’s fixed-point theorem.
The proof of the following results is almost similar to the proof presented in Subsection 4.1, so we omit
the details.
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5.1 Analysis of the fixed-point problem

Throughout this subsection, we assume that hypotheses of Theorems 3.6 and 3.7 hold. Then, we have

Lemma 9. Given r > 0, let Wr be a closed and convex subset of H1(�)d defined by

Wr = {w ∈ H1
0(�)d : ||w||H1

0 (�)d = ||∇w||0,� � r}
and assume that the data satisfy

1(
2α1
ck

− k2
√

cpα4

α3Da

) (φsα4

α3

+ √
cp||bs||0,�

)
� r. (5.2)

Then, T(Wr) ⊆ Wr.

Proof. This lemma is proved similar to Lemma 5.

Lemma 10. The map T1 : H1
0(�)d → H1(�)d × L2(�) satisfies

||T1(ς) − T1(ς̃)||Y �
√

2kLα4cs

α2
3Da

||∇ · ς − ∇ · ς̃ ||0,�, (5.3)

(see Lemma 3.1 for the definition of the space Y).

Proof. This lemma is proved similar to Lemma 6.

Lemma 11. The map T2 : H1(�)d × L2(�) → H1
0 (�)d satisfies

||T2(Vf , P) − T2(Ṽf , P̃)||H1
0 (�)d � β̃

[
||P − P̃||0,� + ||Vf − Ṽf ||1,�

]
, (5.4)

where β̃ = 1(
2α1
ck

− kLα4cs
α3Da

) max
{
φ, k2

√
cp

Da

}
.

Proof. This lemma is proved similar to Lemma 7.

Lemma 12. The map T = T2 ◦ T1 : H1
0 (�)d → H1

0(�)d satisfies

||T(ς) − T(ς̃ )||H1
0 (�)d ) �

2β̃kLα4cs

α2
3Da

||∇ · ς − ∇ · ς̃ ||0,� � 2β̃kLα4cs

α2
3Da

||∇ς − ∇ς̃ ||0,�. (5.5)

Proof. This lemma is proved similar to Lemma 8.

Theorem 5.1. Suppose that the hypotheses of Theorems 3.6 and 3.7 hold and if the following assumption

2β̃kLα4cs

α2
3Da

< 1 (5.6)

holds then T has a unique fixed point Us ∈ H1
0(�)d, which in turn implies that coupled problem (Qw1 (∇ ·

Us)) − (Qw2 (∇ · Us)) has a unique solution (Vf , P) ∈ H1(�)d × L2(�) and Us ∈ H1
0(�)d.

Proof. If 4β̃kLα4cs

α2
3 Da

< 1, then Lemma 12 implies T : Wr ⊂ H1
0(�)d → Wr ⊂ H1

0(�)d is a strict contraction
mapping. That implies T has a unique fixed point Us ∈ H1

0(�)d due to Banach’s fixed-point theorem.
That means the coupled problem (Qw1 (∇ · Us)) − (Qw2 (∇ · Us)) or equivalently, the problem (3.3)–(3.5)
with ς = ∇ · Us has a unique solution (Vf , P) ∈ H1(�)d × L2(�) and Us ∈ H1

0(�)d.

Remark 5.2.

• If the non-dimensional parameters and the constants satisfy the following constraints

2α∗Da >
kLcsα4

α3

,
4α1Da

ck

>

(
cpk2

2

k1

+ 3kLcsα4

α3

)
, 2α2 �

φ2
s

a0

. (5.7)
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then the continuous dependence (4.18) holds with the modified constant

α6 = min

{
α∗ − kLcsα4

2α3Da
,

(
2α1

ck

− cpk2
2

2k1Da
− 3kLcsα4

2α3Da

)
,

a0

2

}
.

6. Unbounded K

One may note that theorems in Sections 3, 4 and 5 are proven under the boundedness assumption (i) of
(3.1) and Lipschitz continuity (3.2) of K = K(ς ). In this section, we would like to relax such assumptions
for case (a) ς = Us and case (b) ς = ∇ · Us. Instead of boundedness property (ii) of (3.1), we assume
there exists a constant k0 > 0, such that following sub-linear growth condition holds

||K(x)||� k0(1 + ||x||) for all x ∈R
d. (6.1)

The above growth condition yields for case (a)

||K(Us)||0,� �
√

2k0(
√|�| + ||Us||0,�). (6.2)

We have the following result for case (a).

Theorem 6.1. Assume that the data and parameters satisfy the assumption (A), (i) of (3.1) and (3.2),
(3.37), (3.38) and K satisfy the growth condition (6.2). Further, if the following parameter constraint

2α1

ck

>

√
2cp csk0α4

α3Da
(6.3)

is satisfied, then (3.3)–(3.5) together with ς = Us has a solution (Vf , Us, P) ∈ H1(�)d × H1
0(�)d × L2(�)

such that

||(Vf , P)||Y � α4

α3

(6.4)

and

||∇Us||0,� � 1(
2α1
ck

−
√

2cp csk0α4

α3Da

) [√cp||bs||0,� + α4

α3

(
φs +

√
2|�| csk0

Da

)]
(6.5)

where |�| denotes the area or volume of the domain �.

Proof. We are inspired by the working techniques from [28]. Here, we are dealing with particular
non-linear structures of the hydraulic resistivity. We approximate the operators K with a sequence of
uniformly positive definite, bounded operators, {Km}m�1 defined by

Km
ij (Us) := min (m, Kij(Us)), for all m ∈N. (6.6)

Since Km is bounded for each m, Theorem 4.2 implies that there exists a triplet
(Vm

f , Um
s , Pm) in H1(�)d × H1

0(�)d × L2(�) such that

2(D(Vm
f ) : D(W))� + λ(∇ · Vm

f , ∇ · W)� − φf (P
m, ∇ · W)�

+ 1

Da
(Km(Um

s )Vm
f , W)� + φf (∇ · Vm

f , q)� + a0(Pm, q)�

= (bf , W)� + (T∞, W)∂� + (a0, q)�, (6.7)
2α1(D(Um

s ) : D(Z))� + α2(∇ · Um
s , ∇ · Z)� = φs(P

m, ∇ · Z)�

+ 1

Da
(Km(Um

s )Vm
f , Z)� + (bs, Z)�. (6.8)
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We desire a uniform bound for the sequence {(Vm
f , Um

s , Pm)}, which is independent of m. In order to do
so, replace (W, q) by (Vm

f , Pm) in (6.7). Using the positive definiteness of Km and the Cauchy-Schwarz,
trace, Korn’s inequalities, we get the following estimate

||(Vm
f , Pm)||Y � α4

α3

. (6.9)

One can observe the right-hand side of (6.9) is independent of m. Next, replacing Z by Um
s in (6.8) and

use Hölder’s, Poincare’s, Korn’s, Sobolev inequalities and (6.1), to get
2α1

ck

||∇Um
s ||2

0,� �√
cp||bs||0,�||∇Um

s ||0,� + φs||Pm||0,�||∇ · Um
s ||0,�

+ 1

Da
||K(Um

s )||0,�||Vm
f ||L4(�)||Um

s ||L4(�)

2α1

ck

||∇Um
s ||2

0,� �√
cp||bs||0,�||∇Um

s ||0,� + φs||Pm||0,�||∇Um
s ||0,�

+ cs

Da
[
√

2k0(
√

� + √
cp||∇Um

s ||0,�)]||Vm
f ||1,�||∇Um

s ||0,�

||∇Um
s ||0,� � 1(

2α1
ck

−
√

2cp csk0α4

α3Da

) [√cp||bs||0,� + α4

α3

(
φs +

√
2|�| csk0

Da

)]
(6.10)

The estimates (6.9) and (6.10) imply that (Vm
f , Um

s , Pm) ∈ H1(�)d × H1
0(�)d × L2(�) uniformly bounded

for all m � 1. Hence, there exists a triplet (Vf , Us, P) ∈ H1(�)d × H1
0 (�)d × L2(�) and a sub-sequence

of (Vm
f , Um

s , Pm) (we denote by the same symbol) such that

(Vm
f , Um

s , Pm) ⇀ (Vf , Us, P) weakly in H1(�)d × H1
0 (�)d × L2(�), (6.11)

and the compact embedding H1(�)d ↪→ L4(�)d yields

(Vm
f , Um

s ) → (Vf , Us) strongly in L4(�)d × L4(�)d. (6.12)

We seek to pass the limit in (6.7)–(6.8) as m → ∞. We observe that the weak convergence (6.11) is
sufficient to pass the limit in the linear terms of (6.7)–(6.8); however, the non-linear terms demand
strong convergence (6.12). Subsequently, the non-linear terms of the problem (6.7)–(6.8), which can be
rewritten as

(i) for (6.7)

((Km(Um
s ) − K(Us))Vm

f , W)�︸ ︷︷ ︸+ (K(Us)(Vm
f − Vf ), W)�︸ ︷︷ ︸+(K(Us)Vf , W)� (6.13)

(ii) for (6.8)

((Km(Um
s ) − K(Us))Vm

f , Z)�︸ ︷︷ ︸+ (K(Us)(Vm
f − Vf ), Z)�︸ ︷︷ ︸+(K(Us)Vf , Z)�, (6.14)

Since Um
s converges to Us strongly in L2(�)d, it implies Um

s − Us → 0 a.e. in � up to a sub-sequence.
The fact that K is Lipschitz guarantees that

Km(Um
s ) − K(Us) → 0 a.e. in �. (6.15)

Indeed, we have

|Km(Um
s )(x) − K(Us)(x)| = |Km(Um

s )(x) − Km(Us)(x) + Km(Us)(x) + K(Us)(x)|
� kL|Um

s (x) − Us(x)| + |Km(Us)(x) − K(Us)(x)|.
As Um

s − Us → 0 a.e. in � together with the definition of the truncation function implies Km(Us) −
K(Us) → 0 a.e. in �. This establishes (6.15). Using the bound (6.9) and the convergence result (6.15),
we get
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lim
m→∞

((Km(Um
s ) − K(Us))Vm

f , W)� = 0, lim
m→∞

((Km(Um
s ) − K(Us))Vm

f , Z)� = 0. (6.16)

The bound (6.10) together with estimate (6.2), and the strong convergence Vm
f → Vf in L4(�)d leads to

lim
m→∞

(K(Us)(Vm
f − Vf ), W)� = 0, lim

m→∞
(K(Us)(Vm

f − Vf ), Z)� = 0 (6.17)

Thus, the terms with under braces in (6.13) and (6.14) tend to zero as m → ∞. Hence, we can say that
(6.7)–(6.8) recovers (3.3)–(3.5) as m → ∞. This completes the proof of the Theorem 6.1.

Remark 6.2.

• We note that in the above case i.e. when K(Us) is not bounded, however, satisfies the sub-linear
growth condition (6.1), the uniqueness of solutions holds whenever the non-dimensional parameters
and constants satisfy the following inequalities:

2αDa

cs

>

[
kL

√
cpα4

α3

+ √
2k0(

√|�| + √
cpα7)

]
, 2α2 �

φ2
s

a0

, (6.18)

4α1Da

ckcs

>

[
3kL

√
cpα4

α3

+ √
2k0(

√|�| + √
cpα7)

]
, (6.19)

where α7 = 1(
2α1
ck

−
√

2cp csk0α4
α3Da

) [√cp||bs||0,� + α4
α3

(
φs + √

2|�| csk0
Da

)]
.

• In case (b) that is when ς = ∇ · Us, the sub-linear growth condition (6.1) becomes

||K(∇ · Us)||0,� �
√

2k0(
√|�| + ||∇ · Us||0,�). (6.20)

The specific structure K(∇ · Us) = [γ1 + γ2|∇ · Us|]I falls under this case, and we can clearly see that
K satisfies (6.20). In this case, existence and uniqueness analysis can be developed based on similar
lines as in Theorem 6.1. Indeed, we have the following theorem.

Theorem 6.3. Assume that the data and parameters satisfy the assumption (A), (i) of (3.1) and (3.2),
(3.44), (3.45) and K satisfy the growth condition (6.20). Further, if the following parameter constraint

2α1

ck

>

√
2 csk0α4

α3Da
(6.21)

is satisfied, then (3.3)–(3.5) together with ς = ∇ · Us has a solution (Vf , Us, P) ∈ H1(�)d × H1
0 (�)d ×

L2(�) such that

||(Vf , P)||Y � α4

α3

, ||∇Us||0,� � α8 (6.22)

where |�| denotes the area or volume of the domain � and

α8 = 1(
2α1
ck

−
√

2 csk0α4
α3Da

) [√cp||bs||0,� + α4

α3

(
φs +

√
2|�| csk0

Da

)]
.

Further, the solution is unique and subject to the following constraints

2αDa

cs

>

[
kLα4

α3

+ √
2k0(

√|�| + α8)

]
, 2α2 �

φ2
s

a0

, (6.23)

4α1Da

ckcs

>

[
3kLα4

α3

+ √
2k0(

√|�| + α8)

]
. (6.24)

Proof. The proof of this theorem is similar to Theorem 6.1, we omit the details.
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Table 1. Dimensionless poro-elasto-hydrodynamics parameters corresponding to
tumour tissue with their value range.

Dimensionless parameter Range of values Supporting references
Da 10−4 − 10−1 [1, 30]
αt 0 < αt � 10 [22]
�t 102 � �t � 105 [30]
νp 0.45 � νp � 0.49 [31, 32]
φf 0.6 � φf � 0.8 [1, 30]
K 0.00006 � K � 1.4 [30]

6.1 Comments on parameter restrictions

It may be noted that the existence and uniqueness of results (e.g. see Theorems 3.3, 3.5, 3.6, 3.7, 4.2,
5.1, 6.1 and 6.3, etc.) that are established in this work hold subject to certain parameter restrictions
see e.g. (3.37), (3.38), (3.44), (3.45), (4.16), (4.17), (5.6), (5.7), (6.3), (6.18), (6.19), (6.21), (6.23)
and (6.24) etc. Such a situation is typical in the case of multiphase mixture models where extra care
needs to be paid to the physical admissibility of the parameters. See also Vromans et al. [29]. Further,
some of the parameters in these inequalities do show a dependency on material properties of the tissue,
like Poisson ratio, Young’s modulus etc. Thus, one has to ensure that these inequalities are satisfied
simultaneously. This certainly depends on the choice of relevant parameters. We have collected data
from the existing literature on parameters like Da, αt, �t etc. which are relevant to biological tissues.
We have then verified that there do exist parameter combinations within the given ranges in Table 1
that obey all the inequalities. This ensures that these assumptions (3.37), (3.38), (3.44), (3.45), (4.16),
(4.17), (5.6), (5.7), (6.3), (6.18), (6.19), (6.21), (6.23) and (6.24) etc. can be interpreted from the point
of view of various applications. We list the dimensionless poro-elasto-hydrodynamics parameters in
Table 1. Further, we choose � as a d-dimensional (d = 3) sphere of unit radius (in dimension 1 mm)
then |�| = 4π

3
, |∂�| = 4π . We set bi = 0, i ∈ {f , s}, T∞ = (1, 0, 0), and choose the numerical values for

constants ck(�) > 0, cp(�) > 0, cs(d) > 0, ct(�, d) > 0 as follows: ck = 2 (or 3) for H1
0 (�)d (or H1(�)d)

[33, 34] and cp = 1/2, cs = 1/2 [35], ct = 2 [34]. To verify the inequalities (3.37), (3.38), (3.44), (3.45),
(4.16), (4.17), (5.6), (5.7), (6.3) and (6.21), we use the following combination of parameters from
Table 1: Da = 2 × 10−2, αt = 1, �t = 104, νp = 0.45, k1 = 0.5, k2 = 1.4, φs = 0.4, LrAr = 1, kL = 2 × 10−3,
and 0 < k0 � 1. Further, the restrictions (6.18), (6.19) and (6.23), (6.24), which ensure the uniqueness
for arbitrary K, hold when we choose Da = 10−1, and k0 = 10−2 with the remaining parameters as cho-
sen above. Note that the choice of parameters mentioned above may not be unique; there could be other
parameter combinations for which these restrictions hold true.

7. Summary

In this work, we have modelled the poro-elasto-hydrodynamics that mimic an in-vitro solid tumour using
biphasic mixture theory. We simplified the generic biphasic mixture equations using certain assump-
tions based on the biological context and treated hydraulic resistivity as anisotropic, which depends on
the deformation. This made our model non-linear and coupled. We derive an equivalent variational (or
weak) formulation and developed existence and uniqueness results using the Galerkin method, mono-
tone operator theory and fixed-point theory. The detailed analysis is done by considering two cases:
(a) K(ς ) = K(Us) (b) K(∇ · ς ) = K(∇ · Us). In both cases, we first developed existence and uniqueness
analysis for auxiliary linear and semilinear sub-problems using the Galerkin method and monotone oper-
ator theory. Then, we convert the corresponding coupled non-linear problem to the fixed-point problem
in both cases. Further, to develop the existence of solutions for the corresponding fixed-point problems,
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we used the Schauder fixed-point theorem. Uniqueness is assured via the Banach contraction theorem.
For the case where K is not bounded but satisfies the sub-linear growth condition, we have developed
the existence and uniqueness results. Moreover, we have collected certain realistic ranges of parameters
involved in the model and ensured that the theoretical restrictions derived by us are compatible with
these parameter ranges.
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Appendix A

Function spaces and useful results:3 Let � be a bounded, open subset of Rd, {d = 2, 3}. L2(�) is the
space of all measurable functions u defined on � for which

||u||0,� =
(∫

�

|u|2 d�

)1/2

< +∞, (A1)

In (A1), || · ||0,� defines a norm on L2(�). For any u = (u1, u2, . . . , ud) ∈ L2(�)d, ||u||0,� is defined as

||u||0,� =
(∫

�

d∑
i=1

|ui|2 d�

)1/2

, (A2)

and for any element K = (Kij)1�i,j�d ∈ (L2(�))d×d, we define the norm of K as

||K||0,� =
(∫

�

d∑
i=1

d∑
j=1

|Kij|2 d�

)1/2

. (A3)

The symbols ( , )�, and ( , )∂� denote inner products in L2(�), L2(�)d, and (L2(�))d×d and in the
corresponding trace spaces L2(∂�), L2(∂�)d, and (L2(∂�))d×d, respectively.
For any two functions u and v, the inner products ( , )�, and ( , )∂� are defined as

(u, v)� =
∫

�

u · v d�, (u, v)∂� =
∫

∂�

u · v dσ .

The first-order Sobolev space is defined as
H1(�)d = {u ∈ L2(�)d|∇u ∈ (L2(�))d×d} and the norm of a function u ∈ H1(�)d is defined as

||u||1,� = (||u||2
0,� + ||∇u||2

0,�

)1/2
. (A4)

3see [34] for function spaces and preliminaries.

https://doi.org/10.1017/S0956792524000251 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792524000251


European Journal of Applied Mathematics 25

H1
0 (�)d denotes the space of functions in H1(�)d with zero trace. The dual space of H1

0 (�)d is denoted
by H−1(�)d.
To show the existence of a solution, we rely on the following results.

Lemma A.1. (p.164 [36]) Let X be a finite-dimensional Hilbert space with scalar product 〈·, ·〉 and
norm || · ||, and let G be a continuous mapping from X into itself such that

〈G(x), x〉 > 0 for ||x|| = r0 > 0.

Then there exists x ∈X, with ||x||� r0 such that

〈G(x), x〉 = 0.

Theorem A.2. (Schauder’s (see p. 417 [34])) Let X be a Banach space. Assume that:

(i) A ⊂ X is closed and convex.
(ii) T : A → A is continuous.
(iii) T(A) is compact in X.

Then T has a fixed point x∗ ∈ A.

Theorem A.3. (Browder-Minty (see p. 557 [37])) Let X be a real, separable, reflexive Banach space
and let T : X → X∗ (the dual of X) be bounded, continuous and strongly monotone. Then

T(u) = g

has a unique solution for each g ∈ X∗.
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