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Abstract

We investigated the accuracy and completeness of four large language model (LLM) artificial intelligence tools. Most LLMs provided
acceptable answers to commonly asked infection prevention questions (accuracy 98.9%, completeness 94.6%). The use of LLMs to supplement
infection prevention consults should be further explored.
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Background

Infection prevention and control (IPC) programs are essential in
preventing healthcare-associated infections (HAIs) and ensuring
patient and staff safety. They oversee HAI surveillance, outbreak
investigation, policy development, provide guidance on infection
transmission prevention, and occupational health.1 Their impor-
tance was emphasized during the COVID-19 pandemic, with
a 500% surge in consultations.2

Artificial intelligence (AI) is a growing field in computer science
that includes large language models (LLMs). LLMs are neural
networks based on transformers simulating human responses.3

They have demonstrated capabilities in solving complex cases,
excel in clinical reasoning, history-taking, and empathetic
communication.4 For the lone infection preventionist (IP) or
facilities without IP support, LLMs present the possibility for
personalized support related to infection prevention inquiries.
AI research in medicine primarily targets clinical contexts4,5, we
investigated the accuracy and completeness of four LLMs using
real-world infection prevention questions.

Methods

The IP team at the University of Iowa Health Care Medical Center
is led by hospital epidemiologists. It is an 866-bed tertiary care
center encompassing 250 specialty and subspecialty outpatient
clinics. IPs respond to urgent infection prevention questions via
multiple communication modalities 24 hours a day. Domains

covered include communicable infections, isolation precautions,
environmental cleaning, public health inquiries, and laboratory
testing. All calls received by the IP are recorded in a shared excel
spreadsheet with date, time, and query details for each encounter.2

Using 2022 data, 31 sample questions were categorized into the
three most common domains: transmission-based precautions,
communicable disease exposures, and environmental cleaning
(Supplemental Tables 1, 2). The study was approved as non-
human subjects research by the University of Iowa Institutional
Review Board.

We evaluated four LLMs:Microsoft Copilot (formerly Bing AI),
GPT-3.5, GPT-4, and OpenEvidence between December 2023 and
January 2024. These four LLMs were chosen for ease of use, access,
and familiarity. Each LLM was queried once for each question.
Two epidemiologists and one certified IP reviewed each question
using 5-point and 6-point Likert scales for accuracy and
completeness per our internal policies (Supplemental Table 3).
Responses ≥3 were deemed accurate, and those ≥4 complete. We
calculated acceptable accuracy percentages by dividing the number
of responses with a score ≥3 by the total number of responses.
Additional sensitivity analysis with accuracy scores of≥ 4 was
performed. Similarly, we calculated acceptable completeness
percentages as the number of responses with a score ≥4 divided
by the total number of responses. Each reviewer assessed 31
questions per LLM for both accuracy and completeness without a
qualifying prompt. Additionally, we re-evaluated the quality of
responses of the same 31 questions, restricting the LLMs to Centers
for Disease Control and Prevention (CDC) databases by adding
the statement: “Follow CDC guidelines in the United States.”
We compared the accuracy and completeness of the LLMs using
paired 2-tailed t-tests with Microsoft Copilot as the reference and
calculated 95% confidence intervals from binomial distributions.
Statistical analyses were performed using Python 3.10.
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Results

Overall, GPT-4 had the highest accuracy: 98.9% (95% CI 94.3%–
99.9%) without CDC restrictions and 97.9% (95% CI 92.6%%–
99.6%) with restrictions (P < .001 for GPT-4 vs other LLMs)
(Table 1). For specific domains, GPT-4 had the highest accuracy for
isolation precaution responses (98.0%without CDC restrictions and
98.0% with restrictions, P < .001) and for healthcare personnel
exposure responses (100%without CDC restrictions and 95.8%with
restrictions, P < .001). OpenEvidence was the only LLM not

reaching 100% accuracy for patient exposure and environmental
cleaning responses (Figure 1, Supplemental Table 4).

For completeness, GPT-4 led with 90.3% (95% CI 82.4%–
95.1%) without CDC restrictions and 94.6% (95% CI 87.8%–
97.9%) with restrictions (P < .001) (Table 1). Similarly, for specific
domains, GPT-4 had the highest completeness for isolation
precaution responses (88.2% without CDC restrictions and 92.2%
with restrictions, p <.001) and for healthcare personnel exposure
responses (95.8% with and without CDC restrictions, P < .001).
Microsoft Copilot was the only LLM achieving 100% completeness

Table 1. Percentage of overall acceptable accuracy and completeness score across large language models response to infection prevention questions without and
with CDC statementsa,b

Acceptable Accuracy Acceptable Completeness

LLM

Without CDC statementc (n= 93) With CDC statementc (n= 93)
Without CDC statementc

(n= 93) With CDC statementc (n= 93)

% (95% CI) P valued % (95% CI) P valued % (95% CI) P valued % (95% CI) P valued

OpenEvidence 83.9 (74.8–90.4) <0.001 75.3 (66.7–84.0) <0.001 72.0 (61.9–80.3) <0.001 68.8 (58.6–77.5) 0.16

GPT-3.5 88.2 (79.7–93.7) 0.76 90.3 (82.4–95.1) <0.001 67.7 (57.6–76.6) <0.001 66.7 (56.5–75.9) <0.001

GPT-4 98.9 (94.3–99.9) <0.001 97.9 (92.6–99.6) <0.001 90.3 (82.4–95.1) <0.001 94.6 (87.8–97.9) <0.001

Bing AI (Microsoft Copilot) 88.2 (79.7–93.7) Reference 80.7 (71.1–87.8) Reference 81.7 (72.7–88.5) Reference 68.8 (58.6–77.5) Reference

LLMs, Large Language Models.
aThe accuracy scale was a 5-point Likert scale (with 1 indicating completely incorrect; 2, more incorrect than correct; 3, approximately equal correct and incorrect; 4, more correct that incorrect;
and 5, completely correct). The completeness scale was a 6-point Likert scale (with 1 indicating addresses no aspect of the question, and the answer is not within the topic queried; 2, addresses
no aspect of the question, and the answer is within the topic queried; 3, addresses some aspect of the question, but significant parts are missing or incomplete; 4, addresses most aspects of the
questions but missing small details; and 5, addresses all aspects of the question without additional information; 6 addresses all aspects of the question and provides additional information
beyond what was expected).
bResponses with scores ≥3 was deemed accurate
cWithout limiting the models search to CDC-only references versus with prompt limiting the models search to CDC-only references.
dPairwise t-test results, with Bing AI (Microsoft Copilot) as reference

Figure 1. Heatmap of acceptable accuracy and completeness score percentages by category across large language models in response to infection prevention questions without
and with CDC statements a, b. LLM, Large Language Models. a The accuracy scale was a 5-point Likert scale (with 1 indicating completely incorrect; 2, more incorrect than correct;
3, More correct than incorrect but missing somemajor elements; 4, More correct than incorrect but missing some minor elements; and 5, completely correct). a The completeness
scale was a 6-point Likert scale (1, addresses no aspect of the question, and the answer is not within the topic queried; 2, addresses no aspect of the question, and the answer is
within the topic queried; 3, addresses some aspect of the question, but significant parts are missing or incomplete; 4, addresses most aspects of the questions but missing small
details; 5, addresses all aspects of the question without additional information; and 6 addresses all aspects of the question and provides additional information beyond what was
expected). b Responses with scores ≥3 were deemed accurate. Responses with scores ≥4 were deemed complete. cWithout limiting AI tool search to CDC-only references versus
with prompt limiting AI tool search to CDC-only references.
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for patient exposure responses, both with and without CDC
restrictions (P< .05, except GPT-4 with CDC restrictions), and for
environmental cleaning responses (P < .05, except GPT-4 with
CDC restrictions) (Figure 1, Supplemental Table 5). The results of
the sensitivity analysis are summarized in Supplemental Table 6.

GPT-3.5 and OpenEvidence lagged in both accuracy and
completeness. Limiting LLMs to CDC-only references decreased
response accuracy and completeness, particularly accuracy. Only
GPT-3.5 and OpenEvidence showed improved accuracy with CDC
restrictions for isolation precautions and patient exposures,
respectively. With CDC restrictions, GPT-4 demonstrated
improved completeness for isolation precautions, patient expo-
sures, and environmental cleaning and disinfection. GPT-3.5 and
OpenEvidence again showed improved completeness for isolation
precautions and patient exposures, respectively.

Discussion

Few studies have evaluated LLMs in practical IPC settings. A recent
study evaluated the accuracy of AI tools in identifying HAIs
concordant with National Healthcare Safety Network (NHSN)
definitions using fictional scenarios. The AI tools correctly
identified whether cases met NHSN definitions when given clear
prompts.6 Herein, we evaluated the accuracy and completeness of
four LLMs using real infection prevention queries. Most LLMs
provided acceptable answers to the commonly asked inquiries.
Prospective studies are needed to explore the application of AI in
real-world IPC scenarios and assess the effectiveness of LLMs in
infection control.

In this study, GPT-4 provided the most accurate and complete
responses across most categories, whereas OpenEvidence was the
least accurate and GPT-3.5 the least complete. LLMs performed
better in areas concerning patient exposures and environmental
cleaning, but their performance decreased in transmission-based
precautions. Using CDC prompts negatively impacted accuracy
and completeness, a trend consistent across all categories.
However, using this prompt may not have been the best approach.
OpenEvidence, which primarily searches PubMed or peer-
reviewed articles, performed poorly, likely due to its limited
references. Microsoft Copilot and both versions of ChatGPT have
“knowledge” extracted from websites, textbooks, journals, and
public-facing data sources. LLMs have the potential for continuous
learning and improvement through regular exposure to new data
and scenarios. By processing real-world infection prevention
queries, these models can be continuously refined. Their accuracy
and completeness can be improved by using techniques such as
prompt engineering and retrieval-augmented generation without
the need for extensive retraining, which requires significant
computing power not readily available.7

After the COVID-19 pandemic, infection prevention con-
sultation calls increased significantly. Although calls were
primarily associated with COVID-19, numbers have not yet
returned to pre-pandemic levels.2 The shift of focus from other
infection prevention activities due to increased calls could have
negative consequences and should be addressed.8 Integration of
LLMs into IPC programs could significantly enhance resource
allocation.9 LLMs efficiently handling frequently asked queries
would allow human experts to concentrate on more complex and
nuanced issues requiring specialized knowledge and critical
thinking. Optimizing human resources would lead to more
effective IPC programs and generate better overall healthcare
outcomes.

Limitations include the small sample size of questions and
evaluators from a single tertiary care center. We chose four readily
available LLMs. Alternate LLMs or newer versions may provide
different answers and impact results. Each LLM was queried only
once. There is a lack of standardized methods to evaluate
AI-generated responses. Although acceptable accuracy was scored
at ≥3, we assigned this score for neutral categorization. A score of
≥4 would have resulted in fewer responses considered accurate
(Supplemental Table 6). The magnitude of reduction was greater
for LLMs with limited or outdated information sources.
Additionally, not all LLMs provided output that included
references or citations. However, we sought to be comprehensive
by modifying assessment tools used in prior studies that assessed
AI performance.10 Four categories were assessed, but each category
had a different number of questions, ranging from 3 to 17,
comparative to calls received. Additionally, although responses
were independently reviewed by each evaluator, they could see
responses to prompts with and without CDC restrictions,
potentially influencing scoring.

In conclusion, LLMs show promise as tools to potentially
supplement IPC programs and reduce workload. Their perfor-
mances could be further enhanced through retrieval-augmented
generation using official guidelines or local policies. Further
development will enable LLMs to significantly contribute to the
advancement of infection prevention practices.

Supplementary material. The supplementary material for this article can be
found at https://doi.org/10.1017/ice.2024.205.
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