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Abstract

We study how derivatives (with nonlinear payoffs) affect the underlying asset’s liquidity.
In a rational expectations equilibrium, informed investors expect low conditional volatility
and sell derivatives to the others. These derivative trades affect different investors’ utility
differently, possibly amplifying liquidity risk. As investors delta hedge their derivative
positions, price impact in the underlying drops, suggesting improved liquidity, because
informed trading is diluted. In contrast, effects on price reversal are ambiguous, depending
on investors’ relative delta hedging sensitivity (i.e., the gamma of the derivatives). Themodel
cautions of potential disconnections between illiquidity measures and liquidity risk premium
due to derivatives trading.

I. Introduction

Investors often receive liquidity shocks, such as hedging needs and/or (time-
sensitive) information. They then rush to trade to fulfill liquidity needs, leaving
traces in the market: They generate (temporary) price pressure when hedging
(Grossman and Miller (1988)) and (permanent) price impacts when speculating
on private signals (Kyle (1985)). Anticipating such liquidity shocks, ex ante,
investors require a certain premium when pricing assets. The literature has
extensively studied the association between various illiquidity measures and such
liquidity risk premium. See, for example, reviews by Amihud, Mendelson, and
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Pedersen (2005) and Vayanos and Wang (2013), and the recent issue of Critical
Finance Review (2019).

This article examines market (il)liquidity and the associated risk premium
from a novel angle: derivatives. Derivatives markets are huge. The Bank for
International Settlements (BIS) reports that by the second quarter of 2021, the open
interest of all exchange-traded options alone exceeded US$50 trillion. The out-
standing notional amount of over-the-counter derivatives was close to US$600
trillion by 2020. It is natural to ask whether such significant derivatives activity
affects its liquidity and risk premium; and, if so, how.

To this end, we develop a 2-period rational expectations equilibrium (REE)
model: There is one risky asset in an economy populated by ex ante homogeneous
investors. Then a liquidity shock strikes a fraction of randomly selected investors,
with two effects. First, a shocked investor will receive a future endowment corre-
lated with the risky asset. Second, she also observes a private signal about the risky
asset payoff. To hedge the endowment shock and to (timely) exploit the private
information, the shocked investors demand liquidity to trade with the other
unshocked investors, who serve as liquidity suppliers. The ex ante (pre-shock)
equilibrium asset price therefore commands two risk premia, one for the asset’s
fundamental risk and the other for such a liquidity (shock) risk. We then introduce
volatility derivatives (e.g., variance swaps) and study both the post-shock market
liquidity and the pre-shock liquidity risk premium.

Our first finding is that the liquidity demanders always write (or sell) the
derivative to the liquidity suppliers. This is because the derivative is valued accord-
ing to an investor’s conditional expectation of the nonlinear payoff component.
(The linear part of the payoff, always replicable by the underlying, is redundant.) In
such a conditional expectation, the leading term is (approximately) the conditional
volatility of the underlying. Since the demanders are more informed, thanks to their
private signal, they always face lower conditional volatility (and hence value the
derivative to be cheaper) than do the suppliers. As an extreme example, if a
demander has a perfect signal, she knows exactly the underlying’ payoff and
expects zero volatility.

This result seems to defy the conventional wisdom that more informed inves-
tors tend to buy volatility derivatives. For example, knowing that a firmwill engage
in a lawsuit, an informed investor can profit from future price swings (whether the
firm wins or loses) by buying a straddle. Smith (2019) captures this conventional
intuition by letting some agents be informed of, and only of, the variance of the
underlying payoff; that is, whether there is a lawsuit or not (but not the outcome of
the lawsuit). Instead, in our framework, the informed demanders receive a noisy
signal of the exact payoff: no lawsuit, winning, or losing. As such, our informed
demanders always have a more precise posterior belief and sell volatility.

Our model shows that with information asymmetry, derivatives can serve as
a channel for investors to “bet” on the underlying volatility, with the demanders
always selling (likewriting insurance) to the suppliers. Empirical evidence seems to
support our prediction. For example, Gârleanu, Pedersen, and Poteshman (2009)
document that nonmarket-makers (public customers and firm proprietary traders)
mostly write equity options, which can be constructed as spreads and straddles for
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volatility bets, to market makers. To the extent that these market makers are
relatively less informed, this evidence is consistent with our model prediction that
more informed liquidity demanders sell volatility to suppliers. Additionally, Mixon
and Onur (2014) use regulatory data and find that hedge funds (often considered as
more informed) overall sell volatility as their net position is short in VIX futures.

Our second result is about how the derivative-induced volatility bets affect the
underlying’s trading. Specifically, we show analytically that investors adjust their
underlying positions precisely to delta hedge their derivative holdings. This is
because a derivative’s payoff can always be thought of as a bundle of linear and
nonlinear functions of the underlying payoff. An investor trades the derivative only
to bet on the underlying’s volatility (the nonlinear part) but in doing so, she also
gains exposure to the linear part, which appears as an inventory shock of the
underlying. She then delta hedges such a shock by trading oppositely in the
underlying’s market.

Importantly, such a “delta hedging channel” can distort frequently used empir-
ical measures of illiquidity, such as price impact and price reversal.1 Price impact is
defined as the regression coefficient of price returns on (informed investors’)
trading volume, à la Kyle (1985) and Amihud (2002). Because delta hedging trades
are not information driven, the overall informative portion of the trading volume is
smaller with derivatives than without derivatives. In other words, delta hedging
trades reduce the information-to-noise ratio in the underlying’s order flow. There-
fore, such price impact-based measures would decrease with derivative trading,
suggesting improved market liquidity.

Price reversal is defined as the negative return autocovariance, à la Roll
(1984). The idea is that short-run price returns are negatively autocorrelated
because the price mean-reverts to the long-run fundamental (Grossman and Miller
(1988)). For example, an initial price concession due to strong selling pressure will
eventually see a positive reversal, as the selling pressure dissipates over time. The
larger this temporary deviation, themore negative is the autocovariance and the less
liquid is the market. With derivatives, the suppliers’ and the demanders’ delta
hedging trades always differ in sign (because the suppliers are always long and
the demanders are always short on the derivative). Thus, one group’s delta hedging
always contributes to such price reversal, while the other group dampens it. We
show that they neutralize one another only in special cases, suggesting that deriv-
atives can either exacerbate or attenuate price reversal.

Our third result is that derivatives can either exacerbate or alleviate the
liquidity risk of the underlying asset. We show that while overall derivatives
improve the post-shock trading gains (by allowing the volatility bets), the investors
split the enlarged “pie” differently. A key parameter is the pervasiveness of the
liquidity shock: how much of the population demand liquidity and how much
supply it. For example, if there are very few suppliers, their per capita trading gain

1Empirical studies using “price impact” to measure illiquidity include, for example, Brennan and
Subrahmanyam (1996), Acharya and Pedersen (2005), Sadka (2006), and Collin-Dufresne and Fos
(2015). Empirical studies using “price reversal” to measure illiquidity include, for example, Campbell
et al. (1993), Llorente,Michaely, Saar, andWange (2002), Pástor and Stambaugh (2003), andHasbrouck
(2009).
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is huge, while the demanders split a negligibly small piece of the pie. From a pre-
shock point of view, becoming a demander (receiving a liquidity shock), is a very
serious risk because a demander will be relatively much worse off than a supplier.
Anticipating such a utility wedge in the future, investors require a large ex ante risk
premium for the liquidity shock. That is, derivatives amplify liquidity risk and thus
increase liquidity risk premium in this case. If the shock only affects a small
population, the reasoning runs in the opposite direction, and the ex ante liquidity
risk premium declines.

With this result, our model helps reconcile the mixed empirical findings.
Consider options, arguably the most common derivatives (with nonlinear payoffs),
for example. Earlier works, like Branch and Finnerty (1981), Conrad (1989), and
Detemple and Jorion (1990), document underlying price increases after option
listings, while negative effects are shown in later works using more recent data,
like Mayhew and Mihov (2000) and Danielsen and Sorescu (2001). Our model
provides a novel insight to this time-series trend from the angle of the changing
investor demographics.

In summary, our analysis highlights that derivatives can lead to conflicting
interpretations of various illiquidity measures and attenuate their association with
the liquidity risk premium. We prove the above findings analytically with a specific
“variance swap” derivative and also study options to provide additional robustness
to the results. The analyses of options also yield additional testable predictions. For
example, we show that a key determinant of the illiquidity measures (price impact
and price reversal) is themoneyness of the options: If an out-of-the-money call option
is introduced, both liquidity demanders and suppliers know that the call is unlikely to
be exercised, but themore informed demanders are surer of the lowmoneyness. As a
result, the demanders’ buy delta hedging turns less aggressive than the suppliers’ sell
delta hedging, and the two net to a selling pressure in the underlying. If the call option
is in-the-money, the above effects reverse, creating a positive pressure.

Such moneyness-induced price pressures further affect market liquidity mea-
sures. For example, we find that the price impact in the underlying asset is U-shaped
in the option moneyness. This is because, as moneyness increases, the demanders’
increased delta hedging buys have two effects. First, as they are not information
driven, these buys reduce the information-to-noise ratio and lower price impact.
Second, they generate buying pressure that adds to the price impact. The latter effect
is negligible when the call is deep out-of-the-money (the demanders only buy little
to delta hedge) but becomes dominant when the call is more in-the-money, hence
the U-shaped price impact.

Our article primarily contributes to understanding the links between deriva-
tives and the liquidity of the underlying assets. A large volume of the literature has
studied the impact of derivatives. For example, the seminal work of Brennan and
Cao (1996) studies the contemporaneous impacts of derivatives on the underlying;
Cao (1999), Massa (2002), and Huang (2015) examine the effects on agents’
information acquisition; and more recently, Smith (2019) studies variance deriva-
tives and variance risk premium. Compared to these works, our model builds and
analyzes the connection between derivatives to the underlying’s liquidity risk
premium. Our angle is similar to Vayanos and Wang (2012), who, however, do
not study derivatives.
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Chabakauri, Yuan, and Zachariadis (2022) share with our framework the
feature of derivatives being “informationally irrelevant”; that is, introducing deriv-
atives does not affect learning or inference about fundamentals. Gao and Wang
(2017) study options’ implications for volatility, and their framework also assumes
this irrelevance. This feature distinguishes our mechanism from Dow (1998), who
shows that introducing new securities can worsen market liquidity due to exacer-
bated adverse selection. The migration of informed trading between the underlying
and its derivatives (e.g., Biais and Hillion (1994), Easley, O’Hara, and Srinivas
(1998)), is also muted in our model. Smith (2019) introduces information asym-
metry about the asset payoff’s variance. The learning channel, which is affected by
the introduction of the variance derivative, plays a significant role in that frame-
work. Compared to these works, our contribution lies in the novel, noninforma-
tional delta-hedging channel, which drives various market liquidity measures in
possibly divergent directions, disconnecting with the underlying’s ex ante liquidity
risk premium.

Our analysis of options contributes to the REE models with non-normal
asset payoffs. See, for example, Barlevy and Veronesi (2003), Albagli, Hellwig,
and Tsyvinski (2024), Breon-Drish (2015), Malamud (2015), Han (2018), and
Chabakauri et al. (2022), among many others. When the REE models deviate
from the standard CARA-normal assumption, the characterization of the equi-
librium and its uniqueness become challenging. For example, Bernardo and Judd
(2000) use numerical approaches to solve models with general distributions and
preferences numerically and show that the REE in Grossman and Stiglitz (1980)
is not robust to certain parametric assumptions. Breon-Drish (2015) obtains a
general characterization of price in an economy where investors have CARA
utilities and the payoff of the risky asset belongs to the exponential distribution
family. Different from this strand of the literature, in our model, it is the option
derivatives that create non-normality, while the underlying payoff is normally
distributed. We prove the existence and the uniqueness of the equilibrium in this
setup.

We first set up the model in Section II, where we also highlight a general
information irrelevance result. The equilibrium is then analyzed backwardly.
Section III characterizes the post-shock equilibrium and then examines the
implications of derivatives on market (il)liquidity measures. Section IV turns
to the pre-shock equilibrium and studies the impact of derivatives on the ex
ante liquidity risk premium. In each section, we compare three cases: the
no-derivative benchmark, introducing a variance swap, and introducing
options. We summarize our findings in Section V before concluding in
Section VI.

II. Model Setup

We first set up the general model in Section II.A and then study agents’
information and learning in Section II.B, where we highlight the information
irrelevance of derivatives.
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A. Setup

1. Timeline

There are three dates: t∈ 0,1,2f g. At t¼ 0, homogeneous investors arrive and
trade. Between t¼ 0 and t¼ 1, a liquidity shock strikes a subset of investors. Then
all investors trade again at t¼ 1. At t¼ 2, payoffs realize and investors consume.

2. Assets

There is a risk-free consumption good in perfectly elastic supply serving as the
numéraire. The risk-free rate is normalized to zero. There is also a risky asset in
supply of X > 0 units, each paying off a random amount of D units of the con-
sumption good at t¼ 2. The asset’s price at time t is denoted by Ptf g.

In addition, there is a derivative maturing at t¼ 2, when its long side receives
from the short side a payoff of f Dð Þ. The payoff structure f Dð Þ is exogenous and the
key restriction is that it does not depend on the underlying’s intermediate price P1

(but can depend on the initial price P0 and, of course, the terminal price P2 ¼D). In
other words, we rule out path-dependent derivatives like lookback, barrier, or Asian
options.2When there is no derivative, our framework reduces to that ofVayanos and
Wang (2012), who share with us the same focus on market liquidity and liquidity
risk but study the effects of information asymmetry and imperfect competition.

3. Investors

There is a continuum of investors of measure one, indexed by i∈ 0,1½ �. They
derive constant absolute risk aversion (CARA) utility, with the same risk-aversion
parameter α (> 0), over their t¼ 2 consumption. At t¼ 0, the investors are homo-
geneous, endowed with the per capita supply of the risky asset.

4. Liquidity Shock

A liquidity shock hits a fraction π∈ 0,1ð Þ of the investors between t¼ 0 and
t¼ 1. These shocked investors are referred to as “liquidity demanders” and the rest
(1�π) as “liquidity suppliers.” Specifically, the shocked want to trade the risky
asset for two reasons: First, they each will receive an amount of D�D

� �
z units

of the consumption good at t¼ 2, where D≔E D½ �, and so they want to hedge this
shock at t¼ 1. The realization of the shock z is their private information. The
suppliers only know the distribution of z.

Second, the shocked also receive a private signal s≔Dþ ε, where ε is some
noise specified below. To make use of this signal timely, they therefore demand
liquidity to buy or sell the risky asset at t¼ 1. For simplicity, we let the endowment
shock z and the signal s affect the same group of investors (e.g., Biais, Bossaerts,
and Spatt (2010), Vayanos and Wang (2012)).

2Such path-dependent derivatives create uninteresting “mechanical” (delta-)hedging motives. For
example, suppose f Dð Þ¼ g Dð ÞþP1. Then buying a unit of f Dð Þ gives exposures to both g Dð Þ and P1.
The exposure to P1 is “redundant” as it can always be replicated by trading the underlying and can be
offset by selling a unit of the underlying at t¼ 1, a mechanical hedging trade. The Supplementary
Material S1 considers a tractable example of such path-dependent derivatives and examines the robust-
ness of our result in view of mechanical (delta-)hedging motives.
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5. Trading

Investors submit demand schedules to maximize their expected utility from
consumption at t¼ 2. We introduce the following notations:

• Prices: Ptf g for the risky asset and Qtf g for the derivative, where t∈ 0,1,2f g.
• Demand schedules at t¼ 0: X 0 �ð Þ for the risky asset and Y 0 �ð Þ for the derivative.
• The liquidity demanders at t¼ 1: X 1d �ð Þ for the risky asset and Y 1d �ð Þ for the
derivative.

• The liquidity suppliers at t¼ 1: X 1s �ð Þ for the risky asset and Y 1s �ð Þ for the
derivative.

The demand schedules are functions of the assets’ market clearing prices,
conditional on all (other) assets’ current and past prices and the investors’ private
information and endowment shocks (if any). Omitting these arguments for brevity,
the market clearing conditions are

X 0 �ð Þ¼X and πX 1d �ð Þþ 1�πð ÞX 1s �ð Þ¼X ;(1)

Y 0 �ð Þ¼ 0 and πY 1d �ð Þþ 1�πð ÞY 1s �ð Þ¼ 0:(2)

Note that the demanders’ endowment shock D�D
� �

z does not materialize
until t¼ 2. These market clearing conditions then pin down the equilibrium asset
prices.

6. Equilibrium

There are 4 prices (2 assets, 2 trading rounds) and 6 demand schedules in total
(2 assets, homogeneous investors at t¼ 0 and demanders versus suppliers at t¼ 1).
To fully characterize the equilibrium, we would need to solve for all
these 10 endogenous objects. Some shortcuts can be taken: We will not explicitly
derive the functional form of X 0 �ð Þ or Y 0 �ð Þ, as in equilibrium market clearing
implies that, at t¼ 0, the homogeneous investors must hold the per capita supply
(i.e., X 0 �ð Þ¼X and Y 0 �ð Þ¼ 0). Further, since there is no demand for the derivative
at t¼ 0 (Y 0 ¼ 0), we will not study its price Q0 either. As such, we will only focus
on heterogeneous investors’ trading at t¼ 1 (i.e., the demand schedules
X 1d �ð Þ,Y 1d �ð Þ,X 1s �ð Þ,Y 1s �ð Þf g), as well as the three asset prices P0,P1,Q1f g.

(Clearly, upon liquidation at t¼ 2, P2 ¼D and Q2 ¼ f Dð Þ.)

7. Parameters and Distributions

There are three fundamental random variables in this economy, D,z,εf g,
which are jointly normal and pairwise independent, with means D,0,0

� �
and

variances G�1
0 ,τz�1,τε�1

� �
. To ensure bounded utility (Vayanos and Wang

(2012)), we assume that

α2G�1
0 τz

�1 < 1:(3)

Intuitively, without this cap, the endowment shock zmight be too severe (in ex ante
expectation).
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B. Information and Learning

Before diving into the equilibrium analysis, we first characterize the agents’
learning post-shock at t¼ 1. Given the private signal s, the informed demanders
have that D is conditionally normal with

var1d D½ ��1 = var D sj½ ��1 =G0þ τε ≔G1d and E1d D½ �
=E D sj½ �= 1

G1d
G0Dþ τεs
� �

:

(4)

Unsurprisingly, this posterior is unaffected by f Dð Þ. Belowwe study the learning by
the suppliers, first without and then with the derivative f Dð Þ.
1. The Suppliers’ Learning, without the Derivative

Without the derivative, only the underlying asset is traded and the suppliers
obtain a noisy signal of the demanders’ private signal s from the asset’s equilibrium
price Pnd

1 (the superscript “nd” emphasizes that there is no derivative):

η≔ s� α
τε
z:

This is a standard result and we defer the formal proof to that of the more general
Lemma 1 below. Therefore, conditional on η, the suppliers obtain

varnd1s D½ ��1 = var D ηj½ ��1 =G0þ τε2τz
τετzþα2

≔G1s and End
1s D½ �

=
G0

G1s
Dþ 1� G0

G1s

� �
η:

(5)

2. The Suppliers’ Learning, with the Derivative

Wenow reintroduce a derivative with some generic payoff f Dð Þ. In addition to
the underlying price P1, the suppliers now also observe the derivative price Q1.
Does the new information set P1,Q1f g affect the suppliers’ learning about D? No.
Lemma 1 (information irrelevance of the derivative). Fix the realizations of the
fundamental random variables D,ε,zf g. Suppose that there is an equilibrium with
the derivative of f Dð Þ. In this equilibrium, the suppliers’ posterior distribution of
D,ε,zf g conditional on P1,Q1f g is the same as the posterior in the no-derivative

equilibrium conditional only on fPnd
1 g. That is, Dj P1,Q1f g is normally distributed

with E1s D½ � ¼End
1s D½ � and var1s D½ � ¼ varnd1s D½ � as given in equation (5).

Learning from the price P1,Q1f g is equivalent to learning from the quantities
X 1d ,Y 1df g, via the market clearing conditions (1) and (2). While there seem to be

two equations and two unknowns (s and z), as the proof of Lemma 1 shows, the way
s and z enter X 1d is always exactly the same as they enter Y 1d, in the form of
η¼ s�αz=τε. As such, the suppliers always find it equivalent to learn from either
X 1d or Y 1d and there is no additional information from the derivative’s trading.

This result is not unique to our model. Similar features are also seen in, among
many other contributions, Brennan and Cao (1996), Cao (1999), Huang (2015),
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Gao andWang (2017), and Chabakauri et al. (2022). In particular, Chabakauri et al.
(2022) coin the term “informational irrelevance” and study the conditions for such
irrelevance to hold. The key assumption that ensures such irrelevance is that there is
only one informed type in the economy. The uninformed, therefore, can always and
only infer a jammed signal from that informed type’s demand schedule. More
generally, if there are more informed types, each will reveal a differently jammed
signal to the uninformed and in such cases introducing derivatives might help the
uninformed to learn more.

We do note that such informational irrelevance ignores certain aspects of real-
world trading. For example, it is well known that options can be used to bet on
information (Biais and Hillion (1994), Easley et al. (1998)). In addition, when the
new asset’s payoff itself is informative of the existing asset’s payoff, as in Dow
(1998), investors’ learning will be affected. Smith (2019) finds private information
about a stock’s risk generates the variance risk premium. Lemma 1 highlights the
novelty of the channels in our model; they are not about investors’ learning, thus
differentiating our contribution from the above literature.

III. The After-Shock Equilibrium at t¼ 1

We first derive the equilibrium in Section III.A and then study the implications
for market illiquidity measures (price impact and price reversal) in Section III.B.
Three cases are compared:

• No derivative as a benchmark (Sections III.A.1 and III.B.1);
• Avariance swap to articulate the novel channel of delta hedging (Sections III.A.2
and III.B.2); and

• A call option to demonstrate robustness and generality (Sections III.A.3 and
III.B.3).

A. Equilibrium Characterization

1. The No-Derivative Benchmark

As a benchmark, we first switch off the derivative by setting f Dð Þ¼ 0. The
model essentially degenerates to Section 3 of Vayanos and Wang (2012).

Note that given f Dð Þ¼ 0, the derivative price is trivially Q1 ¼ 0 and its
demand Y 1d ,Y 1sf g are undefined. We thus only focus on the demand and price
for the underlying: Xnd

1d ,X
nd
1s ,P

nd
1

� �
. At t¼ 1, the liquidity demanders have the same

information set of Pnd
0 ,Pnd

1 ,s,z
� �

, while all suppliers only observe Pnd
0 ,Pnd

1

� �
.

Standard analysis gives the CARA investors’ demand schedules

X nd
1d ¼

End
1d D½ ��Pnd

1

αvarnd1d D½ � � z and Xnd
1s ¼

End
1s D½ ��Pnd

1

αvarnd1s D½ � ,

where End
1j �½ � and varnd1j �½ � have been given in equations (4) and (5). Through the

market clearing condition (1), we solve for the equilibrium and summarize it in the
following proposition:
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Proposition 1 (benchmark equilibrium at t¼ 1). At t¼ 1, there is a unique equi-
librium. The liquidity demanders’ demand schedule is

X nd
1dðp;s,zÞ=

G1d

α
G0

G1d
DþG1d �G0

G1d
s

� �
�p

� 	
� z;(6)

the liquidity suppliers’ demand schedule is

X nd
1s pð Þ= G1s

α
G0

G1s
DþG1s�G0

G1s
�G1p�G0DþαX

G1�G0

� �
�p

� 	
;

and the market clears at

Pnd
1 =

G0

G1
DþG1�G0

G1
η

� �
� α
G1

X ,(7)

whereG1d andG1s are a demander’s and a supplier’s respective posterior precision,
as given in equations (4) and (5); G1 ≔ πG1d þ 1�πð ÞG1s is an average investor’s
precision; and η≔ s� α

τε
z is the signal aboutD learned by themarket. Note thatG0 <

G1s <G1 <G1d because the suppliers only imperfectly infer s from Pnd
1 .

We briefly explain the interpretation of the equilibrium. A liquidity demander
trades on the difference between her private valuation (a weighted average between
the unconditional mean D and the private signal s) and the market price Pnd

1 . Her
trading aggressiveness, G1d=α, on this difference is increasing in her precision G1d

and decreasing in her risk aversion α. She also offloads the endowment shock z
(hedging). The same interpretation holds for a liquidity supplier, except that i) she
does not see the private signal s but infers it from Pnd

1 , and ii) she does not have
hedging needs. The market clearing price Pnd

1 is a weighted average between the
expected payoff D and the signal η, and is further adjusted for a risk premium of
αX=G1.

2. Variance Swap

We now introduce a “variance swap” derivative, which was written at t¼ 0 and
will pay the realized variance of the underlying (i.e., f Dð Þ¼ D�P0ð Þ2), at t¼ 2. The
purpose is to present our novel economic forces in the most tractable and transparent
way. The results and intuition generalize to other nonlinear f Dð Þ as later shown with
options.3

Consider an investor of type j at t¼ 1, where j¼ d for a liquidity demander and
j¼ s for a supplier. Her terminal wealth is

W 2j ¼W 0þ P1�P0ð ÞX 0þ D�P1ð ÞX 1jþ f Dð Þ�Q1ð ÞY 1jþ D�D
� �

zj,(8)

3In general, any derivative payoff f Dð Þ can be decomposed into a linear and a nonlinear component.
Cao (1999) shows that the linear component is redundant in such frameworks; it is simply a combination
of the numéraire and the underlying. We therefore focus on such a variance swap, which is arguably the
simplest nonlinear derivative. In the proof for Proposition 2, we consider a more general quadratic
derivative and demonstrate that all results presented here with f Dð Þ¼ D�P0ð Þ2 are robust.
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where zj is her type-specific endowment shock, with zd ¼ z, zs ¼ 0, and
f Dð Þ¼ D�P0ð Þ2. She chooses her demand X 1j and Y 1j to maximize her condi-
tional expected utility, E1j �e�αW 2j½ �, taking the prices P1 ¼ p,Q1 ¼ qf g as given.
For the demanders, their X 1d and Y 1d can also depend on the private signal s and
endowment shock z.

Lemma 1 provides the conditional distribution of D for both the demanders
and suppliers. The optimization problems can then be evaluated in closed form,
yielding the following proposition.

Proposition 2 (equilibrium at t¼ 1 with variance swap). There exists a unique
equilibrium at t¼ 1. The demand schedules for the underlying are

X 1d p,q;s,zð Þ¼Xnd
1d p;s,zð Þ�2 p�P0ð ÞY 1d p,q;s,zð Þ;and

X 1s p,qð Þ¼X nd
1s pð Þ�2 p�P0ð ÞY 1s p,qð Þ:

The demand schedules for the variance swap are

Y 1d p,q;s,zð Þ¼ 1

2α
q� p�P0ð Þ2

 ��1

�G1d

� �
;and

Y 1s p,qð Þ¼ 1

2α
q� p�P0ð Þ2

 ��1

�G1s

� �
:

The underlying’s market clears at P1 ¼Pnd
1 , the same as in the benchmark

(equation (7)). The derivative’s market clears at Q1 ¼ P1�P0ð Þ2þG�1
1 . The con-

ditional precision G1d ,G1s,G1f g are the same as those defined in Proposition 1.
The formal proof is deferred to the appendix. We discuss below the equilib-

rium insights.
(1) Betting on “volatility.” We begin by investigating investors’ derivative

demand Y 1j p,qð Þ; why they trade the derivative.With some rearrangement, it can be
seen that

Y 1j∝ G�1
1j þ P1�P0ð Þ2�Q1


 �
¼ G�1

1j �G�1
1


 �
,

where the equality follows the equilibrium derivative priceQ1 ¼ P1�P0ð Þ2þG�1
1 .

Recall from Proposition 1 that G�1
1 is the market’s average conditional variance of

the underlying return D�P0. Therefore, we see that each investor is trading on the
difference between her and the market’s valuations of the variance of D�P0, as if
she engages in a “volatility bet” against the market average. Such a bet is similar to
the underlying trading in the benchmark: after adjusting for the endowment shock
zj, one’s demand for the underlying is Xnd

1j þ zj∝ E1j D½ ��P1

� �
; that is, everyone

bets her valuation of D, E1j D½ �, against the market average P1.
(2) The (more informed) demanders write the derivative to the suppliers. In

equilibrium,

Y 1d ¼�G1d �G1

2α
< 0<Y 1s ¼G1�G1s

2α
,
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becauseG1s <G1 <G1d . That is, a liquidity demander always takes a short position
in the derivative, betting that the volatility is low, while a supplier always takes a
long position, betting on high volatility. Intuitively, this is because in our frame-
work, the demanders’ signal always points to a more precise posterior, hence lower
posterior volatility.

To compare, in Smith (2019), an agent informed of the underlying’s volatility
might either buy or sell such volatility derivatives. This is because of the different
payoff and information structure assumed: In Smith (2019), the underlying’s payoff
D is decomposed into a mean component ~μ and a variance component ~V , for
example, as D¼ ~μþ ~Vυ, where υ follows a standard normal distribution, so that
D∣~V is normally distributed. An investor informed of ~V , therefore, has a better
understanding only about the scale of the payoff D, unlike in the current article
where the informed have a “pointy” posterior ofD∣s. With a high (low) posterior of
the scale, the investors in Smith (2019) then buy (sell) volatility derivatives.

Ourmodel reveals that, investors more informed of the exact payoff tend to sell
“volatility,” as if selling protection or insurance, to the less-informed investors. For
example, Gârleanu et al. (2009) document that nonmarket-markers, including
public customers and firm proprietary traders, write equity options to the arguably
less informed market makers. Since options can be used to replicate volatility (e.g.,
through strangles or straddles), this finding is consistent with our prediction here. In
addition, Mixon and Onur (2014) document from regulatory data that hedge funds
(often considered as informed) have an overall net short position in VIX futures.
That is, they tend to sell volatility to relatively less informed investors.

(3) Trading in the underlying is affected: delta hedging. Proposition 2 shows
that investors’ trading in the underlying is affected by the derivative. In particular,
compared to the benchmark, there is a new term of�2 p�P0ð ÞY 1j. That is, for every
unit of the derivative, the investor trades against it by 2 p�P0ð Þ units of the
underlying, where p¼P1 is the price of the underlying.

This new term turns out to be the investor’s delta hedging and it is the main
economic force driving the subsequent results about illiquidity measures. Write a
type-j investor’s terminal utility as u W 2j

� �
, where W 2j is a function of the under-

lying payoff D (see equation (8)). Therefore, her expected exposure to a small
fluctuation in D is

E1j
∂u W 2j

� �
∂D

� 	
¼E1j u0 W 2j

� �∂W 2j

∂D

� 	
¼E1j u

0 W 2j

� �
X 1jþ zjþY 1jf

0 Dð Þ� �� 
¼E1j u

0 W 2j

� �� 
X 1jþ zjþY 1j

bE1j f
0 Dð Þ½ �


 �
,

(9)

where we write4

4Note that the ratioΛ1j ≔
u0 W 2jð Þ

E1j u0 W 2jð Þ½ � is a function ofD, is strictly positive, and satisfies E1j Λ1j

� ¼ 1.

It therefore serves as a Radon–Nikodym derivative and changes the expectation E1j �½ � to a risk-neutral

pricing measure bE1j �½ �. For example, the first-order condition regarding the underlying holding X 1j is

E1j u0 W 2j

� � ∂W 2j

∂X 1j

� �� 	
¼E1j u

0 W 2j

� �
D�P1ð Þ� ¼ 0)E1j u

0 W 2j

� �
D

� ¼E1j u
0 W 2j

� �� 
P1:

Dividing both sides by the expectedmarginal utilityE1j u0 W 2j

� �� 
yields the risk-neutral pricing formula

P1 ¼ bE1j D½ �.
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bE1j f
0 Dð Þ½ �≔E1j

u0 W 2j

� �
E1j u0 W 2j

� ��  f 0 Dð Þ
" #

:(10)

That is, measured in multiples of the expected marginal utility E1j u0 W 2j

� �� 
, the

investor expects a total exposure to fluctuations in D of

X 1jþ zjþY 1j
bE1j f

0 Dð Þ½ �:

In words, she holds X 1j units of the underlying and will receive an endowment of zj,
and her Y 1j units of the derivative have a per-unit exposure of bE1j f

0 Dð Þ½ �, which is
precisely the definition of the “delta” hedging ratio of the derivative.

Applied to our current example of variance swaps, the hedging ratio is
Δ1j ≔ bE1j f

0 Dð Þ½ � ¼ bE1j 2 D�P0ð Þ½ � ¼ 2 P1�P0ð Þ, and an investor’s delta hedging
trade is

�Δ1jY 1j P1,Q1ð Þ¼�2 P1�P0ð ÞY 1j P1,Q1ð Þ¼X 1j P1,Q1ð Þ�X nd
1j P1ð Þ:(11)

Intuitively, as the investors bet on the volatility through the derivative, they also
receive extra exposure to the underlying through the derivative position Y 1j. This
exposes them to “toomuch”D, and they therefore trade against Y 1j to neutralize the
exposure. Note that the above analysis is generic for any distribution of D, any
utility function (subject to standard regularity), and any (piecewise differentiable)
derivative payoff f �ð Þ.

The expression shown in equation (11) connects an investor’s demand with
and without the derivative to her delta hedging trade. This is, in fact, a robust result
for any type of derivatives f Dð Þ:
Proposition 3 (net exposure to the underlying). Given the asset prices p1 and q1, a
type-j investor’s net exposure to the underlying asset is the same, with orwithout the
derivative:

X 1j p1,q1ð ÞþΔ1j p1,q1ð ÞY 1j p1,q1ð Þ¼X nd
1j p1ð Þ:(12)

In Section III.A.3, we will show that this also holds true for options.
(4) A knife-edge result: the underlying price is unaffected (i.e., P1 ¼Pnd

1 ).
While all investors delta hedge their derivative positions, the net delta hedging trade
(across all investors) is zero:

π � X 1d �X nd
1d

� �þ 1�πð Þ X 1s�X nd
1s

� �¼�2 P1�P0ð Þ � πY 1d þ 1�πð ÞY 1sð Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼0,bythe derivative0smarket clearing

¼ 0:(13)

As such, the net demand for the underlying asset remains exactly the same as in the
benchmark. In other words, there is no price pressure pushing P1 away from the
benchmark Pnd

1 .
However, we would like to emphasize that this is a knife-edge result due to the

specific derivative payoff f Dð Þ¼ D�P0ð Þ2. In particular, both the demanders and
the suppliers have the same delta hedging ratio of Δ1d ¼Δ1s ¼ 2 P1�P0ð Þ. More
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generally, however, different investors’ hedging ratios are not always the same, and
the net delta hedging will be nonzero, pushing the equilibrium P1 away from Pnd

1 .
Such additional price pressure has asset pricing implications and, in particular,
affects empirical measures of illiquidity. Section III.A.3 shows such examples.

3. Options

We now turn to options, the most common (nonlinear) derivatives. Specifi-
cally, there are n (<∞) call options written at t¼ 0, each with strike price Ki,
i∈ 1,2,…,nf g. (The results from this section generalize to arbitrary combinations
of calls or puts, thanks to the put-call parity.) That is, the i-th call pays
max 0,D�Kif g at t¼ 2. While the nonlinear payoffs from the options add to the
complication of the analysis, we show that there exists a unique equilibrium
characterized by a set of nonlinear first-order conditions:

Proposition 4 (equilibrium with options). At t¼ 1, a type-j investor’s optimal
demand for the asset and the options exists and is uniquely characterized by the
unique solution to equation (A-6). The asset and the option prices are the unique
solutions of market clearing conditions of equation (A-7).

The equilibrium characterization contributes to the literature of REE models
with non-normal payoffs. In particular, in our framework, it is the option derivatives
that necessarily introduce the non-normality in our model (even though the under-
lying is still normally distributed).

Below we proceed to discuss the properties of the equilibrium, highlighting
what inherits from the variance swap in (1)–(3) as well as what differs in (4). For
clarity, the discussion focuses on the case of a single call option (i.e., n¼ 1) and we
shall drop the subscript i.5

(1) Betting on volatility. The nonlinearity in the call payoff f Dð Þ¼
max 0,D�Kf g provides investors with a vehicle to trade on the underlying vola-
tility. To see this, suppose that the call is (weakly) out-of-the-money at t¼ 1
(i.e., K≥P1). We can then decompose its payoff as (see Lemma S1 in the Supple-
mentary Material):

max 0,D�Kf g¼ 1

2
D�P1j jþ1

2
1�21 P1 ≤D ≤Kf g
� �

D�P1ð Þþ1 D>Kf g P1�Kð Þ:(14)

Note that in expectation, the leading term, 1
2 D�P1j j, is exactly (half of) the

underlying asset’s volatility. The same intuition as for the variance swap applies:
Because the more informed demanders value volatility less than do the suppliers,
the option is traded to “bet on volatility.”

(2) The (more informed) demanders write options to the suppliers.Graph A of
Figure 1 plots an investor’s (risk-neutral) valuation of the asset’s volatility against
the option’s moneyness, defined as P1�K: The call is in-the-money (ITM) when

5As will be shown below, our novel insights are largely based on the moneyness of the single option.
When there are multiple options, our results then speak to their average moneyness. In reality, the
averagemoneyness varies across assets. Themodel implications, therefore, can be empirically examined
in the cross-section of different assets.
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P1�K> 0, at-the-money (ATM) when P1�K ¼ 0, and out-of-the-money (OTM)
whenP1�K< 0. Indeed, a demander always believes that the conditional volatility
is lower than does a supplier. As a result, the demanders always sell the option to the
suppliers (i.e., Y 1d < 0< Y 1s as seen in Graph B). Note that only a demander’s
equilibrium option holding is plotted in Graph B because by market clearing, a
suppliers’ holding immediately follows to be positive: Y 1s ¼�πY 1d= 1�πð Þ> 0.
Comparing both graphs, we see that the demanders write more calls to the suppliers
(more negative Y 1d) when their volatility valuations differ more (i.e., when the call
is further away from ATM).

(3) Delta hedging. We next turn to the investors’ delta hedging. A type-
j∈ s,df g investor in equilibrium holds Y 1j units of the call, which also gives her
additional underlying exposure. Following equation (10), the extra exposure, per
unit of the option position, is

Δ1j ≔ bE1j f
0 Dð Þ½ �= bE1j

∂

∂D
max 0,D�Kf g

� 	
= bE1j 1 D>Kf g

� 
= bℙ1j D>K½ �,

which has the usual interpretation of an option’s delta: the probability of ending up
in-the-money. Therefore, the investor has an incentive to delta hedge against such
extra exposure by trading �Δ1jY 1j units of the underlying, just as in the case of a
variance swap. In fact, as shown in Proposition 3, one’s delta hedging trade�Δ1jY 1j

is also the only deviation from her no-derivative benchmark: X 1j ¼X nd
1j �Δ1jY 1j.

(4) Nonzero net delta hedging trade. Different from the case of a variance
swap, aggregating across all investors, the net delta hedging trade

�πΔ1dY 1d � 1�πð ÞΔ1sY 1s(15)

FIGURE 1

Call Option Trading at t¼ 1

Figure 1 describes the equilibrium trading of the call option at t ¼ 1. Graph A plots investors’ (risk-neutral) valuation of the
underlying volatility in equilibrium. Graph B plots a demander’s option position. In both graphs, the horizontal axes show a
range of moneyness of the call option, defined as the difference between the underlying price and the strike price. The call’s
strike is fixed atK ¼�1:0 and the 2-state variables (the private signal and the endowment shock) vary to affect the equilibrium
price P 1 and the moneyness. The other primitive parameters are set at D¼0:0, X ¼ 0:8, G0 ¼ 1:0, τε ¼ 1:0, τz ¼ 1:0, π¼0:5,
and α¼ 0:8.

Graph A. An Investor’s Risk-Neutral
Variance, E1j[(D−P1 )2]
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is in general not zero. This is because the delta hedging ratios are no longer the
same, Δ1d 6¼Δ1s. To see why, note that Δ1j ¼ bℙ1j D>K½ � depends on the respective
information set of the type-j investors. Instead, in the case of the variance swap
f Dð Þ¼ D�P0ð Þ2, Δ1j ¼ bE1j 2 D�P0ð Þ½ � ¼ 2 P1�P0ð Þ is common for both
j∈ d,sf g; a knife-edge special case. Below we provide more discussions to better
understand why (and when) Δ1d≶Δ1s.

(4.1) Δ1d > (<) Δ1s when the call is ITM (OTM). Graph A of Figure 2 shows
the equilibrium call option price Q1. It has the well-known property of monoton-
ically increasing in the moneyness, with an asymptotic slope equal to zero (one)
when the call is extremely OTM (ITM). Graph B of Figure 2 plots the two types of
investors’ delta hedging ratios. While at first glance the two Δs seem to overlap,
they differ by a small amount. We zoom in on their difference Δ1d �Δ1s in Graph C
of Figure 2, plotting it in the solid line (left axis). It can be seen that Δ1d >Δ1s if and
only if the call is ITM.

The intuition is as follows: As explained before, a demander always sells the
call (betting on low volatility). When the call is ITM, she knows that she will
likely receive a negative shock in the underlying by t¼ 2 because the call will
likely be exercised. To hedge this expected negative inventory shock, the
demander takes a long delta hedge position�Δ1dY 1d > 0, and likewise, a supplier
takes �Δ1sY 1s < 0. The difference is that the more informed demanders are
“surer” of the moneyness of the call than are the suppliers. Therefore, the
demanders’ delta hedging ratio is larger, Δ1d >Δ1s, if the call is ITM. Instead, if
the call is OTM (unlikely exercised), the surer demanders will delta hedge less
than the not-so-sure suppliers, resulting in Δ1d <Δ1s. When the call is ATM, we
have the well-known result of Δ1d ¼Δ1s ¼ 1=2.

The result can also be understood by recalling that anOTM (ITM) call option’s
Vanna (the second-order derivative of the option price over the underlying price and
volatility) is positive (negative). That is, compared to an uninformed supplier
(seeing higher volatility), a more informed demander (seeing lower volatility)
always thinks of an OTM (ITM) call as less OTM (more ITM). She, therefore,
always under-(over-)hedges relative to the supplier if the call is OTM (ITM).

Note that when the moneyness becomes extreme, we see that Δ1d �Δ1s↓0
again. This is because the delta of a call is bounded between 0 and 1:
0 ≤Δ1j ¼ bℙ1j D>K½ � ≤ 1. In particular, for a deep ITM (OTM) call, its delta con-
verges to one (zero), regardless of the information set of the investor. This explains
the flattening tails in the solid line in Graph C of Figure 2.

(4.2) The net delta hedging and option moneyness.The dashed line (right axis)
in Graph C of Figure 2 plots the net delta hedging trade against the call’s money-
ness. It tracks the pattern from the delta hedging ratio difference (the solid line, left
axis). This is unsurprising because equation (15) is simply the market clearing
condition, πY 1d þ 1�πð ÞY 1s ¼ 0, rescaled by the respective investors’ delta hedg-
ing ratios. When the call is ITM, the demanders’ delta hedge (long) more than the
suppliers’ (short), and the net delta hedging is positive; vice versa. Summarizing,
the following novel prediction can be empirically tested:

Prediction 1 (net delta hedging and option moneyness). Investors’ net delta hedg-
ing against their volatility bets has the same sign as the moneyness P1�K. That is,
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such net delta hedging is positive (negative) when the option is an ITM call or OTM
put (OTM call or ITM put).

Going beyond the call option, Table 1 extends the above prediction to various
combinations of option types and moneyness. In any case, the sign of the net delta
hedging (15) is the same as the moneyness sign P1�K½ �, also the same as the sign of
the option’s Vanna (the last row of the table). This is because what matters for the net
delta hedging trade iswhether the (informed) demanders expect a positive or negative
cash flow from the option: If the option is ITM, as the writer (seller), the surer
demanders expect negative t¼ 2 cash flows from the option and engage in consid-
erable delta hedging, which dominates in the aggregate. If the option is OTM, the

FIGURE 2

Equilibrium Asset Prices at t¼ 1, with a Call Option

Figure 2 describes the t ¼1 equilibrium with a call option. In all graphs, the horizontal axes show a range of moneyness of the
call option, defined as the differencebetween the underlying price and the strike price. The call’s strike is fixedatK ¼�1:0 and
the 2-state variables (the private signal and the endowment shock) vary to affect the equilibrium price P 1 and themoneyness.
The other primitive parameters are set at D¼ 0:0, X ¼ 0:8, G0 ¼ 1:0, τε ¼ 1:0, τz ¼ 1:0, π¼ 0:5, and α¼ 0:8.

Graph A. Call Option Price, Q1
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demanders expect to enjoy the positive sales from writing the options and engage in
little delta hedging, thus making the suppliers’ delta hedging the dominant force.

(4.3) The effect on the underlying price P1. The nonzero net delta hedging is
the key difference from the case of a variance swap, where the delta hedging trades
always sum to zero; see the discussion in Section III.A.2. Graph D of Figure 2
shows how the nonzero price pressure affects the equilibrium underlying price.
Relative to the no-derivative benchmark Pnd

1 , P1 increases when the net delta
hedging trade shown in equation (15) is positive. That is, the underlying price is
pushed in the direction of the net delta hedging (i.e., the sign of option moneyness).
Such “price pressure” from net delta hedging has impacts on the illiquidity mea-
sures, which we study later in Section III.B.3.

We would like to emphasize that the price pressure due to delta hedging is
more general than the specific model studied here. This is because asymmetrically
informed investors tend to assign different values to the necessity (urgency) of delta
hedging. The more informed agents (the demanders in the model) will delta hedge
more aggressively than their less informed counterparties if and only if their
derivative positions expect negative cash flows. This intuition is revealed through
two modeling ingredients: the trading of the underlying and the option is linked
through investors who are asymmetrically informed.

B. Market Illiquidity Measures

We consider two widely used empirical measures of illiquidity, following
Vayanos and Wang (2012). The first is the price impact of liquidity demanders’
trading, in the spirit of Kyle (1985). It is defined as the sensitivity of price return
with respect to liquidity demanders’ signed volume (order flow) at t¼ 1. From an
empiricist’s point of view, this coefficient is obtained by regressing the price return
P1�P0 on the order flow π � X 1d �X 0ð Þ at t¼ 1; that is,

TABLE 1

Investors’ Option Holding and Delta Hedging Trades for Calls and Puts

Table 1 summarizes investors’option holding anddelta hedging trades for four scenarios: out-of-the-money call, in-the-money
call, in-the-money put, and out-of-the-money put. Panel A shows the equilibrium option positions by the demanders and the
suppliers. Panel B shows their delta hedgingdirections. Thedominant effect in each scenario (column) is superscriptedwith∗,
following which Panel C shows the signs of the net delta hedging. Panel D shows the sign of the option’s Vanna, the second-
order derivative of the option price over the underlying price and volatility.

P 1�K < 0 P 1 �K > 0

OTM-Call ITM-Put ITM-Call OTM-Put

Panel A. Option Holdings

A demander’s positionY 1d < 0 < 0 < 0 < 0
A supplier’s positionY 1s > 0 > 0 > 0 > 0

Panel B. Delta Hedging Trades

A demander’s �Δ1dY 1d > 0 < 0* >0* < 0
A supplier’s �Δ1sY 1s <0* > 0 < 0 > 0*

Panel C. Net Delta Hedging Trades

�πΔ1dY 1d � 1�πð ÞΔ1sY 1s < 0 < 0 > 0 > 0

Panel D. Sign of the Option’s Vanna < 0 > 0
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λ≔
cov P1�P0,π � X 1d �X 0ð Þ½ �

var π � X 1d�X 0ð Þ½ � :(16)

The larger is λ, the more sensitive is price to order flows, implying a less liquid
market. Many empirical works have used proxies in this spirit, including Glosten
andHarris (1988), Brennan and Subrahmanyam (1996), Amihud (2002), and Sadka
(2006), just to name a few.

The second measure is price reversal, as in Roll (1984) and Grossman and
Miller (1988). The idea is that the risky asset’s price will deviate from its
“fundamental” D at t¼ 1, due to the price pressure of demanders’ hedging. Such
price pressure can be equivalently seen as the compensation required by the
suppliers to absorb the shocked investors’ liquidity demand. Eventually (in the
long run, t¼ 2), the price will revert to P2 ¼D. An empiricist can then compute

γ¼�cov D�P1,P1�P0½ �(17)

to measure market illiquidity. A larger γ implies a stronger price pressure at t¼ 1,
hence low liquidity. Empirical applications of this measure include Roll (1984),
Campbell, Grossman, and Wang (1993), Pástor and Stambaugh (2003), and Has-
brouck (2009).

1. The No-Derivative Benchmark

Thanks to Proposition 1, without derivatives, the two liquidity measures can
be found as

λnd ¼ α
1�π

G1�G0

G1�G1s

1

G0
, and γnd ¼ 1�G0

G1

� �
1�G1s

G1

� �
1

G1s�G0
:(18)

Vayanos andWang (2012) focus on how these twomeasures are affected by degrees
of information asymmetry and imperfect competition. Our focus below turns to the
effect of derivatives.

2. Variance Swap

With the variance swap f Dð Þ¼ D�P0ð Þ2, the two liquidity measures can be
found, following Proposition 2, as

λ¼ α
1�π

G1�G0

G1�G1s

1

G1
¼G0

G1
λnd and γ¼ 1�G0

G1

� �
1�G1s

G1

� �
1

G1s�G0
¼ γnd:

Comparing with the no-derivative benchmark, we have the following corollary:

Corollary 1 (illiquidity measures with a variance swap). After the derivative of
f Dð Þ¼ D�P0ð Þ2 is introduced, the underlying asset has a lower price impact and
the same price reversal; that is, λ< λnd and γ¼ γnd .

Price impact λ. Price impact measures the price elasticity with respect to the
liquidity demanders’ trading. Recall from Proposition 2 that compared to the
benchmark X nd

1d , a new term of �2 P1�P0ð ÞY 1d rises in X 1d , reflecting the novel
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delta hedging by liquidity demanders. Such delta hedging does not reveal additional
information (Lemma 1). Indeed, the informed trading component in X 1d remains
unchanged as in the benchmark Xnd

1d . Relatively speaking, therefore, the additional
delta hedging reduces the proportion of informed trading relative to the demanders’
overall trading. Consequently, if an empiricist regresses price changes on informed
investors’ trading, a lower price impact will be obtained after derivatives are
introduced.

Price reversal γ. As shown in Proposition 2, the t¼ 1 equilibrium price P1

remains the same as the benchmark Pnd
1 . Therefore, the negative return autocovar-

iance, γ, is also unchanged. We again emphasize that this is a knife-edge result, due
specifically to the derivative payoff of f Dð Þ¼ D�P0ð Þ2, under which all investors’
delta hedging trades aggregate to zero (see the discussion in Section III.A.2). When
options are introduced, for example, this will no longer be the case: the underlying
price P1 will deviate from the benchmark Pnd

1 , tilting in the direction of investors’
net delta hedging.

3. Options

The two illiquidity measures no longer have closed-form expressions when
options are introduced. They can still be numerically examined, following their
definitions in equations (16) and (17). Figure 3 illustrates the patterns against
various moneyness values of a call option.

Price impact. Graph A of Figure 3 shows a qualitatively similar result to that
seen in Section III.B.2: The price impact is lower with a derivative (i.e., λ< λnd).
The key driver of the lower price impact is that the liquidity demanders now delta
hedge their volatility bets. Such additional hedging trades are not informed spec-
ulation, making the demanders’ trades less “toxic” overall, thereby reducing price
impact. The effect of such non-informational delta hedging has been examined and
recognized through empirical works, like Ni, Pearson, and Poteshman (2005) and
Ni, Pearson, Poteshman, and White (2021), whose focus lies largely on the impact
on underlying asset prices. Further, after introducing options, the bid–ask spread in
the underlying typically also decreases (Damodaran and Lim (1991), Fedenia and
Grammatikos (1992), and Kumar, Sarin, and Shastri (1995)). In particular, Kumar,
Sarin, and Shastri (1998) find that it is the adverse-selection component of the
bid–ask spread that decreases, consistent with our intuition of informed trading
being diluted by delta hedging. Recent evidence by Hu (2017) is also consistent
with our channel whereby uninformed trading becomes dominant (relative to
informed trading) after option listing.

The existing empirical literature typically argues that the price impact or
bid–ask spread decreases because informed investors migrate from the underlying
to the options (see, e.g., Easley et al. (1998)). While the prediction is the same, our
channel of delta hedging is different because in our model, derivatives are purpose-
fully made informationally irrelevant.

To examine our channel, we propose to investigate how price impact is
affected. Graph A of Figure 3 depicts the patterns regarding how the underlying’s
price impact changes with respect to themoneyness of the call. Starting from the left
side of the graph, where the call is deep OTM (K is very large), we see that λ≈ λnd .
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This is intuitive because the deep OTM call is valueless. Its impact on the equilib-
rium, compared to the no-derivative benchmark, is close to nothing.

As the moneyness increases, we see that λ first decreases and then increases.
This is because there are two components of the price return P1�P0, and they are
affected differently by the demanders’ trading X 1d�X 0. To see them, rewrite the
price return as

P1�P0 ¼ E1 D½ ��E0 D½ �ð Þ|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
ið Þchange in the fundamental

þ P1�E1 D½ �ð Þ� P0�E0 D½ �ð Þð Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
iið Þchange in the price pressure

,

where we essentially nonparametrically decompose a price Pt into (i) the time-t
fundamental Et D½ � and the remainder Pt�Et D½ �, which we refer to as (ii) price
pressure. Therefore, the price impact λ is more precisely the sum of the impact on
(i) and that on (ii).6

As the call becomes more ITM, the demanders know that the call they write is
more likely to be exercised eventually, and they delta hedgemore. Such increases in
delta hedging trades are uninformative (Lemma 1) and only increase the volume of
the demanders’ underlying trading. Therefore, the price impact in (i) is lower as
there is more trading but the fundamental price is unaffected. However, the price
pressure in (ii) grows and can dominate if the call option becomes deep ITM, thus
driving λ higher, resulting in the U-shape seen in Graph A of Figure 3. The
following empirical prediction summarizes the discussion thus far.

FIGURE 3

Illiquidity Measures With Versus Without a Call Option

Figure 3 shows how illiquidity measures are affected by a call option. Graph A shows the price impact λ (with the call, the solid
line) and λnd (no derivative, dashed), while Graph B shows the price reversal γ (with the call, solid) and γnd (no derivative,
dashed). In both graphs, the horizontal axis is the averagemoneyness of the introduced call option, calculated by varying the
strike priceK , solving the underlying price P1 at t ¼ 1, and then taking expectation of the difference (i.e.,E P 1½ ��K). The other
parameters are set at π¼ 0:50, D¼ 0:0, X ¼ 0:8, G0 ¼ 1:0, τε ¼1:0, τz ¼ 1:0, and α¼0:8.

Graph A. Price Impact λ
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6In the empirical market microstructure literature, trades’ impact on (i) and (ii) are referred to as the
permanent and the transitory price impact, respectively, because changes in (i) are driven by information
revealed in trades and therefore persist, while changes in (ii) will mean-revert to zero in the long run. See,
for example, Glosten and Harris (1988).
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Prediction 2 (price impact and option moneyness). The price impact λ of the
underlying is U-shaped in the option moneyness.

While the discussion has focused only on a call option, the prediction above
does not distinguish between calls and puts, thanks to put-call parity. (While the
moneyness flips between a call and a put of the same strike, the predicted U-shape
still remains U-shaped after the flip.)

Price reversal. In Section III.B.2, the price reversal is unaffected by the
variance swap of f Dð Þ¼ D�P0ð Þ2. Such a knife-edge result no longer holds here.
Graph B of Figure 3 shows that when the moneyness of the call option is moderate
(roughly between �1.7 and þ1.7), the price reversal γ is exacerbated (γ> γnd);
however, when either deep ITM or OTM, γ is alleviated (γ< γnd).

Two features of the model can explain this pattern. First, the demanders’ (the
suppliers’) delta hedging trade, �Δ1dY 1d (�Δ1sY 1s), always amplifies (dampens)
price pressure. To see this, consider a small positive increase in the equilibrium
price P1, which makes the call option more ITM. As such, both types of investors
would like to delta hedge more than before, as their Δ1j increases (Graph B of
Figure 2). In particular, the demanders delta hedge more by buying more of the
underlying, thus amplifying the small initial price increase, while the suppliers sell
more, dampening the initial price increase. Whether the net effect is amplifying or
dampening depends on whether Δ1d is more or less sensitive than Δ1s to the initial
small increase in P1. That is, the sensitivity of the delta hedging ratios (the option’s
convexity or Gamma Γ) matters.

This leads to the second feature: The demanders’Δ1d is more sensitive than the
suppliers’ Δ1s only when the call option’s moneyness is moderate. This can be seen
by zooming in on Graph B of Figure 2: Δ1d is steeper than Δ1s for moderate
moneyness but flatter when the call is deep ITMorOTM. Examining this difference
more closely, Figure 4 plots the two types of investors’ average delta hedging
sensitivity E Γ1d½ � and E Γ1s½ � in Graph A and their difference in Graph B.

By combining these two features, we see that the difference in the price
reversal γ� γnd is driven by the delta hedging sensitivity, or gamma, of the call
option. Indeed, comparing Graph B of Figures 3 and 4, γ� γnd > 0 precisely
when the demanders’ delta hedging is more sensitive (Γ1d >Γ1s) (i.e., for mod-
erate moneyness of the call). In this region, the demanders’ amplifying delta
hedging trades respond to price fluctuations more than the suppliers’ dampening
delta hedging trades. We summarize the discussion in the following empirical
prediction.

Prediction 3 (price reversal and option moneyness). Compared to the
no-derivative benchmark, the underlying’s price reversal with an option is higher
only when the option’s moneyness is moderate (not too OTM or too ITM).

Barbon and Buraschi (2019) provide consistent evidence. They approximate
dealers’ (liquidity suppliers’) aggregate Gamma imbalance and find that when it is
negative, there is larger intraday momentum (i.e., larger price reversal).
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IV. The Pre-Shock Equilibrium at t¼ 0

As before, we first consider the no-derivative case as the benchmark. In
particular, we are interested in the ex ante (t¼ 0) liquidity risk premium and how
derivatives affect it. To this end, we then consider the variance swap of
f Dð Þ¼ D�P0ð Þ2, with which we can characterize the equilibrium in closed form.
Finally, we illustrate the robustness of the findings from the variance swap by
considering options.

The no-derivative benchmark. At t¼ 0, the investors are initially homoge-
neous: each has the same probability π (resp. 1�π) of becoming a liquidity
demander (resp. supplier) by t¼ 1. They choose a symmetric demand schedule
X nd

0 pð Þ to maximize expected utility. The market clearing condition (1) then yields
the equilibrium price Pnd

0 , given by the following proposition.

Proposition 5 (benchmark asset price at t¼ 0). At t¼ 0, each investor holds the per
capita supply X units of the risky asset. The equilibrium asset price is

Pnd
0 ¼D� αG�1

0

� �
X � πMnd

1�πþπMnd αΣð ÞX ,

where the parameters Mnd and Σ are given in the proof.
The equilibriumPnd

0 has two discounts from the unconditional expected payoff
D. First, investors require a risk premium expressed as the product of an investor’s
risk aversion α and the unconditional payoff variance varnd D½ � ¼G�1

0 , scaled by the
per capita holdingX 0 ¼X . Second, there is a “liquidity risk premium.”The fraction

πMnd

1�πð ÞþπMnd is the risk-neutral probability for an investor to receive a liquidity shock,
where Mnd is the ratio of demanders’ expected marginal utility over that of the

FIGURE 4

Investors’ Delta Hedging Sensitivity, Gamma

Figure 4plots investors’ averagedelta hedging sensitivity to fluctuations in the underlyingpriceP 1 (i.e., their gamma).GraphA
jointly plots both the demanders’ and the suppliers’ gammas. Graph B plots their difference, namely the demanders’ less the
suppliers’ gamma. The other parameters are set at π¼ 0:50, D ¼0:0, X ¼ 0:8, G0 ¼1:0, τε ¼ 1:0, τz ¼ 1:0, and α¼ 0:8.
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suppliers. For simplicity, Mnd will be referred to as the marginal utility ratio, or
MUR, henceforth. The term Σ is a variance expression, akin to G�1

0 in the first
discount.

Introducing a variance swap. We now introduce a variance swap
f Dð Þ¼ D�P0ð Þ2. In this case, the underlying price P0 can still be solved in closed
form:

Proposition 6 (underlying price at t¼ 0, with variance swap). In equilibrium, the
underlying asset price at t¼ 0 is

P0 ¼D� αG�1
0

� �
X � πM

1�πþπM
αΣð ÞX ,

whereM is given in the proof and Σ is the same as in the benchmark (Proposition 5).
Taking P0 as given, both types of investors’ pre-trading utility are higher with the
variance swap (i.e., U0j >Und

0j for j∈ d,sf g), and so is the unconditional expected
utility, U 0 ¼ πU 0dþ 1�πð ÞU 0s >Und

0 .
Compared with the benchmark Pnd

0 (Proposition 5), the first two terms, the
expected payoffD and the risk premium αG�1

0 X , are the same. Only the third term,
the liquidity risk premium, is affected and only through the marginal utility ratio
(MUR) M in the risk-neutral probability. We show in the proof of the proposition
that M and Mnd differ by a factor of

M

Mnd ¼
ffiffiffiffiffiffiffiffi
G1d

G1s

r
e�

G1d�G1s
2G1 ≷1:(19)

Therefore, it is the MUR that determines the liquidity risk premium. Note that P0 is
monotonically decreasing inM (and Pnd

0 inMnd): the underlying’s ex ante price P0

features a higher liquidity risk premium if and only ifM >Mnd (i.e.,P0�Pnd
0 < 0, if

and only if M �Mnd > 0).
Whether M >Mnd or M <Mnd is driven by model parameters. We focus on

π, the pervasiveness of the liquidity shock, as it characterizes a key attribute of
investor composition.

Corollary 2 (the liquidity risk premium and investor composition). Introducing the
variance swap alleviates the liquidity risk if and only if the liquidity shock is not
very pervasive. That is, there exists a unique π∗∈ 0,1ð Þ such that M ≤Mnd and
P0≥Pnd

0 if and only if π ≤ π∗.

To understand the corollary, recall that Proposition 6 also finds that the
investors’ ex ante expected utility is higher with the variance swap (U0 >Und

0 ).
This higher utility arises from the new trading gains available at t¼ 1: the variance
swap allows the demanders to sell volatility, or insurance, to the suppliers. How-
ever, such trading gain is split unevenly between the demanders and the suppliers,
depending on their relative market share. For example, if π is close to 0, this small
group of demanders will extract most of the trading gain, because they are the only
derivative writers. In this case, at t¼ 0, investors expect a substantial boost in their
terminal wealth should they receive a liquidity shock, hence also a lower marginal
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expected utility. Compared to the benchmark, therefore, for sufficiently small π, the
MURdecreases (i.e.,M <Mnd). (When π is large, close to 1, the derivative trades in
a buyers’ market at t¼ 1, and the opposite follows.)

In fact, the difference in the MUR, M �Mnd , is monotonically increasing
in shock pervasiveness π. Graph A of Figure 5 shows the pattern. As the
liquidity shock becomes more likely, the MUR difference increases and crosses
zero once at some threshold π∗∈ 0,1ð Þ. That is, introducing the derivative
alleviates the ex ante liquidity risk if and only if π< π∗ (the MUR between
liquidity demanders and suppliers is reduced). When π> π∗, the liquidity risk is
exacerbated instead.

Graph B illustrates how the t¼ 0 underlying price is affected. When π< π∗,
P0 >Pnd

0 because investors require a smaller risk premium, and vice versa. Note
that at the two extremes of π↓0 and π↑1, P0 ¼Pnd

0 . This is because in addition to the
effect on MUR, π is also the physical probability of receiving a liquidity shock.
Recall from Proposition 6 that the risk-neutral probability of a liquidity shock
is πM= 1�πþπMð Þ. Therefore, in these two extremes, all investors will be of
the same type at t¼ 1, and there will be no open interest for the derivative
(Y 1d ¼Y 1s ¼ 0). The prices with and without the derivative therefore converge.

Introducing options. Finally, we introduce options to the benchmark. Corol-
lary 2 shows that the ex ante liquidity risk premium can be either alleviated or
worsened after a variance swap of D�P0ð Þ2 is introduced, largely depending on the
pervasiveness π of the liquidity shock. This result remains robust and the intuition is
the same:With options, investors are now able to trade on the volatility (through the
options’ nonlinear payoffs) of the underlying asset. When the liquidity shock
pervasiveness π changes, the ex ante marginal utility ratio (MUR) might either
increase or decrease, depending onwhether the liquidity demanders or the suppliers
benefit more.

FIGURE 5

Liquidity Risk and Liquidity Shock

Figure 5 illustrates how the introduction of the derivative of f ðDÞ¼ ðD�P 0Þ2 affects the equilibrium at t ¼ 0, for various levels of
liquidity shock pervasiveness π∈ 0,1ð Þ. Graph A plots the difference in the marginal utility ratio (MUR), with the derivative less
without the derivative, against π. The threshold π∗ is where the twoMURare equal. Translating this into the ex ante asset price,
Graph B plots the difference in the underlying asset price P 0 and Pnd

0 against π. The other primitive parameters are set at
D¼ 0:0, X ¼ 0:8, G0 ¼ 1:0, τε ¼ 1:0, τz ¼ 1:0, and α¼ 0:8.
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As an example, Figure 6 qualitatively replicates Figure 5. As π increases,
the liquidity shock affects more of the population, the MUR M monotonically
increases, and there is a threshold π# only above whichM >Mnd . Similarly, there is
a threshold π∗ only above which the liquidity risk premium increases (the under-
lying price P0 decreases) with the introduction of the call option.7

Empirical evidence. The empirical evidence is mixed regarding how deriva-
tives affect their underlying prices. Earlier works, like Branch and Finnerty (1981),
Conrad (1989), and Detemple and Jorion (1990), find prices of the underlying
increase after option listings, while evidence from more recent data, like Mayhew
andMihov (2000), document the opposite. More specifically, Sorescu (2000) finds
the effect to be positive before 1981 but negative after. Danielsen and Sorescu
(2001) attribute the cutoff to the effective mitigation of short sale constraints due to
the introduction of options. Our model instead provides a novel explanation to the
switch of the signs: The switch coincides in time with the well-known boom of
mutual funds in the 1980s. The mutual funds can be interpreted as the liquidity
demanders in our model, as they have private information (at least the active funds
do) and are subject to liquidity shocks driven by fund flows. Thus, the rise ofmutual
funds (an increase of parameter π) can push the price effect of option listings from
positive to negative, as shown in Graph B of Figure 5.

V. Disconnection Between (Il)liquidity Measures and Liquidity
Risk Premium

We have seen two sets of implications of derivatives on the underlying: the ex
post (t¼ 1) illiquidity measures like the price impact λ and the price reversal γ in

FIGURE 6

Liquidity Risk and Liquidity Shock, with One Call Option

Figure 6 qualitatively replicates the patterns shown in Figure 5. The difference is that herewe only introduce a single call option
at strike price K ¼�1:0. The other primitive parameters are set at D¼ 0:0, X ¼ 0:8, G0 ¼ 1:0, τε ¼ 1:0, τz ¼ 1:0, and α¼ 0:8.
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7Note that unlike Figure 5, the two thresholds π# forMUR and π∗ for the underlying price are not the
same here. This is because in the case of a variance swap, only the risk-neutral probability of receiving
a liquidity shock, πM= 1�πþπMð Þ, is affected by π. In general, the parameter π also affects other
equilibrium components in the ex ante underlying price P0, the closed-form solution of which we
unfortunately do not obtain.
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Section III; and the ex ante (t¼ 0) liquidity risk premium in Section IV. In summary,
we find that derivatives might disconnect the empirical illiquidity measures from
the liquidity risk premium in asset prices:

• Illiquidity measures would potentially disagree, with λ< λnd but γ≶γnd;
• Ex ante MUR might either increase or decrease (i.e., M≶Mnd).

As such, it is important that the trading in the derivatives be properly
accounted for when empirically analyzing liquidity risk and market illiquidity.

A. The Disconnection

The disconnection between the illiquidity measures and the liquidity risk
premium calls for caution in interpreting empirical findings. For example, the
Amihud (2002) measure, like price impact, is found to be associated with stock
returns less strongly in recent years (Amihud (2019), Drienko, Smith, and von
Reibnitz (2019), and Harris and Amato (2019)). Our theory suggests that the rise
of derivatives trading in the meantime could contribute to this trend; the
increased delta hedging volume in the underlying dilutes illiquidity measures
like price impact.

On the other hand, the market-wide liquidity measure of Pástor and Stam-
baugh (2003), related to price reversal, is found to be associated with a higher
liquidity risk premium in more recent data (Li, Novy-Marx, and Velikov (2019),
Pástor and Stambaugh (2019), and Pontiff and Singla (2019)). This evidence is also
consistent with our prediction from Section III.B.3: the investors’ net delta hedging
trades can exacerbate price pressure and amplify price reversal. Ben-Rephael,
Kadan, and Whol (2015) separately study the “characteristic” liquidity premium
and the “systematic” liquidity premium and find that in recent years, both exist only
in (small) NASDAQ stocks but not in NYSE or AMEX stocks. We argue that the
lack of derivatives trading on relatively small NASDAQ stocks (Mayhew and
Mihov (2004)) could explain why their liquidity measures and liquidity premium
differ from those of relatively large stocks.

B. The Novel Underlying Channel: Delta Hedging

Our model explains such disconnection through a novel channel of investors’
delta hedging trades, �Δ1jY 1j. (To compare, Vayanos and Wang (2012) discuss
in great detail the impact of other market conditions, like adverse selection and
competition, without derivatives.) Such delta hedging is the joint result of
i) investors’ intrinsic demand Y 1j for the derivative and ii) the nonzero delta hedging
ratio Δ1j 6¼ 0. The demand for the derivative arises from how heterogeneously
informed investors bet against each other on the asset’s variance. While such bets
are due to the information asymmetry across investors, their learning is unaffected
by our derivative, thus differentiating this article from the extant literature, like
Biais and Hillion (1994), Dow (1998), and Easley et al. (1998) .

It is through the nonzero delta hedging that derivatives affect the illiquidity
measures: Investors delta hedge their volatility bets by buying and selling in the
underlying, creating uninformed price pressure, thus lowering the price impact and
pushing the price reversal in either direction. We argue that such a delta hedging
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effect is a robust feature of the current financial market, as the derivative contracts
almost always have nonzero deltas.8

VI. Conclusion

This article studies how derivatives (with nonlinear payoffs) affect their
underlying securities’ liquidity. Through a REE model, we examine such deriva-
tives’ implications for the liquidity risk premium and for empirical illiquidity
measures. The key element of the model is a liquidity shock that randomly strikes
a fraction of the otherwise homogeneous population. The shocked investors then
demand liquidity for both information and hedging reasons, while the rest provide
liquidity to them. We contrast equilibrium outcomes with and without derivatives.

In terms of the liquidity risk premium, we find that derivatives have ambig-
uous effects. Introducing derivatives allows investors to trade on some nonlinear
structures of the underlying’s future payoff, creating additional trading gains.
However, the split of such trading gains between liquidity demanders and suppliers
depends on model parameters. In general, derivatives affect the wedge between
liquidity demanders’ and suppliers’ ex ante marginal expected utilities. As such,
before the shock, investors adjust (sometimes amplify) the risk-neutral probability
of receiving the liquidity shock and might demand higher liquidity risk premia.

In terms of empirical illiquidity measures, we find seemingly “contradictory”
messages, depending on the specific measure chosen. The key channel is investors’
delta hedging of their derivative positions in the underlying. Such new hedging
trades dilute the informed trading in the total trading volume, lowering price
impacts; hence yielding better liquidity. On the other hand, the equilibrium price
is now more subject to the price pressure of delta hedging trades, sometimes
amplifying but sometimes dampening the price reversal.

Taken together, the results of our model emphasize the potential disconnect
between assets’ liquidity risk premium and their empirical illiquidity measures
because of the trading of derivatives. Empirical studies associating the two sides
should carefully control for the activity in the assets’ derivative markets.

Appendix

A.1. Proofs

A.1.1. Lemma 1

Proof. Clearly, the demanders’ learning is unaffected by the derivative: Djs still
normally distributed with var1d D½ � ¼G�1

1d and E1d D½ � ¼ G0
G1d

DþG1d�G0
G1d

s. We need to
show that the suppliers do not learn more than they do in the benchmark. That is, fixing
the same realizations of D,ε,zf g, with or without the derivative, the suppliers hold the

8Recall that we focus on derivatives written ex ante of the liquidity shock (i.e., written at t¼ 0), and
are not path-dependant. That is, E ∂f Dð Þ=∂P1½ � ¼ 0 almost surely. Therefore, ex post of the liquidity
shock, the delta hedging ratioΔ1j ¼ bE1j f

0 Dð Þ½ � becomes a function of the randomP1, and is almost surely
nonzero. For example, consider the variance swap of f Dð Þ¼ D�P0ð Þ2, implying
Δ1j ¼ 2bE1j D�P0½ � ¼ 2 P1�P0ð Þ, which is zero when P1 realizes to be exactly P0, a zero probability
event.

184 Journal of Financial and Quantitative Analysis

https://doi.org/10.1017/S0022109023000224 Published online by Cam
bridge U

niversity Press

https://doi.org/10.1017/S0022109023000224


same posterior that D is normally distributed with var1s D½ � ¼ varnd1s D½ � ¼G�1
1s and

E1s D½ � ¼End
1s D½ � ¼ G0

G1s
DþG1s�G0

G1s
η.

Consider an arbitrary investor in this economy with type-j∈ d,sf g. Her terminal
wealth is given in equation (8). She chooses her demand X 1j and Y 1j to maximize her
conditional expected utility at t¼ 1 (i.e., U 1j ≔E1j �e�αW 2j½ �), taking both prices
P1,Q1f g as given. It is well known that such an optimization problem is strictly

concave.9 Therefore, if an equilibrium exists, it must be interior and the first-order
conditions must hold:

∂U 1j

∂X 1j
¼E1j α � D�P1ð Þe�αW 2j

� ¼ 0;and,
∂U1j

∂Y 1j
¼E1j α � f Dð Þ�Q1ð Þe�αW 2j

� ¼ 0:

(A-1)

Recalling that from a demander’s point of view, D is conditionally normal. Using
the conditional density, her first-order conditions can be simplified to a two-equation-
two-unknown system:

0¼
Z
ℝ
D�P1ð Þ � e�αf Dð ÞY 1d � e�

G1d
2 D�D�bηþ α

G1d
X 1d


 �2

dD;and(A-2)

0¼
Z
ℝ
f Dð Þ�Q1ð Þ � e�αf Dð ÞY 1d � e�

G1d
2 D�D�bηþ α

G1d
X 1d


 �2

dD:(A-3)

where bη≔ τε
τεþG0

s�D� α
τε
z


 �
¼ τε

τεþG0
η�D
� �

is informationally equivalent to what

suppliers can infer in the benchmark (cf. equation (A-5)).
Now turn to the suppliers. In equilibrium, they know that equations (A-2) and

(A-3) must hold. They can condition on the equilibrium prices P1,Q1f g. They also
observe the demanders’ demand realizations X 1d ,Y 1df g. This is because in equilibrium,
the suppliers know their own demand X 1s,Y 1sf g and through the market clearing
conditions πX 1d þ 1�πð ÞX 1s ¼X and πY 1d þ 1�πð ÞY 1s ¼ 0, the suppliers can thus
infer perfectly the realizations of X 1d ,Y 1df g. Knowing P1,Q1,X 1d ,Y 1df g, therefore,
from any supplier’s perspective, each equation in the system (A-2) and (A-3) has one
and only one unknown, bη. Therefore, they can infer, at best, bη.

We further show below that given P1,X 1d ,Y 1df g, the first line of equation (A-2) has
unique solution of bη. Hence, the suppliers can fully back out bη, learning exactly the same
as they do in the benchmark. (Equation (A-3) is redundant for learning, in this sense.)

To prove the uniqueness of the solution, we begin by writing

a D;bηð Þ≔ e�αf Dð ÞY 1d � e�
G1d
2 D�D�bηþ α

G1d
X 1d


 �2

and b D;bηð Þ≔D�D�bηþ α
G1d

X 1d ,

9Formally, HessianH of the optimization problem is a symmetric 2-by-2 matrix, with diagonal terms
∂
2U1j

∂X 2
1j
¼E1j �α2 � D�P1ð Þ2e�αW 2j

h i
≕E1j �a Dð Þ2

h i
and ∂

2U1j

∂Y 2
1j
¼E1j �α2 � f Dð Þ�Q1ð Þ2e�αW 2j

h i
≕

E1j �b Dð Þ2
h i

, both strictly negative. The off-diagonal term is ∂
2U1j

∂X 1jY 1j
¼E1j �α2 � D�P1ð Þ f Dð Þ�Q1ð Þ½

e�αW 2j � ¼E1j �a Dð Þb Dð Þ½ �. It follows that for any nonzero x¼ x1,x2½ �Τ ∈ℝ2, xΤHx¼
E1j �a Dð Þ2x21�2a Dð Þb Dð Þx1x2�b Dð Þ2x22
h i

¼E1j � a Dð Þx1þb Dð Þx2ð Þ2
h i

< 0 (i.e., the Hessian is

negative definite).
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so that
∂a D;bηð Þ

∂bη ¼G1da D;bηð Þb D;bηð Þ and equation (A-2) can be rearranged as

P1 ¼

Z
ℝ
Da D;bηð ÞdDZ
ℝ
a D;bηð ÞdD

:(A-4)

Note that this is an equation of bη and the suppliers try to solve bη from it. To show the
uniqueness of the solution, take derivative with respect tobη on the right-hand side to get

G1dZ
ℝ
adD

� �2

Z
ℝ
DabdD

Z
ℝ
adD�

Z
ℝ
DadD

Z
ℝ
abdD

� 	
,

where we omit the arguments of a �ð Þ and b �ð Þ for notation simplicity. Note that b can be
rewritten as b¼D� c where c≔Dþbη� α

G1d
X 1d is independent of D conditional on bη.

Plug in b¼D� c and simplify to get

G1dZ
ℝ
adD

� �2

Z
ℝ
D2adD

Z
ℝ
adD�

Z
ℝ
DadD

� �2
" #

:

Cauchy–Schwarz inequality has that
R
ℝf xð Þg xð Þdx� �2

≤
R
ℝf xð Þ2dxRℝg xð Þ2dx. Note

D2a¼D
ffiffiffi
a

p � ffiffiffi
a

p
always holds because a> 0. Applying the above Cauchy–Schwarz

inequality with f ¼D
ffiffiffi
a

p
and g¼ ffiffiffi

a
p

yieldsZ
ℝ
DadD

� �2

≤
Z
ℝ
D2adD

Z
ℝ
adD:

Therefore, the right-hand side of equation (A-4) is monotonically increasing in bη.
That is, so long the equilibrium exists, suppliers can exactly infer the bη.10 Since bη is
informationally equivalent to what suppliers can learn without the call options (as in the
benchmark), there is no additional information revealed. □

A.1.2. Propositions 1 and 5

Proof. The two propositions (and their proofs) correspond to Propositions 3.1–3.3
in Vayanos and Wang (2012). We highlight some notation differences below. The three
constants a, b, and c in equation (3.1) of Vayanos andWang (2012) can be expressed in
our notation as a¼D�αX =G1, b¼ 1�G0=G1, and c¼ α= G1d �G0ð Þ. These then help
verify our Proposition 1 as a replication of their Propositions 3.1 and 3.2. The stated P0

in our Proposition 5 has the same form as the one in their Proposition 3.3, where our αΣ
replaces their Δ1. That is, our Σ can be expressed in their notation as

Σ¼ α2bσ2ðσ2þσ2ε Þσ2z
1þΔ0ð1�πÞ2�α2σ2σ2z

,

10More rigorously, one needs to prove the existence of the solution to equation (A-4) in solving forbη. This is trivial, because equation (A-4) is a rewriting of the first-order condition (A-1). Since the
equilibrium is assumed to exist, the first-order condition necessarily holds.
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where σ2 ¼G�1
0 , σ2z ¼ τz�1, σ2ε ¼ τε�1, andΔ0 is given in their equation (3.7a) and can be

equivalently written in our notation as Δ0 ¼ 1
π2

G0
G1s�G0

G1�G1sð Þ2
G2

1
. Finally, the marginal

utility ratio Mnd in Proposition 5 can be expressed as

Mnd = exp
α
2
Δ2θ

2

 � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þπ2Δ0

1þΔ0 1�πð Þ2�α2σ2σ2z

s
,

where θ¼X , σ2 ¼G�1
0 , σ2z ¼ τz�1, and Δ2 is given in their equation (3.7c). In our

notation, Δ2 can be written as

Δ2 ¼
α3τz�1G�2

0 1þ G0
G1d�G0

G1�G1dð Þ2
G2

1

h i
1þΔ0 1�πð Þ2�α2τz�1G�1

0

:

We also highlight how the suppliers learn in this equilibrium. The only source of
new information for the suppliers is the risky asset’s price Pnd

1 , whose closed-form
solution is spelled out in equation (7). It can be seen that the only “learnable” component
is a linear combination of the private signal s and the endowment shock z:

η≔ s� α
τε
z¼Dþ ε� α

τε
z:(A-5)

That is, the suppliers are only learning from the above noisy signal η, which is a linear
combination of all three random variables in this economy. Given this, we have
varnd1s D½ � ¼ var D Pnd

1

��� ¼G�1
1s and End

1s D½ � ¼E D Pnd
1

��� ¼ G0
G1s

DþG1s�G0
G1s

η. □

A.1.3. Proposition 2

Proof. This proof considers a more general quadratic payoff
f Dð Þ¼D2�aP2

0�bDP0� cD� eP0� f . In particular, the stated result with a variance
swap, D�P0ð Þ2, is a special case of a¼�1, b¼ 2, and c¼ e¼ f ¼ 0. Consider a type-j
investor. Her terminal wealth W 2j is given by equation (8). Lemma 1 ensures that she
holds the same posterior distribution for D with or without the derivative. In particular,
D remains conditionally normal. Let zs ¼ 0, zd ¼ z, and W 1 ¼W 0þ p�P0ð ÞX 0. Eval-
uating the expected utility (e.g., Lemma A.1 of Marín and Rahi (1999)) yields,

E1j �e�αW 2j
� ¼� 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ2αvar1j D½ �Y 1j

p
�exp α �W 1þX 1j p�P0ð Þþ zj D�P0

� ��Y 1j 1�a�bð ÞP2
0� cþ eð ÞP0� f �q

� �� �� 
�exp �α X 1jþ zjþ 2�bð ÞP0� cð ÞY 1j

� �
E1j D½ ��P0

� ��αY 1j E1j D½ ��P0

� �2h i
�exp α2var1j D½ � X 1jþ zjþY 1j 2E1j D½ ��bP0� c

� �� �2
2 1þ2αvar1j D½ �Y 1j

� �" #
:

The first-order condition with respect to X 1j yields

X 1j ¼E1j D½ ��p

αvar1j D½ � � zj� 2p�bP0� cð ÞY 1j:

Plug this back to E1j �e�αW 2j½ � and evaluate the first-order condition with respect to Y 1j

to get:
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Y 1j ¼ 1

2α
1

q�p2þaP2
0þbP0pþ eP0þ cpþ f

� 1

var1j D½ �
� �

:

Finally, clearing the market with (1) and (2) yields the equilibrium prices p¼P1 and
q¼Q1 as stated in the proposition. (The utility maximization problem is a strictly
concave one. Hence, the above solution implied by the first-order conditions is unique.)
□

A.1.4. Proposition 3

Proof. Lemma S2 in the Supplementary Material shows that a type-j investor’s
risk-neutral density is bϕ1j Dð Þ, whose derivative with respect to D can be found as

bϕ01j Dð Þ¼ �α � X 1jþ f 0 Dð ÞY 1j

� ��G1jDþ G0Dþ G1j�G0

� �
η

� �� bϕ1j Dð Þ:

Note also that limD!�∞
bϕ1j ¼ 0, for otherwise the first-order conditions S2 (i.e., the risk-

neutral prices) would not be well-defined and the equilibrium would not exist. Therefore,Z ∞

�∞

bϕ01j Dð ÞdD¼ bE1j �α � X 1jþ f 0 Dð ÞY 1j

� ��G1jDþ G1j�G0

� �
η

� 
¼�αX 1j�αΔ1jY 1j�G1jp1þG0Dþ G1j�G0

� �
η¼ 0,

where the last equality holds because
R ∞
�∞
bϕ01j Dð ÞdD¼ limD!∞

bϕ1j Dð Þ�
limD!�∞

bϕ1j Dð Þ¼ 0: Hence,

X 1jþΔ1jY 1j ¼G1j

α
G0

G1j
DþG1j�G0

G1j
η�p1

� �
:

Note from Proposition 1 that the right-hand side above is exactly the demand function
X nd

1j p1ð Þ.

A.1.5. Proposition 4

Proof. To begin with, Lemma 1 ensures that these additional call options do not
reveal new information.11 Therefore, both the demanders and the suppliers have the
same posterior distribution of D as in the benchmark.

Next, we consider investors’ optimization. A type-j∈ d,sf g investor’s terminal
wealth is

W 2j ¼W 1þ D�P1ð ÞX 1jþ
Xn
i¼1

D�Kið Þþ �Q1i

� �
Y 1jiþ D�D

� �
zj,

whereW 1 ¼W 0þ P1�P0ð ÞX 0;Q1i is the price of the call with strike Ki (at t¼ 1); Y 1ji

is the investor’s holding of that call; zj is her endowment shock (zd ¼ z and zs ¼ 0). She
chooses her demand X 1j and Y 1ji

� �
to maximizes U 1j ≔E1j �e�αW 2j½ �.

11Lemma 1 only proves the information redundancy result for a single arbitrary derivative. It can be
easily generalized by noting i) that the demanders’ learning is unaffected; ii) that the suppliers can infer
from the market clearing conditions the exact quantities of the demanders’ demand in all assets; iii) that
the suppliers effectively learn from the demanders’ first-order conditions; and iv) that the demanders’
first-order condition for the underlying always reveals the same information as in the benchmark.
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We first establish the uniqueness of the optimal demand, taking all prices P1 and
Q1if g as given. This is because the optimization problem is strictly concave:

∂
2U1j

∂X 1j
2 ¼E1j �α2 � D�P1ð Þ2e�αW 2j

h i
< 0

∂
2U 1j

∂Y 1ji
2 ¼E1j �α2 � D�Kið Þþ �Q1i

� �2
e�αW 2j

h i
< 0,∀i∈ 1,…,nf g:

Therefore, the first-order conditions (if the solution exists) are sufficient for the global
optimum:

∂U 1j

∂X 1j
¼E1j α � D�P1ð Þe�αW 2j

� ¼ 0;and

∂U1j

∂Y 1ji
¼E1j α � D�Kið Þþ �Q1i

� �
e�αW 2j

� ¼ 0,∀i∈ 1,…,nf g:

(A-6)

While not analytically tractable, it is clear that the first-order conditions (A-6) always
have a solution (existence): Consider the extreme choices of X 1j and its implication for
U 1j for example. When ∣X 1j∣!∞, U 1j !�∞ because with infinite holding X 1j, the
uncertainty associated with the risky payoff D becomes infinity. Such infinite payoff
risk makes the investor suffer from infinite risk. Given that the optimization is strictly
concave and that limX 1j!�∞U1j ¼�∞, there exists a unique X 1j that maximizes U1j.
The same argument applies to option holdings Y 1ji

� �
.

We have shown that the optimal demand is a unique function of the prices P1 and
Q1if g. These nþ1 prices are pinned down via the nþ1 market clearing conditions:

πX 1d þð1�πÞX 1s� �X ¼ 0; and πY 1diþð1�πÞY 1si ¼ 0,∀i∈f1,…,ng,

or, defining F :ℝnþ1↦ℝnþ1:

F P1,Q1i,…,Q1nð Þ≔

πX 1d þ 1�πð ÞX 1s�X

πY 1d1þ 1�πð ÞY 1s1

⋮
πY 1dnþ 1�πð ÞY 1sn

26664
37775¼

0

0

⋮
0

26664
37775:(A-7)

It turns out that the prices pinned down by F �ð Þ¼ 0 are also unique. We prove this by
showing that the Jacobian matrix of F �ð Þ

π �

dX 1d

dP1

dX 1d

dQ11
⋯

dX 1d

dQ1n

dY 1d1

dP1

dY 1d1

dQ11
⋯

dY 1d1

dQ1n

⋮ ⋮ ⋱ ⋮
dY 1dn

dP1

dY 1dn

dQ11
⋯

dY 1dn

dQ1n

26666666664

37777777775
þ 1�πð Þ

dX 1s

dP1

dX 1s

dQ11
⋯

dX 1s

dQ1n

dY 1s1

dP1

dY 1s1

dQ11
⋯

dY 1s1

dQ1n

⋮ ⋮ ⋱ ⋮
dY 1sn

dP1

dY 1sn

dQ11
⋯

dY 1sn

dQ1n

26666666664

37777777775
(A-8)

is negative definite. To do so, consider the underlying asset for example (the argument is
generic for any of the nþ1 securities). The first-order condition (A-6) is an implicit
function of the demand X 1j and all nþ1 prices. By implicit function theorem, we have
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dX 1j

dP1
¼�∂

2U1j= ∂X 1j∂P1

� �
∂
2U1j=∂X 1j

2 ¼E1j αe�αW 2j �α2 � D�P1ð ÞX 1je�αW 2j
� 
E1j �α2 � D�P1ð Þ2e�αW 2j

h i :(A-9)

Clearly, the denominator is negative (it is the second-order derivative ofU 1j with respect
to X 1j). The numerator can be further simplified:

E1j αe
�αW 2j �α2 � D�P1ð ÞX 1je

�αW 2j
� 

¼E1j αe
�αW 2j

� �αX 1j E1j α � D�P1ð Þe�αW 2j
� |fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

¼0,bythe first�order condition A:6ð Þ

> 0:

(A-10)

Therefore, we have dX 1j=dP1 < 0 in equilibrium, which is an intuitive result that the
demand for a security strictly decreases with its price, for both j∈ d,sf g. Again by
implicit function theorem, ∀i∈ 1,…,nf g, we also have

dX 1j

dQ1i
¼�∂

2U1j= ∂X 1j∂Q1i

� �
∂
2U1j=∂X 1j

2 ¼E1j �α2 � D�P1ð ÞY 1jie�αW 2j
� 

E1j �α2 � D�P1ð Þ2e�αW 2j

h i
where, like before, the numerator can be further simplified as

E1j �α2 � D�P1ð ÞY 1jie
�αW 2j

� ¼�αY 1jiE1j α � D�P1ð Þe�αW 2j
� ¼ 0

following the first-order condition (A-6). Therefore, dX 1j=dQ1i ¼ 0, ∀i∈ 1,…,nf g.
Following the same steps as above, for each call option i, we have dY 1ji=dP1 ¼ 0,

dY 1ji=dQ1i < 0, and dY 1ji=dQ1l ¼ 0 for l 6¼ i. Therefore, the Jacobian (A-8) has all off-
diagonal terms equal to zero and all diagonal terms strictly negative. It is negative
definite, implying a unique solution to F �ð Þ¼ 0. This unique solution of prices
also implies that investors’ demand, pinned down by the first-order conditions (A-6),
is unique.

To sum up, we have characterized the t¼ 1 equilibrium under any arbitrary set of
(call) options in terms of investors’ optimal demand (A-6) and market clearing (A-7).
We have also shown that the solution to the equation system (A-6) and (A-7) is
unique. □

A.1.6. Proposition 6

Proof. This proof considers a more general quadratic payoff
f Dð Þ¼D2�aP2

0�bDP0� cD� eP0� f . In particular, the stated result is a special case
of a¼�1, b¼ 2, and c¼ e¼ f ¼ 0. The proof of Proposition 2 gives an investor’s
expected utility at t¼ 1, E1j �e�αW 2j½ �, taking p¼P1 and q¼Q1 as given. Consider a
demander (j¼ d) first. Expanding withW 1 ¼W 0þ P1�P0ð ÞX 0 and E1d D½ �with s and
z gives

E1d �e�αW 2d
� 

= �
ffiffiffiffiffiffiffiffi
G1d

G1

r
� e

G1�G1d
2G1 � e�α� W 0þ P1�P0ð ÞX 0þ P1�Dð Þzð Þ � e�

G1d
2 DþG1d�G0

G1d
s�Dð Þ�P1


 �2

where P1 ¼Pnd
1 can be further written as a linear combination of s and z. Taking the

expectation of the above over s,zf g yields the “interim” utility U 0d of a demander; that
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is, the expected utility after the type realizes but before the signal and the endowment
shock are observed:

U0d ¼�
ffiffiffiffiffiffiffiffi
G1d

G1

r
� e

G1�G1d
2G1

�αW 0d 1þ G0

G1d �G0
1�G1d

G1

� �2

1þ α2

τετz

� �
� α2

G0τz

 !�1
2

,

where

W 0d ≔

W 0þ D�P0

� �
X 0� α

G0
X 0X þ α

2G0
X

2�α
2

1þ G0

G1d �G0
1ð

�
� G1d

G1
Þ
2

1þ α2

τετz

� �
� α2

G0τz

	�1

� G1�G0

G1

� �2 1

G0
þ 1

τε

� �
1þ α2

τετz

� �
X 0�X
� �2(

þ 1

G0
þ 1

τε

� �2α2

τz
2 1�G0

G1

� �
1� G0

G1d

� �
X 0X þ G0

G1d
1�G1d

G1

� �2

� 1�G0

G1

� �2
" #

X
2

" #)
:

Similarly, the interim utility U0s of liquidity suppliers can be derived as

U 0s ¼�
ffiffiffiffiffiffiffi
G1s

G1

r
� e

G1�G1s
2G1

�αW 0s 1þ G0

G1s�G0
1�G1s

G1

� �2
 !�1

2

,

W 0s ¼W 0þ D�P0

� �
X 0� α

2G0
X 2

0þ
αG1s

2G2
1

1þ G0

G1s�G0
1�G1s

G1

� �2
" #�1

� X 0�X
� �2

:

At t¼ 0, investors choose X 0 to maximize πU0d þ 1�πð ÞU 0s: The first-order
condition, together with the market clearing condition X 0 ¼X , leads to

π � D�p�αG�1
0 X �αΣX

� �
M þ 1�πð Þ D�p�αG�1

0 X
� �¼ 0,

where

M ¼ e
G1s�G1d

2G1

ffiffiffiffiffiffiffiffi
G1d

G1s

r
exp

α
2
Δ2X

2

 � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þπ2Δ0

1þΔ0 1�πð Þ2�α2= τzG0ð Þ

s
,

and Δ0 and Δ2 are the same coefficients as given in the proof of Propositions 5 and 1.
(Note that the second-order conditions are satisfied as well as both U 0d and U 0s are
monotone transformation of quadratic terms in X 0.) It can be seen that the above first-
order condition is linear in the market clearing price p, which then uniquely solves the
equilibrium P0 stated in the proposition.

Conditional on the realization of P0, in the no-derivative benchmark, following
Vayanos and Wang (2012), the liquidity demanders’ interim utility is

Und
0d ¼�e�αWnd

0d 1þ G0

G1d �G0
1�G1d

G1

� �2

1þ α2

τετz

� �
� α2

G0τz

 !�1
2

,

where Wnd
0d ¼W 0d . As 0<

G1
G1d

< 1,
ffiffiffiffiffiffi
G1d
G1

q
� e

G1�G1d
2G1 is a decreasing function of G1d

G1
. There-

fore,
ffiffiffiffiffiffi
G1d
G1

q
� e

G1�G1d
2G1 < 1 and U0d >Und

0d . Likewise, for the liquidity suppliers,
ffiffiffiffiffi
G1s
G1

q
�
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e
G1�G1s
2G1 is an increasing function of G1s

G1
because G1

G1s
> 1. Then

ffiffiffiffiffi
G1s
G1

q
� e

G1�G1s
2G1 < 1 and

U 0s >Und
0s .

A.1.7. Corollary 1

Proof. This proof considers a more general quadratic payoff
f Dð Þ¼D2�aP2

0�bDP0� cD� eP0� f . In particular, the stated result is a special
case of a¼�1, b¼ 2, and c¼ e¼ f ¼ 0. By market clearing, we have
π X 1d �X
� �¼� 1�πð Þ X 1s�X

� �
, where

X 1s ¼E1s D½ ��P1

αvar1s D½ � � 2P1�bP0�cð ÞY 1s and Y 1s ¼ 1

2α
G1�G1sð Þ:

Therefore,

λ¼ cov P1�P0π � X 1d �X 0ð Þ½ �
var π � X 1d �X 0ð Þ½ � ¼�cov P1�P0, 1�πð Þ X 1s�X

� �� �
var 1�πð Þ X 1s�X

� �� 
¼ 1

1�π
G1�G0ð Þ
G1�G1sð Þ

α
G1

:

Compared to equation (18) in the benchmark, we have λ=λnd ¼G0=G1 < 1.
From Proposition 2, P1 is unchanged after the introduction of options, P1 ¼Pnd

1 .
As a result, the price reversal γ is unaffected. □

A.1.8. Corollary 2

Proof. From equation (19), M
Mnd ¼

ffiffiffiffiffiffi
G1d
G1s

q
e�

G1d�G1s
2G1 ≷ 1: Define

π∗ � 1
log G1d=G1sð Þ� G1d

G1d�G1s
, we have

(1) exp G1s�G1d
2G1


 � ffiffiffiffiffiffi
G1d
G1s

q
> 1 only if G1d�G1s

G1
þ log G1s

G1d


 �
< 0, which is equivalent to

π> π∗.
(2) exp G1s�G1d

2G1


 � ffiffiffiffiffiffi
G1d
G1s

q
< 1 only if G1d�G1s

G1
þ log G1s

G1d


 �
> 0, which is equivalent to

π< π∗.
(3) exp G1s�G1d

2G1


 � ffiffiffiffiffiffi
G1d
G1s

q
¼ 1 only if G1d�G1s

G1
þ log G1s

G1d


 �
¼ 0, which is equivalent to

π¼ π∗. □
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