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A mirror theorem for toric stacks

Tom Coates, Alessio Corti, Hiroshi Iritani and Hsian-Hua Tseng

ABSTRACT

We prove a Givental-style mirror theorem for toric Deligne-Mumford stacks X. This
determines the genus-zero Gromov—Witten invariants of X in terms of an explicit
hypergeometric function, called the I-function, that takes values in the Chen—Ruan
orbifold cohomology of X.
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1. Introduction

In this paper we prove a mirror theorem that determines the genus-zero Gromov—Witten
invariants of smooth toric Deligne-Mumford stacks. Toric Deligne-Mumford stacks are
generalizations of toric varieties [BCS05], and our mirror theorem generalizes Givental’s mirror
theorem for toric manifolds [Giv98]. Following Givental [Giv04], the genus-zero Gromov-Witten
theory of a toric Deligne-Mumford stack X can be encoded in a Lagrangian cone Ly contained
in an infinite-dimensional symplectic vector space H. Universal properties of Gromov—Witten
invariants of X translate into geometric properties of Ly. See §2 for an overview. In §§5-7 of
this paper we establish a mirror theorem for a smooth toric Deligne-Mumford stack X. Roughly
speaking, our result states that the extended I-function, which is a hypergeometric function
defined in terms of the combinatorial data defining X, lies on the Lagrangian cone Ly. The
precise statement is Theorem 31 below.

Our mirror theorem (Theorem 31) has a number of applications. It has been used to give
explicit formulas for genus-zero Gromov—Witten invariants of toric Deligne-Mumford stacks
and, when combined with the quantum Lefschetz theorem [CGO07, CCIT09], to prove a mirror
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A MIRROR THEOREM FOR TORIC STACKS

theorem for convex toric complete intersection stacks [CCIT14]. Special cases of Theorem 31 have
been used (as conjectures, proven here) to construct an integral structure on quantum orbifold
cohomology of toric Deligne-Mumford stacks, to study Ruan’s Crepant Resolution Conjecture,
to compute open-closed Gromov—Witten invariants [Iri09, CCLT14, FLT12], to prove mirror
theorems for open Gromov—Witten invariants [CCLT13], and to prove mirror theorems for certain
toric complete intersection stacks [Irill]. Theorem 31 will have further applications in the future:
it allows a full proof of the Crepant Resolution Conjecture in the toric case, and a description
of the quantum D-module of a toric Deligne—-Mumford stack. We will discuss these applications
elsewhere. Theorem 31 extends previous works on the Gromov—Witten theory of certain classes
of toric stacks, including weighted projective spaces [AGV08, CLCT09, Man08, GS14, CG11],
one-dimensional toric Deligne-Mumford stacks [Johl4, MTO08], toric orbifolds of the form
[C"/@G] [CCO09, BC10, JPT11, BC11], and the ambient space for the mirror quintic [LS14].

Since our original announcement of Theorem 31, in February 2007 [Cor07], the Gromov—
Witten theory of toric Deligne-Mumford stacks has matured considerably, and the proof that
we give here relies heavily on two recent advances. The first is the beautiful characterization of the
Lagrangian cone Lx for a toric variety (or toric bundle) X in terms of recursion relations [Brol4];
we establish the analogous result for toric Deligne-Mumford stacks in §6. The second is Liu’s
virtual localization formula for toric Deligne-Mumford stacks [Liul3, Theorem 9.32]; this is the
essential technical ingredient that allows us to characterize Ly for a toric Deligne-Mumford
stack X.

A significant generalization of our Theorem 31 has recently been announced by Ciocan et al.
[CK14, CCFK14]. Also one major application of our theorem, the calculation of the quantum
cohomology ring of smooth toric Deligne—-Mumford stacks with projective coarse moduli space,
has been achieved directly by Gonzalez and Woodward, using the theory of gauged Gromov-—
Witten invariants [GW12a, GW12b, Wool2, Wool4a, Wool4b]. We feel that it is nonetheless
worth presenting our argument here, in part because it is based on fundamentally different
ingredients (on Givental’s recursive characterization of Lx, rather than on the the theory of
quasimaps or gauged Gromov—Witten theory), in part because it gives explicit mirror formulas
that have important applications, and in part to reduce our embarrassment at the long gap
between our announcement of the mirror theorem and its proof.

The rest of this paper is organized as follows. Sections 2 and 3 contain reviews of Gromov—
Witten theory and toric Deligne-Mumford stacks. In § 4 we introduce a notion of extended Picard
group for a Deligne-Mumford stack. Our mirror theorem, Theorem 31, is stated in §5. In §6 we
establish a criterion for points to lie on the Lagrangian cone Ly. In §7 we prove Theorem 31 by
showing that the extended I-function satisfies the criterion from §6.

2. Gromov—Witten theory

Gromov—Witten theory for orbifold target spaces was first constructed in symplectic geometry
by Chen and Ruan [CR02]. In algebraic geometry, the construction was established by
Abramovich et al. [AGV02, AGVO08]. In this section, we review the main ingredients of orbifold
Gromov—Witten theory. We mostly follow the presentation of [Tsel0]. More detailed discussions
of the basics of orbifold Gromov—Witten theory from the viewpoint of Givental’s formalism can
be found in e.g. [Tsel0, CIT09].
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2.1 Chen—Ruan cohomology
Let X be a smooth Deligne-Mumford stack equipped with an action of an algebraic torus T. Let
X denote the coarse moduli space of X. The inertia stack of X is defined as

X =X XA,XXX,AX

where A : X — X x X is the diagonal morphism. A point on IX is given by a pair (z,g)
of a point z € X and an element g € Aut(z) of the isotropy group at x. As a module over
Ry := Hy(pt,C), the T-equivariant Chen—Ruan orbifold cohomology of X is defined to be the
T-equivariant cohomology of the inertia stack:

Heg 2(X) := HY(IX,C).

When T is the trivial group, this is denoted by H&p(X). The work [CR04] equips Hap (&)
with a grading called the age grading and a product called the Chen—Ruan cup product. These
are different from the usual ones on Hp(IX,C). There is an involution inv : IX — IX given
on points by (z,g) — (x,97"). When the T-fixed set AT is proper, we can define the orbifold
Poincaré pairing

T
(o, B)cr ::/[ aUinv*

X

on H, (.]R,T(X ) using the Atiyah—Bott localization formula; the pairing takes values in the fraction
field St of Rt = H3(pt).

2.2 Gromov—Witten invariants and Gromov—Witten potentials

Gromov—Witten invariants are intersection numbers in moduli stacks of stable maps. Let
ﬂg,n(é\f ,d) denote the moduli stack of n-pointed genus-g degree-d orbifold stable maps to X
with sections to gerbes at the markings, where d € Ha(X,Z) (see [AGV08, §4.5], [Tsel0, §2.4]).
There are evaluation maps at the marked points

evi: Mgn(X,d) > IX, 1<i<mn,

and, given b = (b(1),...,b(n)) where the b(i) correspond to components (1)) of IX, we set

My (X,d) = (evi {I X)) so that My, (X, d) = JM, (X, d).
i=1 3

Let ¢; € H*(Myn(X,d),Q),1 < i < n, denote the descendant classes [Tsel0, §2.5.1]. Suppose
that M, ,,(X,d) is proper. Then the moduli stack carries a weighted virtual fundamental
class [AGV08], [Tsel0, §2.5.1]:

[(Mgn(X,d)]" € He(Mgn(X,d),Q).

Given elements a1, ...,a, € HA(X) and non-negative integers ki, ..., k,, we define
(app*, ..., ani/;k"’)g’n?d = / (ev} al)iﬂlfl (v ap)kn. (1)
[Mg,n(X,d)]

These are called the descendant Gromov—Witten invariants of X.
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When X is equipped with an action of an algebraic torus T, there is an induced T-action
on the moduli space Mg, 4(X,d). The descendant classes 1); and the virtual fundamental class
have canonical T-equivariant lifts and we can define T-equivariant Gromov-Witten invariants

T
- - - -
(@) 0= [ (e o)t e an) Ol
(Mg, (X,d)]*
for ai,...,an € H&g 7(X). In this paper we consider the case where the moduli space Mg, (X, d)

itself may not be proper, but the T-fixed locus is proper. This happens for toric stacks. In
this case, we define T-equivariant descendant Gromov—Witten invariants by using the virtual
localization formula (see [Liul3]); the invariants then take values in St = Frac(Rr).

We package descendant Gromov—Witten invariants using generating functions. Let t = t(z) =
to+t1z +taz? + -+ € HAR(X)[2]. Define

<t7 B 7t>g7n,d = <t(7;)7 s at(qu)>g7n,d = Z <tk1&klv o 7tkn&kn>g,n7d'

k17~--’kn>0

The genus-g descendant potential of X is

d
D DT

n=0 deNE(X)

Here Q? is an element of the Novikov ring Aney := C[NE(X) N Hy(X,Z)] (see [TselO,
Definition 2.5.4]), where NE(X) C Ha(X,R) denotes the cone generated by effective curve classes
in X. Let us fix an additive basis {¢o} for Haz(X) consisting of homogeneous elements, and
write

te =) thda € HoR(X), k=0.
(0%

The generating function F%(t) is a Ayov-valued formal power series in the variables ¢¢.
The definition readily extends to the T-equivariant setting. The T-equivariant descendant
Gromov-Witten potential 5, 1(t) is defined as a AT = Sr[NE(X)NHy(X,Z)]-valued function

of t(z) € Hog p(X)[z]. Choosing a homogeneous basis {¢a} of Heg p(X) @p, ST over St, we
write t(2) = > ;5 tz" =2 k>0 2o th Pazt

2.3 Givental’s symplectic formalism
Next we describe Givental’s symplectic formalism for genus-zero Gromov—-Witten theory [Giv01,
Giv04]. We present the T-equivariant version, following the presentation in [Tsel0, § 3.1], [CIT09]
and [CCIT09] for the non-equivariant case.

Since our target space X is not necessarily proper, we work over the field St = C(x1,. .., Xd)
of fractions of H2(pt), where {x1,...,Xa} is a basis of characters of the torus T 2 (C*)?. Recall
that the T-equivariant Novikov ring is

A'II:OV = ST[[NE(X> n HQ(X7 Z)]] (2)
Givental’s symplectic vector space is the AL -module

Hi= Honz(X) ©ry St(="")INE(X) 0 Hy(X, 2)]
equipped with the symplectic form:

Q(f,g) = —RGSZ:oo(f(—Z),g(Z))CR dZ, for fag € H.
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The coefficient of Q¢ in an element of H is a formal Laurent series in 271, i.e. a power series of

the form Zflozno a,z~™ for some ng € Z. The symplectic form € is given by the coefficient of 21
of the orbifold Poincaré pairing (f(—z),g(z))cr; the minus sign reflects the fact that we take
the residue at z = co rather than z = 0. Consider the polarization

H=HiDOH-
where
Hy = Heg p(X) @ry ST[2|[NE(X) N Ho (X, Z)],
H_ =z 'Heg 1(X) ®p, Srl"'][NE(X) N Ha(X, Z)].
The subspaces H+ are maximally isotropic with respect to €2, and the symplectic form €2 induces
a non-degenerate pairing between H4 and H_. Thus we can regard H = H4 @ H_ as the total
space of the cotangent bundle T*H of H.

Let {¢/'} C Hegp(X) @R, ST be the Sr-basis dual to {¢,} with respect to the orbifold
Poincaré pairing, so that (¢, ¢, )cr = 0. A general point in H takes the form

YN Pt (=) DD ahan, (3)

a=0 p b=0 v

and this defines Darboux coordinates {p,,,q;} on (H,§2) which are compatible with the
polarization H = Hy & H_. Put p, = Zu Paud®”, @ =Y, 4} $v, and denote

2) = pr(=2)F T =po(=2) "+ pi(—2) P+,
k=0

a=q(z) =Y @' =q+qaz+qp+--
k=0

We relate the coordinates q on Hy to the variables t of the descendant potential F%(t) by
q(z) = t(z) — 1z; this identification is called the dilaton shift [GivO1].
The genus-zero descendant potential ]-"%T defines a formal germ of a Lagrangian submanifold
Ly:={(p,q) €eHs ®H_ :p=dqFyr} CTH =H

given by the graph of the differential of ]:2( T The submanifold £y may be viewed as a formal
subscheme of the formal neighbourhood of “1z in H cut out by the equations

afg'7']r
pa# - aqg
Let © = (x1, ..., zm) be formal variables. Instead of giving a rigorous definition of £y as a formal

scheme (cf. [CCIT09, Appendix B]) we define the notion of a AL [z]-valued point on Lx. By a
AT [z]-valued point of Ly, we mean an element of H[z] of the form

nov 1 ) ¢a T )
—1z+t(z +Z > Zn,< t(w>,_z_¢> ¢ (4)

n=0deNE(X) « 0,n+1,d

for some t(z) € H[z] satisfying

t‘x:on =0. (5)
Here the expression ¢,/(—z — v) should be expanded as a power series > o0 (—2) """ 1po" in
z~1. The condition (5) ensures that expression (4) converges in the (Q, z)-adic topology.
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Remark 1. As we shall see in § 6, using localization in T-equivariant cohomology, expression (4)
lies in a rational version of Givental’s symplectic space,

Hrat = HER 1(X) @Ry Srxox [NE(X) N Ha (X, Z)],

where Sty cx = Frac(Hp, o« (pt)) = C(Xx1,. .., Xd, 2) and z is identified with the C*-equivariant
parameter. The space H;at is embedded into H by the Laurent expansion at z = oo. This fact
plays an important role in the characterization of points on Ly in §6.

The Lagrangian submanifold £y has very special geometric properties.

THEOREM 2 [Giv04, CCIT09, TselO]. Ly is the formal germ of a Lagrangian cone with vertex
at the origin such that each tangent space T' to the cone is tangent to the cone exactly along zT'.

In other words, if IV is a formal neighbourhood in H of —1z € Ly, then we have the following
statements:

(a) TNLy =2TNN;
(b) for each f € 2I"N N, the tangent space to Ly at f is T} (6)
(c)if T =T¢Ly then f € 2T'N N.

Givental has proven that these statements are equivalent to the string equation, dilaton equation,
and topological recursion relations [Giv04, Theorem 1]. The statements (6) imply that:

— the tangent spaces T of Ly are closed under multiplication by z;
— Ly is the union of the (finite-dimensional) family of germs of linear subspaces

{zI'nN' N : T is a tangent space of Lx}.

Remark 3. A finite-dimensional slice of the Lagrangian submanifold £y is given by the so-called
J-function [Giv04], [Tsel0, Definition 3.1.2]

J(tz—lz—i-t—i-z > Z < (éa¢>o A
n+l,

n=0deNE(X) «

which is a formal power series in coordinates t* of t =) t“¢, € H éR’T(X ) @R, St taking values

in H. The J-function Jx (t, —z) gives a AL _[t]-valued point of the Lagrangian submanifold £y .

nov [[

2.4 Twisted Gromov—Witten invariants
We will need also to consider Gromov—Witten invariants twisted by the T-equivariant inverse
Euler class [CG07, Tsel0]. In this section we assume that the torus T acts on the target space X
trivially. This is sufficient for our purposes, as in §6 we consider twisted Gromov—Witten theory
for a T-fixed point of a toric stack. Givental’s symplectic formalism for the twisted theory has a
subtle but important difference from that in the previous section: we need to work with formal
Laurent series in z rather than z~!.

Let E — X be a vector bundle equipped with a T-linearization; as mentioned above, T here
acts trivially on the base X'. Consider the virtual vector bundle £, ,, 4 = R, ev* E € K% (ﬂg,n()( ,
d)) where 7 : Cy g —> My n(X,d) and ev : Cyp g — X give the universal family of stable maps:

ev
Cg,n,d X

|

Mo (X,d)
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Let e 1(:) denote the inverse of the T-equivariant Euler class. Twisted Gromov-Witten invariants

— E
(a1 @Z’kl anwkn>;Tn d

are defined by replacing the weighted virtual fundamental class [Mg (X, d)]"” in (1) by [Mg, (X,
)Y Nep'(Eyna)- The twisted genus-g descendant potential is

Qd er ,E
-y ¥ gt
n=0 deENE(X) n!

In the twisted theory, we work with the twisted orbifold Poincaré pairing
(o, ﬁ)éTR’ = /IX aUinv* U efl(IE)

where IF is the inertia stack of the total space of F; IE is a vector bundle over IX such that
the fibre over (z,g) € IX is the g-fixed subspace of E,. Givental’s symplectic vector space for
twisted theory is the AL -module

H™ = HeR(X) @ Sr((2)) [NE(X) N Ha (X, Z)]
equipped with the symplectic form:

Q(f, g) = Rese—o(f(—2), 9(=)) " d.

The polarization H™ = HY & H™ of H™ is given by
HY = HAR(X) @ ST[2][NE(X) N Ho (X, Z)],
HY = HeR(X) @ Sr[z Y[NE(X) N Ho(X, Z)].

Let {¢.}, {¢*} be dual bases of Hlp(X) ® St with respect to the twisted orbifold
Poincaré pairing. They define Darboux coordinates {p, ., ¢4} on H*™ as in (3). The Lagrangian
submanifold Lty of the twisted theory is then defined similarly: a AL [x]-valued point of Lty is
an element of H"™[x] of the form

B Cb eq?l,E
—1z+t(z +Z Z Zn'< ..,t(¢),_zi¢> o) (7)

n=0deNE(X) « 0,n+1,d

for some t(z) € HY[z] satisfying t|,—g—o = 0. Note that expression (7) makes sense as an

element of H™[x]. We use here the fact that, as T acts trivially on &', the descendant classes s
are nilpotent on each moduli space Mo, (X, d); therefore t(v) = Y222 trF and ¢/ (—2z — 1) =
> 0 Path™(—2) 7! truncate to finite series on each moduli space Mo n(X,d).

Remark 4. The analogue of Theorem 2 holds for Li,.

3. Toric Deligne—Mumford stacks

In this section we discuss some background material on toric stacks. More details can be found
in [BCS05, Iwa09a, Iwa09b, FMN10].
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3.1 Basics
Following Borisov et al. [BCS05], a toric Deligne—Mumford stack is defined in terms of a stacky
fan

¥ =(N,%,p)
where IV is a finitely generated abelian group, ¥ C Ng = N ®z R is a rational simplicial fan, and
p:Z" — N is a homomorphism. We denote by p; the image under p of the ith standard basis
vector e; of Z". Let . C Z™ be the kernel of p. The exact sequence

0 L 7n LN

is called the fan sequence. By assumption, p has finite cokernel and the images p;, 1 < 7 < n,
of the p; under the canonical map N — Ng generate one-dimensional cones of the simplicial

fan X.
By abuse of notation, we sometimes identify a cone o € ¥ with the subset {i : p; € o} of
{1,...,n} and write i € o instead of p; € 0. The set of anti-cones is defined to be
A= {I c{1,...,n}: ZR%[H is a cone in E}.
il
Let

Uy = C”\ Uc
I¢A
where C! C C" is the subvariety determined by the ideal in C[Zi,...,Z,] generated by
{Z;:i¢ I}. Let p¥ : (Z*)" — LV be the Gale dual of p [BCS05]. Here LY := H!(Cone(p)*) is an
extension of the ordinary dual L* = Hom(L,Z) by a torsion subgroup. We have Ker(p¥) = N*.
The exact sequence

0—> N* — (z*)" 2~ LV (8)

is called the divisor sequence.
Applying Homz(—,C*) to p" gives a map

a:G— (C)" 9)

where G := Homy(ILV,C*). The toric Deligne-Mumford stack X' (X) associated to X is defined
to be the quotient stack
X(2) = [Ua/G]

where G acts on U 4 via a.

Throughout this paper we assume that the toric Deligne-Mumford stack X (3) has semi-
projective coarse moduli space, i.e. that the coarse moduli space X (X) is a toric variety that
has at least one torus-fixed point, such that the natural map X (X) — Spec HO(X (), Ox(s))
is projective. In terms of the fan ¥, this is equivalent [CLS11] to demanding that the support
|X| of the fan ¥ is full-dimensional and convex, and that there exists a strictly convex piecewise
linear function ¢ : |X| - R.

Let Nior denote the torsion subgroup of N, and set N := N/Nio. For ¢ € N we denote by
¢ € N the image of ¢ under the natural projection N — N. Given a stacky fan ¥ = (N, X, p),
one can consider the set Box defined as follows. For a cone o € 3., define

Box(o) := {b eEN:b= Zaiﬁi for some a; with 0 < a; < 1}

i€o
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and set Box(X) := [J, ¢y Box(c). Components of the inertia stack IX'(X) are indexed by Box;
we write [X(X), for the component corresponding to b € Box. The involution inv on X ()
induces an involution b — b on Box(X).

Each cone o € ¥ defines a closed toric substack X' (X), = X(X/0), where X /o denotes
the quotient stacky fan [BCS05, §4] defined on the quotient space N(o) = N/ .., Zp;. The
component IX(3X);, of the inertia stack corresponding to b € Box(X) is isomorphic to the toric
substack X (X),), where o(b) is the minimal cone containing b.

3.2 Extended stacky fans

Following Jiang [Jia08], toric Deligne-Mumford stacks can also be described using extended
stacky fans. Let X = (N, X, p) be a stacky fan, and let S be a finite set equipped with a map!
S — Ny :={ce N :cec |X|}. We label the finite set S by {1,...,m}, where m = |S|, and write
sj € N for the image of the jth element of S. The S-extended stacky fan is given by the same
group N, the same fan ¥, and the fan map p® : Z"*™ — N defined by

; 1 << n,
S(ei) _ {pl

P N Si—n n+1<e<n+m.

Given an S-extended stacky fan (N, ¥, p¥), an associated stack may be defined as follows. Define
UA,S = UA X ((Cx)m.

Let L° be the kernel of p% : Z"™™ — N. Applying Gale duality to the S-extended fan sequence
0 — LS - Z"™ — N gives the S-extended divisor sequence

0— > N* — (z5)mm 22 sV,

n+m

Applying Homgy(—,C*) to the S-extended divisor sequence gives a map a” : G¥ — (CX)
where G* := Homy(LL°V,C*). We consider the quotient stack

Uas/G?] (10)

where G acts on Uy g via o”. Jiang showed [Jia08] that this stack associated to the S-extended
stacky fan (N, X, p°) is isomorphic to the stack X'(3).

3.3 Torus action and line bundles
The inclusion (C*)™ C U4 induces an open embedding of the Picard stack 7 = [(C*)"/G] into
X(X). We have T 2 T x BNyoy with T := (C*)"/Ima =2 N @ C* and Ny, = Ker o, where «
is given in (9). The Picard stack 7 acts naturally on X' (X) and the 7T-action restricts to the
T-action on X ().

A line bundle on X' (X) corresponds to a G-equivariant line bundle on U 4, and a T -equivariant
line bundle on X' (X) corresponds to a (C*)™-equivariant line bundle on ¢ 4. Thus we have natural
identifications

Pic(X(X)) = Hom(G,C*) =LY,
Picr (X (X)) 2 Hom((C*)",C*) = (Z™)*.
The natural map Picr (X (X)) — Pic(X(X)) is identified with the divisor map p" : (Z")* — LV
in (8). We write uy,...,u, for the basis of T-equivariant line bundles on X'(X) corresponding

to the standard basis of (Z™)* and write Di,..., D, for the corresponding non-equivariant
line bundles,i.e. D; = p¥(u;). Abusing notation, we also write u; or D; for the corresponding

! The reader can keep in mind the most basic case where S is a subset of Box(X).
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(T-equivariant or non-equivariant) first Chern classes. These are the (T-equivariant or non-
equivariant) Poincaré duals of the toric divisors [{Z; = 0}/G| C [U4/G].

3.4 Chen—Ruan cohomology

The Chen—Ruan orbifold cohomology (see §2.1) of the toric Deligne-Mumford stack X(X)
associated to a stacky fan 3 = (N, X, p) has been computed by Borisov et al. [BCS05] and,
in the semi-projective case, by Jiang and Tseng [JTO08]:

C[Ns]
{22 x(pi)yPi - x € N*}

Heg (X (%), C) =~

where

(i) C[Ns] = D.cn, Cy° with the product

e1 oco . y“1te2 if there is a cone o € ¥ such that ¢1, & € o,
7o otherwise;
(i) Ny :={c€ N :¢ € o for some o € ¥}.

Similarly, the T-equivariant Chen—Ruan orbifold cohomology of the toric Deligne-Mumford stack
X(X) is [Liul3]

N Rr[Ns]
{x = > x(pi)yP : x € N* @ C = H3(pt)}’

Heg p(X(%),C)

where

(i) Rp:= Hi(pt) = Symg(N* @ C);
(ii) Rr[Ns]:= @D cn,, Rry° with the product

Yoy = y“1te2 if there is a cone o € ¥ such that ¢, & € o,
0 otherwise.

The (T-equivariant or non-equivariant) classes u;, D; in §3.3 correspond to y”* in the above
descriptions. For b € Box(X), y? is the identity class supported on the twisted sector X (2)p.

3.5 Maps to one-dimensional torus orbits

We next describe toric maps from certain very simple toric orbifolds I, ,, to the toric Deligne—
Mumford stack X'(X). This establishes notation that we will need to state and prove our mirror
theorem.

DEFINITION 5. Let 1 and ry be positive integers. There is a unique Deligne-Mumford stack with
coarse moduli space equal to P!, isotropy group p,, at 0 € P!, isotropy group p., at oo € P!,
and no other non-trivial isotropy groups. We call this stack P, ,,.

Let r = lem(ry,r2), and let v} and 7, satisfy riry = rire = r (le. 7, = i/ ged(r1,r2)). The
stack Py, ,, is a toric Deligne-Mumford stack with fan sequence

"
1 22 (—7"1, 7"2)
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PrROPOSITION 6 (cf. [Johl4, Lemma 2]). Let X(X) be the toric Deligne-Mumford stack

associated to a stacky fan ¥ = (N,X,p), and suppose that the fan ¥ is complete and one-

dimensional. Let o1 = (p1), 02 = (p2) be the one-dimensional cones of ¥, and assume without

loss of generality that p1 < 0 and p2 > 0 in Ng ~ Q. Let wap1 + wip2 = 0 with wi, w2 € Z~o be

the minimal integral relation between p1, po € N. The following are equivalent:

(a) a representable toric morphism f : Py, ,, — X (3) for some r1, 7o such that f(0) = X(X),,
and f(o0) = X(X)s,;

(b) two box elements by € Box(o1), by € Box(o2) and non-negative integers qi, qo such that
qip1+q2p2 +b1+b2 =01n N;

(c) a box element by € Box(01) and a strictly positive rational number [ such that wyl — f is
a non-negative integer, where by = f1p;.

These data are related as follows: r; is the order of b; in N/Zp;; | = (g2 + f2)/w1 = (q1 + f1)/wa;
g1 = [lwz], g2 = [lw1], fi = (lw2), fo = (lws).

Proof. Let
W) . o)

0 Y/ 72 N

be the fan sequence for X'(X). A representable toric morphism f : Py, ,, = X(X) is given by a

commutative diagram
/
&1 ZQ <—’r‘1 7“2)

m (ml 0) . (12)

0 mo

0 Z 7?2 N
w9 P
w1

for some integers mj, mg2, m and some map 7. Given a morphism as in (a), and hence a
commutative diagram (12), let b; be the unique element of Box(ci) such that b = n(—1)
mod (p1), and let by be the unique element of Box(cg) such that by = n(1) mod (p2). Then
there exist unique non-negative integers q1, g2 such that

n(—=1) = qp1 + b1, n(1) = q2p2 + ba,

and we have ¢q1p1 + q2p2 + v1 + v2 = 0 in N. Thus a morphism as in (a) determines data
as in (b).
Conversely, suppose that we are given vy, v2, q1, g2 as in (b). Define i : Z — N by setting

n(1) = =b1 — q1p1 = b2 + q2p2.

Now set r; = ord b; in the group N/p;; by diﬁnition there are integers k1, ko such that r;b; = k;p;,
and (for instance by looking at images in V) we see that 0 < k; < r;. Now set

m1 =rq1 + k1, ma=1r2q2 + ko.
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The diagram

7?2 N

is commutative: mip; = riqip1 + k1p1 = r1(=b1 +n(—1)) +r1b1 = n(—r1), and similarly mops =

n(re). Thus,
mars
( ! ,2> € Kerp.
m2r1

The fan sequence (11) defining X'(X) is exact at Z2, and we deduce that there exists an integer

m > 0 such that
marh _ (wam
meri ) \wim

and hence that the diagram

0 72 7
mq 0
m n
0 mo
0 7 72 N

W)

defines a stable representable morphism f : Py, ,, — X(3X).
It is almost immediate that the constructions (a) = (b) and (b) = (a) are inverses of each
other: the key point is that, if f : P, ., — X (X) is representable, then r; is the order of b; in
The equivalence (b) < (c) is immediate: we set g1 = wol — f1, write w1l = g2 + fo with
f2 = (w1l) the fractional part and g2 = |w1l] the integer part, and set by = —q1p1 —qap2 —b1. O

Remark 7. The box elements b1, bs in the above proposition are given by the restrictions of
f to 0,00 € Py, ,,, respectively. The rational number [ > 0 in (c) measures the ‘degree’ of
the map f in the sense that [ = fPTLQ a(f*O(1)) = m/lem(ry,r2), where O(1) is the positive
generator of Pic(X'(3)) modulo torsion. The degree of the map between the coarse moduli spaces
fiPr 2R, | = P2 X(2) is given by (1) = (g2p2 +b2) = (g2 + f2) p2 = lwipz = lwa|p1| € Z.
Notation 8. Let X = (N, X, p) be a stacky fan. We write olo’ if o, ¢/ € ¥ are top-dimensional
cones that meet along a codimension-one face. Whenever o|o’, we write j for the unique index
such that p; is in o but not in ¢’, and j' for the unique index such that p; is in ¢’ but not in o.

Notation 9. Let 3 = (N, 3, p) be a stacky fan. Given b € Box(X), we define b; € [0,1), 1 <i < n,
by the conditions:

1889

https://doi.org/10.1112/50010437X15007356 Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X15007356

T. COATES ET AL.

PROPOSITION 10. Let X (X) be the toric Deligne-Mumford stack associated to a stacky fan 3 =
(N, 3, p). Suppose that o, ¢’ € ¥ satisty o|c’ and let b € Box(o). The following are equivalent:

(i) a representable toric morphism f : P, ., — X (X) such that f(0) = X(X),, f(c0) = X(X)
and the restriction f|o : Bu,, — X(X), gives the box element b € Box(o);
(ii) a positive rational number ¢ such that (c) = b;.

Here j is as in Notation 8, and b = inv(b) (see §2.1).

Proof. Let

w;ipj + < Z wipi> +wjrpjr =0

i€oNo’

be the minimal integral relation between {p; : p; € cUo’} such that w; > 0. Replacing ¥ by X /7,
we reduce to the case where X'(X) is one-dimensional. The result now follows from Proposition 6,
with w; there equal to wj: here, wy there equal to w; here, and c equal to lw;. O

Remark 11. Note that the choice of o, ¢/, b and ¢ in Proposition 10 determines the map f :
Py, r, = X(3) uniquely, and hence determines both 75 and the box element b’ € Box(o’) given
by the restriction f|s : By, — X(X),/. More precisely, b’ is the unique element of Box(o’) such
that

b+ [clpj+dpy+0'=0 mod P Zp; (13)

i€oNo’

for some ¢’ € Z=o. Note the asymmetry between b and ': the restriction f|y gives b = inv(b) and
the restriction f|s gives b’. This convention is useful in our recursion analysis.

DEFINITION 12. Let o, ¢/ € ¥ be top-dimensional cones satisfying o|o’. Let j,j' be as in
Notation 8. Define (¢, 0, j) to be the element of L ® Q = Hs(X, Q) given by the unique relation

of the form
cpj + < Z Cz@) + C’ﬁj/ =0.

i€oNo’

Remark 13. When we have a box element b € Box(o) satisfying (¢) = I;j, l(c,0,j) is the degree
of the representable toric morphism f : P, ,, — X (X) specified by a rational number ¢ > 0 in
Proposition 10(2). We have D; - i(c,0,j) = ¢, Dy -l(c,0,j) =, D; -l(c,0,j) =¢; fori € oNo’
and D; - l(c,0,7) =0fori ¢ o U0’

DEFINITION 14. Let o, ¢/ € ¥ be top-dimensional cones satisfying o|o’. Let j, j' be as in
Notation 8. Let b € Box(o) and o € Box(o’). Define AE;/b’b/ CL®Q = Hy(X,Q) to be the
set of degrees of representable toric morphisms f : P, ,, — X(X) such that f(0) = X(X),,
f(00) = X(2)e and f|o and f|oe give respectively the box elements b and . In other words:

AEZ,/I;U _ {l(c, 0, /) ELRQ: ¢ > 0 such that (¢) = b; and }

that (13) holds for some ¢’ € Z=¢
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4. The extended Picard group

In this section we introduce notions of extended Picard group for a Deligne-Mumford stack X
and extended degree for an orbifold stable map f : C — X. There is less here than meets the
eye: the extended degree of f amounts in the end to a convenient way of packaging the extra
discrete data attached to f, given by the elements of Box(X) associated to the marked points.
In what follows we will use this material only when X is a toric Deligne-Mumford stack, but the
definitions make sense for general Deligne-Mumford stacks and we give them in this context.
DEFINITION 15. The bozx of a Deligne-Mumford stack X', denoted Box X, is the set of generic
representable morphisms b : Bu, — X. In other words, it is the set of connected components of
the inertia stack IX. We write the order r of the box element b as ry.

Remark 16. If X is a toric Deligne-Mumford stack then this reduces to the notion of Box(X)
given in §3.1.

DEFINITION 17. Let X be a Deligne-Mumford stack and let S be a finite set equipped with a
map S — Box X. Abusing notation, we denote an element of S and its image in Box X’ by the
same symbol b. The S-extended Picard group of X, denoted by Pic® X, is defined by the exact
sequence

0—=Pic* X —=PicX o Pr, 'z — P, '2/Z—0. (14)
beS beS
In other words, an element of Pic® X is a pair (L, ) where L € Pic X is a line bundle on X,
and ¢ : S — Q has the property that ¢(b) + age,(L) € Z, where age,(L) is the age of L at b,
i.e. agey(L) = kp/rp with 0 < k, < 1 the character of the p,,-representation b* L.

DEFINITION 18. Let f: (C,z1,...,2r) = X be an orbifold stable map. An S-decoration of f is an
assignment of s; € S to each marking z; such that the element of Box X’ given by f|,, coincides
with the image of s; in Box X'. The S-extended degree of an S-decorated orbifold stable map f
is an element of (Pic® X)* defined by

k
deg®(f)(L, ) = deg f*L+ ) o(s;)-
j=1
The Riemann—Roch theorem for orbifold curves [AGV08] shows that the right-hand side is an

integer. The S-extended Mori cone is the cone NE®(X) C (Pic® X)* ® R generated by the S-
extended degrees of S-decorated orbifold stable maps. One can easily see that

NES(X) 2 NE(X) x R
under the standard decomposition
(Pic® X)* @ R = ((Pic X)* ® R) @ RI¥! (15)
induced from (14), where NE(X') denotes the usual Mori cone.

Remark 19. We can think of elements of S as ‘states’ to be inserted at markings of a stable
map. If an S-decorated orbifold stable map has a degree d € Hy(X,Z) and each ‘state’ b € S is
inserted ny times into it, the S-extended degree with respect to (L, ¢) is given by

[t D+ X et

besS

The value ¢(b) can be viewed as the degree of the variable dual to b € S.

1891

https://doi.org/10.1112/50010437X15007356 Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X15007356

T. COATES ET AL.

Remark 20. When X is Gorenstein and the subset S consists of those box elements of age 1,
the S-extended degree of a stable map is essentially the same thing as the orbifold Neron—Severi
degree defined by Bryan and Graber [BG09, §2].

4.1 Extended degrees for toric stacks
Suppose now that X = X(X) is the toric Deligne-Mumford stack associated to a stacky fan
¥ = (N,X,p), and that S is a finite set equipped with a map S — Ny ={c€ N :¢ € |X|}. By
composing it with a natural projection N5; — Box(X) we obtain a map S — Box(X). We now
identify L5V with Pic® X (X).

Let m = |S| and let s1,..., S, € Ny be the images of elements of S in Ny. The fan sequence
and the S-extended fan sequence fit into the commutative diagram

0 L—->15 Zm

0 7 Zn+m zm 0 (16)
|

0—>N=——N 0

with exact rows and columns. We give a splitting of the first row over the rational numbers.
Define
[T Qm — ]LS ®Q
by sending the jth standard basis vector to
€jtn — Z Sji€i € LS RQ C Qn—I—m
i€o(j)
where o(j) is the minimal cone containing 5; and the positive numbers s;; are determined by

Eieg(j) sjip; = 5j. The map p defines a splitting of the first row of (16) over Q:

L°®Q=(L®Q)eQm. (17)

Let r; be the order of the image of s; € Ny, in N/ Ziea(j) Zp;. Then we have r;s;; € Z. Therefore
the dual of p gives
m
W LYY — (]LS)* — @rj_lZ.
j=1
One can check that the map p* together with the canonical map ¢* : LY — L5V fits into the
exact sequence

sy w1, (escan) AN g
0 L LYo Pr;'e————Fr;'z/2—0
j=1 j=1

where res maps an element of LV = Pic(X) to the ages of the corresponding line bundle at
the box elements given by si,..., s, and can is the canonical projection. Thus we obtain the
following proposition.

PROPOSITION 21. We have Pic® X(X) = L5V,
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We have (Pic X(2))*®R = LeR and (Pic® X(X))*®R = LS®R. The standard decomposition
(15) matches with the splitting (17). The Mori cone and the S-extended Mori cone are described,
as subsets of L ® R and L° ® R, as follows:

:ZCV

>
NE*(X(2)) = «(NE(X(2))) + u((R=0)™)
= NE(X (X)) x (Rsp)™ under (17).

Here CY C L ® R is the dual cone of

> ReoD; CLY®R.
1:1<e<n,

i¢o
Our semi-projectivity assumption implies that the Mori cone NE(X (X)) is strictly convex.

DEFINITION 22. Recall that L® € Z"™, where m = |S|. For a cone o € &, denote by AS ¢ L®Q
the subset consisting of elements

n+m
A= Z )\iei
i=1
such that Apij € Z,1 < j <m,and \; € Zif i ¢ o and i < n. Set AS :=(J, o5 AJ.

DEFINITION 23. The reduction function is

T G BOX(Z)

A —> Z i pi + ZD\nﬂ}sj

7=1

This sends an element of A5 to Box(c) as we have v5(\) = Y1 (=\;)p; € o for A € AS. Note
that v¥(\); = (=\;). For a box element b € Box(X), we set

Ay = {xe A v(\) = b}
and define

AES .= ASNNES(X(Z)),
AEY .= AJ NNE®(X(X)).

We have Ay C AJ if b € Box(o).

Remark 24. Elements of AEE can be interpreted as the S-extended degrees of certain orbifold
stable maps, as follows. Let f : (C,z1,...,2k, Too) — X be an orbifold stable map such that
fleo. gives the box element b € Box(X) and the rest of the markings 1, ...,z are S-decorated,
i.e. each x; is assigned an element of S that maps to the box element f|;,. Then f is
naturally an (S U {b})-decorated stable map and has the (S LI {b})-extended degree of the form
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(k,1) € LSY} ¢ Zn+m % 7 for some k € Z"*™. On the other hand, we have a ‘wrong-way map’
¢ : L5 @ Q — L% @ Q defined by the commutative diagram

LS o Q- (L ® Q)@ Qm+!

€ l l projection

LS®Q——— (L®Q)® Q™

where the horizontal arrows are the splitting given in (17). The map e induces a bijection

ki+b 1<i<n,

e:{(r,1) e Lk e 27y 2 AY, where €(k,1); = {,ﬁ n+1<i<n+m,

and sends the (S U {b})-extended degree
degS 0 (1) = (v,1) € LS00 NESU0)H (v (3))

to the S-extended degree deg® (f) € AEl;q . Here we regard f as being S-decorated by forgetting
the last marking z.,; we need to generalize Definition 18 by allowing orbifold stable maps with
domain curves having unmarked stacky points (and in this case deg®(f)(L, ¢) is not necessarily
an integer).

LEMMA 25. Let 0,0’ be top-dimensional cones of ¥ such that o|o’. Let b € Box(o) and let
b’ € Box(o’). Recall the set AEZ’;; C L ® Q from Definition 14. Addition in ¥ ® Q induces a
map AEZII;bI x Ay — Ay. Moreover, for fixed d € AEZ/I;bI, the map N — X +d induces a bijection
Ay =AY

b’ b

Proof. Take N € Ay and I(c,0,7) € AEg;;b,. Here j is the index defined in Notation 8 and ¢ is

a positive number such that (c) = Bj and that (13) holds for some ¢’ € Z~o. We need to show
that A := X +1(c,0,7) € A7. It suffices to show that v°(\) = b. First, we show that A\ € A5. As
described in Definition 12, I(c, 0, j) is given by the relation of the form

cpj + C/ﬁj/ + Z c;ipi = 0. (18)

i€oNao’

Thus the ith component of A € L ® Q C Q"™ is given by

Ny+e i=j,

v e i
‘ No4e¢ ieond,
X, otherwise.

To show that A € AS, it suffices to see that A+ € Z. Since v¥(N) = b/, we have (=A%) =0l
On the other hand, (13) together with the relation (18) shows that

[d]=¢ and () ="0}.
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This proves that A%, + ¢’ € Z and hence that A € AS. Now we show that v¥(\) = b. We already
know that v¥(\) lies in Box(c). On the other hand,

m
V) = D NI+ D [N lsari+ Y [Ni+eilpi+ [N+ clps + [Ny + oy
i¢oUo’ =1 i€ono’
=V + ([N + el = TN Do + (DN + 1= TN Doy + D (N4l = [N]Dps
i€oNo’
=b'+ [c]p; +¢'py; mod Z Zp;
i€oNo’

where we used \; € Z and [N, + '] — [N, ] =X, + ¢ = [N))] = — (=N})) = =V}, = ¢. The
last expression is congruent to b modulo >, Zp; by (13). Therefore, v¥(\) = b as claimed. For
the converse, if \ € AbS , one can argue similarly to show that A — (¢, 0, 7) lies in A;?,. O

5. Toric mirror theorem
In this section we state the main result of this paper, Theorem 31.

Notation 26. Let o € ¥ be a top-dimensional cone. We write ug (o) for the character of T given
by the restriction of the line bundle wuy to the T-fixed point X (X),.

Notation 27. Let S be a finite set equipped with a map S — Ny, and set m = |S|. For A € LY®Q,
we write

A=(dk), deL®Q,keQ™

under the splitting L° ® Q =2 (L® Q) @ Q™ in (17). If A € AEY C L® ® Q, we have k € (Zxo)™
and d € NE(X (X)) N H2(X(X),Z). In this case we write

%) d_k d, k km T
Q :Q :Qxll'”xm EAnovﬂx]]

where AT is the T-equivariant Novikov ring (2) and = = (x1,...,,,) are variables. We call

Q = (Q, z) the S-extended Novikov variables.

DEFINITION 28. Let ¥ = (N, X, p) be a stacky fan, and let S be a finite set equipped with a map
S — Nx. Set m = |S| and regard L° ® Q as a subspace of Q"t™. The S-extended T-equivariant
I-function of X (X) is

~ ~ i [ PN (u; + az)
E n w;t: 1z a >\1 NS 7
IE(Z)(Q,z) 1= gedii=1 Uit/ g g Q’\e)‘t< | | (@)= {A)a<0 )yb. (19)

beBon(E) AeA S =1 Thay=) 0, (Wi + a2)

Some explanations are in order.

(i) The summation range AEy C L¥ ® Q was introduced in Definition 23.

(ii) For each A € AEY, we write ); for the ith component of A as an element of Q"*™. We
have (A\;) =b; for 1 <i<nand (\;) =0forn+1<i<n+m.

(iii) w;:=0ifn+1<i<n+m. Fori=1,...,n,u; is the T-equivariant first Chern class of
the line bundle discussed in §3.3.

(iv) 7P is the identity class supported on the twisted sector IX (), associated to b € Box(X);
see §3.4.
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(v) t = (t1,...,t,) are variables, and e := [[[_, e(Pid)t,
1 i,(z)(@,z) is a formal power series in ), =, t with coefficients in the localized equivariant
Chen—Ruan cohomology HéRm(X) ®Ry STxCX 5 1.€.

—753(2)(@7 z) € Heg1(X) @Ry Stxex [NE(X) N Ha (X, Z)][, 1]

where Spycx = Frac(Hp, .« (pt)) and z is identified with the C*-equivariant parameter; see
Remark 1.

DEFINITION 29. If 3 = (N, X, p) and S are as above and the coarse moduli space of X(X) is
projective, then we define the S-extended (non-equivariant) I-function of X(X) by the same
equation (19), but with w;, 1 < i < n, replaced by the non-equivariant first Chern class D;.

Remark 30. One can replace the summation range AE} in the formula (19) with Ay without
changing the I-function. This is because the summand for A € Af contains a factor
(Hz‘:AieZ@ u;)y® which vanishes unless {p; : \; € Z.g or \; ¢ Z} spans a cone; in particular,
the summand for A automatically vanishes unless A lies in NE (X' (X)).

We now state the main result of this paper.

THEOREM 31 (Toric mirror theorem). Let 3 = (N, X, p) be a stacky fan giving rise to a smooth
toric Deligne-Mumford stack X (3) with semi-projective coarse moduli space, and let S be a
finite set equipped with a map S — Nx. The S-extended T-equivariant I-function I)S((E)(Q, —z)
is a AT [x,t]-valued point of the Lagrangian cone L x(x) for the T-equivariant Gromov—Witten
theory of X(X).

COROLLARY 32. Suppose that ¥ = (N,X, p) and S are as in Theorem 31, and that the coarse
moduli space of X (3X) is projective. Then the S-extended non-equivariant I-function of X(X) is
a Anov[z, t]-valued point of the Lagrangian cone Ly s, for the non-equivariant Gromov-Witten
theory of X(X).

Proof. Since the coarse moduli space of X (X) is projective, the non-equivariant Chen—Ruan
cohomology, S-extended non-equivariant I-function of X' (X¥), and non-equivariant Gromov—
Witten theory of X'(X) are well defined. Pass to the non-equivariant limit in Theorem 31. O

Remark 33. Theorem 31 and Corollary 32 take a particularly simple form when the pair
(X (%), S) is weak Fano. Roughly speaking, in this case the S-extended I-function I ;9((2) coincides

with (a suitable restriction of) the J-function of X' (X). See [Iri09, §4.1] for more details.

Remark 34. The non-extended I-function (i.e. the S-extended I-function with S = @) typically
only determines the restriction of the .J-function to the ‘very small parameter space’ H?(X;C) C
H%R(X ;C). Taking S to be non-trivial in Theorem 31 and Corollary 32, however, in practice
often allows one to determine the J-function along twisted sectors too. But it is convenient to
take S not to be too large (not equal to the whole of Box(X'), for example) as otherwise we may
lose control over the asymptotics of the I-function. We will elaborate on these points elsewhere.

Remark 35. The S-extended I-function arises from Givental’s heuristic argument [Giv95] applied
to the polynomial loop spaces (toric map spaces) associated to the S-extended quotient
construction (10) of X' (X). See [Giv98, V1a02, Iri06, CLCT09] for closely related discussions.

The remainder of this paper contains a proof of Theorem 31. We first give a criterion, in
Theorem 41, that characterizes points on the Lagrangian cone Ly (x). We then show, in § 7, that
the S-extended [-function I )S((E) satisfies the criterion in Theorem 41.
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6. Lagrangian cones in the toric case

Let X = X(X) be the toric Deligne-Mumford stack associated to a stacky fan ¥ = (N, X, p),
as in §3.1. In this section we characterize those points of ‘H which lie on Givental’s Lagrangian
cone Ly associated to T-equivariant Gromov—Witten theory of X'(X) (see §2.3). Recall that the
T-fixed points of X(3X) are in bijection with top-dimensional cones of 3: given a top-dimensional
cone o € ¥, we have a fixed point

X(Z/o) = X(8), C X(D).

Note that X (3 /o) ~ BN (o), where N(o) := N/N, and N, C N is the subgroup generated by
pi,l € 0.
Notation 36. For a top-dimensional cone o € ¥, we write T, X (X) for the tangent space at the

T-fixed point X' (X),. This is a T-equivariant vector bundle over X' (X), = BN (o).

Notation 37. Let 0 € ¥ be a top-dimensional cone. We write H,, for Givental’s symplectic vector
space associated to the T-fixed point X' (X),. We also write HY and L for the symplectic vector
space and Lagrangian cone corresponding to the Gromov-Witten theory of X (X),, twisted by
the vector bundle 7, X' (X) and the T-equivariant inverse Euler class ep 1. More precisely:

7'[0 = HCR(X(E)J) c ST((Zil))[[NE(X) N HQ(X7 Z)]]?
Hy" = Hor(X (X)) @c S1((2) [NE(X) N Ha (X, Z)].

See §§2.3 and 2.4. Although there are no Novikov variables for the stacky point X'(X),, we define
Ho, HEY over the Novikov ring of X' (X) by extending scalars.

Notation 38. By the Atiyah—Bott localization theorem, we have the isomorphism

Heg p(X(2)) ®py ST ~ D Heg(X(X)o) @c St (20)

o€X: top-dimensional

given by restricting to T-fixed points, and thus an isomorphism of vector spaces,

H ~ @ He.

o€X: top-dimensional

Under this isomorphism, the symplectic form on H corresponds to the direct sum of e} L twisted
symplectic forms on @, H,. For f € H and 0 € ¥ a top-dimensional cone, we write f, € H, for
the component of f along H, C H. Thus f, is the restriction of f to the inertia stack IX(X),
of the T-fixed point X'(X),. We write f(, ;) for the restriction of f, to the component IX(X),,
of IX(3X), corresponding to b € Box(c). The component /X (X), is contained in both X (%),
and IX (E)b

DEFINITION 39 (Recursion coefficient). Let ¥ = (N, X, p) be a stacky fan, and let o, 0/ € ¥
satisfy o|o’. Let j be as in Notation 8. Fix b € Box(c), and let ¢ be a positive rational number
such that (c) = l;j with b = inv(b). The recursion coefficient associated to (o,0”,b,c) is the
element of St = Frac(Hp(pt)) = C(x1, ..., xaq) given by
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Y c/u;(oN)e! (=c/ui(o))l!
roeE - (11 ui((,))(/é“)) (e/le)
bwa<0(uz(0) +uj(o)a/(—c))
< H <o (o) + uj(0)a/(~0))

i€oNo’

i€o:b;=0

where ¢, ¢; are as in Definition 12, i.e. ¢ = Dj/ - l(c,0,7) and ¢; = D; - l(c,0,j) for i e o N o’

Remark 40. The recursion coefficient RC(C)EZII’)I)),) depends only on o, ¢/, b, and c. The box
element b’ € Box(c') is determined by these data, via Remark 11.

THEOREM 41. Let X = X(X) be a smooth toric Deligne-Mumford stack associated to a stacky
fan ¥ = (N, %, p). Let x = (x1,...,Tn) be formal variables. Let f be an element of H[x] such
that f|g—y—0 = —12. Then f is a AHOV[[ [|-valued point of Ly if and only if the following three
conditions hold.

(C1) For each top-dimensional cone o € 3 and each b € Box(c), the restriction f(, ) is a power
series in () and x such that each coefficient of this power series is an element of Sy, cx = C(x1,

..y Xd,2) and, as a function in z, it is regular except possibly for a pole at z = 0, a pole at
z = 00, and simple poles at

{uj(a) : Jo’ € ¥ such that o|o’ and j € o\o’, ¢ > 0 is such that {c) = BJ}
c

Here we use Notation 8.

(C2) The residues of f,, at the simple poles satisty the following recursion relations: given any
o, 0’ € ¥ such that olo’, b € Box(o) and ¢ > 0 with (c) = b;, we have

c.o . U,7b,
Res,_y(0)/c o) (2) dz = —Q!77) RC(C)go,b) ) o0 1) (2) |22 (0) e

Here we use Notation 8, Definition 12 and Definition 39.
(C3) The Laurent expansion of f, at z =0 is a AL [z]-valued point of L.

Remark 42. Condition (C1) ensures that the right-hand side of the recursion relation in (C2) is
well defined. Note that the T-weights {u;(c”) : i € o'} of the tangent space T, X (X) form a basis
of Lie(T)* and all simple poles of f,/(z) are contained in the cone ), , R>qu;(c”) by (C1). On
the other hand, if we take the representable morphism f : P, ., — X(X) associated to o,c¢,j,b
in Proposition 10, then u;j(o)/c and uj(0’)/c" are the induced T-weights of the tangent spaces
at 0 and oo of the coarse domain curve |P,, ,,| = P! (see Definition 12 for ¢). Therefore we have
uj(0)/c = —uy(c')/c, and it follows that £, i (2) is regular at z = u;(0)/c = —uj (o) /c.

Remark 43. Note that (C3) involves analytic continuation: (C1) implies that each coefficient of
Q%" in f,(2) is a rational function in z, x1, ..., xd, and so it makes sense to take the Laurent
expansion at z = 0.

Proof of Theorem /1. In outline, Brown’s proof for toric bundles [Brol4, Theorem 2] works for
toric Deligne-Mumford stacks too. In detail, we argue as follows.
Suppose first that f is a AL [z]-valued point on £x. Then

nov|

_ é T
f=—1z+t(z +Z > Z < ,t(w),_ziqz> o (21)

n=0deNE(X) « 0,n+1,d
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for some t(z) € H[x] with t|g—,—0 = 0; here once again we expand the expression ¢, /(—2 — 1))
as a power series in z~!. Under the isomorphism (20), the identity class 1 € Hey (X (X)) and

t(z) € Ho[x] correspond to
@ 1, and @ ty(2)

o€ top-dimensional o€X: top-dimensional

where 1, is the identity element in Hog (X (X)) and t,(z) € Hs, 4, and we have

£, = gz + to( [Z > Z < "t(@’—jidzf d)a]

n=0deNE(X) « 0,n+1,d

where ¢, : X(X), - X (X) is the inclusion of the T-fixed point. Furthermore,

Q4 10:b T
f(ob) 76b02+t0b +Z Z < w,t,...,t> (22)

n—= OdENE O,TL—‘rl,d

where 17 := |N (o) |er( Nop)l, 4 Nop is the normal bundle to IX(X),p in JX (), and 1_; is
the fundamental class of IX' (%) _; with b = inv(b).

We compute the sum in (22) using localization in T-equivariant cohomology. Chiu-Chu
Melissa Liu has produced a detailed and beautifully written introduction to localization in
T-equivariant Gromov-Witten theory of toric stacks [Liul3]; we follow her notation closely.
T-fixed strata in the moduli space ﬂomﬂ(ﬁ,’ ,d) are indexed by decorated trees I', where:

— each vertex v of I is labelled by a top-dimensional cone o, € ¥;

— each edge e of I is labelled by a codimension-one cone 7, € ¥ and a positive integer d;

— each flag? (e, v) of I is labelled with an element k(e.v) of the isotropy group G, of the T-fixed
point X (X)s,;

— there are markings {1,2,...,n+ 1} and a map s : {1,2,...,n + 1} — V(I') that assigns
markings to vertices of I';

— the marking j € {1,2,...,n+ 1} is labelled with an element k; € G, where v = s(j);

— a number of compatibility conditions hold.

The compatibility conditions that we require are spelled out in detail in [Liul3, Definition 9.6];
they include, for example, the requirement that if (e,v) is a flag of I' then the T-fixed point
determined by o, is contained in the closure of the one-dimensional T-orbit determined by 7.
We denote the set of all decorated trees satisfying the compatibility conditions by Go n+1(X,d),
so that T-fixed strata in Mg ,4+1(X,d) are indexed by decorated trees I' € G n+1(X, d).

We rewrite equation (22) as

o0 d
o) = —0b02 + bty (2) + Z Z g' Z Contr, (I (23)

n:
n=0 dENE(X) F€G07n+1(‘){,d)

where Contr,,(I") denotes the contribution to the T-equivariant Gromov-Witten invariant

10,b T
< b ,t>
—z—9 0,n+1,d

2 A flag (e,v) of T is an edge—vertex pair such that e is incident to v.
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from the T-fixed stratum Mp C My ,41(X, d) corresponding to I'. We will need some notation
for graphs. For a decorated graph I' € G p41(X, d), we write:

V(') for the set of vertices of T
E(T") for the set of edges of T
F(T) for the set of flags of T’;
S, for the set of markings assigned to the vertex v € V(T'),
So={j € {12, ..+ 1} () = o)
E, for the set of edges incident to the vertex v € V(I),
E,={ec E(): (e,v) € F(I)};

val(v) = |Ey| 4 |Sy| for the valence of the vertex v € V(I).

Liu [Liul3, Theorem 9.32] shows that the contribution from Mr to the Gromov-Witten invariant

MYt Y1 e ont1d
is
eT Ce)feTX) ) Ee.n *
o 11 i frapey 1L ext@0fen I (T o
een(r) © (e)EP(T) weV(T) Njis()=o
HjES &;J 1
— Uer ((TUvX)O,v l(v),O)a (24)

vel;[ / 0BG [ees, Wew) = Yen)/Ten) i

where

1 1 Gl
T TAw(D)] 11 (de|Gel) I

ecB(I) (ew)eF(r) (V)
G is the generic stabilizer of the one-dimensional toric substack X' (3 /7.);
fe : Ce = X is the toric map to the one-dimensional toric substack X' (X/7.) determined by
the edge e and the decorations 7, de, {k(e,v) : v is a vertex incident to e};
H'(C., fXTX )™ denotes the moving part with respect to the T-action;
W(ew) = €T(Ty(e,w)Ce), Where y(e, v) is the marked point on C. determined by (e, v);

T(e,w) 18 the order of k(. ) € Gy;
—
b(v) is determined by the decorations kj, j € Sy, and k(¢ ), € € Ey;

(T, X)0,val(v),0 18 the twisting bundle associated to the vector bundle T, X over the T-fixed
point X (X/oy) (see §2.4);

Mg(zil )(BGy) is taken to be a point if val(v) = 1 or val(v) = 2.

b(v)

The integrals over MO’Val(v) (BGYy) here in the unstable cases val(v) = 1 and val(v) = 2 are defined
as in [Liul3, (9.12)—(9.14)]. The twisting bundles (7, X ) vai(v),0 in the unstable cases val(v) =1
and val(v) = 2 are defined to be (T, X)*e»); see the end of [Liul3, §9.3.4].

Consider now the graph sum in (23). Each graph I' in the sum contains a distinguished
vertex v that carries the first marked point. We may assume both that o, = o and that the label
ki1 of the first marking is equal to b, as otherwise the contribution of I' is zero. There are two
possibilities:
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1 Deleting
\ the edge e 1
v e ?

Type A graph I’

FI1GURE 1. A graph of type A.

(A) v is 2-valent;
(B) v has valence at least 3.

In the first case we say that I' has type A, and in the second case we say that I" has type B; see
Figures 1 and 2. As we will see below, the contributions from type A graphs have simple poles at
points of the form u;(0)/c as described in the statement of the theorem, and the contributions
from type B graphs are polynomials in z~!. Condition (C1) then follows.

Consider a graph I' of type A. Let e € E(I") be the edge incident to v. Then I' is obtained
from another decorated graph IV by adding the decorated vertex v and the decorated edge e. See
Figure 1. Let v’ be the other vertex incident to e. The graph I is assigned the first marking at
v’ instead of the edge e. The map f. : C. — X determined by the edge e has C. ~ ]P)r(e,v)v’r(e,v’)’
fe(0) = &y, and fe(00) = Aj ,; the restriction feo : By, — X, gives be Box(oy). Let ¢ € Q
and b’ € Box(co,/) be the rational number and box element determined by applying Proposition 10
and Remark 11 to f., and write o/ = o,. Since 1); = —T(e,0)W(e,v)s We Obtain

cr €’J]‘(H1(Ce, f;TX)mOV)

cr eﬂ,(I{O(C'(37 f*TX)mov)

[ [N(2)lex(No,0) 1
M

(b,0)

0,2 (BGy)v¥ —z+ T'(e,v)W(e,w) W(ew) — 1;2/7‘(6,’[))

ex((Tp X )Fen Jeq((Tpr X)Fean)

Contr, (') =

Uer! (T, &)Me)

W T
IN(0")|er(No )

Contr () s,y

Calculating the ratio cp/cr and evaluating the integral over ﬂé’,”;)(BGU) using [Liul3, (9.14)]
yields
|G| en(H'(Ce, ETX)™)  en(Noyp)

T) =
Contrg,b( ) de|Ge| eT(HO(Ce, AT X)mov) —7 + T (e0)Wiew)

[COHtl“U/ b (F,)]

=TT e ) W e )

Liu has computed the ratio of Euler classes here [Liul3, Lemma 9.25], and in our notation this

gives ,
Contre(I') = RC()EUb))[ Contre/ b’(l—‘,)]z:u-(a)/C
= e ;
where we used 7.\ W(ew) = Uj(0)/c = —T(c )W) (See Remark 44 below for a detailed

comparison between Liu’s notation and ours.) Note that the degree of the map f. : Cc - X
is l(c, 0, j); see Definition 12. Note also that if we hold the decorated vertex v and the decorated
edge e constant (or in other words, if we hold the map f. : Cc — X constant) then the sum of
Contr(I"), p over all compatible trees I is exactly® the graph sum that defines f(57 p)- Thus the

3 We elide a subtle detail here: the unstable terms [—d 02+t b (2)] 2= uj(o)/c in (o )] 2= —u;(0)/c arise from the
graphs I' in the sum such that I' is unstable, with only one vertex and one or two markings attached to it.
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contribution to

d

f(a,b) = —51)702 + t(mb)(z) + Z Z Z % COHtrgyb(F)

n=0 dENE(X) FEG07n+1(X,d)
from all graphs I" of type A is

I(c,0,5) C( )Egbl)))
Z Z Q ’ —2+u; ( )/C[f(o“ b’)]z =uj(o)/c (25)

o":o|lo’ c€Q:c>0,
(c)=b;
This proves (C2).
Write

T(05)(2) == t(5p)(2) + (the quantity in (25))

and

We have that

Y. fonb

beBox(o)
d

=—lsz+7,(2) + Z Z Z Z % Contryp(I')145p. (26)

n=0deNE(X) b€Box(c) I'€Go,n+1(X,d):
T" is of type B

Consider the contribution to (26) given by the sum over decorated graphs I' of type B such
that the distinguished vertex v has valence [ and that the label k1 of the distinguished vertex is
equal to b € Box (o). Each such graph I" gives contributions of the form (24). We evaluate these

contributions by integrating over all the factors MSM(U,) (BG,) except that associated with the
distinguished vertex v, obtaining an expression of the form*

1 19

‘ Autl" r ’ mgij _____ bl(BG ) . 17[—11 U h2(t7 zZQ) J-.---u hl(t7 ’[El) U 6%1((Ta—vX)07l70) 10-7b
PIRRE 0,1 v

for some elements b2, ...,b" € Box(c) and some polynomials h;(t, ;) in to, t1,...,Q, and ;.
Suppose that I is obtained from type A subgraphs I'g, ..., I'; by joining them at the distinguished
vertex v, as in Figure 2. If T'; consists of one vertex with two markings (such as I'y in Figure 2) then

hi(t, ;) =t (b (¢Z) Otherwise h;(t, ;) records a more complicated contribution determined
by the subgraph I';; we have

hi (t, 12}1) = Qdi COl’ltI‘a.ﬁi (Fl)|z’:151

“Here Autr,,. r, is the subgroup of the symmetric group &;_; which leaves the (I — 1)-tuple (T's,...,T;) of
decorated graphs invariant.
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, v e vh
U1 1 TS 2 ‘ Ty
€1
Decomposing I
o b into type A subgraphs , 1: es vh -
. 3
1 \ =
k

1<—‘\
k Ty

FIGURE 2. A graph of type B.

Type B graph T’

where d; is the total degree of the contribution from I';. Now fix v and all other parts of I' except
the subtree I';, and sum over all possible subtrees I';: the total contribution of the hi(t,zﬁi) is
(25) with b = b’ and z = 1);. Thus the contribution to (26) given by the sum over decorated
graphs I' of type B such that the distinguished vertex has valence [ and that the label k; of the
distinguished vertex is equal to b € Box(o) is

1 10',b B .
(-1 /Mo (BGy) —% — 1 UTo(2) U UTo () Uep (ToX)o0)-

These are twisted Gromov—Witten invariants of the T-fixed point X' (X),. Summarizing, we see
that (26) becomes

10 b tw

f, = —1o2 + T, (2 +Z Z <_Z;¢—},TU(¢),...,TU(¢)> 1op.

1=3 bGBox(a) 0,,0

The superscript ‘tw’ indicates that these are Gromov—Witten invariants of X' (X), twisted by
the vector bundle T, X (X) and the T-equivariant inverse Euler class ex'. Using (7), we see that
the Laurent expansion at z = 0 of f, lies in £%V. Thus, we have proved (C3).

Conversely, suppose that f € H[z] satisfies f|g—z—0 = —1z and conditions (C1)—(C3) in the
statement of the theorem. Conditions (C1) and (C2) together imply that

RC(o)(7 ;)"
f :—1 Z+t + Z 1b Z Z QZCO',]) Z+u(( ;/C (o”b, |Z ’u/] /C+O( ) (27)

beBox(o)  o’:olo’ c€Q:ic>0,
(e)=b;
for some t, € Hy 1 [z] with t,|g—t—0 = 0. The remainder O(z!) is a formal power series in
Q and z with coefficients in z=1St[z7!]. Let tgw € H. be the unique element such that its
restriction to IX(X), is t,, and let fgw be the element of Ly defined by (21) with t = tgw.
Then, in view of the first part of the proof, we have that fogw and f both satisfy conditions
(C1)-(C3), and both give rise to the same values t, in (27). It therefore suffices to show that f
can be reconstructed uniquely from the collection

(ty : 0 € ¥ is a top-dimensional cone) (28)

using condition (C3).
We argue by induction on the degree with respect to @ and x. Pick a Kéhler class w of X(3X)
and assign the degree fdw + >, k; to the monomial Qd:n’fl e :L‘fnm. Let kg = fdo w > 0 be the
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minimal possible degree of a non-constant stable map. Suppose that f is uniquely determined
from the collection (28) up to order k. We shall show that f is determined up to order s + ko.
We know by (27) that f, is determined up to order s + kg except for the term O(z~!). On the
other hand, under the Laurent expansion at z = 0, all the quantities in the first line of (27) lie
in Hffw+ Therefore, in view of (7), the term O(z~!) is uniquely determined up to order s + g
from the quantities in the first line by condition (C3), i.e. that the Laurent expansion at z = 0
of £, lies in LY. This completes the induction and the proof of Theorem 41. O

Remark 44. For the convenience of the reader, we compare Liu’s notation [Liul3, Lemma 9.25]
with ours. Consider a decorated graph I' occurring in the proof above, and an edge e € E(I")
with incident vertices v, v' € V(T"). The edge e corresponds to a toric representable morphism
f=fe:Pr r, > X(X) given by 0,0, ¢,b in Proposition 10, where o = 0, and ¢’ = o,s. Let j
and j" be the indices in Notation 8. Recall (from Definition 12) that the degree I(c,0,j) € L®Q
of the map f is given by the relation

cpj+cpp+ Y api=0.
i€oNo’
Set 7 = 7. = 0 N ¢’. Then Liu’s quantities® w(r,0), w(r,0’), w(7;,0), w(r!,0'), r(1,0), u =
7(7,0)W(T,0), d = de, @i, €, T(c.)s T(en')s Wiew)s W) aT€ given in our notation as:

W<7—7 U) = Uy (0)7 W(Ta UI) = uj'<0,>;
w(r,0) =ui(0), w(r,0)=u;(0’), foriconod;
7(7,0) := the order of the stabilizer at X(X), of the rigidification X' (X)8 of X (X),
= ”g:; = U‘V]\(fi;‘i‘r\ = the norm of the image of p; in N(r)=Z;
u = r(7,0)u;(0);
d := the degree of the map (f : |Py, r,| — |X(2)+|) between the coarse curves (= P!)

/a
)

=r(r,0)c=r(r,0')c

C; C; 1
a; ::/ uy=— = —r(r,0)
X(Z)?g d C

e =0b;, foricondo’;
Tlew) =T T(ew) = T2

T(ew)W(ew) = Uj (O’)/C, Tew)Wew) = ~T(ew)Wlew) = uj’(al)/cl'

Here we set N(7) = N/ > ... Zpi, N(7) = N(7)/N(7)tor, and N(7)tor is the torsion part of N (7).
Our recursion coefficient RC(C)EZIZ’)S’I) coincides with (1/c)er(Nyp)h(e) where h(e) is in [Liul3,
(9.26)].

7. Proof of Theorem 31

In this section we complete the proof of Theorem 31, by showing that the S-extended I-function

I)S((z)(Qv —z)

5 The definition of a; in [Liul3, §8.6] contains a typo; it should be the integral over the rigidification of X ().
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satisfies the conditions in Theorem 41. This amounts to proving Propositions 45-47 below. Note
that the sign of z should be flipped when we consider the I-function.

For a top-dimensional cone o € ¥ and b € Box(o), we write I5(Q,2) and IS (Q, z) for
the restrictions of I;”;(z)(é), z) to the inertia stack 1X(X), of the T-fixed point X( )a and the
component /X (%), of IX(X),, respectively.

PROPOSITION 45. The extended I-function satisfies condition (C1) in Theorem 41. In other
words, for each top-dimensional cone o € 3 and b € Box(o), I(i b)(Q,z) is a power series in

the extended Novikov variables Q and t such that each coefficient of this power series lies in
Stxcx = C(x1,---,Xd, 2) and, as a function of z, it is regular except possibly for a pole at z = 0,
a pole at z = oo, and simple poles at

{_u‘j@ : Jo’ € ¥ such that olo’ and j € o\o', ¢ > 0 is such that (c) = l;]}
c
Here we use Notation 8.

PROPOSITION 46. The extended I-function satisfies condition (C2) in Theorem 41. In other
words, for any o, o’ € 3 such that o|o’, we have

Resz:f(uj(a)/c) Igr,b) (Q, )dZ = Ql ¢.0:9) RC( )E ’ ) (Q7 )‘Z—* (uj(o)/c):

PROPOSITION 47. The extended I-function satisfies condition (CS) in Theorem 41. In other
words, if o € ¥ is a top-dimensional cone, then the Laurent expansion at z = 0 of I2(Q, —z) is
a AL [z, t]-valued point of L.

nov

7.1 Poles of the extended I-function
In this subsection we prove Proposition 45. Let o be a top-dimensional cone and take b € Box(o).
The restriction I (5; ) of the I-function to the fixed point X (X),; takes the form

) i- as a<0,{(a)={(\; 7 +
I(i,b)(Q,z) — el ui(o)ti/z S Qe <H = 0,(a)=0 9% ) <H aco, =0 (o) az))

AEAES asi(a)=0 %/ \ig; o< (@)= (wil0) + a2)
(29)
where the index ¢ ranges over {1,...,n + m} and we regard o C {1,...,n} as a subset of

{1,...,n+m}. We also used u;(c) = 0 for i ¢ 0. For A\ € A}, we have that \; € Z for all i ¢ o
because (\;) = b; and b € Box(c). Note also that one may assume that \; € Zsq for i ¢ o in the
above sum, as otherwise the contribution is zero. We see that I (i ) has poles possibly at z =0
and z = oo and simple poles at

—ui(0)/a with 0 <a <\, (@) = (\) =b;, i€o0,

for \ € AE;? contributing to the sum. It suffices to see that if \;;, > 0 for some i¢ € o, then there
exists a top-dimensional cone ¢’ such that o|o’ and ig € o\0’, i.e. iy = j in Notation 8. We have

Z Z Alpz + Z >\n+151 (30)

1€o 2:1<i<n
i¢o
where s1,..., s, are the images of elements of S in Ny. As we remarked above, we may assume

that A\; € Z>o for i ¢ o and hence the right-hand side belongs to the support |X| of the fan.
Therefore ), (=Xi)p; € |X|. Because |X| is convex, the positivity of A;, implies that there
exists a top-dimensional cone ¢’ € ¥ such that o|¢’ and ig € o\o’. Proposition 45 is proved.
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7.2 Recursion for the extended I-function

In this subsection we prove Proposition 46. Let ¢ € 3 be a top-dimensional cone and let b €
Box(o). Fix another top-dimensional cone ¢’ with o|¢’ and a positive rational number ¢ such that
(c) = Ej, where j is the index in Notation 8. We examine the residue of I(i,b) at z = —u;(o)/c.
Write

_ Tliwy=pn).a<o(uilo) + az)

|>)\,i,o' Z) -
( Iiay= a0 (wilo) + az)

for A € A% and 1 < i < n+ m. The residue of (29) at z = —u;(c)/c is given by

(—“j (U)>e( " wi(o)ti/—uj(0)/0) T e [iizj >rio (—uj(a)/c) R
c c [o<a<rs tay=(r;) (wj(0) — a(u;(o)/c))
a#c

Recall from Remark 30 that the summation range can be taken to be Af instead of Aqu . Let
l(c,o0,7) € AE;/b’b/ C L ® Q be the degree from Definition 12. We now consider the change of
variables

A=X+1(c,a,j)

and replace the sum over A € AbS with the sum over X € Af, using Lemma 25. We write ¢;
for the components of I(c,0,5) € L ® Q C L° ® Q as an element of Q™. Using the notation
in Definition 12, we have ¢; = D; - l(c,0,j) for 1 < i < n, ¢j =¢, ¢jy = ¢ and ¢; = 0 for
n+l<s<n+m.

LEMMA 48. Let X\, X be as above. We have

ui(0) = u(0) + Luy(0), 32)
)

(_w@) o (_u(0) [Lo<o,ay=(p) (wi(o) = (a/c)u;(0)) oy
o (97 = i () ey i 0O
)

u;\o ui\o
I (=)= T (=), (35)
0<a<Aj {(a)y=(\;) —c<as A a€Z
aF#c a#0

Proof. Formulas (33) and (34) follow easily from (32); formula (35) is obvious if we notice that
(c) = I;j = (Aj) and A; = N} +c. It suffices to show (32). Equality (32) is obvious for n+1 <i < m,
so we restrict to the case where 1 < i < n. Consider the representable morphism f : P, ,, - X (%)
given by (o, 0’,b, c) via Proposition 10. By the localization formula, we obtain

T . o
c¢i=D;-lc,0,7) = / f*D; = fru; = ui(o) u;(o’)

Py, Pry o ~uj(o)/e —uj(o)/c

where we use the fact that u;(o)/c and —u;(o)/c are the induced T-weights at 0 and oo of the
coarse domain curve |P,, ,,|: see Remark 42. The lemma follows. O
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Applying Lemma 48, we see that (31) equals

W) (s we /s L g [iizs By ior (Zu5(0)/c)
¢ [T-ccacn;aez(—alu;(o)/c))

MNeAS
Sy a#0

AL=0
[La<o, (@)= (uilo) = (a/c)uj(o))
: ll;[j Ha<cl,<a> ( (0) - (CL/C)’U,]‘(O'))
_1 1 [aco,(a)=(n) (1i0) = (a/c)u;(0)) 12, ., (Q, 2)|
c H0<a<c an(a( ( )/C)) icol Haéq,(a):()\i)(ui(U) — (a/C)Uj(J)) (o', 0\ #)lz=—uj(o)/c

multiplied by Q7). It is now straightforward to check that the last expression coincides with
/ b/
RC(C)E;[,) a’b’) (Q7 )’z-—u] (o)/c*
(Here we used uj (o) = 0 and \j; € Z.) Proposition 46 is proved.

7.3 Restriction of the extended I-function to fixed points
In this subsection we prove Proposition 47. Let o € ¥ be a top-dimensional cone. By (29) and the
discussion in § 7.1, the restriction I (;q (Q,—z) of the S-extended I-function to the T-fixed point

X (%), is
e (o) — a)
e T w()t/ Qe ( i )1
ze oS
/\%\:S H'L% Ai ' H H(a (Aj),a<; ( (U) - CLZ) )
Ai€Zxo it ido

where 1,5(y) € HeR(X(X),) is the identity class supported on the twisted sector corresponding
to v5()\) € Box(c). We want to show that this lies on the Lagrangian cone ££. We claim that it
suffices to show that I5(Q, —z)|s—o lies on £8¥. By the String Equation, £8¥ is invariant under
multiplication by e~2i=1%i(?)t/% and thus we can remove the factor e~ 2i=1%i(?)ti/2 Since the
T-fixed point X (), has no Novikov variables, we can regard Q in I5(Q, —z) as variables rather
than elements of the ground ring. (In other words, £ is defined over St.) Therefore, we can
absorb the factor e into @ by rescaling Q. The claim follows.

Define rational numbers a;; for i ¢ 0,5 € o by p; = Zj@ a;jp; for 1 <i < n and §_, =
> jco @ijpj for n+1 <i < n+m. Then (30) shows that

— Z /\iaij (36)
i¢o

for A € AS and j € o. Henceforth we regard \; for j € o as a linear function of (\; : i ¢ o) via
this relation. We introduce variables (g; : @ ¢ o) dual to ()\; : @ ¢ o) and consider the change of

variables
i¢o
We also have

=> N+ Y )\zpl—l-Z)\nﬂsz > Nib' mod N,

j€o i¢o,i<n i¢o
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where
. the image of p; in N (o) = Box(0o) 1<i<n,
the image of s;_, in N(0) 2 Box(c) n+1<i<n+m.

Now it suffices to show that

S <H )(H H<a <o(uj(0) - az)> )

(Nisiggo)e(Zso)t igo ! jeEo (Aj),a<; ( (U) - CLZ)

is a St[g]-valued point on LI, where £ = n +m — dim X (X).
Jarvis and Kimura [JK02] calculated the Gromov—Witten theory of BG with G a finite group,
and it follows from their result that the J-function of BN (o) = X (E)U is

JBN(O’) <Z%’11ﬂa—z> =z Z (H nl( Z> i Aibt (38)

i¢o (Nisi¢o)€(Zxo)t “igo

(See [CCIT09, Proposition 6.1].) Comparing this with (37), we find that expression (37) is the
hypergeometric modification of Jpn(s), in the sense of [CGO7, CCIT09]. The J-function (38) lies
on the Lagrangian cone of the Gromov-Witten theory of BN (o) (see Remark 3), and we now
use the argument of [CCIT09] to show that the hypergeometric modification of the J-function
(37) lies on the cone LY of the twisted theory.

We briefly recall the setting from [CCIT09]. Let F' be the direct sum @ ) of d vector
bundles and consider a universal multiplicative characteristic class

d o0
= H exp <Z 3,(3) chk(F(j))>
j=1 k=0
) () ()

where 50 ,87”,85 ,... are formal indeterminates. As in §2.4, one can define (F,c)-twisted
Gromov—Witten invariants and a Lagrangian cone for the (F, c)-twisted theory. The Lagrangian
cone here is defined over a certain formal power series ring A,y [s] in infinitely many variables
sg), 0 <k <oo,1<j<d We apply this setting to the case where F' = T,X (%), which is
the direct sum of line bundles u;|s, j € 0, over X(X),. Denote by L3 the Lagrangian cone of
the (T,X (%), c)-twisted theory of the T-fixed point X' (X),. By specializing the parameters s(] )
J€o,as

S0 _ {—loguj(a) k
PO DRk = Dl (o) TRk

we recover the (T,X(X), ex’)-twisted theory of X'(X),. This specialization ensures that

\\/ ||

st) = exp <Z s x ) coincides with (u;(o) +2)~*

It now suffices to establish the following lemma.
LEMMA 49. Let:
[ia)=02.aco exp(—s9)(—az))
re Y (Tt ) (I Mmoot 0y,
S (A zétgé:(Zm)z 11;[ A ' jEl_[U H<‘1>:<>\j>:a<>\j eXp(fS(])(faZ)) Zlga

where \j with j € o is a linear function of (\; : i ¢ o) via (36). Then Is(q) defines a C[s][q]-valued
point on L5,
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Proof. Introduce the function

) . B (y ! - B . . .
Gl(f)(a;,z) = Z sl(i_)m_l m(' )l!z LeCly,z,2, 2 1][[3(()]),35]),353),...]]

I,m>=0

as in [CCIT09]. We have

Y

GU)(z,2) = G[()j) (x+yz, 2), (30)
ng)(x +2,2)= G[()j)(x, z) + s (x).

We apply the differential operator exp(—>_ ¢, Géj)(sz,z)) with 0; = 3,4, ai;qi(9/9g;) to the
J-function (38) of BN (o) and obtain

f.— e_zjeo Gg)j)(zej’z)JBN(U) (Z qilbi7 —Z>
i¢o

A
_ % () ‘ A
=z > <H )\i!(—z)’\i) exp (— > Gy (—aN, z)> 15, A

(Ni1i¢o)E(Z30)t “igo j€EOT

where we used (36). The argument in the paragraph after [CCIT09, (14)] shows that f lies on
the Lagrangian cone £" of the untwisted theory of BN (o). (This is where we use Theorem 2.)
On the other hand, Tseng’s quantum Riemann—Roch operator for €5

A= P exp<Zng)(o,z)>.

beBox(o) Jj€o

jco ’UJ]"O- is

This operator maps the untwisted cone £"" to the twisted cone £5 [Tsel0]. Therefore

Af =2 Z <H /\Z'(qi\;)&> exp <Z<

(Nii¢o)€(Zx0)t “igo jE€o

GE{)M (0,2) — GP(~2N;, Z)) ) 15 g0 Nt

lies on L£°. Here we used the fact that b; = (—A;) for the box element b =3, A\ibt. After a
straightforward calculation using (39), the lemma follows. O

This completes the proof of Proposition 47, and thus completes the proof of our mirror
theorem.
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