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Abstract

A compensator is defined for a point process in two dimensions. It is shown that a Poisson process is
characterized by a continuous deterministic compensator. Sufficient conditions are given for conver-
gence in distribution of a sequence of two-dimensional point processes in the Skorokhod topology to a
Poisson process when the corresponding sequence of compensators converges pointwise in probability
to a continuous deterministic function.
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Introduction

The study of simple point processes on R += [0, oo) may frequently be simplified
by considering their compensators (see, for example, Liptser and Shiryayev
(1978)). In particular, if the compensators converge pointwise in probability to a
continuous deterministic function, the point processes converge (both vaguely and
in the Skorokhod topology) to a Poisson process. This technique has been
extended to marked point processes by Jacod (1975) and Brown (1981).

In this article, point processes on U \ will be considered. If it is known that if
there is at most one point on every vertical line, the process may be treated as a
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254 B. Gail Ivanoff [2 ]

marked process, and Brown's (1981) approach is appropriate. However, if it is
assumed only that the process is simple (i.e. there exists no more than one point at
any single location in R +), techniques that are genuinely two-dimensional may be
appropriate. As an example, consider the process in which all points fall in a
random set of vertical lines. The lines intersect the horizontal axis at points which
form a Poisson process with intensity jn (/x denotes Lebesgue measure on R1) and
the points on each line form independent Poisson processes, each with intensity ju
as well. Using Jacod's (1975) definition of the compensator, the compensator of
this process would be indistinguishable from that of an ordinary Poisson process
onR2

+.
In Section 1, a two-dimensional compensator will be defined. In Section 2 it

will be shown that a point process with a continuous deterministic compensator is
a (non-homogeneous) Poisson process. In Section 3, it will be proven that under
certain conditions a sequence of point processes whose compensators converge
pointwise in probability to a continuous deterministic function converge in
distribution (in the Skorokhod topology) to a Poisson process. Since a Poisson
process has at most one point on each vertical line, it seems intuitively clear that
the approximating sequence should be an "asymptotic marked point process
sequence" as defined by Brown (1981). It will be shown that Theorem 3.1 does
imply that the conditions of Brown's (1981) Proposition 1 are satisfied. However,
in practice it may sometimes be easier to prove convergence using 2-dimensional
compensators as this method avoids direct verification that the processes do in
fact form an asymptotic point process sequence.

The theorems in two dimensions are not as general as those in one dimension
simply because it is not known how to stop general two-dimensional processes so
as to ensure that they remain bounded (see Meyer (1981), page 33, for a
discussion of this point). This is also a problem in the study of the properties of
the compensator and it appears that completely new techniques will be required.
We plan to investigate this problem elsewhere.

As in the case of one-dimensional point processes, this approach has the
advantage that general a-fields are permitted, and one is not restricted to minimal
a-fields as is the case when conditional intensities are used (cf. Kallenberg (1978)).

1. Notation and definitions

Let R + = [0, oo). For z = (s, t), z' = (s\ t') e R2 we shall write z < z' if and
only if s < s' and t < t'. We write z <s: z' if both inequalities are strict. If
(s, t) = z <K z' = (sr, t'), t h e n (z,z'] =(s,s'] x(t,t']. W i t h e a c h p o i n t (s, t) e
R \ are associated the following four quadrants:

Q Y ( s , t ) = { ( « , u ) : u 3 s s , v > t ] , Q 2 ( s , t ) = { ( « , v ) : u < s , v > / } ,

Q 2 ( s , t ) = { ( u , v ) : u < s , v < t ) , Q 4 ( s , t ) = { ( u , v ) : u > s , v < t } .
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131 Poisson convergence for point processes 255

We denote by D the set of functions / : R +-> R which have limits in all
four quadrants at each point z = (s, t) (respectively f(s + , t + ) , f(s - , t),
f(s - , t - ),f(s, t - )) and such that/(i, t) = f(s + , t + ) . Let

Af(z)=f(s, t) -f(s- , t) -f(s, t-)+f{s-,t-),

A1f(z)=f(s,t)-f(s- ,t) and A2/(z) = f(s, t)-f(s, t -).

For z = (s, t) « (sr, t') = z\ let f{z,z'} = f(z') - f(s\ t) - f(s, t') + f(z). A
function/ e D is said to be increasing if f(s, t) = 0 whenever s = 0 or t = 0 and
if f(z,z'] > 0 whenever z <K Z'.

Let (J2, ̂ ", P) be a complete probability space. We assume the existence of a
complete right-continuous filtration {J^: zeR 2

+ } (i.e. f ( z ) c f ; z < / = >
J^(z) c J^(z'); ^"(z) = r V » z ^ ( z ' ) ; ^"(0,0) contains all the null sets of J^)
such that Jf (i,0) = ^"(0, 0 = Jf(0,0), for all s, t. LetJ*"1^) = Vt&{s, t),^2{t)
= Ws^(s,t), and jr*(s, t) = &\s) Vjf2(r). Let Jf*(z - ) = Vz,^z J^*(z')-
Occasionally, we shall invoke the following condition:

(F4) for all (s, t) e U\, &l{s) and J^2(?) are conditionally independent given
&{s, t).

A simple point process N on R % is defined to be a random element of Z), which
is an increasing step function taking its values in Z + = {0,1,2,...} such that
AN(z) = 0 or 1 for each z e R. By definition, #(0, 0 = N(s,0) = 0, for all i, t.
The intensity w(-) of N(-) is defined by E(N(s, t)) = m(s, t). It will always be
assumed that m(z) < oo for all z e R+ (we impose this condition because of the
problem of stopping a process on R+). It is a trivial consequence of uniform
integrability that if the intensity is finite everywhere then N is right continuous in
Lx (right continuity refers to limits in the quadrant Qx).

In what follows, let X be a random process taking its values in D, such that
X(-) is adapted to the filtration {^(z)}, and such that X is integrable (ie.
E{\X{z)\) < oo, for all z e R2). We call X a weak (sub) martingale if for every
pairz, z' e R^, z « z',
(1.1) £(X(*,z']|.F(*)) = (>)0.

Suppose that A^s, f) = 0 if 5 = 0 or t = 0. Then X is a strong (sub) martingale if
for z « z'
(1.2) £(*(z,z ' ] |^*(z)) = (>)0.

Trivially, an adapted point process is a strong submartingale, and we obtain the
following.

PROPOSITION 1.1. Let N be a simple point process (with finite intensity) adapted
to the filtration {^(z)}. Then there exist processes M and A adapted to the
filtration {J r*(z)} such that M is a weak martingale, A is an increasing process,
and

(1.3) N = M + A.
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Furthermore, if (F4) holds, M and A are adapted to {^(z)}, and M is a strong
martingale.

PROOF. This proposition follows easily from Theorem 3.5 of Brennan (1979)
and Proposition 1 of Dozzi (1981).

In addition, according to Dozzi (1981), there exists a unique (up to indis-
tinguishability) increasing process A in the decomposition (1.3) such that for all
z' e U\

E\( H(z)dA(z)]=E f E(H(z)\F*(z -)) dA(z)
|/(0,z'] J •'(0,7']

where H = x(S X F), B & 38, F <=&{S8 denotes the Borel sets of U2
+ and x is

the indicator function). Following Brown (1978), and Kabanov, Liptser, and
Shiryayev (1980), we call this increasing process A the compensator of N. If we
consider Dozzi's (1981) construction of the compensator, it is clear that the
compensator of the example in the introduction will not be deterministic. How-
ever, the compensator of a Poisson process will simply be its intensity.

We now turn to the definitions of stopping times. Following Ivanoff (1983), the
random variable 5 is a 1-stopping time relative to {^"(z)} if { 5 < i } is

mmeasurable for all s € R + . Likewise, T is a 2-stopping time relative to
if ( T < /}isJ^2(0-measurableforall/ e R+.

In the notation of Wong and Zakai (1976), r(z,«), z e U\, u e £2, is a
stopping time relative to {&(z)} if T(-, •) is measurable and adapted, and for
almost all w, z < z' =» T(Z, U) > T(Z', CO), and T takes only the values 0 or 1. Let
A X W ) = { z: T(Z , u) = 1}. DT is the stopping domain associated with T. For any
adapted random process X of bounded variation, define XT (X stopped at T)
pointwise by

(1.4) XT(z) = X(r A Z) = / dX(z').
JDTn(0, z]

We shall denote convergence in probability and convergence in distribution by
" -» " and " -> @" respectively.

2. Lemmas

In this section we shall state several basic lemmas which will be required
subsequently.

We consider a sequence {(Xn J^, Pn), n = 1,2,3,...} such that for each n, Xn

is a random element of D, which vanishes on the axes and is adapted to the
complete right-continuous filtration ( f n ( z ) c ^ , ) . To show tightness of the
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sequence, we need only to consider the restriction of the processes to sets of the
form [0, K]2. We say that condition [A] is satisfied if

[A] for every ^ > 0, e > 0, T J > 0 there exist S > 0 and n0 < oo such that for
every 1-stopping time Sn and 2-stopping time Tn on {Xn{z), ^n(z), Pn\ z <

o ^K\Xn(Sn + 6,t)- Xn(Sn, 0 1 > TJ) < e, a n d
s u p n > n o s u p t f e [ O 5 ] Pn(sup0<s<K\Xn(s, Tn + 0 ) - Xn(s, Tn)\ > r,) < e. ( W e a s -

sume that Sn < K,Tn^K and interpret 5n + 6 and Tn + 6 as (Sn + 0) A K and
(Tn + 6) A K, respectively.)

LEMMA 2.1. Let {(Xn, J^, Pn)} be a sequence which is defined as above and which
satisfies [A]. If { Xn(z)} is tight for each z G R2

+, then { Xn} is tight in D.

PROOF. This lemma is an easy consequence of Corollary 4.2 of Ivanoff (1980)
and Theorem 3.1 of Ivanoff (1983).

The following lemma is probably well-known, but we have been unable to find
a proof in the literature.

LEMMA 2.2. Let (M, 3P', P) be the weak martingale in the decomposition (1.3).
For any stopping time T (relative to {^"*(z)}) whose associated stopping domain is
contained in some fixed bounded subset of R+, MT is also a weak martingale with
respect to the filtration

PROOF. See Appendix A.

COROLLARY 2.3. Let (M, &, P) be as in Lemma 2.2. Let S be any uniformly
bounded 1-stopping time and T any uniformly bounded 2-stopping time with respect
to {^(z)}. Then M\s, t) = M(s A S, t) and M2(s, t) = M(s, T A t) are each
weak martingales with respect to the filtration {^"*(z)j.

PROOF. See Appendix A.

The final lemma in the section shows that in two dimensions, a Poisson process
is characterized by a continuous deterministic compensator.

LEMMA 2.4. Suppose that the simple point process (N, &', P) has the decomposi-
tion N = M + A where M is a strong martingale adapted to {^(z)} and A is a
continuous deterministic increasing process. Then N is a Poisson process with
intensity A.
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PROOF. For any rectangle R =(z,z'] denote N(z,z'] andA(z,z'] by N(R) and
A(R), respectively. It is sufficient to show that for any disjoint set of bounded
rectangles {/?!,.. .,Rn], N(RX),.. .,N(Rn) are independent Poisson random vari-
ables with parameters A{RX),.. .,A(Rn), respectively.

Without loss of generality, assume that there exists K < oo such that (0, K]2

may be divided into a grid with vertical lines at 0 = s0 < s1 < • • • < sp = K, and
horizontal line at points 0 = t0 < tl < • • • < t = K such that, for / = 1,...,«,
Rt = ((^t- i . 0 - i ) ' isk' *j)] f o r s o m e Pa i r (*' ./')> 1 < £ < />> 1 <./ < 1- W e s n a U

show that {Ny(sk_1, tJ_l), (sk, /y)J, 1 < k < p, l < y < q)} are independent
Poisson random variables with parameters {A((sk_1, tJ_1), (sk, tj)]}.

The problem can be reduced to one dimension. Let 0 < u < pK, and if
{j — \)K < u ^ jK, 1 < j < p, define the one-dimensional process N' by

N'(u) = i V ( ( 0 , 0 ) , ( * , _ ! , A" ) ] + ^ ( ( ^ . , , 0 ) , ( ^ , u-(j- l)K)] a n d

J ^ ' ( « ) = % „ K) V&(Sj, u-(j- l)K).

Essentially, what has been done is the following: (0, AT]2 has been divided up into
p vertical strips. Beginning with the first strip, N' counts up the number of points
in the strip, with N'(u) equal to the number of points in the strip up to and
including the horizontal line t = u, 0 < u < K. For K < u < 2K, N'(u) includes
all the points in the first strip plus those in the second up to and including the line
t = u — K. We continue in this way to count the points in all the strips
sequentially. Therefore, N\{st, tj),(si+l, tJ+l)\ = N'(iK + tpiK + tJ+l], and so
it is sufficient to show that N' is a one-dimensional Poisson process with the
appropriate intensity.

Define one-dimensional processes A' and M' from A and M in an analogous
manner. It is clear that N' = A' + M', that A' is continuous and deterministic,
and that TV" and M' axe adapted to {^'(«)}. Also, the a-fields {^'(u)} form a
complete right-continuous filtration.

We shall show that M' is a martingale with respect to { J*"'(")}• Let 0 < v < u
< pK. Then, for some integers /, j , 1 < / ' ^ j < p, (i - l)K < v < K, {j — \)K
< u<jK.Ui=j,

M'{u) - M'(v) = M((*,_1; v-(i- l)K),(Si, u - ( i -

&'{v) Q&*(Sl_x,v -{i - \)K),

and

= 0,
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since M is a strong martingale with respect to {J^Xz)}. If / < j ,

M'(u) - M'{v) = M((s,_1( v-(i- l)K),(s,, K)]

+ M({s,,0),(sj_l, K)} + M ( ( V l , 0 ) , ( ^ , U-U-

where the second term on the right hand side of the equation is interpreted as 0 if
i =j - 1. Also, &\v) c 3?*(s,_x, v - (i - 1)K) and &\v) c>*(J(.,0) c
&*(Sj_1,0). This implies that, since M is a strong martingale, E(M'(u)—
M'(v)\^\v)) = 0. Thus, M' is a one-dimensional martingale with respect to

From Appendix B, Lemma B.I, it follows that N' is a simple one-dimensional
point process. It is well-known that N' is therefore a non-homogeneous one-
dimensional Poisson process with intensity A'. This in turn implies that
N(RX),... ,N(Rn) are independent Poisson random variables with parameters
v4 (/?!>,..., .4 (fl „), respectively.

3. The convergence theorem

In this section, it will be assumed that all filtrations have the structure
described in Section 1. We obtain the following (partial) analogue to Theorem 1
(ii) of Kabanov, Liptser and Shiryayev (1980) and Theorem 1 of Brown (1978).

THEOREM 3.1. Let {Nn, &n, Pn} denote a sequence of simple point processes on
U2

+. Assume that all intensity measures are finite on bounded sets, and that the
sequence of compensators {An} satisfies An(z) —>pA(z) for each z e R2, where
A(-) is a continuous deterministic function. If {Nn(z)} and {An(z)} are both
uniformly integrable for each z e U2

+, then Nn~*sN in D, where N is a Poisson
process with intensity A.

PROOF. The proof follows generally along the lines of that of Theorem 1 of
Brown (1981). Lemma 2.1 is used to show that {Nn} is tight in D. Then
necessarily all limits are simple point processes on U2

+. If Nn(k) -*SN for some
subsequence {n(k)}, then Mn(k) = Nn^k) - An(k) -*sN — A = M. It is then
proven that M is a strong martingale with respect to the minimal a-field generated
by N. An application of Lemma 2.4 completes the proof.

We begin by verifying the conditions of Lemma 2.1. The uniform integrability
assumption trivially proves tightness of Nn{z) for each z e U2

+. For K < oo
arbitrary but fixed, let Sn and Tn be 1- and 2-stopping times with respect to
( J ^ ( z ) : z e [0, A:]2}, and assume Sn < K and Tn < K, n = 1,2,.... We will
prove condition [̂ 4] for the 1-stopping times only, as the proof for 2-stopping
times is identical.
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Since iVn is an increasing process,

s u p \ N n ( S n + 0 , t ) - N n ( S n , r ) | = N n ( S n + d , K ) - N n ( S n , K ) .

It is sufficient to show that, for any sequence {#„}, 6n | 0 , Nn(Sn + 6n, K) -
Nn(Sn, K) ->p0. To simplify notation, let Nn(s) = Nn(s, K) and An(s) =
An(s, K). Since An{-) is nondecreasing, by Lemma 1 of McLeish (1978),
supO5SJssA-|y4n(s) ~ A{s)\ -* p0. Since A is continuous it follows that \An(Sn + 0n)
- A^(Sn)\ -»,0. By uniform integrability, E(An(Sn + 6n) - An{Sn)) -» 0. By
Corollary 2.3, and since Mn disappears on the axes,

E(Mn(Sn, K)) = E{E(M}((0,0),(K, K)]\rn*(0,0))) = 0

(and similarly E(Mn(Sn + 6n, K)) = 0). Therefore,

E(Nn(Sn + 0n) - Nn(Sn)) = E(An(Sn + 6J - An(Sn)),

and so

Nn(Sn + 6n,K)-Nn(Sn,K)-+p0.

This verifies that [A] holds.
Thus {A^} is tight in D. Suppose Nn(k) ->&N for some subsequence {«(£)}.

Since An(k) -*pA uniformly on compact sets, Mn(k) = Nn(k) - An{k) -^^N - A
= M.

It remains to show that M is a strong martingale with respect to the minimal
filtration generated by N. We remark that { ̂ ( z ) } may be assumed to be right
continuous by using an argument similar to that of Lemma 18.4 of Liptser and
Shiryayev (1978) and by assuming that the underlying probability space consists
of all integer-valued increasing functions in D.

Consider the collection of sets

where

Tp= { z: P(N is continuous at z) = 1}, and

It is easily seen that 5?(z) forms a w-system which generates &~*(z). By
Theorem 34.1 of Billingsley (1979), M is a strong martingale with respect to

)} if it can be shown that if z « z', for every G e ^(z)

(3.1) f M(z,z']dP = 0.
JG

Consider G = {pu^...,u~\H)} and let x(G) be the indicator of G. Let xn(
G)

be the corresponding random variable for the process A .̂ By convergence of the
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finite-dimensional distributions, x»(G)-» s x(C) . By observing that for any
z^Tp,k^Z+, Pn(Nn(z)Xn(G) = k) = Pn(Nn(z) = k, Xn(G) = 1), we have that
Nn(z)Xn(G)^BN(z)x(G). Similarly, for z « z', z, z'e Tp, Nn(z,z']Xn(G)
-+aN(z,z']x(G),aadshux\An(z,z']-A(z,z']\ ^p0,

(3.2) (Nn-An)(z,z']Xn(G)®(N-A)(z,z']X(G).

By uniform integrability, (3.2) implies (3.1) for z, z' e 7̂ ,. The general result
follows from the right continuity of N and A, and the fact that T is dense.

This completes the proof of Theorem 3.1.

COMMENT. AS mentioned in the introduction, if we consider the sequence of
point processes on a bounded set (say [0, K]2), the hypotheses of Proposition 1 of
Brown (1981) are implied by the conditions of Theorem 3.1. This is shown in
Appendix C.

In the one-dimensional case, the uniform integrability condition may be
eliminated by stopping the process in such a way that the compensators are
uniformly bounded above. As mentioned in the introduction, it is not known how
to do this in general for processes with a two-dimensional time parameter.
However, there are some processes which can be stopped in an appropriate way
and for which the uniform integrability assumption of Theorem 3.1 may be
weakened. We state a few lemmas and then give two examples of such processes.

LEMMA 3.2. Let f be any nonnegative process bounded almost everywhere adapted
to the filtration {^(z)} and let r be any stopping time with respect to the filtration
{J r *(z)} whose associated stopping domain is contained in some fixed bounded
subset ofM.2+. For any pair (s, t), s, t < oo,

(3.3) E( f(u-,t)dAT(u,t) = E[ / ( « - ,t)dNT(u,t),
J[0, s] J[0, s]

and

(3.4) E[ f{s,o-)dAT(s,v) = E[ f(s,v-)dNT(s,v).
J{0,t) J[0,t]

(Note: all integrals are defined pointwise.)
PROOF. By symmetry, the proofs of (3.3) and (3.4) are equivalent, so only (3.3)

will be considered.
As in the proof of Theorem 18.6 of Liptser and Shiryayev (1978), it suffices to

consider functions of the form /(u - , 0 = /(«) = X{a<u^b)£> where £ is a
bounded^(a, t)-measurable random variable. Now

EJ / ( « ) dNT(u, t) = E(i(NT(b, t) - Nr(a, t)))
J[0,s]

= E(Z(AT(b, t) - Ar(a, t))) + E{i{MT{b, t) - MT(a, / ) ) ) .
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Since £ is Jr*(a,O)-measurable, and MT is a weak {Jf"*(z)} martingale (Lemma
2.2) which is 0 on the axes,

E(£{MT(b, t) - MT(a, /))) = E(SE(MT((a,0), (b, /)]|^*(a,0))) = 0.
Now (3.3) follows immediately.

LEMMA 3.3. Let N be a point process with continuous compensator A. Let T be a
stopping time with stopping domain DT c [0, K]2, for some K < oo such that
AT(s, t) < H a. s. for some constant H, 1 < H < oo. Then for (s, t) e U2

+,

(3.5) E(MT
2(s,t))^UHE(N(s,t)).

PROOF. Fix (s, t) > 0, and let M*(v) = MT(s, v), and define A*(v) and N*(v)

analogously, for 0 < v < /. For any function f(u), let A/(t;) = f(v) — f(v — ).
From Lemma 18.7 of Liptser and Shiryayev (1978), it follows that

Mr(s,t)2 = M*(t)2

= 2 /"' M*(y - ) rfM*(u) + £ (AM*(o))2

= ll ['N*(v-) dN*(v) - ('N*(v-) dA*(v)
Wo Jo

- f A*(v) dN*(v) + f A*(v) dA*(v)\ + I

< ll [' N(s, v -)dN*(v) + f N(s, v -) dA*(v)\
V •'0 •'0 /

+ 2H(NT(s, t) + AT(s, 0) + E (&N*(v))2.

Consider Z.v<l(AN*(v))2. Let 0 = t0, and for / > 0 let

t = |inf(«< t:N*(u) -N*(t,_1)> 0),
\t if no such u exists.

Clearly tn = t for some n < NT(K, K) < N(K, K), and

E (A^*(^))2 = E (K(s, t,) - NT(s, t,.,))2.

Let /?,-(«) = NT(u, tt) — Nr(u, ?,_x), i = 1,... ,n. Clearly, ./?,(") is a simple one-
dimensional point process. Applying Lemma 18.7 of Liptser and Shiryayev (1978)
again,

{Rt(s))2 = 2f R,(u - ) dR,(u) + E (A«,(W))2

< 2 f N T ( u - , t ) d ( N T ( u , / , . ) - N T ( u , t,.,)) + ( N T ( s , t,) - N T ( s , ! , _ , ) ) ,
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since A/J,.(a) = 0 or 1. Therefore,

1 - 1

2 £ f N(u- ,t)d(NT(u,t,)-

= 2/ N(u - ,t)dNT(u,t) + NT(s,t).

Using the fact that^4T(.y, 0 < H, and applying Lemma 3.2, we obtain

E(Mr(s, t)2) < 4E[ [' N(s, v -) dAT(s, « ) ) + 4HE(N(s, t))

N(u - , t) dAT(u, t ) \ + E(N(s, t))f
< UHE(N{s,t)).

We now consider processes which may be stopped. Given a sequence of point
processes {Nn, !Fn, Pn) with compensators {An}, we say that the sequence of
compensators satisfies condition [S]if

[S] for every set [0, K]2, K < oo, a constant CK < oo may be chosen such that
there exists a sequence of stopping times {rn} adapted to {^*} for which
DTn c [0, K]2, AnTJiz) < CK for all z and n, and Pn{rn(z) * 1 for some z <
(K,K)} -» Oasw'-^ oo.

THEOREM 3.4. Le/ {JVn, ^ , Pn} be a sequence of point processes with continuous
compensators {An} satisfying [S]. If An{z) -*pA(z) for each z ^ U2

+ where A is a
continuous deterministic function, then Nn - » a N in D where N is a Poisson process
with compensator A.

PROOF. Fix K > 0 and note that {AnT } is uniformly integrable since the
compensators are uniformly bounded. By Lemma 3.3, the sequence {M } is
uniformly integrable. The proof then proceeds as in Theorem 3.1 using the
equivalent stopped sequences {Nnr } , {An<T} and {M } to give convergence
on [0, K]2. Since Kis arbitrary, this is sufficient.

We now give two examples of a sequence of point processes whose compensa-
tors satisfy [S] if An(z) ->pA(z), all z e R2

+.
(a) Suppose that the filtrations {^n } each satisfy (F4) and the compensators

are all continuous. Then {An} satisfies [S], since An is {J^}-adapted and for
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arbitrary K the stopping time

, , /I ii (s, t) <(K,K) and An(K,t)^A(K,K) +I,
\ 0 otherwise.

^ "-adapted. Also, DT c [0, K]2, Pn{rn(z) ± 1 for some z < (K, K)} -» 0 and
^tn>Tn(5, 0 < An^{K, K) < ,4( tf, K) + 1.

(b) Suppose that each of the compensators An is absolutely continuous (a.s.)
with J^*-adapted density an. If a is the density of A, assume that for each K < 00
there is a constant e < 00 such that h'mn_(ooi

>
n(supz<(A- K)\an(z) - a(z)\ > e) = 0.

It may be seen that {An} satisfies [S] by using the following argument: let
<j>n(z) = supz.<z|an(z) - a(z)\. For K < 00, define rn as follows:

0 otherwise.
Proposition 2 of Yeh (1981) implies that rn is a stopping time adapted to {&„*}•
By definition, Z>Tn c [0, K]2, Pn{rn(z) ± 1 for somez < (K, K)} -» 0, and

AnT(s,t) = I an(u,v)dudv
;{|0j]x[0i])nzi

< / (a(u, v) + e) dudv
J[0, K]2

= A(K,K) + eK2.
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Appendix A

PROOF OF LEMMA 2.2. We begin with a discrete-time result. Suppose z e / =
{(/, j); i = 0,1, . . . ,m, j — 0 ,1 , . . . ,n }, m, n < 00. Let { ̂ ( z ) } be an increasing
set of complete sub-a-fields of J^and let X be an adapted process which vanishes
on the axes. We will use Walsh's ((1979) pages 179-180) definition of a stopping
domain D in the discrete case. Note that his definition extends D to be
continuous rather than discrete. We define a discrete stopping time T to be the
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characteristic function of a stopping domain. In analogy to (1.4) define the
stopped process XT by

( A . I ) * T ( z ) = * ( T A z ) = £ r ( i + l , j + l ) X ( ( i , j ) , ( i + l , j + l ) } .

The following lemma is easily verified.

LEMMA A.I. Let (M, &, P) be a weak martingale with discrete time parameter
z G /. For any discrete stopping time T, MT is also a weak martingale with respect to
the filtration {^(z), z e / } .

We return now to the proof of Lemma 2.2. Note first that if DT is a bounded
stopping domain, it is contained entirely in [0, K ]2 for some K < oo. Since both
N and A are increasing processes, Nr(z) < N(K, K) and AT(z) < A(K, K) for
every z £ R2

+. Thus, {NT(z)}, {AT(z)} and in particular {MT(z)} are each
uniformly integrable, for all z G U2

+, and for any set of stopping times {T} whose
stopping domains are uniformly bounded.

Let DT be the stopping domain associated with the continuous stopping time T
in the statement of Lemma 2.2. Let

K = {(', j): i = 0 . 2 - . 2 • 2 - , 3 • 2'\...,j = 0 . 2 - . 2 • 2 " " , . . . } .
Define a discrete stopping domain Dn in the following way: D c Dn, and for
(/, 7) G /„, (j, ; ) e Z)n if and only if (/ - 1, j: - 1) G D. The domains {£>„,!>}
are uniformly bounded. Let rn be the (discrete) stopping time associated with Dn.
By Lemma A.I, if z, z' e In, z «; z', £(MT(z,z']|J^*(z)) = 0. For any two
points z , z ' e R 2

+ , z « z', choose zn, z'n e /B, zn «; z'n such that z <s; zn, z' •« z^,
zm > zn and z'm > z'n if m < n, and zn -* z, z'n -* z'. By the assumption of right
continuity, MTn(zn,z'n] -> MT(z,z'] a.s. If A eJf»(z), then ^ G F * ( Z , ) for all
n, and

/ ( ] ) dP = / A f J ^ z ; ] </P = 0 .

Therefore, by almost sure convergence and uniform integrability, JAMT(z,z']dP
= 0.

PROOF OF COROLLARY 2.3. It must be shown that for any pair z » z',
E(M'(z,z']\&*(z)) = 0, / = 1,2. Consider / = 1 and choose K < oo such that
S < K a.s. and z' •« (K, K). Define a stopping time T as follows:

i, 0 otherwise.
If (s, t) &(0,K}2, MT(s, t) = M\s, t), and since z, z' e [0, K]2, Lemma 2.2
gives the result for ; = 1. The case / = 2 follows by symmetry.
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Appendix B

LEMMA B.I. Let N be a simple point process whose compensator A is continuous
and deterministic. Then with probability one, any finite horizontal or vertical line
segment contains at most one point.

PROOF. By symmetry, it is sufficient to consider horizontal line segments. For
K < oo arbitrary, lets/be the event that there exists a horizontal line in [0, K]2

with more than one point. For n e Z +, define the following sets:

JJL\] ! < , • , • < 2-
2" ' 2" /* V 2 " ' 2"

Tn(k, j) = U Sn(i, j) 1 < k,j < 2".

Let s/n be the event that at least one of Tn(l,l),...,Tn(l,2") contains more
than one point. Thuss/c s/n for all n. Let 38n(k, j) be the event that N(Tn{k, j))
> 0, ^n{k, j) the event that N(Sn(k, j)) > 0, and 3)n the event that N(Sn(i, j))
> 1 for some pair (/, j). Since

[2--1 2- ]
/T>I\ < £ U \J(VH(k,j)naH(k + l,j))\uSK,

2"- l 2"

Since iV is simple P(3>n) -» 0 as n -» oo. Now, note that #„(&, y) e ^*{k, j - 1)
and A is deterministic and continuous. Thus, for any e > 0 if n is sufficiently
large,

0) < E(N(Tn(k

l,j))\Vn(k,j)) <

Finally, for n sufficiently large,

K(k, j)) ^
k j k j

< e l HE{N(Sn(k, j)) = eEN(K, K).
k j

From (B.I), P(s/) ^ Umn P « ) = 0.
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Appendix C

In this appendix, it will be shown that under the hypotheses of Theorem 3.1
(i) if Qn(s, t) = {number of u < s such that tiN(u, t) = &lN(u, K) = 1} and

Rn(s, t) = NH(s, t) - Qn(s, t), then as n -» .oo, E(Rn{K, K)) -» 0.
(ii) If A\{-, t) is the (1-dimensional) compensator of Nn(-, t) with respect to

{fn\s)}, then^(*. 0 ^pA(s, t), for each (s, t)<=(0,K]2.
Thus, the conditions of Proposition 1 of Brown (1981) are satisfied.

PROOF OF (i). Divide (0,K]2 into vertical strips as follows: if A(K, K) = a,
then define 0 = s0 < sx < • • • < sr — K iteratively via s, = (inf s: A(s, K) —
A{Sl^,K) = a/r}, i = l , . . . , r - 1. Let L, be the strip (U_i ,0) , (*„ K)\. By
Theorem 3.1, -?(#„(£,) > 1) -> 1 - e~a/r(l + a/r), as n -> oo. Therefore,

P(Rn(K, K) > 0) = p[ U (Rn(L,) > 0)) < £ P(Nn(L,) > l)

r

- E (1 - ^" a A ( l + a/r)) as n - oo
i - i

Since r is arbitrary, P(Rn(K, K) = 0) -» 1 and by uniform integrability,

PROOF OF (ii). It should first be pointed out that the fact that A\ is well-defined
as an increasing 2-dimensional process is well-known (see, for example, Merzbach
and Zakai (1980)). Let Mn(s, t) = Nn(s, t) - An(s, t), and Mfa, t) = Nn(s, t) -
A\(s, t). Then M*(-, t) is a (1-dimensional) martingale with respect to {^(s)},
and for u < s,

(Cl)

E[{A\(s, t) - An{s, 0) -{Al
n(u, t) - An{u, t))\F\u)\

= -E[Ml
n(s, t) - Ml(u, t)\F\u)\ + E[Mn({u,0),(s, t)]\&*(u,0)] = 0.

Suppose it can be shown that for each fixed t e ( 0 , K ] , {A\(-, t)} is tight in

C[0, K]. If some subsequence {Al
n(k)(-, t)} converges in distribution to B e

C[0, A"], then (Al
n{k) - An(k))(-,t) ^ B - A(-, t). Using (C.I) it is straightfor-

ward to show that B — A(-,t) is a martingale with respect to the minimal

filtration generated by B. Since both B and A are continuous, 5 = A(-,t),

proving (ii).
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Thus, it suffices to show that {A\(-,t)} is tight in C[0, K]. Using the
one-dimensional stopping time condition for tightness due to Aldous (1978), it is
easy to show that {A\(-, t)} is tight in £>[0, K] since {Nn(-, t)} is. It remains to
show that any limit must be continuous with probability one. Fix e > 0. If

_fini(s:AlA1
n(s,t)>e)

I oo if no such s exists
then it is enough to show that P(Sn < K) -» 0 as n -* oo, since e is arbitrary. We
have

(C.2) P(Sn < A") < e-1E[x(Sn < K)^A\(Sn, t)]

= e-lE[X(Sn < K)E(tiNn(Sn, t)\^(Sn - ) ) ] .

Using approximation arguments similar to those in Appendix A and the fact that
Sn is predictable, it may be shown that for any 1-stopping time a with respect to
J F , with a < Sn, E{&Mn(Sn, O&io)) = 0, and hence that E(&NH(SH, t)\

&n\Sn - )) = £(AUn(SB, t)\&n\Sn - )). Substituting in (C.2) we obtain, for any
8 > 0

P(Sn ^K)^ e" 1 £[ X (S n < K)tiAn(Sn, t)]

< e-lE[X(Sn < K)X{#An(Sn, t) > S)] + 8/e - 8/e as n - oo.

Since 8 is arbitrary, P(Sn < K) -» 0 for all e, proving (ii).
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