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Abstract

In single-zonemulti-node systems (SZMNSs), temperature controls rely on a single probe near the thermostat, resulting
in temperature discrepancies that cause thermal discomfort and energywaste. Augmenting smart thermostats (STs)with
per-room sensors has gained acceptance by major ST manufacturers. This paper leverages additional sensory
information to empirically characterize the services provided by buildings, including thermal comfort, energy efficiency,
and demand response (DR). Utilizing room-level time-series data from 1000 houses, metadata from 110,000 houses
across the United States, and data from two real-world testbeds, we examine the limitations of SZMNSs and explore the
potential of remote sensors.We discover that comfortable DRdurations (CDRDs) for rooms are typically 70% longer or
40% shorter than for the room with the thermostat. When averaging, rooms at the control temperature’s bounds are
typically deviated around �3 °F to 2.5 °F from the average. Moreover, in 95% of houses, we identified rooms
experiencing notably higher solar gains compared to the rest of the rooms, while 85% and 70% of houses demonstrated
lower heat input and poor insulation, respectively. Lastly, it became evident that the consumption of cooling energy
escalates with the increase in the number of sensors, whereas heating usage experiences fluctuations ranging from
�19% to +25%. This study serves as a benchmark for assessing the thermal comfort and DR services in the existing
housing stock,while alsohighlighting the energy efficiency impacts of sensing technologies.Our approach sets the stage
for more granular, precise control strategies of SZMNSs.

Impact Statement

This study challenges assumptions made about single-zone multi-node systems (SZMNSs), such as the belief
that there are no significant temperature discrepancies within them and that thermostats are located in places that
would represent the overall house dynamics. Through empirical evidence, we (a) demonstrate the severity of
temperature variations in SZMNSs, (b) evaluate the effectiveness of averaging strategies using sensor networks,
(c) diagnose the root causes of such variations by using gray box modeling approaches, and (d) analyze the
energy implications of having additional sensors. Our analysis regarding the prevalence of additional sensors
supports the potential of using additional sensory information to evaluate the services provided by buildings such
as thermal comfort, energy efficiency, and demand response.
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1. Introduction

Commercial Heating, Ventilation, and Air Conditioning (HVAC) systems enable zonal controls, facili-
tating temperature optimization in each respective zone using a variety of control solutions. However, in
residential settings, the heating and cooling mechanisms are typically dictated by a single temperature
probe that oversees the entire building’s thermal regulation due to the cost of multi-zone systems (Jornet-
Monteverde and Galiana-Merino, 2020). This invariably culminates in variances in room temperatures,
adversely impacting occupant thermal comfort (Lin et al., 2002; Seri et al., 2021) and the quality of other
services provided by these buildings such as demand response (DR). This issue is particularly accentuated
in multi-floor dwellings, a prevalent residential layout in the United States.

Although few studies have empirically identified temperature variations (Lin et al., 2002; Shen et al.,
2023), a comprehensive analysis, especially one involving a larger sample size, has yet to be undertaken.
Notwithstanding, despite not having sufficient evidence of how severe the deviations are, research has
proposed numerous solutions, such as automatic vent registers (Redfern et al., 2007; Sookoor and
Whitehouse, 2013; Jornet-Monteverde andGaliana-Merino, 2020; Shen et al., 2023), remotely controlled
space heaters (Klingensmith et al., 2014), and averaging strategies (Lin et al., 2002). Companies likeKeen
Home (2023) andAlea Labs (2023) have produced smart vents, but adoption is limited due to the need for
complex installation processes and waste production (Forest and Shabani, 2017). On the other hand,
averaging strategies offered by major smart thermostat (ST) companies, such as ecobee (2024a) and Nest
(2023), have a higher likelihood of adoption. This is predominantly because STs already have a
substantial market presence in the United States, with an adoption rate of 11% (King, 2018). However,
the effectiveness of these averaging methodologies has not been thoroughly investigated. Additionally,
leveraging the data from STs, especially with the advent of multi-sensor setups, offers an opportunity to
shed light on the root causes of such discrepancies.

In this study, we analyzemultiroom sensing data derived from a large sample of STs in the United States
and two single-family residential test beds. The focus of these inquiries is to evaluate the extent of
temperature variations, gauge the efficacy of commercially available thermostats, diagnose the limita-
tions contributing to these deviations, and assess the energy implications of remote sensors. Specifically,
themain contributions of this paper are (1) analyzing the prevalence of remote sensors andDRparticipation
among ecobee users across a dataset of around 110,000 houses, (2) assessing temperature deviations during
operational conditions and DR events, (3) examining the benefits and limitations of averaging method-
ologies through an experimental study and a large dataset encompassing approximately 900 houses,
(4) identifying the underlying causes of thermal variations by performing a thermal characterization of up
to 100 houses, equipped with five additional sensors, and (5) conducting statistical analysis on yearlong
data from 1000 houses to identify the impact of having additional sensors on energy consumption. Our
findings provide a valuable benchmark in evaluating the quality of services such as thermal comfort and
DRprovided by the existing housing stock. They also shed light on the need for room-level retrofitting, and
energy consumption impacts of remote sensors, thereby promoting enhanced energy efficiency. Ultim-
ately, our empirical analysis lays the foundation for more granular, precise control strategies utilizing
sensor networks for residential HVAC systems.

This paper builds upon our previous research (Mulayim andBergés, 2023), which focused on analyzing
thermal behavior through the use of remote sensors. In the current study, we have expanded our analysis to
include metadata from approximately 110,000 households equipped with ecobee systems. This extension
allows us to assess the penetration rate of remote sensors, detailed in Section 4. Furthermore, we explore the
participation rates in DR programs through ecobee and focus on households’ preferences for setpoint
changes during DR events, as well as the availability of remote sensors within these participating
households in Subsection 5.2.1. Finally, we elucidate the impact of remote sensors on energy consumption
across 1000 households through an explanatory data analysis and a comprehensive statistical analysis
presented in Section 8. This expansion of our research scope not only offers a deeper insight into the role of
remote sensors in managing energy consumption but also highlights their widespread availability,
suggesting their potential inclusion in future studies aimed at evaluating services provided by buildings.
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The remainder of the paper is structured as follows: Section 2 reviews related literature, followed by an
explanation of our methodologies and datasets in Section 3. We then analyze the prevalence of remote
sensors in Section 4, identify temperature variations in Section 5, evaluate averaging techniques in
Section 6, diagnose potential factors leading to these variations (Section 7), and assess the energy
implications of remote sensors in Section 8. The paper concludes with a discussion in Section 9.

2. Literature review

We divide the literature review into two primary focus areas. First, we consider studies that delineate the
challenges of SZMNSs and/or propose enhancements. Our examination of the initial set of literature
reveals a lack of studies that utilize a large sample size to empirically analyze the intensity of these
variations and identify their root causes. That is why we conducted a second literature search where we
investigated the use of ecobee datasets to study the thermal attributes of buildings. We believe that the
methods used in this area of research could be deployed in a room-level granularity to identify the reasons
for deviations considering existing housing stock. Though there is an intersection of these two literatures,
to the best of our knowledge there are no studies identifying room-level thermodynamic models of
SZMNSs.

2.1. Single-zone multi-node systems

Studies conducted on typical Canadian homes revealed that temperatures fell within a comfortable range
(±1 degree Celsius from thermostat reading) about 40% of the time, indicating a substantial proportion of
time spent in uncomfortable thermal conditions (Shen et al., 2023). However, thismay be underestimating
the problem given that it disregards the possible deviations that might occur from the setpoint by the
thermostat reading itself.

Some studies (Redfern et al., 2007; Sookoor and Whitehouse, 2013; Jornet-Monteverde and Galiana-
Merino, 2020; Shen et al., 2023) and commercial ventures (Alea Labs, 2023; Keen Home, 2023) have
proposedmulti-zone control enabled by automatic vent registers as a solution. However, these techniques
may present substantial risks, such as potential damage to ducts and motors due to overpressure
accumulation (Sookoor and Whitehouse, 2013; Jornet-Monteverde and Galiana-Merino, 2020). Add-
itionally, closing registers has been shown to causemore leaks in the ducts, which reduces the efficiency of
the system (Walker, 2003). Moreover, these techniques do not scale efficiently to multistory buildings
(Klingensmith et al., 2014).

Further investigations have assessed the efficacy of supplemental equipment, like register booster fans
and space heaters, in tandem with multi-nodal sensing controllers (Klingensmith et al., 2014). Register
booster fans were found to be ineffective in rooms with inadequate insulation or a significant distance
from the furnace. In contrast, although space heaters were proven to be useful, they pose challenges in
terms of installation costs and aesthetic integration.

The potential utility of sensor networks for enhanced control of SZMNSs was initially explored by Lin
et al. (2002), who conducted a simulation analysis of various strategies based on either averaging room
temperatures or prioritizing the worst-performing room. Additionally, several studies have revealed a
prevalent trend among occupants of multistory homes to condition their entire dwelling to maximize
comfort in one or two rooms, leading to substantial energywaste (Redfern et al., 2007;Klingensmith et al.,
2014). This demonstrates that a more homogeneous temperature distribution among the house would also
result in improved energy savings, as shown in Lin et al. (2002).

2.2. Building thermal characterization

Numerous studies have worked on ecobee’s Donate Your Data (DYD) (ecobee, 2023b) datasets for
building thermal parameter estimation. In John et al. (2018), an ecobee dataset, comprising 10,000
houses with STs, was utilized to predict thermal time constants (TTCs). Their findings revealed notable
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disparities in TTCs between the summer and winter months. Thermal building parameters, as well as
TTCs, were identified by utilizing winter months’ data from 4000 houses in Ontario and New York by
Baasch et al. (2019). The work presented in Huchuk et al. (2022) utilized data from 1000 houses within
the ecobee dataset to train various data-driven models, including a gray box model featuring indoor
temperature, outdoor temperature, HVAC run time, and solar irradiance. Nevertheless, no analysis
relating to the thermal parameters of the buildings was conducted. Among the studies reviewed, Wang
et al. (2021) bear the closest resemblance to our research in terms of TTC identification. They conducted
a dual parameter identification analysis during heating and cooling seasons to infer TTCs and equivalent
temperatures due to solar and internal heat gains. As the primary aim of this study was to create a
simulation environment for control algorithms, the detailed calculations were not further
elaborated upon.

Given the shortcomings of current methodologies for improving comfort in SZMNSs, there is an
imperative need for the implementation of more straightforward, scalable, and safe strategies to enhance
comfort in SZMNSs. Preliminary successes of averaging methodologies have been documented in a
limited number of simulation studies (Lin et al., 2002), and these techniques have been adopted by ST
enterprises. Nonetheless, several important knowledge gaps remain: the severity of the temperature
variations, the efficiency of these averaging strategies, and the underlying reasons for the limitations that
cannot be addressed merely by averaging.

3. Methodology

In this section, we first delve into the metrics adopted for quantifying the successful operation of
buildings, providing a comprehensive understanding of the measures we utilize. Following this, we
outline the parameter identification methodology applied to extract the thermal parameters of rooms. This
procedure is essential for diagnosing limitations inherent in the existing housing stock. Lastly, we present
an overview of the datasets utilized throughout the paper, illustrating the breadth and depth of empirical
evidence underpinning our study.

3.1. Comfortable operation metric

Various metrics have been deployed to evaluate the comfortable operation of buildings. Percentage
indices have been used to evaluate the frequency of temperature deviations outside the comfort range (Seri
et al., 2021; Shen et al., 2023), while risk indices measure human thermal comfort perception (Carlucci
and Pagliano, 2012). Cumulative indices are the only kind that considers both frequency and the
magnitude of the deviation together. However, most of them require complex parameters and detailed
knowledge about occupant characteristics. For instance, ExceedanceM is an asymmetric discomfort index
that sums over occupied hours of overheating (Borgeson and Brager, 2011), but its use often demands
occupancy data, which many residences lack. Degree-hours criterion defined by ISO 7730 (International
Organization for Standardization, 2005) is easy to apply and does not require extensive knowledge like
others, but it is a cumulative value making it harder to compare between buildings. Unmet load hours,
though widely recognized, is sensitive to sample size and indiscriminately penalizes both minor and
significant setpoint deviations.

The closest metric to our work was introduced in a recent study by Shen et al. (2023). Their method
computes the relative frequency (RF) for each deviation interval (e.g., 2 to 3 °F) by dividing the number of
times the roomwas in that interval by the length of thewhole dataset. Although this is a useful method that
demonstrates how often a value was in a certain deviation interval from the thermostat reading, it fails to
capture the general behavior of the room in two ways: (1) it does not consider discomfort as a deviation
from user-requested setpoint; (2) it can only focus on a certain interval and thus does not produce
generalizable results. These shortcomings suggest the need for a metric that can be used on a room-level
resolution and consider both the magnitude and the frequency of the deviation from the setpoint, while
still being limited to a certain scale (i.e., 0–1). In response to this methodological gap, we will be using a
new metric: the Comfortable Operation Index (COI). This index, as shown below, measures how
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successful the HVAC is at conditioning each room, considering a specific temperature setpoint and
deadband.

COI =

PC
x=�CR xð ÞPM
x=�MR xð Þ (3.1)

R xð Þ is the RF of the given temperature deviation interval x from the temperature setpoint. The set
�C,…,Cf g represents the range of temperature deviations defined as within the comfort zone. The set
�M,…,Mf g is the temperature deviation limits of the analysis range (decided by the analyst). Using the

maximum absolute deviation in the dataset as M makes the denominator 1, converting the function to
approximate a probability density function, as applied in this study. However, analysts might prefer
limiting the range to different percentiles. For results consistent with ours,M should equate the dataset’s
maximum deviation (denominator = 1) and C should be set at 2 °F. Utilizing alternativeM and C values
confines comparisons to specific rooms or houses within a given study. In essence, COI represents the
portion of the RF curve’s area within the comfort range, compared to the total area for the analysis range
(See Figure 3).

The COI has an inherent limitation: it requires a singular setpoint and a deadband, making it less
applicable to HVAC systems operating with dual setpoints for heating and cooling. While the COI can
adapt by taking the average of both setpoints in “auto”mode, this approach becomes misleading if users
exclusively employ either heating or cooling modes. To address this, we introduce the Comfortable
Cooling Index (CCI) for analyzing cooling operations. Unlike COI, CCI defines the comfort zone as
�M,…,0f g and calculates deviation relative to the cooling setpoint.

3.2. Parameter identification

3.2.1. Free floating periods
Free floating periods (FFPs) have been successfully used to estimate gray box modeling parameters from
ST data (John et al., 2018;Baasch et al., 2019; Wang et al., 2021). They can be described as periods where
no additional heating or cooling occurs. Constraints defined for extracting FFPs are different for heating
and cooling seasons. For the heating season, FFPs were constrained to occur between 10 p.m. and 7 a.m.,
given that the internal and solar gain during this period is negligible (Wang et al., 2021). Additionally, there
needed to be a temperature difference of 2 °F for the sensor of focus, the FFP had to last at least an hour, and
the outdoor temperature had to be lower than the indoor temperature. For the cooling season, in contrast,
solar gain is not negligible. Hence, we considered the period where solar gain was high to infer the largest
solar gain, akin to the approach taken byWang et al. (2021). In this case, the FFP was expected to happen
between 10 a.m. and 5 p.m. Similarly, there had to be a temperature difference of 2 °F for the sensor of
focus, the FFP needed to last at least an hour, and the outdoor temperature had to be higher than the indoor
temperature during free floating. Following Baasch et al. (2019), Wang et al. (2021), we are going to use a
thermal Resistance-Capacitance (RC) modeling approach for each sensor using FFPs. The thermal RC
model for predicting indoor temperature dynamics is based on several simplifying assumptions for
tractability and ease of analysis. It treats the space as a lumped parameter systemwith uniform temperature,
employs first-order dynamics to describe thermal behavior, and assumes constant thermal resistance and
capacitance values, implying linear heat transfer processes and neglectingmaterial property variationswith
temperature. The model also assumes steady external conditions, particularly a constant mean outdoor
temperature, overlooking potential fluctuations. These assumptions enable the model to offer a simplified
yet effective framework for understanding and managing the thermal characteristics of indoor environ-
ments. The structure of the model can be found below.

θ tð Þ= θ 0ð Þ � e� t
RC (3.2)

θ tð Þ= Ti tð Þ�To�RQ (3.3)
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where Ti tð Þ is the indoor air temperature of the sensor of focus at time t, To is the mean outdoor
temperature, RQ is the thermal resistance of the room times heat input (in this case, solar and internal
gain), RC is the thermal resistance times capacitance (also referred to as TTC), and θ tð Þ (shown in
Equation (3.3)) represents the temperature difference between the indoor air temperature at the sensor
location and the outdoor environment. Equation (3.2) describes the temporal evolution of the temperature
difference θ tð Þ, considering the initial temperature difference θ 0ð Þ and the time constant RC.

For the analysis of the heating season, wemade the assumption of no internal or solar heat gains during
the FFP, leading to the exclusion of the RQ term and inference of only the RC value. However, in the
cooling season analysis, both theRQ andRC termswere inferred. Thescipy.optimize library and its
curve_fit function were employed for parameter identification. After identification, outliers were
eliminated by using two standard deviation ranges from mean and error filtering of Root Mean Square
Error (RMSE) values that are larger than 1 °F.

3.2.2. Balance point
The balance point method (introduced by Baasch et al., 2019) focuses on the relation between the energy
usage of a building and outdoor temperature. Certain constraints are applied to extract suitable periods of
data for the deployment of this method. First, a selection criterion is applied to isolate the nights when the
heating system was operational and no cooling events occurred. The focus on nighttime data serves to
minimize the influence of additional heat gains, such as solar or internal gains. The specified night period
extends from 10 PM to 7 AM. As some residences employ a two-stage heating system, the run times of
both the first and second stages are combined into a single metric to maintain consistency across different
households. Few households in the sample have second-stage heating, which further justifies this
unification.

Subsequently, the refined dataset is subjected to the balance pointmethod. The structure of themodel is
as follows (details of the model can be found in Baasch et al., 2019):

Fh,d =
1
RK

Ti�To
� �

(3.4)

where Fh,d is the heating duty cycle of the night, Ti is the average indoor air temperature of the sensor of
focus at night, To is the average outdoor temperature at night, andRK is the thermal resistance of the room
times heating power. RK itself is not easy to interpret, but it can be used to make comparisons between
rooms to decide if certain rooms are achieving less heat input from the HVAC system. The scipy.
stats library and its linregress function were employed for parameter identification. After
identification, a two-step filtering process was undertaken. Firstly, R-values below 0.7 were excluded,
and subsequently, values deviating beyond two standard deviations from the mean were removed.

3.3. Dataset

3.3.1. Test bed 1
The first test bed of this study (from here on named as Test bed 1) was a two-story, six-room house in
Pittsburgh, PA, outfitted with a conventional mercury thermometer and a central HVAC system. During
the data collection period, both heating and cooling were active, reflecting seasonal transitions. The
thermostat and Room 1 are located on the first floor, while the other rooms are on the second floor.
Temperature probes, consistent with ASHRAE guidelines, were placed 130–160 cm above the floor.
Although data were gathered over 17 days in operational conditions, only 200 hours were usable for
analysis due to sensor disconnections.

3.3.2. Test bed 2
In this test bed, an ecobee thermostat was installed in a four-story, ten-room house located in Pittsburgh,
PA. Data were accumulated over a 31-day period. The preprocessing included two steps: (1) considering
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the instances when the thermostat setpoint was 78 °F and (2) extracting a period of time where the average
outdoor temperature was almost equal for both averaging and thermostat-based control (i.e., 72.5 °F).
This preprocessing led to a remaining operational period of 264 hours. It can be seen that data collection
did not take place during a significantly hot period with a low setpoint; therefore, temperature variations
might be more pronounced in the hotter summer months.

3.3.3. ecobee DYD dataset
This study utilizes the ecobee DYD dataset, which comprises data from 1000 houses across the United
States for the year 2017. Comprehensive details of this dataset are elaborated in Luo andHong (2022). The
analysis undertaken is divided into heating and cooling seasons due to two primary reasons: first, ecobee
maintains separate cooling and heating setpoints rather than a single one; second, RC values were
observed to vary significantly between winter and summer months (John et al., 2018). We also used
different heating and cooling season definitions for thermal comfort and parameter identification analysis.

For thermal comfort analysis, this study focuses on households possessing at least one additional
sensor beyond the thermostat reading, yielding a total of 887 and 845 households included in the cooling
and heating season analyses, respectively. The counts vary over the year as some households acquire
additional sensors subsequently. The heating and cooling seasons for the thermal comfort analysis are
defined separately for each household by identifying the longest period during which only heating or
cooling was active.

In parameter identification analysis, we used houses with five additional sensors that resulted in up to
100 houses. Earlier parameter identification studies have predominantly focused on either the winter or
summer months. However, our preliminary investigation suggests a marked improvement in the iden-
tification percentage of parameters when the entire heating or cooling season is taken into account. For
instance, we define a heating season for each house as the period that commences with the first activation
of the heating system during the nine-monthwindow (i.e., excluding summermonths) and concludes with
the final deactivation of the heating systemwithin the same period. The samemethodologywas conducted
for cooling season. Our study revealed a substantial increase in the number of heating and cooling days
compared to the conventional 90-day periods.

3.3.4. ecobee metadata
The metadata for ecobee consists of information from 112,983 houses that participate in the DYD
program. This information is available publicly in Luo and Hong (2022). It includes details about the
characteristics of the houses, such as their floor area, city and state of location, number of occupants,
number of floors, cooling and heating equipment stages, and HVAC equipment type. Most of the
attributes are entered manually by the users, which results in multiple instances with unreasonable values
such as 0 square feet, 0 number of occupants, and so on. Therefore, preprocessing is done separately for
each attribute to ensure valuable information is not lost.

4. Penetration rate of remote sensors

To better understand the potential applicability of the methods described in this paper, we must first
examine how easily we can access homes that have remote sensors. Our analysis involves two steps. First,
we use the ecobee metadata to determine the distribution of the number of remote sensors. Second, we
examine the correlation between the number of remote sensors and various factors such as location,
number of floors, number of occupants, and floor area.

Our analysis begins by examining the number of remote sensors available in homes registered to the
DYD program as of 2022. We found that 75,648 out of a total of 112,983 homes, which represents 67%,
have at least one additional sensor (as shown in Figure 1).We believe this high number is due to the newer
ecobee models that come equipped with an additional remote sensor. Considering that certain ecobee
thermostats (premium) come with an additional sensor, the only way to have two or more sensors is by
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ordering a pack of remote sensors. Therefore, we can conclude that 35,647 users, which represents 32%,
ordered additional sensors. Since sensors are sold in packs of two, thismay help explain the slightly higher
prevalence of odd-numbered values in Figure 1. Overall, this analysis shows us that additional sensors are
becomingmore andmore prevalent. Thus, we see that there is potential to utilize additional sensing points
in 67% of the houses with STs.

Through further analysis in Subsection 5.2.1, we demonstrate that among the 15,404 households
participating in the eco + program, 11,253 (73%) are equipped with at least one sensor, and 5505 (36%)
have two or more sensors. This finding suggests that for 73% of the households engaged in DR programs,
there exists the potential to enhance thermal comfort assessment through the integration of additional
sensor data.

In Figure 2, we explore the underlying motivations for households purchasing an increased number of
sensors, considering factors such as the number of floors, occupants, and floor area. The top plot illustrates
the distribution of homes equipped with various quantities of remote sensors, with each home’s data
distinguished by specific attributes. It is evident that the frequency of sensor deployment varies across
attributes, a discrepancy attributed to the application of distinct filters during data processing to exclude
entries with unrealistic values. Specifically, entries with zero occupants were omitted, and thosewith floor
areas under 100 ft2 were also discarded.

Our initial hypothesis posited a direct correlation between the proliferation of sensors and an increase
in the number of occupants, floors, and overall floor area. A closer examination of the lower plots reveals
that any decrease in the attribute proportion against an uptick in sensor numbers suggests a proportional
relationship. Particularly, households with four or more occupants show a pronounced preference for
having four or five or more sensors. Conversely, the increment in sensor possession among homes with
three occupants and three or fewer sensors is minimal.

Analyzing the data based on the number of floors presents a clearer trend: as the number of sensors
escalates, so does the proportion of homes with additional floors. It was noted that single-floor homes are
least likely to have just two sensors, typically opting for more than five. Two-story homes constitute the
largest share across all sensor categories, predominantly outfitted with two to four sensors. Residences

Figure 1.Distribution of remote sensors across ecobeemetadata. The vertical bars demonstrate the count
of houses with a specific number of sensors, while the red line indicates the cumulative percentage,

reflecting the proportion of the population with that many sensors or more.
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exceeding three floors are more inclined to install a higher count of sensors, reflecting a positive
correlation between floor count and sensor quantity.

The analysis of floor area introduces a nuanced perspective: homes under 2000 square feet
progressively demonstrate a lesser likelihood of adopting a greater number of sensors. This trend
aligns with expectations, as smaller dwellings tend to exhibit less temperature variance. However, the
data for larger homes do not consistently support a clear trend, displaying fluctuations in sensor
numbers across different size categories. This variability hinders our ability to definitively conclude
the relationship between larger homes (over 2000 square feet) and their propensity for sensor
installation. Overall, a more systematic analysis (e.g., statistical regression) may be warranted to better
understand these correlations.

5. Characterizing temperature variations

In this section, we assess the extent of temperature deviations during regular operation andDR events. Our
analysis provides an understanding of discomfort in relation to setpoints, a factor previously overlooked
in research. Furthermore, we explore the often disregarded thermal comfort implications of DR events
(Li et al., 2021).

5.1. Variations with an existing thermostat

Figure 3 uses data from Test bed 1 and the COI (explained in Section 3.1). On the vertical axis, RF values
are plotted against each temperature deviation value, denoted as x, which ranges from 0—indicating that a
specific deviation x is never encountered—to 1, signifying that only the particular deviation x is
experienced throughout the entire duration of data collection. One should note that optimal operation
of the thermostat would result in the peak location of the thermostat being located at 0 °F deviation.
However, Figure 3 shows that the thermostat probe’s measurement is persistently divergent by 3 °F,
yielding a sustained fluctuation. Low COI values (shown in the legend) underscore the criticality of the
situation for each individual room. We observe that the thermostat is not located in the most comfortable
room, and the severity of discomfort increases as we move to rooms on the upper floors. While the
deviation of the thermostat could be attributed to faulty installation of the mercury thermometer, the main

Figure 2. Distribution of remote sensors according to household characteristics: (a) number of occu-
pants, (b) number of floors, and (c) total floor area. The top plots show the number of households in the

dataset, while the bottom plots show their proportion within the chosen household characteristic.
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reasons behind deviations in other rooms cannot be explained easily and need in-depth examination. For
comparison, it is reasonable to assume that in a single-zone, single-node system, the thermostat line would
reflect the entirety of the system given that control in Test bed 1 is solely dictated by the thermostat
temperature.

The outcomes of this preliminary investigation not only emphasize the significance of assessing
variations from the setpoint rather than the thermostat reading, but they also illustrate the gravity of
scenarios wherein rooms frequently deviate from the comfort range.

5.2. DR effects

5.2.1. DR participation rate
In this subsection, we begin by analyzing the participation rate in DR programs, utilizing metadata from
ecobee.We then examine how our testbed responded to a DR event. Finally, we evaluate the ecobeeDYD
dataset to confirm the presence of behavioral discrepancies among rooms during DR events, across larger
sample sizes.

The analysis of ecobeemetadata unveils theDRparticipation rate among 112,983 households, offering
insights into homeowners’ decisions regarding DR engagement and the prevalence of DR participants.

Central to this investigation is the eco + slider, a feature on ecobee thermostats that enables users to
enroll in DR programs directly from their thermostat interface, provided such programs are available in
their region. The level of the eco + slider represents the temperature precool/preheat and setback setpoint
changes (in °F) that a user permits. Further details can be found in ecobee (2024b). Initial data analysis
showed that 15,379 homes, or 13.6% of all households, have joined the eco + program.

Figure 4 illustrates the distribution of eco + slider level settings among users. Nearly half (44.9%) of the
participants allow a precool/preheat adjustment of 4 °F and a setback temperature change of 2 °F in their
temperature setpoint. Furthermore, about 80% of the users are comfortable with setpoint changes of 2 °F
or more. This indicates a significant willingness among ecobee users to adapt their temperature settings,
highlighting their flexibility and commitment to contributing to decarbonization efforts through partici-
pation in DR programs.

According to the data, out of 15,404 houses that participate in eco+, 11,253 of them (73%) have at least
one sensor, and 5505 houses (36%) have two or more sensors. This indicates that for 73% of the houses
that participate in DR, there is potential for incorporating additional sensory information while assessing
thermal comfort.

5.2.2. DR effects on Test bed 2
On June 19, 2023, we replicated a DR event at 12:00 pm on our entirely unoccupied Test bed 2, during
which the average outdoor temperature was 85 °F. Figure 5a shows the comfortable DR duration (CDRD)

Figure 3. Relative frequencies of temperature deviations from the setpoint in various rooms, represented
by different colored lines. The gray area highlights the comfort zone, within which temperature

fluctuations are considered comfortable for occupants. The COI values, detailed in the legend for each
respective room, quantify the proportion of time temperatures were maintained within the comfort zone.
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(defined as the duration of time it takes for a room’s temperature to rise by 2 °F in the absence of cooling)
for each room colored by the final temperature reached, providing a detailed view of how a DR event can
differently affect comfort levels in various rooms. For example, Room 1 could maintain a comfortable
temperature throughout an 8-hour DR event, whereas Room 2 could only do so for around 15 minutes.
Moreover, Figure 5b illustrates the temperature increase over a 12-hour span, beginning at 12:00 p.m.
Rooms are categorized and color-coded based on their locationwithin the structure, arranged in ascending
order. The distinct time intervals seen in each room’s temperature rise highlight the unique thermal
behavior of individual spaces. For instance, Rooms 6, 7, and 8 reach their peak temperatures close to
midnight, which may be a consequence of their specific orientation. Conversely, Room 2 experiences its

Figure 4. The distribution of eco + slider levels among households participating in DR events through
eco+. The bar chart indicates the numberof households at each eco+ slider level, while the red line traces
the cumulative percentage, reflecting the proportion of households that have set their eco + slider to that

level or higher.

)b)a

Figure 5. Avisual analysis of temperature shifts during a DR event, with the rooms distinctly color-coded
and ordered on the y-axis to reflect their floor-level groupings. In Panel (a), a bar chart shows the elapsed
time for temperatures to increase by 2 °F from noon across various rooms, while Panel (b) presents a
heatmap depicting the temperature differential over time. Rooms situated on the same floor share color
coding, and the sequence on the y-axis is arranged such that rooms on upper floors are positioned lower.
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peak temperature relatively early, likely attributable to its extensive window area. Room 1, on the other
hand, displays a very small increase in temperature over a long period, which can be explained by its
superior insulation.

5.2.3. DR effects on ecobee DYD dataset
In order to validate that these discrepancies are not isolated to a single household but persist across larger
samples, we expanded our analysis to residences fitted with five additional sensors during the cooling
season (Section 3.3.3). We identified the FFPs, which are the periods between 12 pm and 5 pm when the
outdoor temperature exceeds the indoor temperature for at least an hour. These intervals reflect typical DR
events as the HVAC system remains off for substantial durations. However, it is worth noting that DR
events happening during heatwaves could create larger discrepancies than we identified here. In each
dwelling, the CDRD and temperature deviation from the initial temperature are computed. Table 1 shows
the summary statistics considering all houses with a valid FFP. Fast-reacting rooms (FRRs) and slow-
reacting rooms (SRRs) are defined as rooms that achieve their CDRDs the fastest or slowest compared to
other rooms in the same household, respectively.We define the comfort gap as a pair of numbers showing
the differences between the maximum and minimum (a) CDRDs and (b) temperature deviations within a
house. These results indicate that, on average, the comfort gap among rooms in the same house is
52 minutes and 2.37 °F. Moreover, CDRDs can be 70% longer or 40% shorter than the duration of the
room with the thermostat, on average. Further, distinct rooms can deviate from the thermostat reading by
an average of 48% more or 34% less. The considerably large standard deviations underscore the
substantial variability and distinctive thermal behavior of each house.

The analysis in this section highlights considerable variations in the performance of thermostats during
operational andDR periods with significant discrepancies from setpoint values across different rooms in a
house. It becomes evident that a single thermostat does not capture the temperature complexity of an
SZMRH effectively.

6. Evaluating the efficacy of averaging

Our second contribution is a critical evaluation of the effectiveness of averaging methodologies,
conducted on our designated Test bed 2 and ecobee dataset by utilizing the methodology explained in
Section 3.1.While the efficacy of averaging has been investigated through simulations in Lin et al. (2002),
to the best of our knowledge, no research has conducted empirical studies or utilized large datasets.

Figure 6 displays the RF of temperature deviations from the cooling setpoint for averaging and
thermostat-based control in Test bed 2. Thermostat-based control, as depicted by the CCI values in the
legend, impairs cooling comfort, with conditions worsening as one moves to higher floors (given in

Table 1. Summary statistics of the CDRDs and temperature deviations of rooms during DR events

Parameter Mean Median Std. dev. Min Max

Durations (mins)
Fast-reacting rooms 28 25 18 5 95
Slow-reacting rooms 80 69 35 40 230
Thermostat 47 40 31 5 150
Comfort gap 52 46 31 0 205
Deviations (°F)
Least-varying rooms 1.92 2.15 1.27 �3.00 4.05
Most-varying rooms 4.29 4.00 1.71 �1.00 8.57
Thermostat 2.90 2.85 1.89 �2.29 8.57
Comfort gap 2.37 2.00 1.49 0.00 6.14
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ascending order). Nevertheless, the zero-deviation positioning of the thermostat peak indicates that the
HVAC systemmeets its goal. Compared to thermostat-based control, averaging resulted in higher comfort
with a 45% improvement on average (excluding the basement). Yet, it is not without limitations. First, the
thermostat temperature was�6 °F deviated from the setpoint, resulting in overcooling most of the time. It
can also be seen that certain rooms are still less comfortable. The second room, although located in close
proximity to the HVAC system, possessed numerous windows, making it prone to external effects. In
upper-floor rooms, pinpointing whether the deviations on these floors arise from duct air leakage,
insulation inefficiencies, or solar gain necessitates a thorough analysis. For instance, this phenomenon
has been observed before in a single household and is attributed to insufficient fan power and/or duct leaks
by gathering measurements with air velocity sensors (Klingensmith et al., 2014). We will try to identify
such deficiencies using the ecobee dataset in Section 7.

The ecobee dataset explained in Section 3.3.3 is also leveraged to understand the efficacy of averaging.
The configuration of sensors, as shown in Figure 7, provides insight into the operation of houses with
additional sensors (counts of which are given in the legend). During the cooling season, thermostat
temperatures tend to register on the lower end of the spectrum in comparison with other sensors. This
observation could be attributed to common practices of thermostat installation, such as closer proximity to
air vents or the air conditioning unit than the upper floors, contributing to lower readings in the
computation of average indoor temperature. Conversely, additional sensors generally record higher
temperatures, possibly due to being situated further from the air conditioning unit, thereby receiving
less cooled air, or due to exposure to higher levels of solar radiation during the day. Analyzing the heating
season, a lesser degree of deviation is noticeable compared to the cooling season. For all households, the
median temperature aligns with zero deviation from the indoor heating setpoint, indicating that all rooms
achieve this reference temperature half the time. Yet, additional sensors typically report similar or lower
temperatures than the thermostat reading, aligning with our previous assumption of thermostats being
situated closer to the HVAC system. From this analysis, we infer that temperature variations pose a less
significant issue during the heating season compared to the cooling season. Potential explanations for this
phenomenon include the superior performance of HVAC systems in heating mode, the stack effect
causing hot air to rise to the upper floors, and the contribution of internal and solar heat gains in
maintaining room temperatures.

A limitation of the preceding methodology is that the aggregated temperature deviations might mask
the unique differences among individual houses. Therefore, we need to conduct an additional analysis
focusing on the hottest and coldest rooms within each house. For this particular analysis, we restrict our
study to houses equipped with five additional sensors to attain a greater degree of granularity in

lortnocdesab-tatsomrehT)blortnocgnigarevA)a

Figure 6. Relative frequencies of temperature deviations from the cooling setpoint in various rooms,
represented by different colored lines. The gray area highlights the comfort zone, within which tem-

perature fluctuations are considered comfortable for occupants. The CCI values, detailed in the legend
for each respective room, quantify the proportion of time temperatures were maintained within the

comfort zone.
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temperature variations. Our analysis is based on theCCI values of the thermostat, the roomwith the lowest
performance, and the room with the highest performance within each house. As illustrated in Table 2, on
average, in each house, one room performs 15% worse than the room where the thermostat is located,
while another room is 7% more comfortable.

Table 3 presents summary statistics of temperature deviations from both the setpoint and the average
temperature (i.e., control temperature) for the coldest and hottest rooms. Deviation from the setpoint
reveals the challenge the HVAC system encounters in keeping the rooms closer to the setpoint. However,
it does not explain what the target of the control mechanismwas for the extreme rooms. On the other hand,
deviation from the control temperature signifies that even at the targeted temperature, rooms are
anticipated to exhibit a certain degree of deviation. Consequently, even with a perfectly functioning
HVAC system, it is expected that the coldest and hottest rooms will exhibit a deviation range of
approximately �3 °F to 2.5 °F from the control temperature across both seasons.

7. Diagnosing the limitations

As the last contribution, we diagnose the reasons behind these deviations using a parameter identification
methodology on up to 100 houses, each equipped with five additional sensors.

Figure 7.Distribution of temperature deviations from setpoints in houses with varied sensor counts. The
top graph represents the cooling season and the bottom graph the heating season, with deviations

measured in degrees Fahrenheit from respective setpoints. On the x-axis, “T” indicates measurements
from the thermostat, while “1,” “2,” “3,” “4,” and “5” denote readings from the first to the fifth remote
sensor, respectively. The boxplots are color-coded to reflect different groups of houses, segmented by the
total number of sensors they contain. The legend shows the number of houses in each sensor group.
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7.1. Building thermal parameter identification

7.1.1. TTC (RC) identification
Utilizing the FFPs according to Section 3.2.1, we inferred the RC values for both cooling and heating
seasons for each sensor-house pair. The subsequent process of outlier removal allowed us to infer suitable
FFPs for 78.9% and 87.6% of the house-sensor pairs in the heating and cooling seasons, respectively. The
increased success rate of thermal parameter identification during the cooling season could be attributed to
the added parameter RQ, which introduces further flexibility to the process. The RC values we obtained
show a good alignment with those reported in previous research (John et al., 2018; Baasch et al., 2019;
Wang et al., 2021). This high rate of identification in our study is likely a result of our methodological
choice to extract cooling and heating data over a nine-month period (Section 3.3.3). To display the benefit
of considering a longer period, we replicated the cooling season analysis using a three-month summer
period and found that utilizing a longer period improved the total duration of FFPs by 84%, which in turn
resulted in a 21% improvement in the percentage of identified parameters.

The distribution of RC values for heating and cooling seasons is displayed in Figure 8. Each subfigure
consists of two plots: the upper plot shows the collective distribution of RC values, while the lower plot
presents the variances in room behavior within individual houses, color-coded by state. For instance,
Figure 8a reveals an unimodal distribution of RC values, ranging from 1 to 27 hours for the cooling
season. Contrarily, Figure 8b showcases a bimodal distribution for the heating season with a larger
discrepancy in RC values ranging from 1 to 157 hours. The corresponding boxplot highlights intra-house
differences as large as 20 and 143 hours among rooms for cooling and heating seasons, respectively.
Given that RC values are solely dependent on the physical structure of the building, such variations
between the RC values for summer and winter are unexpected. Yet, a similar discrepancy was observed in
a prior study, which was attributed to the disparity in behavioral changes of occupants, such as a tendency
to leave windows open more frequently during summer (John et al., 2018). Additionally, the RC value for
the room where the thermostat is located is marked with light blue for each house. If the room where the
thermostat is located were to accurately represent the thermal behavior of the rest of the house, the marker
would be positioned in the middle of each boxplot with a notably small range. However, the plot clearly
shows that this is often not the case.

Table 2. CCI values for houses with 5 additional sensors for different room types

Mean Median Std. dev. Min Max

Thermostat room comfort 0.92 1.00 0.17 0.10 1.00
Lowest room comfort 0.78 0.99 0.29 0.00 1.00
Highest room comfort 0.98 1.00 0.07 0.56 1.00

Table 3. Summary of room deviations from setpoint and average temperature

Cooling season Heating season

Average Std. dev. Average Std. dev.

Deviations from setpoint (°F)
Coldest room �3.84 4.88 �3.09 5.12
Hottest room 1.20 5.16 3.00 3.11
Deviations from average (°F)
Coldest room �2.57 2.91 �3.57 4.62
Hottest room 2.48 3.58 2.51 1.97
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In the heating season, there is a 30% chance that another room in the same house will have an RC value
twice as high as the room with the lowest RC value. This probability slightly decreases to 24% during the
cooling season. Furthermore, our analysis revealed that more than 50% of the time, a difference of 4 hours
and 54 hours is observed in the RC values among rooms for the cooling and heating seasons, respectively.

7.1.2. RQ Identification
The identification of thermal RC values during the cooling season concurrently produces RQ values. The
distribution of RQ values can be seen in Figure 9a. Upon conducting outlier and error filtering, 87.2% of
the RQ values were successfully inferred. Our study reveals differences as significant as 3.2 °F among
rooms within the same house (see Figure 9a). According to our findings, there is a 38% probability that
one roomwill endure twice the solar heat gain compared to another room in the same house. Furthermore,
there is a 25% likelihood that one room will experience three times the solar heat gain of its counterparts
within the same dwelling. Despite lacking a concrete physical interpretation, these RQ values provide
insightful data for retrofitting decisions, especially for identifying rooms that are most susceptible to high
solar irradiance. Ultimately, the varied positions of the markers suggest that rooms with thermostats may
experience notably less or more solar gain compared to other roomswithin the same household. This wide
range of outcomes underscores that thermostat measurements may inaccurately estimate the degree of
solar gain across the household, with no discernible bias toward either lower or upper limits.

7.1.3. RK identification
The process of estimating RK values for each house-sensor pair, as detailed in Section 3.2.2, commenced
with the identification of nights conforming to specific constraints. The balance point model, encapsu-
lated in Equation (3.4), was utilized to infer the RK values. This resulted in the RK value distribution
ranging from 26 to 204 °F, presented in the top plot of Figure 9b with a successful identification rate of
55.9%. The boxplot in Figure 9b illuminates the considerable variability in the RK values across different
sensors within the same house, reflecting the operational characteristics of the HVAC systems. The
variation spans a broad spectrum:while some houses exhibit marginal differences, others reach deviations
of approximately 80 °F. The analysis suggests that in a quarter of the instances, a room within a house
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Figure 8. This histogram depicts the collective distribution of RC values (top), accompanied by boxplots
for individual room distributions (bottom) for cooling and heating seasons. Markers indicated in light

blue represent the RC values for the room where the thermostat is located.
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receives 20% more heating input compared to the room with the least heating input. This disparity
underscores the room-level variations in heating distribution, potentially signifying areas of improvement
in HVAC system operation. Subsequent decisions regarding retrofitting could be informed by these
insights, such as the need to enhance duct sealing tomitigate air leakage or to clean ducts to facilitate better
airflow.

7.2. Interpretation of the parameters

After obtaining the RC, RK, and RQ values for each house, we carried out an independent analysis to
identify homes with rooms that are at a high risk of having Poor Insulation, Low Solar Gain, High Solar
Gain, and LowHeating Input. All comparisonsweremade based on the performance of other roomswithin
the same house. In order to identify rooms with deficiencies, we set certain assumptions. Rooms with RQ
values one standard deviation below or above their mean are expected to face Low Solar Gain and High
Solar Gain, respectively. Rooms exhibiting an RK value one standard deviation below the mean of the
house are assumed to have Low Heating Input. Poor Insulation is first detected by analyzing RC data for
both heating and cooling seasons by incorporating values that sit below one standard deviation from their
mean. We then observed fewer houses with multiple rooms encountering Poor Insulation in the cooling
season, whereas Poor Insulation from the heating season is more prevalent in houses but affects fewer
rooms. This observation aligns with our initial assumption of lower RC values in the cooling season due to
behaviors such as occupants leavingwindows openmore frequently. As a result, to accurately represent the
actual physical attributes of the house, and not merely occupant behavior-related deficiencies, we define
Poor Insulation using RC values from the heating season. It should be noted that since there are no studies
that utilized the ST data for such purposes, there is no acceptedmetric for us to use. However, our approach
is akin to the smart meter data-based inefficient house detection methodology conducted by Iyengar et al.
(2016).While this limited approach does not conclusively indicate such inefficiencies, it does help identify
rooms with a high risk of such deficiencies.

Our observations indicate that a maximum of two rooms within a house exhibit such deficiencies.
Although the actual number may be higher, this is a plausible estimate considering the constraints of

a) b)

Figure 9. This histogram depicts the collective distribution of RQ and RK values (top), accompanied by
boxplots for individual room distributions (bottom). Markers indicated in light blue represent the RK

values for the room where the thermostat is located.
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having only six sensor readings from each house. Table 4 presents the number of houses exhibiting these
deficiencies in just one room, two rooms, and the total. The percentages have been calculated based on the
total data available for each instance separately, which explains why the denominator varies for each row.
Overall, 96% of the houses exhibit High Solar Gain, with 78% in one room and 18% in two rooms. Low
Heating Input emerges as the second most common deficiency, occurring in 85% of the houses overall,
with 70% of the instances being confined to just one room. Low Heating Input is recorded in 78% of the
houses, 69% of which observe it in only one room. Lastly, 70% of the houses are at risk of Poor Insulation,
with 15% experiencing it in two rooms.

In our final analysis, we examined the assumption that thermostat placements—ideally unaffected by
vents or solar radiation—accurately represent overall house conditions. We computed the differences in
thermal parameters across rooms from the room where the thermostat is located, with the summary
statistics presented in Table 5. While the relatively low mean/median values might seem to initially
endorse this assumption, the high standard deviations (shown by the coefficient of variance) indicate
significant variation in each home’s thermostat-related behavior. This prevents us from drawing robust
conclusions regarding the thermal conditions experienced by thermostats due to their physical locations.
However, we can assert that they do not adequately represent the rest of the house.

8. Energy implications of remote sensors

While the addition of more sensors in homes, as discussed in Section 6, has the potential to enhance
comfort levels, their impact on energy consumption remains uncertain. These sensors could lead to energy
savings by enabling heating and cooling systems to operate based on occupancy (either through motion
sensors or schedules), thereby optimizing energy use. However, they could also increase energy
consumption since shifts in room occupancy can lead to sudden changes in the control temperatures
set by the system. To investigate this, we begin with an exploratory data analysis aimed at identifying
correlations between various attributes and the energy consumption of households. This step is crucial for
isolating the effects of other variables. Subsequently, we delve into a comprehensive statistical analysis to
gauge the influence of sensor quantity on energy consumption.

8.1. Explanatory data analysis

In our exploratory analysis, we augmented the ecobee DYD dataset with additional information from
ecobee metadata, incorporating attributes like floor area and number of occupants. Although the ecobee

Table 4. Number of houses with deficiencies

Number of houses 1 room 2 rooms Total (1 or 2 rooms)

Low solar gain 50 (69.44%) 6 (8.33%) 56 (77.77%)
High solar gain 56 (77.77%) 13 (18.05%) 69 (95.83%)
Low heating input 38 (70.37%) 8 (14.81%) 46 (85.18%)
Poor insulation 45 (54.87%) 12 (14.63%) 57 (69.51%)

Table 5. Statistical analysis of the thermal parameter difference of rooms from the thermostat

Mean Median Std. dev. Min Max Coeff. of var. (%)

RC (h) �8.24 �1.09 32.79 �108.95 79.29 398
RK (°F) �0.30 �0.21 7.10 �26.74 14.78 2367
RQ (°F) 0.08 0.12 0.53 �1.39 1.20 662
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DYD dataset lacks direct measurements of energy consumption, it includes the run time of cooling
equipment as a feature. By aggregating the cooling run times for homes equippedwithmulti-stage cooling
systems, we derived a consolidated feature termed “Cooling Run Time.” This metric serves as an indirect
indicator of energy consumption during the cooling season. However, it is worth noting that this metric,
while useful for estimating energy consumption, does not account for the varying energy usage rates
associated with different operational stages in multi-stage systems. Figure 10a shows the distribution of
the total cooling run time of houses for the summer season, colored by the number of sensors they have. As
expected, we see a clear proportional relationship between the number of sensors and the total cooling
time when the effect of the average outdoor temperature is removed. In terms of states, we see that only
Texas has a similar trend to the one we see in outdoor temperature. However, when data are segmented by
either floor area or number of occupants, the increase in sensor count does not significantly impact energy
consumption, suggesting that these factors might play a minimal role in the observed energy usage
patterns.

Acknowledging the potential for the binning of floor area to obscure its impact, we embarked on a
secondary analysis. This involved the introduction of a new attribute, cooling run time per square foot,
derived by dividing a house’s total cooling time by its floor area. Figure 10b presents this metric’s effects
across different categorizations, namely, state and average outdoor temperature. This deeper dive reveals
that, absent state-specific effects, there is no evident trend toward increased energy use. However, the
analysis suggests an increase in energy consumption associated with a greater number of sensors when
considering the intersection with average outdoor temperatures.

)b)a

Figure 10. Panel (a) depicts box plots that categorize total cooling time by the number of remote sensors
(0–5) across various household attributes such as state locations, average outdoor temperatures, floor
area, and occupancy. Panel (b) presents cooling time per unit floor area as box plots, stratified by the
same states and average outdoor temperatures, revealing how cooling efficiency correlates with the

presence of remote sensors within the dwelling.
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8.2. Statistical analysis

The exploratory data analysis has provided initial insights into the potential impact of additional sensors
on energy consumption. Building upon these findings, we now aim to delve deeper by conducting a
comprehensive statistical analysis. This offers empirical evidence concerning the correlation between
sensor deployment and energy usage. Our methodology is inspired by the approach used by Barreca et al.
(2016), which explored the effects of temperature on mortality rates, adapting it to our context of energy
consumption in residential settings.

To commence, the year-long dataset from ecobee’s DYD programwas processed to obtain hourly data
points. This resampling involved summing up the run time of both cooling and heating equipment for each
hour, while temperature readings were averaged over the same period. Further, we computed a combined
run time by summing cooling and heating run times. This allowed us to make claims related to the general
energy consumption of the houses.We then calculated the Duty Cycle (unitless) for both cooling, heating,
and combined run times by dividing the equipment’s run time (in seconds) by 3600 seconds, thus
obtaining a ratio reflecting the proportion of time the HVAC system was operational within each hour.
Additionally, the number of sensors at any given hour was determined by counting the number of non-null
temperature readings from the remote sensors.

We have formulated our regression problem as follows:

DCit =
X5
j = 0

βj � sj,it × T it

� �
+ αi + ρh + νm + ϵit , (8.1)

where DCit represents the heating, cooling, or combined duty cycle for house i at hourt.
sj,it represents the presence of sensor count j for house i at hour t.
T ti represents the outdoor temperature for house i at hour t.
βj are coefficients for the interaction of j

th additional sensor dummy (as j goes from 0 to 5) with outdoor
temperature T it at hour t.

αi represents the fixed effects for each house, controlling for unobserved heterogeneity across houses.
ρh represents the fixed effects for each hour h of the day, controlling for diurnal variations.
νm represents the fixed effects for each month m of the sample, controlling for time-varying patterns

across the dataset.
ϵit is the error term for house i at hour t.
The R environment is used to fit the models. The summary of the results of the model fit for the

combined duty cycle can be found in Table 6. Our initial analysis on combined duty cycle demonstrates
statistically significant results for each sensor’s impact on energy consumption. All coefficients being
positive also implies that cooling is the dominant energy consumption. Furthermore, since remote sensors
are often sold in pairs, our analysis indicates that users enhancing their ecobee premium system with a
two-sensor pack can expect a 4.9% rise in energy usage per degree Fahrenheit change in outdoor
temperature. Progressing from no extra sensors to a total of 5 can escalate cooling consumption by 17.8%.

Figure 11 depicts the impact of a 1 °F increase in outdoor temperature on the total energy consumption,
with brackets showing the 95% confidence intervals. The trend indicates that increasing the number of
sensors results in increased energy consumption per degree change in the outdoor temperature. The largest
jump with the addition of a sensor happens when switching from 0 to 1 with a 6.5% increase in demand.
This finding gains significance with the introduction of newer ecobee thermostat models like the ecobee
premium, which comes with an additional sensor. Furthermore, since remote sensors are sold in pairs, our
analysis indicates that users enhancing their ecobee premium system with a two-sensor pack can expect a
4.9% rise in their energy usage per degree Fahrenheit change in outdoor temperature. Moving from no
extra sensors to a total of 5 can escalate consumption by 17.8%.

The summary of the results of the two model fit for the heating and cooling duty cycle can be found in
Table 7. For cooling, data clearly show a positive relationship between the number of sensors and energy
consumption, with all coefficients from β0 through β5 being positive and statistically significant. This is an
expected result since the increase in outdoor temperature would result in an increase in cooling energy
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consumption. Notably, the magnitude of these coefficients increases with each additional sensor,
indicating that the addition of each sensor contributes to higher energy use. This consistent increase
across sensor counts strongly suggests that the deployment of more sensors leads to significant increases
in cooling energy consumption, likely due to the sensors capturing more spatial temperature variability
and triggering more frequent or intense cooling responses.

In contrast, the heating duty cycle presents a more complex picture. The coefficients for the number of
sensors interacting with outdoor temperature show negative estimates with statistical significance.
Negative values are expected due to the inverse relation between outdoor temperature and heating run
time. This mixed outcome suggests a nuanced relationship where, under certain outdoor temperature
conditions, increasing the number of sensors does not uniformly increase energy consumption for heating.
In some cases, it might even reduce it, possibly due to optimized heating strategies facilitated by the data
from these sensors or the stack effect helping with the rooms on upper floors.

The comparison of values in Table 7 shows that the coefficients for heating are significantly smaller,
likely because there’s less need for heating over a narrower temperature range characteristic of warmer
climates. Therefore, the model tends to identify smaller coefficients for heating consumption. This effect
on the coefficients wouldn’t be present if the relationship between outdoor temperature and energy
consumption were linear. However, given the exponential nature of this relationship, the temperature
differential within warmer ranges of outdoor temperature leads to substantially smaller heating duty
cycles. This outcome is anticipated, considering the dataset includes a significant number of houses from
California, where cooling is often the primary energy demand due to the state’s warmer climate.

Table 6. Statistical summary of the model evaluating the effect of sensor count and outdoor
temperature on HVAC (combined) duty cycle (1/°F)

Term Estimate Std. error t value Pr(>|t|)a

β0 0.0128 0.000262 48.9 < 2.2e–16 ***
β1 0.0136 0.000252 54.2 < 2.2e–16 ***
β2 0.0141 0.000261 54.2 < 2.2e–16 ***
β3 0.0143 0.000265 54.0 < 2.2e–16 ***
β4 0.0146 0.000302 48.4 < 2.2e–16 ***
β5 0.0151 0.000356 42.4 < 2.2e–16 ***

Note. Fixed-effects: id: 1000, hour: 24, and month: 12. Standard errors: clustered (id).
aSignif. codes: 0’***’ 0.001’**’ 0.01’*’ 0.05’.’ 0.1” 1.
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Figure 11. Estimated impact of 1 °F in outdoor temperature on HVAC (combined) duty cycle. 95%
confidence interval is shown using brackets.
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Figure 12 illustrates the influence of a 1 °F increase in outdoor temperature on the cooling (a) and
heating (b) duty cycles, with brackets indicating the 95% confidence intervals. For cooling, the trend is
almost identical to combined duty cycle, reinforcing the notion that cooling predominantly drives overall
energy consumption. There is a discernible positive trend as the number of sensors increases. Notably, the
transition from 0 to 1 sensor incurs a 6.4% uptick in energy consumption per degree change in outdoor
temperature. Furthermore, we observe that users augmenting their ecobee premium with a two-sensor
pack can cause a 4.8% rise in cooling energy usage per degree change in outdoor temperature. Lastly, the
switch from no extra sensors to a total of 5 can surge the cooling consumption by 17.8%,which is identical
to what was observed for combined energy consumption.

When switched to heating, a fluctuating correlation happens, as can be seen from 12(b). Generally, the
coefficients decrease as the number of sensors grows. It is important to note that smaller negative
coefficients indicate a larger reduction from the baseline consumption, leading to smaller energy
consumption. We observe that having one additional sensor could reduce the energy consumption by
4.2% per outdoor degree change. Additionally, augmenting the existing ecobee premium thermostat (that
already comes with an extra sensor) with two additional sensors can lead to a 14.1% decrease in heating
demand. Surprisingly, we see that adding an additional sensor could result in a 25% reduction (from 2 to 3)
or a 19% increase (from 3 to 4) in heating energy consumption. Lastly, the switch from not having any
sensors to having 5 results in an 18.8% increase.

Table 7. Statistical summary of the model evaluating the effect of sensor count and outdoor
temperature on cooling and heating duty cycle (1/°F)

Cooling Heating

Term Estimate Std. error t value Pr(>|t|)a Estimate Std. error t value Pr(>|t|)a

β0 0.0129 0.000262 49.4 < 2.2e–16 *** �0.0000960 0.0000112 �8.58 < 2.2e–16 ***
β1 0.0137 0.000252 54.6 < 2.2e–16 *** �0.0000920 0.00000994 �9.27 < 2.2e–16 ***
β2 0.0142 0.000260 54.8 < 2.2e–16 *** �0.000105 0.0000128 �8.27 4.31e–16 ***
β3 0.0144 0.000264 54.5 < 2.2e–16 *** �0.0000790 0.00000974 �8.10 1.56e–15 ***
β4 0.0147 0.000303 48.5 < 2.2e–16 *** �0.0000940 0.0000154 �6.11 1.47e–09 ***
β5 0.0152 0.000363 41.9 < 2.2e–16 *** �0.000114 0.0000265 �4.32 1.74e–05 ***

Note. Fixed-effects: id: 1000, hour: 24, and month: 12. Standard errors: clustered (id).
aSignif. codes: 0’***’ 0.001’**’ 0.01’*’ 0.05’.’ 0.1” 1.

0.013

0.014

0.015

0.016

0 1 2 3 4 5
Number of Sensors

C
oo

lin
g 

D
ut

y 
C

yc
le

−0.000150

−0.000125

−0.000100

−0.000075

0 1 2 3 4 5
Number of Sensors

H
ea

tin
g 

D
ut

y 
C

yc
le

a) Impact on Cooling Duty Cycle b) Impact on Heating Duty Cycle

Figure 12. Estimated impact of 1 °F in outdoor temperature on (a) cooling and (b) heating duty cycle.
95% confidence interval is shown using brackets.

e28-22 Ozan Baris Mulayim, Edson Severnini and Mario Bergés

https://doi.org/10.1017/dce.2024.25 Published online by Cambridge University Press

https://doi.org/10.1017/dce.2024.25


Recognizing the potential to uncover insights into how the impact of the number of sensors on energy
consumption changes over time, we have identified seasonality as a critical factor for our analysis. This
choice is driven by the hypothesis that the efficacy of sensors in influencing energy consumption could
vary significantly across different seasons, due to variations in environmental conditions and heating or
cooling needs.

To thoroughly investigate the influence of seasonality, we have reformulated our regression model to
incorporate interactions between the number of sensors, outdoor air temperature, and the seasons. This
revised approach allows us to examine how seasonal changes affect the relationship between sensor
deployment and energy consumption.

DCit =
X4
k = 1

X5
j = 0

βjk �SDk × sj,it × T it

� �
+ αi + ρh + νm + ϵit: (8.2)

In the updated equation, denoted as Equation (8.2, two primary modifications have been made
compared to Equation (8.1. First, we introduced SDk, representing the dummy variable for the kth season,
to our model. Second, the dummy variables for the number of sensors now encompass the scenario of
having zero additional sensors, which previously served as the baseline in Equation (8.1. The inclusion of
the zero additional sensor condition in our current analysis aims to elucidate the seasonal effects on
scenarios where no extra sensors are used.

Table 8. Statistical summary of the model evaluating the effect of sensor count, outdoor temperature,
and seasonality on cooling and heating duty cycle (1/°F)

Cooling Heating

Term Estimate Std. error t value Pr(>|t|)a Estimate Std. error t value Pr(>|t|)a

β0:Spring 0.00910 0.000308 29.6 < 2.2e–16 *** �0.000215 0.0000200 �11.0 < 2.2e–16 ***
β0:Summer 0.0158 0.000331 47.7 < 2.2e–16 *** 0.0000390 0.0000110 3.47 5.44e–04 ***
β0:Autumn 0.0118 0.000271 43.6 < 2.2e–16 *** �0.0000950 0.0000120 �7.91 6.83e–15 ***
β0:Winter 0.00249 0.000416 6.00 2.92e–09 *** �0.00127 0.0000750 �16.9 < 2.2e–16 ***
β1:Spring 0.00985 0.000302 32.6 < 2.2e–16 *** �0.000203 0.0000170 �11.6 < 2.2e–16 ***
β1:Summer 0.0167 0.000308 54.3 < 2.2e–16 *** 0.0000480 0.0000100 4.80 1.86e–06 ***
β1:Autumn 0.0126 0.000258 48.9 < 2.2e–16 *** �0.0000920 0.0000150 �6.27 5.49e–10 ***
β1:Winter 0.00294 0.000404 7.26 7.58e–13 *** �0.00133 0.0000720 �18.4 < 2.2e–16 ***
β2:Spring 0.0105 0.000307 34.2 < 2.2e–16 *** �0.000202 0.0000200 �10.3 < 2.2e–16 ***
β2:Summer 0.0171 0.000332 51.5 < 2.2e–16 *** 0.0000330 0.0000120 2.68 7.47e–03 **
β2:Autumn 0.0131 0.000269 48.8 < 2.2e–16 *** �0.000105 0.0000160 �6.74 2.63e–11 ***
β2:Winter 0.00369 0.000404 9.15 < 2.2e–16 *** �0.00133 0.0000750 �17.8 < 2.2e–16 ***
β3:Spring 0.0105 0.000306 34.3 < 2.2e–16 *** �0.000193 0.0000170 �11.7 < 2.2e–16 ***
β3:Summer 0.0173 0.000324 53.5 < 2.2e–16 *** 0.0000600 0.0000120 5.04 5.57e–07 ***
β3:Autumn 0.0132 0.000269 49.2 < 2.2e–16 *** �0.0000830 0.0000140 �5.90 5.02e–09 ***
β3:Winter 0.00363 0.000393 9.23 < 2.2e–16 *** �0.00128 0.0000690 �18.6 < 2.2e–16 ***
β4:Spring 0.0108 0.000351 30.7 < 2.2e–16 *** �0.000216 0.0000220 �9.66 < 2.2e–16 ***
β4:Summer 0.0178 0.000356 49.9 < 2.2e–16 *** 0.0000490 0.0000150 3.27 1.10e–03 **
β4:Autumn 0.0134 0.000340 39.4 < 2.2e–16 *** �0.000102 0.0000190 �5.46 6.03e–08 ***
β4:Winter 0.00400 0.000431 9.28 < 2.2e–16 *** �0.00126 0.0000810 �15.7 < 2.2e–16 ***
β5:Spring 0.0112 0.000396 28.3 < 2.2e–16 *** �0.000231 0.0000330 �6.93 7.50e–12 ***
β5:Summer 0.0183 0.000434 42.1 < 2.2e–16 *** 0.0000190 0.0000270 0.701 0.483
β5:Autumn 0.0137 0.000329 41.7 < 2.2e–16 *** �0.000114 0.0000260 �4.39 1.24e–05 ***
β5:Winter 0.00392 0.000430 9.10 < 2.2e–16 *** �0.00131 0.0000810 �16.1 < 2.2e–16 ***

Note. Fixed-effects: id: 1000, hour: 24, and month: 12. Standard errors: clustered (id).
aSignif. codes: 0’***’ 0.001’**’ 0.01’*’ 0.05’.’ 0.1” 1.
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The outcomes derived from Equation (8.2) are detailed in Table 8. Notably, with the exception of
β5:Summer in the heating analysis, all results exhibit statistical significance. This underscores a clear
correlation between the number of sensors and heating usage, particularly when the influence of
seasonality is considered.

Figure 13 demonstrates the estimated impact of a 1 °F increase in outdoor temperature on a) cooling
and b) heating duty cycles across different seasons. For cooling energy consumption, our results align
with anticipated trends, revealing a pronounced increase in cooling run time during the summer months.
The distinction between autumn and spring is minimal, with spring presenting slightly lower cooling
usage. Winter sees the smallest effect, yet the overall ascending trend observed in Figure 12a persists,
especially during summer, when cooling demand rises with each additional sensor.

The heating analysis presents a more variable pattern. In this context, a downward shift in heating duty
cycle values indicates a decrease in heating expenses. The analysis reveals that incorporating just one
additional sensor can reduce heating equipment use by 4.4%. However, expanding an ecobee premium by
adding a pack of remote sensors (transitioning from 1 to 3 sensors) leads to a 3.6% increase in heating
expenses. Collectively, these findings suggest that the inclusion of extra sensors has a marginal impact on
heating energy consumption. This aligns with prior observations regarding the smaller temperature
disparities during the heating season, as depicted in Figure 7. Such phenomena were attributed to the
stack effect and the roles of internal and solar heat gains inmaintaining indoor temperatures. Additionally,
unaccounted space heaters might have contributed to this phenomenon.

9. Discussion and conclusion

This study offers a comprehensive exploration of the thermal behavior variability and energy efficiency in
SZMNSs using data from two residential test beds and a publicly available panel dataset and metadata
from ecobee.

Based on our initial analysis, we observed that 67%of the houseswith ecobee thermostats are equipped
with at least one remote sensor.Moreover, 15,404 houses out of the total dataset (13.6%) have participated
in DR through the eco + program. Among these, 73% have at least one sensor, which indicates the
potential for incorporating additional sensory information while assessing the thermal comfort
during DR.

The subsequent analysis identifies significant temperature discrepancies across rooms, often over-
looked by traditional thermostats. We displayed a consistent 3 °F discrepancy between the thermostat’s
reading and the setpoint, with comfort indices falling below 50% within rooms. Further, we noted a
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Figure 13. Estimated impact of 1 °F in outdoor temperature on (a) cooling and (b) heating duty cycle for
each season. 95% confidence interval is shown using brackets.
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significant disparity during DR events, where the duration of comfort was typically 70% longer or 40%
shorter compared to the thermostat-controlled room.

Further, we underscore that while averaging may mitigate some discrepancies, substantial deviations
outside comfort bounds persist. In our test bed, averaging techniques demonstrated an average of 45%
improvement in cooling operations. Despite this improvement, the thermostat reading still exhibited an
average deviation of �6 °F. On a larger scale, we found that individual rooms display an expected
deviation ranging from �3 °F to 2.5 °F from this average (i.e., control temperature). This considerable
discrepancy highlights that, evenwith averaging, the targeted temperatures for rooms are typically outside
of the comfort bounds (±2 °F).

Our detailed parameter identification study further illuminates the potential root causes of these
deviations. In 95% of houses, we found rooms with High Solar Gain, 85% with Low Heating Input,
and 70% with Poor Insulation. Moreover, we observe that common assumptions about thermostat
placement are often inaccurate, as they are typically located in rooms that do not reflect the whole
house’s thermal conditions.

Lastly, our research indicates that cooling energy consumption per degree of outdoor temperature
change increases with the addition ofmore sensors. On the other hand, heating usage has been observed to
fluctuate from �20% to +25% with an increase in the number of sensors. Specifically, homeowners
adding a pack of remote sensors to their ecobee premium thermostats may see a 4.8% rise in cooling
energy consumption per degree Fahrenheit change in outdoor temperature, while heating consumption
could decrease by 14.1%.

In conclusion, despite moderate improvements with averaging techniques, significant temperature
deviations in SZMNSs still exist, affecting thermal comfort during regular operations andDR events. The
availability of remote sensors paves the way for utilizing additional sensory information in evaluating
services provided by buildings such as thermal comfort and DR. Energy implications of remote sensors
reveal the trade-off users must pay in order to achieve more comfort, especially in cooling. The
methodology used in this study can benefit future HVAC designs by enabling ST companies to leverage
these algorithms for roomdeficiency detection, enhancing energy efficiency of remote sensors, improving
retrofit cost estimates, and guiding optimal thermostat placement for accurate representation of a home’s
thermodynamic characteristics.

Some limitations of this study are 1) the characteristics of the ecobee DYD dataset, which could have
influenced our findings such as its temperature resolution or the limited number of houses equipped with
sensors, and 2) the metrics we employed to identify deficiencies have not yet been validated elsewhere.
Despite these potential limitations, the findings remain illustrative and point to promising new research
avenues. While subsequent studies might develop refined metrics, leveraging building thermal param-
eters for more nuanced room-level deficiency evaluations, our analysis still offers substantial insights.
Future work could include an analysis of estimating overriding behavior during DR events by utilizing
room-level occupancy and temperature data. Moreover, existing model predictive control methodologies
could be extended to room-level granularity using the methods we deployed. Further, the effect of
temperature variance in gray box modeling approaches utilizing indoor average temperature should be
investigated. Lastly, the dataset’s lack of counterfactuals precludes evaluating variations in comfort
conditions based on different sensor counts, as each house is controlled according to its available sensors.
This restriction hinders a detailed cost–benefit analysis, but future studies could explore these dimensions
in a controlled environment to effectively demonstrate the trade-offs between sensor-induced comfort and
their financial implications.
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