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Abstract

We study the existence of transformations of the transfinite plane that allow one to reduce Ramsey-theoretic

statements concerning uncountable Abelian groups into classical partition relations for uncountable cardinals.

To exemplify: we prove that for every inaccessible cardinal ^, if ^ admits a stationary set that does not reflect at

inaccessibles, then the classical negative partition relation ^ 9 [^]2^ implies that for every Abelian group (�, +) of

size ^, there exists a map 5 : � → � such that for every - ⊆ � of size ^ and every 6 ∈ �, there exist G ≠ H in X

such that 5 (G + H) = 6.

1. Introduction

Ramsey’s theorem [Ram30] asserts that every infinite graph contains an infinite induced subgraph

that is either a clique or an anti-clique. In other words, for every function (or coloring, or partition,

depending on one’s perspective) 2 : [N]2 → 2, there exists an infinite - ⊆ N that is monochromatic

in the sense that, for some 8 ∈ 2, 2(G, H) = 8 for every pair G < H of elements of - . A strengthening of

Ramsey’s theorem due to Hindman [Hin74] concerns the additive structure (N, +) and asserts that for

every partition 2 : N → 2, there exists an infinite - ⊆ N that is monochromatic in the sense that, for

some 8 ∈ 2, for every finite increasing sequence G0 < · · · < G= of elements of - , 2(G0 + · · · + G=) = 8.

A natural generalization of Ramsey’s and Hindman’s theorems would assert that in any 2-partition

of an uncountable structure, there must exist an uncountable monochromatic subset. However, this is

not the case. In the early 1930s, Sierpiński found a coloring 2 : [R]2 → 2 admitting no uncountable

monochromatic set [Sie33]. In contrast, a counterexample concerning the additive structure (R, +) was

discovered only a few years ago [HLS17], by Hindman, Leader and Strauss.

In this paper, we study the existence of transformations of the transfinite plane that allow one, among

other things, to reduce the additive problem into the considerably simpler Ramsey-type problem.

Throughout the paper, ^ denotes a regular uncountable cardinal, and \, j denote (possibly finite)

cardinals ≤ ^. The following definition captures the class of transformations of interest.

Definition 1.1. See Figure 1 below. Pℓ1(^) asserts the existence of a transformation t : [^]2 → [^]2

satisfying the following:

◦ For every (U, V) ∈ [^]2, if t(U, V) = (U∗, V∗), then U∗ ≤ U < V∗ ≤ V.

◦ For every family A consisting of ^ many pairwise disjoint finite subsets of ^, there exists a

stationary ( ⊆ ^ such that for every pair U∗ < V∗ of elements of (, there exists a pair 0 < 1 of

elements of A with t[0 × 1] = {(U∗, V∗)}.
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(ii)(i)

(iv)(iii)

for every (α, β) ∈ [κ]2, if t(α, β) = (α∗, β∗),

then α∗ ≤ α < β∗ ≤ β;

for every family A consisting of κ many

pairwise disjoint finite subsets of κ,

A

there exists a stationary S ⊆ κ such that,

for every pair α∗ < β∗ of elements of S ,

S

there exists a pair a < b of elements of A

with t[a × b] = {(α∗, β∗)}.

Figure 1. Illustration of Definition 1.1.

Theorem A. If Pℓ1(^) holds, then the following are equivalent:

◦ There exists a coloring 2 : [^]2 → \ such that for every - ⊆ ^ of size ^ and every g ∈ \, there exist

G ≠ H in - such that 2(G, H) = g;

◦ For every Abelian group (�, +) of size ^, there exists a coloring 2 : � → \ such that for all

-,. ⊆ � of size ^ and every g ∈ \, there exist G ∈ - and H ∈ . such that 2(G + H) = g.

As the proof of Theorem A will make clear, the theorem remains valid even after relaxing Defini-

tion 1.1 to omit the first bullet and to weaken “stationary ( ⊆ ^” into “cofinal ( ⊆ ^”. We have added

these extra requirements to connect this line of investigation with other well-known problems, such as

the problem of whether the product of any two ^-cc posets must be ^-cc (see [Rin14a]):

Theorem B. If Pℓ1(^) holds, then for every positive integer = there exists a poset P such that P= satisfies

the ^-cc, but P=+1 does not.

Now, to formulate the main results of this paper, let us consider a more informative variation of

Pℓ1(^).

Definition 1.2. Pℓ1(^, \, j) asserts the existence of a function t : [^]2 → [^]3 satisfying the following:

◦ For all (U, V) ∈ [^]2, if t(U, V) = (g∗, U∗, V∗), then g∗ ≤ U∗ ≤ U < V∗ ≤ V.

◦ For all f < j and every family A ⊆ [^]f consisting of ^ many pairwise disjoint sets, there exists a

stationary ( ⊆ ^ such that for all (U∗, V∗) ∈ [(]2 and g∗ < min{\, U∗}, there exist (0, 1) ∈ [A]2

with t[0 × 1] = {(g∗, U∗, V∗)}.

Remark 1.3. Pℓ1(^) of Definition 1.1 is Pℓ1(^, 1,ℵ0).

In [Rin12], by building on the work of Eisworth in [Eis13a, Eis13b], the first author proved that

Pℓ1(_
+, cf (_), cf (_)) holds for every singular cardinal_.1 The proof of that theorem was a combination of

walks on ordinals, club-guessing considerations, applications of elementary submodels, and oscillation

1The first bullet of Definition 1.2 is not stated explicitly but may be verified to hold in all the relevant arguments of [Eis13a,
Eis13b, Rin12].
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of pcf scales. Here, we replace the last ingredient with the oscillation oracle Pℓ6 (. . .) from [Rin14b];

there are a few additional differences that are too technical to state at this point.

The main result of this paper is as follows:

Theorem C. For j = cf (j) ≥ l, Pℓ1(^, \, j) holds in any of the following cases:

1. j < j+ < \ = ^, and �(^) holds.

2. j < j+ < \ = ^, and � ^
≥j admits a stationary set that does not reflect.

3. j < j+ = \ < ^, ^ is inaccessible, and � ^
≥j admits a stationary set that does not reflect at

inaccessibles.

By the results of Subsection 2.3 below, the principle Pℓ1(^, \, j) is strictly stronger than Shelah’s

principle Pr1(^, ^, \, j). Thus, Clause (1) improves the main result of [Rin14a], and Clause (2) improves

the main result of [Rin14b]. The result of Clause (3) provides, in particular, an affirmative answer to a

question posed by Eisworth to the first author at the Set Theory meeting in Oberwolfach, January 2014.

We conclude the introduction by mentioning two findings in the other direction.

Theorem D. For a strongly inaccessible cardinal ^:

1. The existence of a coherent ^-Souslin tree does not imply Pℓ1(^).
2. For any j ∈ Reg(^), the existence of a nonreflecting stationary subset of � ^

j does not imply

Pℓ1 (^, 1, j
+).

1.1. Organization of this paper

In Section 2, we establish some facts about walks on ordinals and present a connection between

Pℓ1(^, . . .) and two other concepts: the coloring principle Pr1 (^, . . .) and the�-sequence number, j(^).
The proofs of Theorems A, B and � will be found there.

In Section 3, we prove that a strong form of the oscillation oracle Pℓ6(a
+, a) holds for any infinite

regular cardinal a. This fact will play a role in later sections.

In Section 4, we provide a proof of Clause (2) of Theorem C. The proof is split into two cases:

^ > j++ and ^ = j++.

In Section 5, we provide a proof of Clause (1) of Theorem C.

In Section 6, we provide a proof of Clause (3) of Theorem C.

1.2. Further results

In an upcoming paper [RZ21], we address the validity of the strongest possible instances of Pℓ1 (^, \, j).
Some of the main findings are:

◦ Pℓ1 (_
+, 1, _) fails for _ singular, so that Theorem C is optimal whenever ^ is a successor of a

singular cardinal.

◦ Pℓ1 (_
+, 1, _+) fails for _ regular.

◦ Pℓ1 (_
+, _+, _) holds for _ regular satisfying 2_ = _+.

◦ Pℓ1 (ℵ1,ℵ1, =) holds for all positive integers =.

◦ Pℓ1 (^, ^, ^) holds for ^ inaccessible such that �(^) and ^∗ (^) both hold.

1.3. Notation and conventions

Let � ^
j := {U < ^ | cf (U) = j}, and define � ^

≤j, � ^
<j, � ^

≥j, � ^
>j, � ^

≠j analogously. For an ideal I over

^, we write I
+ := P(^) \ I. The collection of all sets of hereditary cardinality less than ^ is denoted by

H^ . The set of all infinite (respectively, infinite and regular) cardinals below ^ is denoted by Card(^)
(respectively, Reg(^)). The length of a finite sequence r is denoted by ℓ(r). For a subset ( ⊆ ^, we let

Tr(() := {U ∈ � ^
>l | (∩U is stationary in U}; we say that ( is nonreflecting (respectively, nonreflecting
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at inaccessibles) iff Tr(() is empty (respectively, contains no inaccessible cardinals). For a set of

ordinals 0, we write ssup(0) := sup{U + 1 | U ∈ 0}, acc+(0) := {U < ssup(0) | sup(0 ∩ U) = U > 0},
acc(0) := 0 ∩ acc+(0), nacc(0) := 0 \ acc(0), and cl(0) := 0 ∪ acc+ (0). For sets of ordinals, 0 and 1,

we let 0 ⊛ 1 := {(U, V) ∈ 0 × 1 | U < V} and write 0 < 1 to express that 0 × 1 coincides with 0 ⊛ 1.

For any set A, we write [A]j := {B ⊆ A | |B| = j} and [A]<j := {B ⊆ A | |B| < j}. This

convention admits two refined exceptions:

◦ For an ordinal f and a set of ordinals �, we write [�]f for {� ⊆ � | otp(�) = f}.
◦ For a set A that is either an ordinal or a collection of sets of ordinals, we interpret [A]2 as the

collection of ordered pairs {(0, 1) ∈ A ×A | 0 < 1}.

In particular, [^]2 = {(U, V) | U < V < ^}. Likewise, we identify [^]3 with {(U, V, W) ∈ ^ × ^ × ^ |
U < V < W < ^}.

2. Warming up

2.1. The foundations of walks on ordinals

Definition 2.1 (folklore). ^ 9 [^]2
\

(respectively, ^ 9 [stat]2
\
) asserts the existence of a coloring

2 : [^]2 → \ such that for every cofinal (respectively, stationary) - ⊆ ^ and every g ∈ \, there exist

(G, H) ∈ [-]2 such that 2(G, H) = g.

Likewise, ^ 9 [^; ^]2
\

(respectively, ^ 9 [stat; stat]2
\
) asserts the existence of a coloring 2 : [^]2 →

\ such that for every two cofinal (respectively, stationary) -,. ⊆ ^ and every g ∈ \, there exist

(G, H) ∈ - ⊛ . such that 2(G, H) = g.

In an unpublished note from 1981, Todorcevic proved that l1 9 [stat; stat]2
l1

holds. A few years

later, in [Tod87], the method of walks on ordinals was introduced, with the following theorem serving

as the primary application.

Fact 2.2 (Todorcevic, [Tod87]). l1 9 [l1]
2
l1

holds. Furthermore, for every regular uncountable

cardinal ^ admitting a nonreflecting stationary set, ^ 9 [^]2
^ holds.

Later, by a series of results of Shelah concerning cardinals ^ > ℵ1 together with a result of Moore

concerning ^ = ℵ1, ^ 9 [^; ^]2
^ holds for any cardinal ^ that is the successor of an infinite regular

cardinal; see [RT13] for an historical account and a uniform proof of the following:

Fact 2.3 (Shelah, Moore). a+ 9 [a+; a+]2
a+

holds for any infinite regular cardinal a.

In this subsection, we present a few basic components of the theory of walks on ordinals, which we

will be using throughout the rest of the paper.

Definition 2.4. For a set of ordinals Γ, a �-sequence over Γ is a sequence of sets 〈�U | U ∈ Γ〉 such

that for all U ∈ Γ, �U is a closed subset of U with sup(�U) = sup(U).

For the rest of this subsection, let us fix a �-sequence ®� = 〈�U | U < ^〉 over ^.

Definition 2.5 (Todorcevic, [Tod87]). From ®�, we derive maps Tr : [^]2 → l^, d2 : [^]2 → l,

tr : [^]2 → <l^ and _ : [^]2 → ^, as follows. Let (U, V) ∈ [^]2 be arbitrary.

◦ Tr(U, V) : l → ^ is defined by recursion on = < l:

Tr(U, V) (=) :=





V, = = 0

min(�Tr(U,V) (=−1) \ U), = > 0 & Tr(U, V) (= − 1) > U

U, otherwise

◦ d2(U, V) := min{= < l | Tr(U, V) (=) = U}.
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◦ tr(U, V) := Tr(U, V) ↾ d2 (U, V).
◦ _(U, V) := max{sup(�Tr(U,V) (8) ∩ U) | 8 < d2 (U, V)}.

The next two facts are quite elementary. They are reproduced with proofs as Claims 3.1.1 and 3.1.2

of [Rin14b].

Fact 2.6. Whenever 0 < V < W < ^, if V ∉
⋃

U<^ acc(�U), then _(V, W) < V.

Fact 2.7. Whenever _(V, W) < U < V < W < ^, tr(U, W) = tr(V, W)a tr(U, V).

Convention 2.8. For any coloring 5 : [^]2 → ^ and X < ^, while (X, X) ∉ [^]2, we extend the definition

of 5 and agree to let 5 (X, X) := 0.

Lemma 2.9. Let (U, W) ∈ [^]2. For every V ∈ Im(tr(U, W)),

_(U, W) = max{_(V, W), _(U, V)}.

Proof. Let V be as above, so that tr(U, W) = tr(V, W)a tr(U, V). We have

_(U, W) =max{sup(�g ∩ U) | g ∈ Im(tr(U, W))} =

max{sup(�g0
∩ U), sup(�g1

∩ U) | g0 ∈ Im(tr(V, W)), g1 ∈ Im(tr(U, V))} ≤

max{sup(�g0
∩ V), sup(�g1

∩ U) | g0 ∈ Im(tr(V, W)), g1 ∈ Im(tr(U, V))} =

max{_(V, W), _(U, V)},

and

_(U, W) =max{sup(�g0
∩ U), sup(�g1

∩ U) | g0 ∈ Im(tr(V, W)), g1 ∈ Im(tr(U, V))} ≥

max{sup(�g1
∩ U) | g1 ∈ Im(tr(U, V))} = _(U, V).

So, if _(U, W) ≠ max{_(V, W), _(U, V)}, then _(U, W) < _(V, W), and we may fix the least 8 < d2(V, W)
to satisfy sup(�Tr(V,W) (8) ∩ U) < sup(�Tr(V,W) (8) ∩ V); but then Tr(U, W) (8 + 1) = min(�Tr(V,W) (8) \ U) <
V ≤ Tr(V, W) (8 + 1), contradicting the fact that tr(V, W)a〈V〉 ⊑ tr(U, W). �

Definition 2.10. For every (U, V) ∈ [^]2, we define an ordinal ðU,V ∈ [U, V] via:

ðU,V :=

{
U, if _(U, V) < U;

min(Im(tr(U, V)), otherwise.

Lemma 2.11. Let (U, V) ∈ [^]2 with U > 0. Then

1. _(ðU,V , V) < U.2

2. If ðU,V ≠ U, then U ∈ acc(�ðU,V ).
3. tr(ðU,V , V) ⊑ tr(U, V).

Proof. To avoid trivialities, assume that _(U, V) = U. Let V0 > · · · > V= > V=+1 denote the decreasing

enumeration of the elements of Im(Tr(U, V)), so that V0 = V, V= = ðU,V , and V=+1 = U. For each 8 < =,

�V8 ∩ [U, V8+1) is empty, so that min(�V8 \ V=) = min(�V8 \ U) and sup(�V8 ∩ V=) = sup(�V8 ∩ U) < U.

Now, the three clauses follow immediately. �

For the purpose of this paper, we also introduce the following ad hoc notation.

Definition 2.12. For every ordinal [ < ^ and a pair (U, V) ∈ [^]2, we let

[U,V := min{= < l | [ ∈ �Tr(U,V) (=) or = = d2 (U, V)} + 1.

2Recall Convention 2.8.
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2.2. Relationship to the �-sequence number

Definition 2.13 (The �-sequence number of ^, [LHR21]). If ^ is weakly compact, then we define

j(^) := 0. Otherwise, we let j(^) denote the least (finite or infinite) cardinal j ≤ ^ such that for every

�-sequence 〈�V | V < ^〉, there exist Δ ∈ [^]^ and 1 : ^ → [^]j with Δ ∩ U ⊆
⋃

V∈1 (U) �V for every

U < ^.

Fact 2.14 (Todorcevic, [Tod07, Theorem 8.1.11]). If j(^) > 1, then ^ 9 [^]2
l .

Fact 2.15 (Lambie-Hanson and Rinot, [LHR21]). If j(^) ≤ 1, then ^ is (in fact, greatly) Mahlo, and for

every �-sequence 〈�V | V ∈ Reg(^)〉 over Reg(^), there exists a club � ⊆ ^ satisfying the following.

For every U < ^, there exists V ∈ Reg(^), such that � ∩ U ⊆ �V .

Lemma 2.16. If j(^) ≤ 1, then Pℓ1(^, 1, 2) fails.

Proof. Suppose that Pℓ1 (^, 1, 2) holds.

Claim 2.16.1. There exists a function B : [^]2 → ^ satisfying the following:

1. For all (U, V) ∈ ^ ⊛ acc(^), U < B(U, V) < V.

2. For every cofinal � ⊆ ^, B“[�]2 is stationary.

Proof. Fix t : [^]2 → [^]3 witnessing Pℓ1(^, 1, 2). Define B : [^]2 → ^ by letting B(U, V) := V∗

whenever t(U, V) = (g∗, U∗, V∗) with U < V∗ < V, and letting B(U, V) := U + 1, otherwise. To verify

Clause (2), let � be an arbitrary cofinal subset of ^. Set � := acc+(�) and �′ := � \ �, so that �′ is a

discrete cofinal subset of �. As {{U} | U ∈ �′} is a subset of [^]1 consisting of ^ many pairwise disjoint

sets, we may now fix a stationary ( ⊆ ^ such that for all (U∗, V∗) ∈ [(]2, there exists (U, V) ∈ [�′]2

with t(U, V) = (0, U∗, V∗). We claim that B“[�]2 covers the stationary set (∗ := (( ∩ �) \ {min(()}.
To see this, let V∗ ∈ (∗ be arbitrary. Put U∗ := min((). Fix (U, V) ∈ [�′]2 such that t(U, V) =

(0, U∗, V∗). We know that U∗ ≤ U < V∗ ≤ V and that V∗ ∈ � while V ∈ � \ �. So U < V∗ < V, and

hence B(U, V) = V∗, as sought. �

Suppose that j(^) ≤ 1, and yet there exists a function B : [^]2 → ^ as in the preceding claim. Set

�l := l. For any uncountable V ∈ Reg(^), let

�V := {W < V | ∀U < W [B(U, V) < W]}

be the club of closure points of the function B(·, V). Note that, for any U < V, B(U, V) ∉ �V , since

U < B(U, V).
Now, by Fact 2.15, we may fix a club � ⊆ ^ with the property that, for every U < ^, there exists

V ∈ Reg(^) with � ∩ U ⊆ �V .

Recursively build a (discrete) subset � ⊆ ({0} ∪ (Reg(^) \ l1)) such that for any nonzero V ∈ �,

V− := sup(� ∩ V) is smaller than V, and � ∩ (V− + 1) ⊆ �V . Then, let � be the closure of
⋃
{�V \ V

− |
V ∈ �, V ≠ 0} in ^, and note that, for every V ∈ �, � ∩ (V−, V) = �V ∩ (V−, V).

As � is cofinal, ( := B“[�]2 is stationary, so that we may pick V∗ ∈ (∩�∩� . Fix a pair (U, V) ∈ [�]2

with B(U, V) = V∗.

Claim 2.16.2. V∗ ∈ �V .

Proof. As (U, V) ∈ [�]2, we we know that V is a regular uncountable cardinal. So, by the hypothesis

on B, U < V∗ < V. Now, there are two cases to consider:

◮ If V∗ ≤ V−, then V∗ ∈ � ∩ (V− + 1) ⊆ �V .

◮ Otherwise, V− < V∗ < V, so that V∗ ∈ � ∩ (V−, V) = �V ∩ (V−, V). �

However, we have observed earlier that B(U, V) ∉ �V , meaning that V∗ ∉ �V . This contradicts the

preceding claim. �
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2.3. Relationship to Shelah’s principle Pr1

Definition 2.17 (Shelah, [She88]). Pr1 (^, ^, \, j) asserts the existence of a coloring 2 : [^]2 → \ such

that for every f < j, every family A ⊆ [^]f consisting of ^ many pairwise disjoint sets and every

8 < \, there is (0, 1) ∈ [A]2 such that 2[0 × 1] = {8}.

Note that Pr1(^, ^, \, 2) is equivalent to ^ 9 [^]2
\
.

Lemma 2.18. Any of the following implies that Pr1(^, ^, \, j) holds:

1. Pℓ1 (^, \, j).
2. Pℓ1 (^, 1, j) and ^ 9 [stat(^)]2

\
.

3. Pℓ1 (^, cf (\), j) and ^ 9 [stat(^)]2
[ for all [ < \.

4. Pℓ1 (^, a, j), and there exists a a+-cc poset P such that 
P ^ 9 [^]2
\
.

Proof.

(1) Let t : [^]2 → [^]3 be a witness to Pℓ1(^, \, j). Define 2∗ : [^]2 → \ via 2∗(U, V) := g∗ whenever

t(U, V) = (g∗, U∗, V∗). Then 2∗ witnesses Pr1 (^, ^, \, j).
(2) Let t : [^]2 → [^]3 be a witness to Pℓ1 (^, 1, j), and let 2 : [^]2 → \ be a witness to ^ 9 [stat(^)]2

\
.

Define 2∗ : [^]2 → \ via 2∗(U, V) := 2(U∗, V∗) whenever t(U, V) = (g∗, U∗, V∗). Then 2∗ witnesses

Pr1(^, ^, \, j).
(3) Let t : [^]2 → [^]3 be a witness to Pℓ1 (^, cf (\), j). By Clause (1), we may assume that \ is

singular. Thus, let 〈[8 | 8 < cf (\)〉 be an increasing sequence of cardinals, converging to \. For

each 8 < cf(\), let 28 : [^]2 → [8 be a witness to ^ 9 [stat(^)]2
[8

. Define 2∗ : [^]2 → \ via

2∗(U, V) := 28 (U
∗, V∗) whenever t(U, V) = (8, U∗, V∗). Then 2∗ witnesses Pr1(^, ^, \, j).

(4) By Clause (1), we may assume that a < \. Let t : [^]2 → [^]3 be a witness to Pℓ1 (^, a, j). Suppose

that P is a a+-cc poset such that 
P ^ 9 [^]2
\
. Fix a P-name ¤2 for a coloring witnessing ^ 9 [^]2

\

in the forcing extension by P. Define 3 : [^]2 → P(\) via

3 (U, V) := {g < \ | ∃?(? 
P ¤2(Ǔ, V̌) = ǧ)}.

As P is a+-cc, |3 (U, V) | ≤ a for every (U, V) ∈ [^]2, so that we may define a function 4 : [^]3 → \

such that, all (U, V) ∈ [^ \ a]2, 3 (U, V) ⊆ {4(8, U, V) | 8 < g}. It follows that 4 ◦ t witnesses

Pr1(^, ^, \, j).

�

We now establish Theorem D.

Proposition 2.19. Suppose that ^ is weakly compact and j ∈ Reg(^).

1. There exists a cofinality-preserving forcing extension in which ^ is strongly inaccessible, and there

exists a coherent ^-Souslin tree, Pr1(^, ^, ^, l) holds, yet Pℓ1(^) fails.

2. There exists a cofinality-preserving forcing extension in which ^ is strongly inaccessible, and there

exists a nonreflecting stationary subset of � ^
j, yet Pℓ1(^, 1, j

+) fails.

Proof.

(1) In [LHR21, §3], a cofinality-preserving forcing extension given by Kunen is revisited, in which

^ remains strongly inaccessible, and there exists a coherent ^-Souslin tree, so that Pr1 (^, ^, ^, l)
holds. It is shown there that j(^) = 1 holds in this model, so that, by Lemma 2.16, Pℓ1(^) fails.

(2) In [LHR21, §3], the authors give a cofinality-preserving forcing extension in which there exists

a nonreflecting stationary subset of � ^
j, and Pr1(^, ^, ^, j

+) fails. By Fact 2.2 and Lemma 2.18,

Pℓ1(^, 1, j
+) must fail in this model.

�

Next, we turn to deriving Theorem A:
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Corollary 2.20. Suppose that Pℓ1(^) holds. For every cardinal \ ≤ ^, the following are equivalent:

1. ^ 9 [^]2
\
.

2. ^ 9 [^; ^]2
\
.

3. Pr1 (^, ^, \, l).
4. For every Abelian group (�, +) of size ^, there exists a coloring 3 : � → \ such that for all -,. ⊆ �

of size ^ and every g ∈ \, there exist G ∈ - and H ∈ . such that 3 (G + H) = g.

Proof. (3) =⇒ (2) =⇒ (1): This is trivial.

(1) =⇒ (3): By Lemma 2.18(2).

(3) =⇒ (4): By Lemma 3.4 and [FR17, Theorem 4.2].

(4) =⇒ (1): As ([^]<l , △) is an Abelian group of size ^, let us fix a coloring 3 : [^]<l → \ as in

Clause (4). Now define a coloring 2 : [^]2 → \ by stipulating 2(G, H) := 3 ({G, H}). Clearly, 2 witnesses

that ^ 9 [^]2
\

holds. �

Remark 2.21. Compare the preceding with Conjecture 2 of [Rin14a].

Corollary 2.22. If Pℓ1(^, 1, j) holds, then so does Pr1 (^, ^, l, j).

Proof. To avoid trivialities, suppose that j ≥ 2. Then, by Lemma 2.16, j(^) > 1. Finally, by Fact 2.14

and Theorem 2.18(2), Pr1 (^, ^, l, j) holds. �

We are now ready to derive Theorem B:

Corollary 2.23. Suppose that Pℓ1(^) holds and = is some positive integer. Then there exists a poset P

such that P= satisfies the ^-cc, but P=+1 does not.

Proof. By Corollary 2.22, in particular, we may fix a coloring 2 : [^]2 → = + 1 witnessing Pr1(^, ^, = +
1, l). We define a poset P := (%, ≤) by letting

% := {(8, G) | 8 < = + 1, G ∈ [^]<l , 8 ∉ 2“[G]2},

and letting (8, G) ≤ ( 9 , H) iff 8 = 9 and G ⊇ H. A moment’s reflection makes it clear that {〈(8, {U}) |
8 < = + 1〉 | U < ^〉 forms a ^-sized antichain in P=+1.

We are left with showing that P= does satisfy the ^-cc. To this end, let � be an arbitrary ^-sized subset

of P=. For every ? ∈ �, write ? as 〈(8
?

9
, G

?

9
) | 9 < =〉. By the pigeonhole principle, we may assume the

existence of a sequence 〈8 9 | 9 < =〉 such that for every ? ∈ �, 〈8
?

9
| 9 < =〉 = 〈8 9 | 9 < =〉. Find 8∗ < =+1

such that 8∗ ≠ 8 9 for all 9 < =. By the Δ-system lemma, we may also assume that, for every 9 < =, {G
?

9
|

? ∈ �} forms a Δ-system with some room A 9 . Let A :=
⋃

9<= A 9 . Note that A is finite (possibly empty).

By further thinning out, we may assume that, for all ? ∈ � and 9 < =, min(G
?

9
\ A 9 ) > sup(A). By one

last step of thinning out, we may finally secure that {
⋃

9<= G
?

9
\ A | ? ∈ �} form a family of ^-many

pairwise disjoint finite sets.

Now, the choice of 2 entails that we may find ? ≠ @ in � such that:

1. max(
⋃

9<= G
?

9
\ A) < min(

⋃
9<= G

@

9
\ A), and

2. 2
[
(
⋃

9<= G
?

9
\ A) × (

⋃
9<= G

@

9
\ A)

]
= {8∗}.

To see that ? and @ are compatible, fix arbitrary 9 < = and (U, V) ∈ [G
?

9
∪ G

@

9
]2; we need to verify that

2(U, V) ≠ 8 9 . There are three possible options:

◮ If (U, V) ∈ [G
?

9
]2 ∪ [G

@

9
]2, then since 8

?

9
= 8 9 = 8

@

9
, 2(U, V) ≠ 8 9 .

◮ If U ∈ G
?

9
\ G

@

9
and V ∈ G

@

9
\ G

?

9
, then U ∈ G

?

9
\ A 9 and V ∈ G

@

9
\ A 9 , so that altogether U ∈ G

?

9
\ A and

V ∈ G
@

9
\ A . by Clause (2), then, 2(U, V) = 8∗. In particular, 2(U, V) ≠ 8 9 .

◮ If U ∈ G
@

9
\ G

?

9
and V ∈ G

?

9
\ G

@

9
, then U ∈ G

@

9
\ A and V ∈ G

?

9
\ A , contradicting Clause (1). So this

case does not exist. �
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3. Improved oscillation

In [Rin14b], the first author introduced the following oscillation principle:

Definition 3.1. Pℓ6 (`, a) asserts the existence of a map 3 : <l` → l such that for every sequence

〈(DU, EU, fU) | U < `〉 and a function i : ` → ` satisfying:

1. i is eventually regressive. That is, i(U) < U for co-boundedly many U < `;

2. DU and EU are nonempty elements of [<l`]<a;

3. U ∈ Im(r) for all r ∈ DU;

4. fU
⌢〈U〉 ⊑ f for all f ∈ EU,

there exist (U, V) ∈ [`]2 with i(U) = i(V) such that for all r ∈ DU and f ∈ EV , 3 (r⌢f) = ℓ(r) .

The main result of [Rin14b, §2] states that Pℓ6(a
+, a) holds for every infinite regular cardinal a. In

[RZ21], we show that Pℓ6 (a
+, a) fails for every singular cardinal a and that Pℓ6 (`, `) fails for every

infinite cardinal `.

In this paper, we shall be making use of two variations of Pℓ6(a
+, a). The first variation reads as

follows:

Fact 3.2. Suppose that ` = a+ for an infinite regular cardinal a. Then there exists a map 3 : <l` →
l × ` × ` × ` such that for every W∗ < ` and every sequence 〈(DU, EU, fU) | U < `〉 satisfying

clauses (2)–(4) of Definition 3.1, there exist (U, V) ∈ [`]2 such that for all r ∈ DU and f ∈ EV ,

3 (raf) = (ℓ(r), U, V, W∗).

Proof. This follows immediately from Theorems 2.3 and 2.6 of [Rin14b]. �

The second variation reads as follows:

Lemma 3.3. Suppose that ` = a+ for an infinite regular cardinal a. Then there exist a map 30 : <l` →
l and a `-additive normal ideal � on ` with �

`
a ∉ � such that for every sequence 〈(DU, EU, fU) |

U ∈ �〉 with � ∈ �+ satisfying clauses (2)–(4) of Definition 3.1, there exist (U, V) ∈ [�]2 such that for

all r ∈ DU and f ∈ E 9 , 30(r
af) = ℓ(r).

Proof. By [Rin14b, Theorem 2.6], we may assume that a<a > a. In particular, there exists a cardinal

\ < a with 2\ ≥ a. So, by [She97, Claim 3.1] and [She97, Lemma 3.10], we may fix a �-sequence
®� = 〈�V | V < `〉 and a sequence of functions 〈6V : �V → l | V ∈ �

`
a 〉 such that:

◦ otp(�V) = cf(V) for all V < `.

◦ For every club � ⊆ `, there exists some V ∈ �
`
a such that for every = < l, sup{X ∈ nacc(�V) ∩ � |

6V (X) = =} = V.

Fix a coloring 3 : [`]2 → l that satisfies 3 (U, V) = 6V (min(�V \ U)) for all V ∈ �
`
a and U < V. Also,

define a function ℎ : [`]<a → a via

ℎ(I) := sup{otp(�V ∩ U) | (U, V) ∈ [I]2}.

Next, define an ideal � as follows: � is in � iff � ⊆ `, and there exists a club � ⊆ ` such that for

every V ∈ � ∩ � ∩ �
`
a , there exists = < l such that sup{X ∈ nacc(�V) ∩ � | 6V (X) = =} < V.

Claim 3.3.1. � is a `-additive normal ideal on ` with �
`
a ∉ �.

Proof. By the choice of ®�, �
`
a ∉ �. It is clear that for all � ∈ � and � ∈ [`]<`, P(� ∪ �) ⊆ �. Thus, it

suffices to verify that � is normal. So, suppose that 〈�8 | 8 < `〉 is a sequence of sets in �, and we shall

prove that � :=
`

8<` �8 is in �. For each 8 < `, fix a club �8 witnessing that �8 ∈ �. We claim that

� :=
a

8<` �8 witnesses that � is in �. Indeed, let V ∈ � ∩ � ∩ �
`
a be arbitrary. Find 8 < V such that

V ∈ �8 . In particular, V ∈ �8 ∩ �8 ∩�
`
a , and hence there exists = < l such that sup{X ∈ nacc(�V) ∩� |

6V (X) = =} < V. �
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The rest of the proof now follows that of [Rin14b, Theorem 2.3]. Given a sequence [ ∈ <l`, let

D[ := {(8, 9) | 8 < 9 < ℓ([) & [(8) < [( 9)},

and whenever D[ ≠ ∅, set

◦ m[ := max{otp(�[ ( 9) ∩ [(8)) | (8, 9) ∈ D[}.
◦ P[ := {(8, 9) ∈ D[ | otp(�[ ( 9) ∩ [(8)) = m[}.
◦ 9[ := min{ 9 | ∃8 (8, 9) ∈ P[}.
◦ U[ := min{[(8) | ∃ 9 (8, 9) ∈ P[}.
◦ V[ := [( 9[).

Finally, define 30 : <l` → ` by letting for every [ ∈ <l` with D[ ≠ ∅:

30([) := max{0, 9[ − 3 (U[ , V[)}.

To verify this works, suppose that we are given a sequence 〈(DU, EU, fU) | U ∈ �〉 as in the statement

of the lemma. Note that, without loss of generality, we may assume that U ∉ Im(fU) for all U ∈ �.

For every U ∈ �, write 0U :=
⋃
{Im(f) | f ∈ DU ∪ EU}, and GU := 0U \ U. Let ^ be a large enough

regular cardinal, and let E^ be a well-ordering of H^ . Let 〈"X | X < `〉 be a continuous ∈-chain of

elementary submodels of (H^ , ∈, E^ ), each of size a, such that a ⊆ "0 and {ℎ, 〈0U | U ∈ �〉} ∈ "0.

Write � := {X < ` | "X ∩ ` = X}. As � ∈ �+, let us pick V ∈ � ∩ � ∩ �
`
a such that sup{X ∈

nacc(�V) ∩ � | 6V (X) = =} = V for all = < l. Put b := sup(0V ∩ V) + 1. As |0V | < cf (V), b < V. Let

5 : a → b be the E^ -least surjection. From |0V | < a and regularity of a, let 8′ < a be large enough such

that 0V ∩ V ⊆ 5 [8′]. Write =∗ := ℓ(fV), I := 5 [8′], n := ℎ(0V ∪ I), and

�′ := {U ∈ � | 0U ∩ U ⊆ I, ℎ(0U ∪ I) = n}.

Pick X ∈ nacc(�V) ∩ � above b with otp(�V ∩ X) > n such that 6V (X) = =∗. As b ∈ "X , �′ ∈ "X .

Since V ∈ �′ \ "X , sup(�′ ∩ "X) = X. So, let us pick U ∈ �′ ∩ "X above max(�V ∩ X).

Claim 3.3.2.

1. ℎ(0U ∪ I) = n .

2. 0U ∩ U ⊆ I.

3. GU ⊆ (max(�V ∩ X), X). In particular, otp(�V ∩ U) > n .

4. 3 (U, V) = ℓ(fV).

Proof. By the same proof of [Rin14b, Claim 2.3.1]. �

To see that the pair (U, V) is as sought, suppose that we are given r ∈ DU and f ∈ EV , and let us

show that 30 ([) = ℓ(r) for [ := r⌢f.

As U ∈ Im(r) and V ∈ Im(f), there exist 8̂ < 9̂ < ℓ([) such that [(8̂) = U and [( 9̂) = V. So (8̂, 9̂)
witnesses that D[ ≠ ∅, and then, by Claim 3.3.2(3), we have m[ ≥ otp(�V ∩ U) > n .

Claim 3.3.3. For every (8, 9) ∈ P[:

1. {[(8), [( 9)} * (0U ∪ I), and {[(8), [( 9)} * (0V ∪ I).
2. If [(8) ∈ 0U, then [( 9) ∉ 0V ∩ V.

3. r ⊑ [ ↾ 9 .

4. [( 9) = V.

5. [(8) ∈ GU.

Proof. By the same proof of [Rin14b, Claim 2.3.2]. �

As V ∉ Im(fV), we get from the minimality of 9[ together with Clauses (3) and (4) of the preceding

claim that

[ ↾ ( 9[ + 1) = r⌢fV
⌢〈V〉.
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So V[ = V and 9[ = ℓ(r⌢fV). By Clause (5) of the preceding claim, U[ ∈ GU. Then, by Claim 3.3.2(3),

we get that otp(�V ∩ U[) = otp(�V ∩ U). Recalling that min(GU) = U ∈ Im(r), Claims 3.3.3(5) and

3.3.2(3) then imply that U[ = U.

Recalling Claim 3.3.2(4), we altogether infer that

[ ↾ ( 9[ − 3 (U[ , V[)) = (r⌢f) ↾ (ℓ(r⌢fV) − ℓ(fV)) = r.

So, 30(f) = max{0, 9[ − 3 (U[ , V[)} = ℓ(r), as sought. �

4. Clause (2) of Theorem C

In this section, we suppose that j ∈ Reg(^) is a cardinal satisfying j+ < ^, and there exists a stationary

subset of � ^
≥j that does not reflect. We shall construct a witness to Pℓ1(^, ^, j). The proof is split into

two cases: j++ < ^ and j++ = ^.

4.1. Case I

In this subsection, we suppose that j++ < ^. Note that, by Proposition 2.19(2), the result of this

subsection cannot be improved.

Lemma 4.1. There exists a ∈ Reg(^) \ j with a+ < ^ and a stationary subset Γ ⊆ � ^
≥j ∩ � ^

≠a+
that

does not reflect.

Proof. By the hypothesis of this section, let us fix a stationary subset ' ⊆ � ^
≥j that does not reflect.

If ' ∩ Reg(^) is stationary, then we may simply let a := j and Γ := ' ∩ Reg(^) \ (a+ + 1). Next,

suppose that ' ∩ Reg(^) is nonstationary, and use Fodor’s lemma to fix a regular cardinal \ ≥ j for

which ' ∩ � ^
\

is stationary.

◮ If \+ < ^, then we let a := \. It follows that a+ < ^, and � ^
\
∩ � ^

a+
= ∅, so that Γ := ' \ � ^

a+
is as

sought.

◮ If \+ = ^, then we let a := j. As j++ < ^, we infer that a+ < \ < ^, so that � ^
\
∩ � ^

a+
= ∅ and

Γ := ' \ � ^
a+

is as sought. �

Let a and Γ be given by the preceding lemma. Set ` := a+, so that Γ ∩ � ^
` = ∅. Fix a surjection

6 : ^ → ^ × ^ such that �[,g := {X ∈ Γ | 6(X) = ([, g)} is stationary for every ([, g) ∈ ^ × ^. Fix

another surjection ℎ : ^ → ` such that �8 := {U ∈ Γ | ℎ(U) = 8} is stationary for every 8 < `.

As Γ is nonreflecting, let ®� = 〈�U | U < ^〉 be a sequence such that �U+1 = {U} for every U < ^, and

such that for every U ∈ acc(^), �U is a club in U with acc(�U) ∩ Γ = ∅. By a club-guessing theorem

due to Shelah (see also [BR19, Remark 1.5 and Lemma 2.5]), we may also assume that, for every club

� ⊆ ^, there exists W ∈ Γ with sup(nacc(�W) ∩ �) = W. Recalling Subsection 2.1, we now let Tr, tr, _

and d2 be the characteristic functions of walking along ®�, and let [U,V be the notation established in

Definition 2.12. In addition, we consider yet another function trℎ : [^]2 → <l` that is defined via

trℎ (U, V) := ℎ ◦ tr(U, V).
Appeal to Lemma 3.3 to fix a map 30 : <l` → l and its corresponding `-additive proper ideal �.

Define 2 : [^]2 → ^ × ^ via

2(U, V) := 6(Tr(U, V) (30(trℎ (U, V)))).

We are finally ready to define our transformation.

Definition 4.2. Define t : [^]2 → [^]3 by letting, for all (U, V) ∈ [^]2, t(U, V) := (g, U∗, V∗) provided

that the following conditions are met:

◦ ([, g) := 2(U, V) and max{[ + 1, g} < U,

◦ V∗ = Tr(U, V) ([U,V) is > U, and

◦ U∗ = Tr([ + 1, U) ([[+1,U).
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Otherwise, let t(U, V) := (0, U, V).

To verify that t witnesses Pℓ1 (^, ^, j), suppose that we are given a family A ⊆ [^]<j consisting of

^ many pairwise disjoint sets. Fix a sequence ®G = 〈GX | X < ^〉 such that for all X < ^, GX ∈ A with

min(GX) > X.

Definition 4.3. For [ < ^, ([ denotes the set of all n < ^ with the property that, for every e < ^, there

exist � ∈ �+ and a sequence 〈V8 | 8 ∈ �〉 ∈
∏

8∈� �8 \ e , such that for all 8 ∈ � and V ∈ GV8 :

(i) 8 ∈ Im(trℎ (n, V)).
(ii) _(n, V) = [.

(iii) d2 (n, V) = [n ,V .

Lemma 4.4. There exists [ < ^ for which ([ is stationary.

Proof. By the pressing down lemma, it suffices to prove that, for every club � ⊆ ^, there exist n ∈ �

and [ < n for which n ∈ ([ . Thus, let � be an arbitrary club in ^.

Define a function 5 : Γ → ^ via

5 (X) := sup{_(X, V) | V ∈ GX}.

By Fact 2.6 and since |GX | < j ≤ cf(X) for all X ∈ Γ, 5 is regressive. So, for all 8 < `, let us

pick a stationary subset �̄8 ⊆ �8 such that 5 ↾ �̄8 is constant. Set Z := sup( 5 [
⋃

8<` �̄8]). Now, by the

club-guessing feature of ®�, let us pick W ∈ Γ with sup(nacc(�W) ∩ (� \ Z)) = W.

Let e < ^. Fix a sequence 〈Ve

8
| 8 < `〉 ∈

∏
8<` �̄8 \ max{W + 1, e}. For every 8 < `, by Fact 2.6,

_(W, Ve

8
) < W, so as W ∈ Γ ⊆ � ^

≠` and as � is a `-additive proper ideal on `, we may fix � e ∈ �+

along with some ordinal b e < W such that _(W, Ve

8
) ≤ b e for all 8 ∈ � e . Then, pick a large enough

n e ∈ nacc(�W) ∩ � such that sup(�W ∩ n e ) > max{b e , Z }.
Next, by the pigeonhole principle, let us fix n ∈ nacc(�W) ∩ � for which Σ := {e < ^ | n e = n} is

cofinal in ^. Put [ := sup(�W ∩ n), so that [ < n .

We already know that n ∈ �. To see that n ∈ ([ , let e < ^ be arbitrary. By increasing e , we may

assume that e ∈ Σ. Let 8 ∈ � e and V ∈ GVe

8
be arbitrary. As V

e

8
∈ �8 , it suffices to show that:

(i’) tr(n, V) = tr(Ve

8
, V)a tr(n, Ve

8
).

(ii’) _(n, V) = [.

(iii’) d2(n, V) = [n ,V .

We have:

_(V
e

8
, V) ≤ 5 (V

e

8
) ≤ Z ≤ max{_(W, V

e

8
), Z } ≤ max{b e , Z } < [ < n < W < V

e

8
< V.

It thus follows from Fact 2.7 that Clause (i’) is satisfied. It also follows from Fact 2.7 that tr(n, Ve

8
) =

tr(W, Ve

8
)a tr(n, W), so that altogether

tr(n, V) = tr(Ve

8
, V)a tr(W, Ve

8
)a tr(n, W).

By Lemma 2.9 and the above equation,

_(n, V) = max{_(Ve

8
, V), _(W, Ve

8
), _(n, W)}.

Recall that max{_(Ve

8
, V), _(W, Ve

8
)} ≤ max{Z, b e } < [. As n ∈ �W , we infer that _(n, W) =

sup(�W ∩ n) = [. In effect, _(n, V) = [ and d2(n, V) = [n ,V . �
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Let [ be given by the preceding lemma. Let � be a club in ^ such that for all X ∈ �, there exists

"X ≺ H^+ containing the parameter ? := {Γ, ([ , ®G, ®�, ℎ, `} and satisfying "X ∩ ^ = X. Finally, let

(∗ := ([ ∩
i

g<^

acc+
(
�[,g ∩

⋂

9<`
acc+(� 9 ∩ �)

)
.

Lemma 4.5. Let (g∗, U∗, V∗) ∈ ^⊛(∗⊛(∗. There exists (0, 1) ∈ [A]2 such that t[0×1] = {(g∗, U∗, V∗)}.

Proof. As V∗ ∈ (∗ ⊆ ([ , let us pick � ∈ �+ and a sequence 〈V8 | 8 ∈ �〉 ∈
∏

8∈� �8 \ (V
∗ + 1) such that

for all 8 ∈ � and V ∈ GV8 :

1. 8 ∈ Im(trℎ (V
∗, V)).

2. _(V∗, V) = [.

3. d2 (V
∗, V) = [V∗ ,V .

As (g∗, V∗) ∈ ^ ⊛ (∗, pick a large enough Y ∈
(
�[,g∗ ∩

⋂
9<` acc+(� 9 ∩ �)

)
∩ V∗ such that

sup(�V∗ ∩ Y) > U∗. In particular, _(Y, V∗) > U∗ > [.

For all 9 < `, as Y ∈ Γ∩acc+(� 9∩�), Fact 2.6 entails that we may pick a large enough X 9 ∈ � 9∩�∩Y
such that X 9 > _(Y, V∗). As "X 9

contains ?, we have that ([ ∈ "X 9
. As X 9 ∈ Γ, Fact 2.6 entails that

e 9 := max{U∗, _(Y, V∗), _(X 9 , Y)} + 1 is smaller than X 9 . Since U∗ ∈ "X 9
∩ ([ , we may then find

U 9 ∈ "X 9
∩ (

⋃
8<` �8) \ e 9 such that for all U ∈ GU9

:

(2’) _(U∗, U) = [.

(3’) d2 (U
∗, U) = [U∗ ,U.

Note that from U 9 ∈ "X 9
, it follows that sup(GU9

) < X 9 . Write 0 9 := GU9
and 18 := GV8 . Let

(8, 9 , U, V) ∈ � × ` × 0 9 × 18 be arbitrary. Then:

[ < [ + 1 < U∗ < e 9 ≤ U 9 < U < X 9 < Y < V∗ < V8 < V.

In particular, Fact 2.7 yields the following conclusions:

(a) From _(V∗, V) = [ < U < V∗ < V, we have tr(U, V) = tr(V∗, V)a tr(U, V∗).
(b) From _(Y, V∗) < e 9 < U < Y < V∗, we have tr(U, V∗) = tr(Y, V∗)a tr(U, Y).
(c) From _(X 9 , Y) < e 9 < U < X 9 < Y, we have tr(U, Y) = tr(X 9 , Y)

a tr(U, X 9 ).

So that, altogether,

tr(U, V) = tr(V∗, V)a tr(Y, V∗)a tr(X 9 , Y)
a tr(U, X 9 ).

In addition, from _(U∗, U) = [ < [ + 1 < U∗ < U, we infer that

(d) tr([ + 1, U) = tr(U∗, U)a tr([ + 1, U∗).

For each 8 ∈ �, denote D8 := {trℎ (Y, V) | V ∈ 18}. For each 9 < `, denote E 9 := {trℎ (U, Y) | U ∈ 0 9 }.

Claim 4.5.1.

(i) For every 8 ∈ �, 8 ∈ Im(r) for all r ∈ D8 .

(ii) For every 9 < `, there exists f9 ∈
<l` such that f9

a〈 9〉 ⊑ f for all f ∈ E 9 .

Proof. (i) For all V ∈ 18 , trℎ (Y, V) = trℎ (V
∗, V)a trℎ (Y, V

∗), so the conclusion follows from Clause (1).

(ii) Since X 9 ∈ � 9 , by Clause (c) above, trℎ (X 9 , Y)
a〈 9〉 ⊑ f for all f ∈ E 9 .

�

Next, by the choice of 30, fix (8, 9) ∈ [�]2 such that 30(r
af) = ℓ(r) for all r ∈ D8 and f ∈ E 9 . Set

0 := 0 9 and 1 := 18 , so that (0, 1) ∈ [A]2.

To see that t[0 × 1] = {(g∗, U∗, V∗)}, fix arbitrary U ∈ 0 and V ∈ 1.
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Claim 4.5.2. 2(U, V) = ([, g∗).

Proof. Write r := trℎ (Y, V) and f := trℎ (U, Y). Then:

◦ trℎ (U, V) = raf.

◦ 30(trℎ (U, V)) = ℓ(r) = ℓ(tr(Y, V)) = d2 (Y, V).
◦ Tr(U, V) (30(trℎ (U, V))) = Tr(U, V) (d2(Y, V)) = Y.

So, 2(U, V) = 6(Tr(U, V) (30(trℎ (U, V)))) = 6(Y) = ([, g∗). �

By Clause (a) above, tr(U, V) = tr(V∗, V)a tr(U, V∗), so Clause (3) above implies that [U,V = [V∗ ,V =

d2 (V
∗, V).

By Clause (d) above, tr([ + 1, U) = tr(U∗, U)a tr([ + 1, U∗), so Clause (3’) above implies that

[[+1,U = [U∗ ,U = d2 (U
∗, U). Altogether, t(U, V) = (g∗, U∗, V∗). �

4.2. Case II

In this subsection, we suppose that j++ = ^. Denote ` := j+. It is clear that Pℓ1 (^, ^, j) is equivalent

to Pℓ1(^, `, j), so we shall focus on constructing a witness to the latter. Denote Γ := � ^
`.

Fix a function ℎ : ^ → ` such that for every 8 < `, �8 := {U ∈ Γ | ℎ(U) = 8} is stationary. By a

club-guessing theorem due to Shelah [She94, §2] (see also [SS10]), we may fix a�-sequence ®� = 〈�U |
U < ^〉 such that:

◦ For every U < ^, otp(�U) = cf(U).
◦ For every club � ⊆ ^ and every 8 < `, there exists W ∈ �8 with sup(nacc(�W) ∩ �) = W.

Note that acc(�U) ∩ Γ = ∅ for all U < ^. Recalling Subsection 2.1, we now let Tr, tr, _ and

d2 be the characteristic functions of walking along ®�. In addition, we consider yet another function

trℎ : [^]2 → <l` that is defined via trℎ (U, V) := ℎ ◦ tr(U, V).
Fix a sequence 〈/n | n < ^〉 of elements of [`]` such that for every (U, V) ∈ [`]`, |/U ∩ /V | < `.

Definition 4.6. For every ordinal b < ` and a pair (U, V) ∈ [^]2, let

bU,V := min{= < l | b ∈ /Tr(U,V) (=) or = = d2(U, V) + 1}.

Lemma 4.7. There exists a map 31 : <l` → l × ` × ` × `, such that for every (g, b, q) ∈ ` × ` × `

and every sequence 〈(D8 , E8 , f8) | 8 < `〉, with

1. D8 and E8 are nonempty elements of [<l`]<j;

2. 8 ∈ Im(r) for all r ∈ D8;

3. f9
a〈 9〉 ⊑ f for all f ∈ E 9 ,

there exist (8, 9) ∈ [`]2 satisfying that 31 (r
af) = (ℓ(r), g, b, q) for all r ∈ D8 and f ∈ E 9 .

Proof. Let 3 : <l` → l×`×`×` be given by Fact 3.2 using a := j. Fix a bijection c : ` ↔ `×`×`.

Then, define 31 : <l` → l × ` × ` × ` by letting 31(f) := (=, g, b, q) whenever 3 (f) = (=, 8, 9 , W)
and c(W) = (g, b, q). Evidently, 31 is as sought. �

Let 31 : <l` → l × ` × ` × ` be given by the preceding lemma. For every nonzero n < ^, fix a

surjection kn : ` → n . We are now ready to define our transformation.

Definition 4.8. Define t : [^]2 → [^]3 by letting, for all (U, V) ∈ [^]2, t(U, V) := (g∗, U∗, V∗) provided

that, for (=, g, b, q) := 31(trℎ (U, V)), all of the following conditions are met:

◦ V∗ = Tr(U, V) (=) is > U,

◦ [ := kV∗ (q) satisfies that [ + 1 < U,

◦ U∗ = Tr([ + 1, U) (b[+1,U), and

◦ g∗ = g < U∗.
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Otherwise, let t(U, V) := (0, U, V).

To verify that t witnesses Pℓ1(^, `, j), suppose that we are given a family A ⊆ [^]<j consisting of

^ many pairwise disjoint sets.

Lemma 4.9. For every 8 < `, there exist an ordinal Z8 < ^ and a sequence ®G8 = 〈G8W | W ∈ Γ8〉 such that:

◦ Γ8 is a stationary subset of ^.

◦ for all W ∈ Γ8 , G
8
W ∈ A with min(G8W) > W.

◦ for all W ∈ Γ8 and V ∈ G8W , _(W, V) = Z8 and 8 ∈ Im(trℎ (W, V)).

Proof. Let 8 < `. By the pressing down lemma, it suffices to prove that, for every club � ⊆ ^, there

exist W ∈ �, Z < W and G ∈ A with min(G) > W such that _(W, V) = Z and 8 ∈ trℎ (W, V) for all V ∈ G.

Thus, let � be an arbitrary club in ^.

By the choice of ®�, fix X ∈ �8 such that sup(nacc(�X) ∩ �) = X. Then, fix any G ∈ A with

min(G) > X. As X ∈ Γ and |G | < j < cf (X), Fact 2.6 entails that we may find a large enough

W ∈ nacc(�X) ∩ � with Z := sup(�X ∩ W) being greater than supV∈G _(X, V). Now, for every V ∈ G,

we have _(X, V) < Z < W < X < V, so, by Fact 2.7, tr(W, V) = tr(X, V)a tr(W, X). In particular,

8 = ℎ(X) ∈ Im(trℎ (W, V)) Next, by Lemma 2.9, _(W, V) = max{_(X, V), _(W, X)}. As W ∈ �X , we have

_(W, X) = sup(�X ∩ W) > Z = _(X, V), so that, altogether, _(W, V) = Z . �

For each 8 < `, let Z8 and ®G8 = 〈G8W | W ∈ Γ8〉 be given by the preceding lemma. For notational

simplicity, we shall drop the superscript 8, writing ®G8 = 〈GW | W ∈ Γ8〉.3 Set Z := sup8<` Z8 .

Definition 4.10. For [ < ^ and b, q < `, ([, b ,q denotes the set of all n ∈ Γ with the property that, for

every e < ^, there exists a sequence 〈V8 | 8 < `〉 ∈
∏

8<` Γ8 \ e such that for all 8 < ` and V ∈ GV8 :

(i) tr(n, V) = tr(V8 , V)
a tr(n, V8).

(ii) _(n, V) < n .

(iii) If 8 = 0, then _(n, V) = [ = kn (q), and d2(n, V) = b n ,V .

Lemma 4.11. There exist [ < ^ and b, q < ` for which ([, b ,q is stationary.

Proof. For all 8 < ` and e < ^, denote V
e

8
:= min(Γ8 \ e).

Let n ∈ Γ \ (Z + 1). For every e in the interval (n, ^), define 5
e
n : ` → n via 5

e
n (8) :=

max{Z8 , _(n, V
e

8
)}. Now, find [n < n and qn , bn < ` for which

Σn :=
{
e ∈ (n, ^) | 5 en (0) = [n = kn (qn ) & bn ∈ /n \

⋃
{/g | g ∈ Im(tr(n, V)), V ∈ GVe

0
}
}

is cofinal in ^.

Finally, find [, b, q for which ( := {n ∈ Γ \ (Z + 1) | ([, b, q) = ([n , bn , qn )} is stationary. We claim

that ( ⊆ ([, b ,q . Let n ∈ ( be arbitrary; to see that n ∈ ([, b ,q , let e < ^ be arbitrary. By increasing e ,

we may assume that e ∈ Σn . Let 8 < ` and V ∈ GVe

8
be arbitrary. We will show that:

(i’) tr(n, V) = tr(V
e

8
, V)a tr(n, V

e

8
).

(ii’) _(n, V) = 5
e
n (8).

(iii’) if 8 = 0, then d2(n, V) = b n ,V .

As _(Ve

8
, V) = Z8 < n < V

e

8
< V, it follows from Fact 2.7 that Clause (i’) is satisfied, and it follows

from Lemma 2.9 that

_(n, V) = max{_(Ve

8
, V), _(n, Ve

8
)} = max{Z8 , _(n, V

e

8
)} = 5

e
n (8).

In addition, from e ∈ Σn , Clause (iii’) is satisfied. �

3This is formally legitimate provided that the stationary sets in 〈Γ8 | 8 < `〉 are pairwise disjoint. Now, as ` is regular, for any
sequence 〈Γ8 | 8 < `〉 of stationary subsets of `+, there exists a sequence 〈Γ̄8 | 8 < `〉 of pairwise disjoint stationary sets such
that Γ̄8 ⊆ Γ8 for all 8 < ` (see [IR21]). So, we may as well assume that the original sequence consists of pairwise disjoint sets.
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Let [, b, q be given by the preceding lemma. Let � be a club in ^ such that for all X ∈ �, there exists

"X ≺ H^+ containing the parameter ? := {Γ, ([, b ,q ,
®G0, ®�, ℎ, `} and satisfying "X ∩ ^ = X. Finally, let

(∗ := ([, b ,q ∩
⋂

9<`
acc+(� 9 ∩ �).

Lemma 4.12. Let (g∗, U∗, V∗) ∈ ` ⊛ (∗ ⊛ (∗. There exists (0, 1) ∈ [A]2 such that t[0 × 1] =

{(g∗, U∗, V∗)}.

Proof. As V∗ ∈ (∗ ⊆ ([, b ,q , let us fix a sequence 〈V8 | 8 < `〉 ∈
∏

8<` Γ8 \ (V∗ + 1) such that for all

8 < ` and V ∈ GV8 :

1. tr(V∗, V) = tr(V8 , V)
a tr(V∗, V8).

2. _(V∗, V) < V∗.

3. kV∗ (q) = [.

For each 8 < `, |GV8 | < j < cf(V∗), so we may define a function 5 : ` → V∗ via 5 (8) :=

sup{_(V∗, V) | V ∈ GV8 }. For all 9 < `, as V∗ ∈ Γ ∩ acc+(� 9 ∩ �), we may pick a large enough

X 9 ∈ � 9 ∩� ∩ V∗ such that X 9 > max{U∗, sup8< 9 5 (8)}. As "X 9
contains ?, we have that ([, b ,q ∈ "X 9

.

As X 9 ∈ Γ, Fact 2.6 entails that e 9 := max{U∗, sup8< 9 5 (8), _(X 9 , V
∗)} + 1 is smaller than X 9 . Since

U∗ ∈ "X 9
∩ ([, b ,q , we may then find U 9 ∈ "X 9

∩ Γ0 \ e 9 such that for all U ∈ GU9
:

(4) _(U∗, U) = [ and d2(U
∗, U) = bU

∗ ,U.

Note that from U 9 ∈ "X 9
, it follows that sup(GU9

) < X 9 . Write 0 9 := GU9
and 18 := GV8 . Fix arbitrary

(8, 9) ∈ [`]2 and (U, V) ∈ 0 9 × 18 . Then:

[ + 1 < U∗ ≤ max{U∗, _(V∗, V), _(X 9 , V
∗)} ≤ e 9 ≤ U 9 < U < X 9 < V∗ < V8 < V.

In particular, Fact 2.7 yields the following conclusions:

(a) From _(V∗, V) < U < V∗ < V, we have tr(U, V) = tr(V∗, V)a tr(U, V∗).
(b) From _(X 9 , V

∗) < U < X 9 < V∗, we have tr(U, V∗) = tr(X 9 , V
∗)a tr(U, X 9 ).

Altogether,

tr(U, V) = tr(V8 , V)
a tr(V∗, V8)

a tr(X 9 , V
∗)a tr(U, X 9 ).

For each 8 < `, set D8 := {trℎ (V
∗, V) | V ∈ 18}. As V8 ∈ Γ8 , Clause (1) above implies that 8 ∈ Im(r)

for all r ∈ D8 . For each 9 < `, set E 9 := {trℎ (U, V
∗) | U ∈ 0 9 } and f9 := trℎ (X 9 , V

∗). As X 9 ∈ � 9 , we

infer that f9
a〈 9〉 ⊑ f for all f ∈ E 9 .

Next, by the choice of 31, fix (8, 9) ∈ [`]2 such that 31(r
af) = (ℓ(r), g∗, b, q) for all r ∈ D8 and

f ∈ E 9 . Set 0 := 0 9 and 1 := 18 , so that (0, 1) ∈ [A]2.

To see that t[0 × 1] = {(g∗, U∗, V∗)}, fix arbitrary U ∈ 0 and V ∈ 1. Denote r := trℎ (V
∗, V) and

f := trℎ (U, V
∗), so that r ∈ D8 and f ∈ E 9 . Then 31(trℎ (U, V)) = (ℓ(r), g∗, b, q), so that

◦ Tr(U, V) (ℓ(r)) = Tr(U, V) (d2(V
∗, V)) = V∗.

◦ [ = kV∗ (q) and [ + 1 < U.

◦ g∗ < U∗.

Now, since _(U∗, U) = [ < [ + 1 < U∗ < U, tr([ + 1, U) = tr(U∗, U)a tr([ + 1, U∗). So, since

d2 (U
∗, U) = bU

∗ ,U, d2(U
∗, U) = b[+1,U and U∗ = Tr([ + 1, U) (b[+1,U). �

5. Clause (1) of Theorem C

In this section, we suppose that �(^) holds. Fix an arbitrary j ∈ Reg(^) with j+ < ^. We shall construct

a witness to Pℓ1 (^, ^, j). Denote ` := j+.
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Lemma 5.1. There exists a �-sequence ®� = 〈�U | U < ^〉 satisfying the following:

1. �U+1 = {0, U} for every U < ^.

2. for every club � ⊆ ^, there exists X ∈ � ^
≠` with sup(nacc(�X) ∩ �) = X.

3. for every U ∈ acc(^) and Ū ∈ acc(�U), �Ū = �U ∩ Ū.

4. for every W < ^, {X ∈ � ^
j | min(�X) = W} is stationary.

Proof. As �(^) holds, we may appeal to [Rin17, Proposition 3.5] with ( := � ^
≠`, and obtain a �-

sequence ®� satisfying Clauses (2) and (3). In particular, ®� is a �(^)-sequence. Now, by feeding Γ := � ^
j

and ®� to the proof of [Rin14a, Proposition 3.2], we obtain a �-sequence 〈�̄U | U < ^〉 satisfying

Clauses (1), (3) and (4). An inspection of the said proof makes clear that sup(�̄U△�U) < U for every

U ∈ acc(^), so that Clause (2) is valid for 〈�̄U | U < ^〉, as well. �

Let ®� be given by the preceding lemma. Recalling Subsection 2.1, we now let Tr, tr, _ and d2 be the

characteristic functions of walking along ®�, and let [U,V be the notation established in Definition 2.12.

Fix a bijection c : ^ ↔ ^ × ^. Define a function 6 : ^ → ^ × ^ via 6(U) := c(min(�U)). Define

a function ℎ : ^ → ` by letting ℎ(U) := min(�U) for all U < ^ with min(�U) < `, and ℎ(U) := 0,

otherwise. Then, define a function trℎ : [^]2 → <l` via trℎ (U, V) := ℎ ◦ tr(U, V). Also, for each

([, g) ∈ ^ × ^, denote �[,g := {X < ^ | 6(X) = ([, g)}, and for each 8 < `, denote �8 := ℎ−1{8}.

Lemma 5.2. For every (X, V) ∈ [^]2, �X = �ðX,V ∩ X. In particular:

◦ ℎ(X) = ℎ(ðX,V).
◦ for every n < X, _(n, X) = _(n, ðX,V).

Proof. By Lemma 5.1(3) together with Lemma 2.11(2). �

Exactly as in Subsection 4.1, we appeal to Lemma 3.3 to fix a map 30 : <l` → l, its corresponding

`-additive proper ideal �, define a coloring 2 : [^]2 → ^ × ^ via

2(U, V) := 6(Tr(U, V) (30(trℎ (U, V)))),

and define the sets ([ and the transformation t in the very same way.

Definition 5.3. For [ < ^, ([ denotes the set of all n < ^ with the property that, for every e < ^, there

exist � ∈ �+ and a sequence 〈V8 | 8 ∈ �〉 ∈
∏

8∈� �8 \ e , such that for all 8 ∈ � and V ∈ GV8 :

(i) 8 ∈ Im(trℎ (n, V)).
(ii) _(n, V) = [.

(iii) d2 (n, V) = [n ,V .

Definition 5.4. Define t : [^]2 → [^]3 by letting, for all (U, V) ∈ [^]2, t(U, V) := (g, U∗, V∗) provided

that the following conditions are met:

◦ ([, g) := 2(U, V) and max{[ + 1, g} < U,

◦ V∗ = Tr(U, V) ([U,V) is > U, and

◦ U∗ = Tr([ + 1, U) ([[+1,U).

Otherwise, let t(U, V) := (0, U, V).

To verify that t witnesses Pℓ1 (^, ^, j), suppose that we are given a family A ⊆ [^]<j consisting of

^ many pairwise disjoint sets. Fix a sequence ®G = 〈GX | X < ^〉 such that for all X < ^, GX ∈ A with

min(GX) > X.

Lemma 5.5. There exists [ < ^ for which ([ is stationary.

Proof. It suffices to prove that, for every club � ⊆ ^, there exist n ∈ � and [ < n for which n ∈ ([ .

Thus, let � be an arbitrary club in ^.
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Define a function 5 : � ^
j → ^ via

5 (X) := sup{_(ðX,V , V) | V ∈ GX}.

As |GX | < j = cf(X), Lemma 2.11(1) entails that 5 is regressive. So, for all 8 < `, let us pick a

stationary subset �̄8 ⊆ �8 such that 5 ↾�̄8 is constant. Set Z := sup( 5 [
⋃

8<` �̄8]). Now, by Lemma 5.1(2),

let us pick a nonzero W ∈ � ^
≠` with sup(nacc(�W) ∩ (� \ Z)) = W.

Let e < ^. Fix a sequence 〈Ve

8
| 8 < `〉 ∈

∏
8<` �̄8 \ max{W + 1, e}. For every 8 < `, let

Z
e

8
:=





0, if W ∈ acc(�V
e

8
);

sup(�V
e

8
∩ W), if W ∈ nacc(�V

e

8
);

_(ðW,Ve

8
, V

e

8
), otherwise.

Note that, by Lemma 2.11(1), Z
e

8
< W.

As cf (W) ≠ ` and as � is a `-additive proper ideal on `, we may now fix � e ∈ �+ along with some

ordinal b e < W such that max{Z, Z e

8
} ≤ b e for all 8 ∈ � e . Then, pick a large enough n e ∈ nacc(�W) ∩�

such that sup(�W ∩ n e ) > b e .

Fix n ∈ nacc(�W) ∩ � for which Σ := {e < ^ | n e = n} is cofinal in ^. Denote [ := sup(�W ∩ n), so

that [ < n . We have n ∈ �. To see that n ∈ ([ , let e < ^ be arbitrary. By increasing e , we may assume

that e ∈ Σ. Let 8 ∈ � e and V ∈ GVe

8
be arbitrary. We must show that:

(i) 8 ∈ Im(trℎ (n, V)).
(ii) _(n, V) = [.

(iii) d2 (n, V) = [n ,V .

We have:

_(ðVe

8
,V , V) ≤ 5 (V

e

8
) ≤ Z ≤ b e < [ < n < W < V

e

8
< V.

It thus follows from Fact 2.7 that tr(n, V) = tr(ðVe

8
,V , V)

a tr(n, ðVe

8
,V). So, since V

e

8
∈ �8 , Lemma 5.2

implies that 8 ∈ Im(trℎ (n, V)).

Claim 5.5.1. _(n, V) = [ and d2(n, V) = [n ,V .

Proof. By Lemma 2.9, _(n, V) = max{_(ðVe

8
,V , V), _(n, ðVe

8
,V)}. Now, there are three cases to consider:

◮ If W ∈ acc(�V
e

8
), then �V

e

8
∩ W = �W , and since n ∈ �W , tr(n, V) = tr(ðVe

8
,V , V)

a〈ðVe

8
,V〉, and

_(n, ðVe

8
,V) = sup(�W ∩ n) = [ > Z ≥ _(ðVe

8
,V , V), so the conclusion follows.

◮ If W ∈ nacc(�V
e

8
), then since n ∈ �W , tr(n, V) = tr(ðVe

8
,V , V)

a〈ðVe

8
,V , W〉, so that _(n, V) =

max{_(ðVe

8
,V , V), sup(�ð

V
e
8
,V
∩n), sup(�W∩n)} = max{_(ðVe

8
,V , V), Z

e

8
, [}, and the conclusion follows.

◮ Otherwise, ðW,Ve

8
≠ V

e

8
. Then _(ðW,Ve

8
, V

e

8
) = Z

e

8
≤ b e < n < W ≤ ðW,Ve

8
< V

e

8
, and so, by

Fact 2.7, tr(n, Ve

8
) = tr(ðW,Ve

8
, V

e

8
)a tr(n, ðW,Ve

8
). Thus, by Lemma 2.9,

_(n, V
e

8
) = max{_(ðW,Ve

8
, V

e

8
), _(n, ðW,Ve

8
)} = max{Z

e

8
, _(n, ðW,Ve

8
)}.

By Lemma 5.2, _(n, ðVe

8
,V) = _(n, Ve

8
). As n ∈ �W = �ð

W,V
e
8

∩ W, we get that _(n, ðW,Ve

8
) =

sup(�W ∩ n) = [. Altogether, _(n, V) = max{_(ðVe

8
,V , V), Z

e

8
, [}. But, [ > b e ≥ max{Z, Z

e

8
} ≥

{_(ðVe

8
,V , V), Z

e

8
}, and the conclusion follows. �

This completes the proof. �

Let [ be given by the preceding lemma. Let � be a club in ^ such that for all X ∈ �, there exists

"X ≺ H^+ containing the parameter ? := {([ , ®G, ®�, ℎ} and satisfying "X ∩ ^ = X. Consider the club
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� :=
i

g<^

acc+ (�[,g ∩
⋂

9<`
acc+(� 9 ∩ �)).

Finally, let (∗ := {n ∈ ([ | sup(� ∩ n \ �n ) = n}.

Lemma 5.6. (∗ is stationary.

Proof. As ®� is a�(^)-sequence, [BR19, Lemma 1.23] implies that ®� is amenable in the sense of [BR19,

Definition 1.3], so that {n ∈ ^ | sup(� ∩ n \ �n ) < n} is nonstationary. �

Lemma 5.7. Let (g∗, U∗, V∗) ∈ ^⊛(∗⊛(∗. There exists (0, 1) ∈ [A]2 such that t[0×1] = {(g∗, U∗, V∗)}.

Proof. As V∗ ∈ (∗ ⊆ ([ , let us pick � ∈ �+ and a sequence 〈V8 | 8 ∈ �〉 ∈
∏

8∈� �8 \ (V
∗ + 1) such that

for all 8 ∈ � and V ∈ GV8 :

1. 8 ∈ trℎ (V
∗, V).

2. _(V∗, V) = [.

3. d2 (V
∗, V) = [V∗ ,V .

Denote � := �[,g∗ ∩
⋂

9<` acc+(� 9 ∩ �). From V∗ ∈ (∗ and as �V∗ is closed, it follows that

sup(� ∩ V∗ \ �V∗ ) = V∗. Thus, we pick a large enough W ∈ � ∩ V∗ \ �V∗ such that sup(�V∗ ∩ W) > U∗.

In particular, for Y := ðW,V∗ , _(Y, V∗) > U∗ > [.

For each 9 < `, as W ∈ � ⊆ acc+(� 9 ∩ �), Lemma 2.11(1) entails that we may pick a large enough

X 9 ∈ � 9∩�∩W such that X 9 > _(Y, V∗). As "X 9
contains ?, we have that ([ ∈ "X 9

. By Lemma 2.11(1),

e 9 := max{U∗, _(Y, V∗), _(ðX 9 ,W , W)} + 1 is smaller than X 9 .4 Since U∗ ∈ "X 9
∩ ([ , we may then find

U 9 ∈ "X 9
∩ (

⋃
8<` �8) \ e 9 such that for all U ∈ GU9

:

(2’) _(U∗, U) = [.

(3’) d2 (U
∗, U) = [U∗ ,U.

Note that from U 9 ∈ "X 9
, it follows that sup(GU9

) < X 9 . Write 0 9 := GU9
and 18 := GV8 . Let

(8, 9 , U, V) ∈ � × ` × 0 9 × 18 be arbitrary. Then:

[ < [ + 1 < U∗ < e 9 ≤ U 9 < U < X 9 < W ≤ Y < V∗ < V8 < V.

In particular, Fact 2.7 yields the following conclusions:

(a) From _(V∗, V) = [ < U < V∗ < V, we have tr(U, V) = tr(V∗, V)a tr(U, V∗).
(b) From _(Y, V∗) < e 9 < U < V∗, we have tr(U, V∗) = tr(Y, V∗)a tr(U, Y).
(c) From _(ðX 9 ,W , Y) = _(ðX 9 ,W , W) < e 9 < U < X 9 ≤ ðX 9 ,W ≤ W ≤ Y, we have

tr(U, Y) = tr(ðX 9 ,W , Y)
a tr(U, ðX 9 ,W).

So that, altogether,

tr(U, V) = tr(V∗, V)a tr(Y, V∗)a tr(ðX 9 ,W , Y)
a tr(U, ðX 9 ,W).

In addition, from _(U∗, U) = [ < [ + 1 < U∗ < U, we infer that

(d) tr([ + 1, U) = tr(U∗, U)a tr([ + 1, U∗).

For each 8 ∈ �, denote D8 := {trℎ (Y, V) | V ∈ 18}. By Clause (1) above, for all r ∈ D8 , 8 ∈
Im(trℎ (V

∗, V)) ⊆ Im(r).
For each 9 < `, denote E 9 := {trℎ (U, Y) | U ∈ 0 9 }. By Clause (c) above, for all f ∈ E 9 ,

trℎ (ðX 9 ,W , Y)
a〈 9〉 ⊑ f.

Next, by the choice of 30, fix (8, 9) ∈ [�]2 such that 30(r
af) = ℓ(r) for all r ∈ D8 and f ∈ E 9 . Set

0 := G 9 and 1 := G8 . The rest of the proof is now identical to that of Lemma 4.5. �

4By Convention 2.8, if ðX 9 ,W = W, then _(ðX 9 ,W , W) = 0.
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6. Clause (3) of Theorem C

In this section, we suppose that ^ is inaccessible, j ∈ Reg(^), and � ^
≥j admits a stationary set that does

not reflect at inaccessibles. Let ` := j+. We shall prove that Pℓ1 (^, `, j) holds. Note that by the result

of Section 4, we may assume that every stationary subset of � ^
≥j reflects.

Lemma 6.1. There exist f1, f0 ∈ Reg(^) with ` < f1 < f0 and stationary subsets (1, (0 of ^

consisting of singular cardinals such that

◦ (1 ⊆ � ^

f1 , and (1 does not reflect at inaccessibles.

◦ (0 ⊆ � ^

f0 , and (0 does not reflect at inaccessibles.

Proof. Fix a stationary subset ) ⊆ � ^
≥j that does not reflect at inaccessibles. Since Card(^) is a club

in the inaccessible ^, we may assume that ) ⊆ Card(^), so that Tr()) is a stationary set consisting

of singular cardinals. By Fodor’s lemma, fix a cardinal a ∈ Reg(^) \ ` for which ' := Tr()) ∩ � ^
a

is stationary. As Tr(') ⊆ Tr()), we can repeat the process to find f1 ∈ Reg(^) \ (a + 1) such

that Tr(') ∩ � ^
f1 is stationary. Now (1 := Tr(') ∩ � ^

f1 \ {f1} is a stationary set consisting of

singular cardinals. Repeating the process for the last time, we find f0 ∈ Reg(^) \ (f1 + 1) such that

(0 := Tr(() ∩ � ^
f0 \ {f

0} is stationary. Then f0 > f1 > a ≥ ` and Tr((0) ⊆ Tr((1) ⊆ Tr()), so f1,

f0, (1 and (0 are as sought. �

Let f1, f0, (1 and (0 be given by the preceding claim. Note that since (1 consists of singular

cardinals, min((1) > f1. By [Hof13, Theorem 2.1.1], we fix a sequence ®4 = 〈4X | X ∈ (1〉 such that

◦ For all X ∈ (1, 4X is a club in X of order type f1.

◦ For all X ∈ (1, 〈cf(W) | W ∈ nacc(4X)〉 is strictly increasing, converging to X.

◦ For every club � ⊆ ^, there exists X ∈ (1 with 4X ⊆ �.

Lemma 6.2. There exists a �-sequence ®� = 〈�U | U < ^〉 such that for all U < ^:

1. |�U | = cf (U).
2. If acc(�U) ∩ (1 ≠ ∅, then min(�U) ≥ cf (U) > f1.

3. For every X ∈ (acc(�U) ∪ {U}) ∩ (1, sup(4X \ �U) < X.

Proof. This is a standard club-swallowing trick, but we do not know of a reference in which the above

precise properties are exposed.

By recursion on = < l, we shall define a �-sequence ®�= = 〈�=
U | U < ^〉, as follows. We commence

with the case = = 0:

◮ Let �0
0

:= ∅ and �0
U+1

:= {U} for all U < ^.

◮ For each U ∈ acc(^) \ (Reg(^) ∪ (1), let �0
U be a club in U with otp(�0

U) = cf(U) = min(�0
U).

◮ For each U ∈ (1, let �0
U := 4U \ cf (U).

◮ For each U ∈ Reg(^), since (1 consists of singular cardinals and does not reflect at inaccessibles,

we may let �0
U be a club in U with acc(�U) ∩ (1 = ∅.

Next, suppose that = < l is such that ®�= has already been defined to satisfy requirements (1) and

(2) of the lemma. Define a �-sequence ®�=+1 = 〈�=+1
U | U < ^〉 by letting, for each U < ^, �=+1

U be the

closure in U of the set

�=
U ∪

⋃
{4X \ cf(U) | X ∈ acc(�=

U) ∩ (1}.

To see that Clauses (1) and (2) also remain valid for ®�=+1, let U < ^ be arbitrary. If �=
U = �=+1

U , then

we are done, so assume�=
U ≠ �=+1

U . In particular, acc(�=
U) ∩(1 ≠ ∅, so that, by the inductive hypothesis,

|�=
U | = cf (U) > f1 = cf(X) for all X ∈ acc(�=

U) ∩ (1. In effect, |�=+1
U | = cf (U).

Finally, for each U < ^, let �U be the closure in U of
⋃

=<l �=
U. As (1 ⊆ � ^

f1 ⊆ � ^
>l , the above

construction ensures that Clause (3) holds, as well. �
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Let ®� be given by the preceding lemma. Recalling Subsection 2.1, we now let Tr, tr, _ and d2 be the

characteristic functions of walking along ®�, and let [U,V be the notation established in Definition 2.12.

Definition 6.3. For every (X, V) ∈ (1 ⊛ ^, let Λ(X, V) denote the least W ∈ nacc(4X) such that all of the

following hold:

◦ W > _(ðX,V , V).
◦ cf(W) > cf(ðX,V).
◦ 4X \ sup(4X ∩ W) ⊆ �ðX,V .

Lemma 6.4. Let (X, V) ∈ (1 ⊛ ^. Then Λ(X, V) is well-defined, and:

1. nacc(4X) \ Λ(X, V) ⊆ nacc(�ðX,V ).
2. For every Y ∈ nacc(�ðX,V ) ∩ [Λ(X, V), X), sup(4X ∩ Y) ≤ _(Y, V) < Y.

3. For every Y ∈ nacc(�ðX,V ) ∩ [Λ(X, V), X), min(Im(tr(Y, V)) = ðX,V .

4. cf (ðX,V) ≥ f1.

Proof. Since 〈cf (W) | W ∈ nacc(4X)〉 is strictly increasing and converging to X, the first part of the

following claim implies that Λ(X, V) is well-defined.

Claim 6.4.1. max{_(ðX,V , V), cf(ðX,V), sup(4X \ �ðX,V )} < X and cf (ðX,V) ≥ f1.

Proof. By Lemma 2.11(1), _(ðX,V , V) < X. Now, there are two cases to consider:

◮ If ðX,V = X, then from X ∈ (1 ⊆ � ^

f1 and min((1) > f1, we infer that cf(X) = f1 < X. Now, by

Lemma 6.2(3), sup(4X \ �X) < X.

◮ If ðX,V ≠ X, then set U := ðX,V . By Lemma 2.11(2), X ∈ acc(�U). So, by Lemma 6.2(2),

X > min(�U) ≥ cf(U) > f1. In addition, by Lemma 6.2(3), sup(4X \ �U) < X. �

For every Y ∈ nacc(4X) above sup(4X \ �ðV,X ) and of cofinality greater than cf(ðV, X) = |�ðV,X |, we

have Y ∈ nacc(�ðV,X ), so that Clause (1) holds.

Now, let Y ∈ nacc(�ðX,V ) ∩ [Λ(X, V), X) be arbitrary. We have

_(ðX,V , V) < Λ(X, V) ≤ Y < X ≤ ðX,V ≤ V,

so, by Fact 2.7, tr(Y, V) = tr(ðX,V , V)
a tr(Y, ðX,V) and Clause (3) holds. By Lemma 2.9, _(Y, V) =

max{_(ðX,V , V), sup(�ðX,V ∩ Y)}. Since 4X \ sup(4X ∩Λ(X, V)) ⊆ �ðX,V , we infer that sup(�ðX,V ∩ Y) ≥
sup(4X ∩ Y), and hence Clause (2) holds as well. �

Define a collection I ⊆ P(^) via � ∈ I iff there exists a club � ⊆ ^ such that for every X ∈
(1 ∩ acc(�), sup(nacc(4X) ∩ � ∩ �) < X. It is clear that I is a f1-complete ideal over ^, extending

NS^ . By the choice of ®4, I is moreover proper. The next lemma is the only part of the proof that makes

use of (0 and f0.

Lemma 6.5. I is not weakly `-saturated, i.e., there is a partition ^ =
⊎

8<` �8 such that �8 ∈ I
+ for

every 8 < `.

Proof. For each X ∈ (1, let �X := {� ⊆ 4X | sup(nacc(4X) ∩ �) < X}, and note:

◦ As cf(X) = f1, �X is a f1-complete ideal over 4X ;

◦ As f0 is a regular cardinal greater than cf (X), for every ⊆-increasing sequence 〈� 9 | 9 < f0〉 of sets

from �X , the union
⋃

9<f0 � 9 is in �X , as well. That is, the ideal �X is f0-indecomposable.

Trivially, supX∈(1 |4X |
+ < ^. Setting �̄ := 〈4X | X ∈ (1〉 and �̄ := 〈�X | X ∈ (1〉, and recalling

[She94, Definition 3.0], it is evident that the ideal id? (�̄, �̄) is equal to our proper ideal I. As (0 is a

stationary subset of � ^

f0 that does not reflect at inaccessibles, Case (V) (0) of [She94, Claim 3.3] entails

the existence of a partition of ^ into f0 many I-positive sets. In particular, since f0 > `, I is not weakly

`-saturated. �
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By the preceding lemma, fix a surjection ℎ : ^ → ` such that �8 := ℎ−1{8} is in I
+ for all 8 < `.

Then, define a function trℎ : [^]2 → <l` via trℎ (U, V) := ℎ ◦ tr(U, V).
Let 3 : <l` → l × ` × ` × ` be the function given by Fact 3.2 using a := j. We are now ready to

define our transformation.

Definition 6.6. Define t : [^]2 → [^]3 by letting, for all (U, V) ∈ [^]2, t(U, V) := (g∗, U∗, V∗), provided

that, for (=, 8, 9 , g) := 3 (trℎ (U, V)), all of the following conditions are met:

◦ V∗ = Tr(U, V) (=) is > U,

◦ [ := _(V∗, V) satisfies that [ + 1 < U,

◦ U∗ = Tr([ + 1, U) ([[+1,U), and

◦ g∗ = g < U∗.

Otherwise, let t(U, V) := (0, U, V).

To verify that t witnesses Pℓ1(^, `, j), suppose that we are given a family A ⊆ [^]<j consisting of

^ many pairwise disjoint sets.

Lemma 6.7. For every 8 < `, there exist an ordinal Z8 < ^ and a sequence 〈GW | W ∈ �̄8〉 such that:

◦ �̄8 is a stationary subset of �8 .

◦ For all W ∈ �̄8 , GW ∈ A with min(GW) > W.

◦ For all W ∈ �̄8 and V ∈ GW , _(W, V) ≤ Z8 .

Proof. Let 8 < `. By the pressing down lemma, it suffices to prove that for every club � ⊆ ^, there

exist W ∈ � ∩ �8 , Z < W and G ∈ A with min(G) > W such that _(W, V) ≤ Z for all V ∈ G. Thus, let � be

an arbitrary club in ^.

Since �8 is in I
+, we may fix X ∈ (1 such that sup(nacc(4X) ∩ � ∩ �8) = X. Fix any G ∈ A

with min(G) > X. As cf (X) = f1 > |G |, we may fix a large enough Y ∈ nacc(4X) ∩ � ∩ �8 above

supV∈G Λ(X, V). Then, by Clauses (1) and (2) of Lemma 6.4, supV∈G _(Y, V) < Y. So W := Y and

Z := supV∈G _(W, V) are as sought. �

For each 8 < `, let Z8 and ®G8 = 〈GW | W ∈ �̄8〉 be given by the preceding lemma. Set Z := sup8<` Z8 .

Definition 6.8. For [ < ^, ([ denotes the set of all n < ^ with the property that, for every e < ^, there

exists a sequence 〈V8 | 8 < `〉 ∈
∏

8<` �̄8 \ e , such that, for all 8 < ` and V ∈ GV8 :

(i) 8 ∈ Im(trℎ (n, V)).
(ii) _(n, V) = [.

(iii) d2 (n, V) = [n ,V .

Lemma 6.9. There exists [ < ^ for which ([ is stationary.

Proof. Let � be an arbitrary club in ^; we shall find n ∈ � and [ < n for which n ∈ ([ . By the choice

of ®4, the set Γ := {W ∈ (1 | Z < W & 4W ⊆ �} is stationary. Now, fix X ∈ (1 such that 4X ⊆ acc+(Γ).
Let e < ^. Fix any sequence 〈V

e

8
| 8 < `〉 ∈

∏
8<` �̄8 \ max{X + 1, e}. We shall find an ordinal

n e ∈ � ∩ X, as follows.

As cf(X) = f1 > `, let us fix a large enough Ye ∈ nacc(4X) above max{Z, sup8<` Λ(X, Ve

8
)}. As

〈cf (Y) | Y ∈ nacc(4X)〉 is strictly increasing and converging to X, we may also require that cf(Ye ) > `.

By Lemma 6.4(2), Λe := max{Z, sup8<` _(Y
e , V

e

8
)} is smaller than Ye . As Ye ∈ nacc(4X) ⊆ acc+(Γ),

let us pick W e ∈ Γ with Λe < W e < Ye . Now, fix a large enough n e ∈ nacc(4We ) ⊆ � ∩ X to satisfy

sup(4We ∩ n e ) > max{Λe ,Λ(W e , Ye )}. Denote Ue := ðWe , Ye .

By the pigeonhole principle, let us fix n ∈ � ∩ X, and [ ≤ n for which

Σ := {e < ^ | n e = n & sup(�Ue ∩ n e ) = [}

is cofinal in ^. We already know that n ∈ �; we shall later show that [ < n .
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To see that n ∈ ([ , let e < ^ be arbitrary. By increasing e , we may assume that e ∈ Σ. Let 8 < ` and

V ∈ GVe

8
be arbitrary. We shall show that:

(i’) tr(n, V) = tr(Ve

8
, V)a tr(n, Ve

8
).

(ii’) _(n, V) = [.

(iii’) d2(n, V) = [n ,V .

We have:

max{_(Ve

8
, V), _(Ye , V

e

8
)} ≤ max{Λe ,Λ(W e , Ye )} < n < W e < Ye < X < V

e

8
< V.

It thus follows from Fact 2.7 that Clause (i’) is satisfied, so that 8 ∈ Im(trℎ (n, V)). It also follows

from Fact 2.7 that tr(n, Ve

8
) = tr(Ye , V

e

8
)a tr(n, Ye ). In addition, by Clauses (1) and (3) of Lemma 6.4,

tr(n, Ye ) = tr(Ue , Ye )a tr(n, Ue ). Thus, altogether:

tr(n, V) = tr(Ve

8
, V)a tr(Ye , V

e

8
)a tr(Ue , Ye )a tr(n, Ue ).

As n is an element of nacc(4We ) above Λ(W e , Ye ) ≥ sup(4We \�Ue ), we infer from Lemma 6.4(1) that

n ∈ nacc(�Ue ) and hence _(n, Ue ) = sup(�Ue ∩ n). As n = n e , it follows from Lemma 6.4(2) that

max{_(Ve

8
, V), _(Ye , V

e

8
), _(Ue , Ye )} ≤ max{Λe ,Λ(W e , Ye )}

< sup(4We ∩ n)
≤ sup(�Ue ∩ n)
= [.

Altogether, _(n, V) = sup(�Ue ∩ n) = [ and d2 (n, V) = [n ,V . In addition, since [ = sup(�Ue ∩ n) and

n ∈ nacc(�Ue ), we infer that [ < n , as promised. �

Let [ be given by the preceding lemma. Let � be a club in ^ such that for all X ∈ �, there exists

"X ≺ H^+ containing the parameter ? := {([ , 〈 ®G8 | 8 < `〉, ®�, ℎ} and satisfying "X ∩ ^ = X. For every

9 < `, since � 9 is in I
+, the set Δ 9 := {X ∈ (1 | sup(nacc(4X) ∩ � ∩� 9 ) = X} is stationary. Finally, let

(∗ := ([ ∩
⋂

9<`
acc+(Δ 9 ).

Lemma 6.10. Let (g∗, U∗, V∗) ∈ ` ⊛ (∗ ⊛ (∗. There exists (0, 1) ∈ [A]2 such that t[0 × 1] =

{(g∗, U∗, V∗)}.

Proof. While reading the upcoming proof, the reader may want to consult with Figure 2 below. As

V∗ ∈ (∗ ⊆ ([ , let us fix a sequence 〈V8 | 8 < `〉 ∈
∏

8<` �̄8 \ (V
∗ +1) such that for all 8 < ` and V ∈ GV8 :

1. 8 ∈ Im(trℎ (V
∗, V)).

2. _(V∗, V) = [.

3. d2 (V
∗, V) = [V∗ ,V .

For all 9 < `, as V∗ ∈ acc+(Δ 9 ), we may pick X 9 ∈ Δ 9 ∩ V∗ above U∗, so that X 9 > U∗ > [. Now,

pick Y 9 ∈ nacc(4X 9
) ∩ � ∩ � 9 above max{U∗,Λ(X 9 , V

∗)}. As "Y 9
contains ?, we have that ([ ∈ "Y 9

.

Now, by Clauses (1) and (2) of Lemma 6.4, e 9 := max{U∗,Λ(X 9 , V
∗), _(Y 9 , V

∗)} + 1 is smaller than Y 9 .

Since U∗ ∈ "Y 9
∩ ([ , we may then find U 9 ∈ "Y 9

∩ �̄ 9 \ e 9 such that for all U ∈ GU9
:

(2’) _(U∗, U) = [.

(3’) d2 (U
∗, U) = [U∗ ,U.

Note that from U 9 ∈ "Y 9
, it follows that sup(GU9

) < Y 9 . Write 0 9 := GU9
and 18 := GV8 . Fix arbitrary

(8, 9) ∈ [`]2 and (U, V) ∈ 0 9 × 18 . Then:

[ + 1 < U∗ ≤ max{U∗, _(V∗, V), _(Y 9 , V
∗)} < e 9 ≤ U 9 < U < Y 9 < V∗ < V8 < V.
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Figure 2. Illustration of the proof of Lemma 6.10.

So, by Fact 2.7:

tr(U, V) = tr(V∗, V)a tr(Y 9 , V
∗)a tr(U, Y 9 ).

For each 8 < `, set D8 := {trℎ (V
∗, V) | V ∈ 18}. By Clause (1) above, 8 ∈ Im(r) for all r ∈ D8 . For

each 9 < `, set E 9 := {trℎ (U, V
∗) | U ∈ 0 9 } and f9 := trℎ (Y 9 , V

∗). As Y 9 ∈ � 9 , we infer that f9
a〈 9〉 ⊑ f

for all f ∈ E 9 .

Finally, by the choice of 3, fix (8, 9) ∈ [`]2 such that 3 (raf) = (ℓ(r), 8, 9 , g∗) for all r ∈ D8 and

f ∈ E 9 . Set 0 := 0 9 and 1 := 18 , so that (0, 1) ∈ [A]2.

To see that t[0 × 1] = {(g∗, U∗, V∗)}, fix arbitrary U ∈ 0 and V ∈ 1. Denote r := trℎ (V
∗, V) and

f := trℎ (U, V
∗), so that r ∈ D8 and f ∈ E 9 . Denote (=, 8′, 9 ′, g) := 3 (trℎ (U, V)). Then:

◦ Tr(U, V) (=) = Tr(U, V) (d2(V
∗, V)) = V∗.

◦ g = g∗.

◦ [ = _(V∗, V) and [ + 1 < U.

◦ g∗ < ` < U∗.
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Now, since _(U∗, U) = [ < [ + 1 < U∗ < U, tr([ + 1, U) = tr(U∗, U)a tr([ + 1, U∗). So, since

d2 (U
∗, U) = [U∗ ,U, d2(U

∗, U) = [[+1,U and U∗ = Tr([ + 1, U) ([[+1,U). �
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