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Abstract. If bounded linear operators A and B are each reguloid, and have
the single valued extension property, then Weyl’s theorem holds for all holomorphic
functions of all operator matrices MC = (A C

0 B).
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1. Introduction. Weyl’s theorem is said to hold for a bounded linear operator T
on a Banach space E if there is equality

σ (T)\σw(T) = π00(T), (1)

where σ and σw are the spectrum and the Weyl spectrum, and π00 the isolated
eigenvalues of finite multiplicity. The weaker condition, that

σ (T) = σw(T) ∪ π00(T), (2)

has been described as “Browder’s theorem holds”. See [7]. Curto and Han [4] have
listed a number of equivalent conditions, among them the implication

λ ∈ π00(T) =⇒ T has SVEP at λ. (3)

Here T ∈ B(E) is said to have the single valued extension property (SVEP) at λ provided
that for arbitrary functions f : U → E holomorphic on neighborhoods U of λ, we
have

(T − zI)f (z) ≡ 0 =⇒ f (z) ≡ 0. (4)

Let H(K) denote the space of functions holomorphic on an open neighborhood
of K ⊂ �.
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In this note we ask to what extent Weyl’s theorem (1) is transmitted from T = A
on X and T = B on Y to

T = MC :=
(

A C
0 B

)
(5)

on E = X × Y . Our main result is as follows.

THEOREM 1.1. If A ∈ B(X) and B ∈ B(Y ) are each reguloid, and have the single
valued extension property, then Weyl’s theorem holds for f (MC) for arbitrary f ∈
H(σ (MC)) and for arbitrary bounded operators C : Y → X.

Here T ∈ B(E) is said to be reguloid if

λ ∈ iso σ (T) =⇒ T − λI ∈ (T − λI)B(E)(T − λI) : (6)

All isolated points of spectrum give rise to operators that have generalized inverses.
Such operators are necessarily isoloid in the sense that all isolated points of the
spectrum are eigenvalues, and also closoid, in the sense that

λ ∈ iso σ (T) =⇒ (T − λI)(E) = cl(T − λI)(E), (7)

giving rise to operators with closed range. Curto and Han [4, Theorem 2.2] showed
that if T ∈ B(E) has SVEP then the condition (7) is necessary and sufficient for Weyl’s
theorem.

A condition stronger than reguloid is that the operator T be transaloid, in the
sense that the norm and the spectral radius coincide for all T − λI . Curto and Han
[4, Theorem 2.5] have shown that if T ∈ B(E) has SVEP and is transaloid then Weyl’s
theorem holds for all holomorphic images f (T). Our Theorem 1.1 improves this in two
ways, by relaxing the transaloid condition to reguloid, and by extending to operator
matrices.

2. Proof of Theorem 1.1. To prove Theorem 1.1, we need several lemmas.

LEMMA 2.1. Let A ∈ B(X) and B ∈ B(Y ) have SVEP. If A is isoloid and B is reguloid,
then MC is isoloid.

Proof. Suppose that λ ∈ isoσ (MC). If B has SVEP then σ (B) coincides with the
defect spectrum of B. It follows from [5, Theorem 2.3](or [8]) that σ (MC) = σ (A) ∪
σ (B). Therefore λ ∈ iso (σ (A) ∪ σ (B)). Now we consider two cases. First, suppose
that λ ∈ σ (A). Then λ ∈ isoσ (A). Since A is isoloid, (A − λI)−1(0) �= {0}. Observe that
(A − λI)−1(0) ⊕ {0} ⊆ (MC − λI)−1(0), and hence (MC − λI)−1(0) �= {0}.

Secondly suppose that λ ∈ σ (B) \ σ (A). Then λ ∈ isoσ (B) and A − λ is invertible.
Since B is reguloid, B − λI is regular. This implies that MC − λI is also regular because

MC − λI =
(

I 0
0 B − λI

)(
I C
0 I

) (
A − λI 0

0 I

)
. (8)

In particular, MC − λI has an invertible generalized inverse since λ ∈ isoσ (MC) ⊆
∂σ (MC) by [6, (3.8.6.1)]. Thus by [6, Theorem 7.3.4] we have

(MC − λI)−1(0) ∼= X/(MC − λI)(X ⊕ Y ). (9)
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Suppose that (MC − λI)−1(0) = {0}. Then, by (9), MC − λI is invertible. This
contradicts the fact that λ ∈ σ (MC), and thus (MC − λI)−1(0) �= {0}. As we have now
considered both cases, MC is isoloid. �

In this paper, assuming that A ∈ B(X) and B ∈ B(Y ) both have SVEP, we deal with
Weyl’s theorem for operator matrices MC . From this viewpoint, we have the following
result.

LEMMA 2.2. Let A ∈ B(X) and B ∈ B(Y ) both have SVEP. If A and B are closoid,
then Weyl’s theorem holds for MC.

Proof. Since A and B both have SVEP, it follows from [8, Proposition 3.1] that MC

has SVEP. Thus, to prove Weyl’s theorem for MC , by (7), it suffices to show that

MC − λI has closed range for every λ ∈ π00(MC). (10)

Assume that λ ∈ π00(MC); i.e.,

0 < dim(MC − λI)−1(0) < ∞. (11)

Since B has SVEP, it follows as in Lemma 2.1 that σ (MC) = σ (A) ∪ σ (B). Hence λ ∈
iso (σ (A) ∪ σ (B)). Now, let either λ ∈ σ (A) \ σ (B) or λ ∈ σ (B) \ σ (A). Then, observing
that

MC − λI =
(

I 0
0 B − λI

) (
I C
0 I

)(
A − λI 0

0 I

)
, (12)

it is obvious that MC − λI has closed range because A and B are closoid and (I C
0 I ) is

invertible.
On the other hand, let λ ∈ σ (A) ∩ σ (B), so that λ is a common isolated point of

σ (A) and σ (B). Because

(A − λI)−1(0) ⊕ {0} ⊆ (MC − λI)−1(0),

(11) implies that (A − λI)−1(0) is finite dimensional. Since A is closoid, A − λI is semi-
Fredholm. By the continuity of index, A − λI is Weyl. We claim that B − λI is Weyl,
too. To prove this claim, it suffices to show that

(B − λI)−1(0) is finite dimensional (13)

because, in this case, the fact that B is closoid forces that B − λI is semi-Fredholm, and
so Weyl. To prove (13), we borrow an argument in the proof of [11, Theorem 2.4]. To
the contrary we assume that

(B − λI)−1(0) is infinite dimensional. (14)

We consider two cases.
Case 1. Suppose that C((B − λI)−1(0)) is finite dimensional. Then C−1(0) must

contain an infinite sequence {yi} of linearly independent vectors in (B − λI)−1(0).
However, we can see that (MC − λI)(0 ⊕ yi) = 0, for each i = 1, 2, . . . , and this implies
that (MC − λI)−1(0) is infinite dimensional, a contradiction.

Case 2. Suppose that C((B − λI)−1(0)) is infinite dimensional. As mentioned
above, A − λI is Weyl, and so X/(A − λI)(X) is finite dimensional. This implies that
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C((B − λI)−1(0)) ∩ (A − λI)(X) is infinite dimensional. Thus we can find a sequence
{yi} of linearly independent vectors in (B − λI)−1(0) for which there exists a sequence
{xi} ⊆ X such that (A − λI)xi = Cyi for each i = 1, 2, . . . . Then we can see that
(MC − λI)(xi ⊕ −yi) = 0 for each i = 1, 2, . . . , and this implies that (MC − λI)−1(0)
is infinite dimensional, a contradiction. Hence we proved that if λ ∈ σ (A) ∩ σ (B), then
A − λI and B − λI are Weyl, and so MC − λI has closed range because MC − λI also
is Weyl. Consequently, this completes the proof. �

In general, the spectral mapping theorem fails for the Weyl spectrum [2, Exam-
ple 3.3] but one way inclusion always holds [2, Theorem 3.2]: that is

σw(p(T)) ⊆ p(σw(T)), for each polynomial p.

For the reverse inclusion, it is well known [7, Theorem 5] that

σw(p(T)) ⊇ p(σw(T)), for each polynomial p (15)

if and only if

i(T − λI) i(T − µI) ≥ 0, for each pair λ,µ ∈ � \ σe(T). (16)

Next, we have the following result.

LEMMA 2.3. Let A ∈ B(X) and B ∈ B(Y ) have SVEP. Then

σw(f (MC)) = f (σw(MC)) for f ∈ H(σ (MC)). (17)

Proof. Since A and B have SVEP, MC also has SVEP. Since i(MC − λI) ≤ 0 for
every λ ∈ � \ σe(MC), from (15) and (16), we have

σw(p(MC)) = p(σw(MC)) for each polynomial p. (18)

Hence [13, Theorem 2] completes the proof. �
Proof of Theorem 1.1. Since MC is isoloid by Lemma 2.1, [10, Lemma] implies

that

f
(
σ (MC) \ π00(MC)

) = σ (f (MC)) \ π00(f (MC)), for every f ∈ H(σ (MC)).

It follows from Lemma 2.2 and Lemma 2.3 that

σ (f (MC)) \ π00(f (MC)) = f (σ (MC) \ π00(MC)) = f (σw(MC)) = σw(f (MC)),

which implies that Weyl’s theorem holds for f (MC). �

3. Applications. Now, there are many interesting works ([5], [7], [11], [12]) which
deal with Weyl’s theorem and Browder’s theorem for 2 × 2 operator matrices. In this
section, we introduce two interesting earlier results, [5, Theorem 2.5] and [11, Theo-
rem 2.4], which are strongly related to our main result. As applications of Theorem 1.1,
we give an improvement of [5, Theorem 2.5] and an analogue of [11, Theorem 2.4],
respectively.
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We first consider the following result due to Djordjević and Han [5].

PROPOSITION 3.1 [5, Theorem 2.5]. Let A ∈ B(X) and B ∈ B(Y ) both have SVEP.
Suppose that the following conditions hold:

(a) A and B are isoloid,
(b) H0(B − λI) is finite dimensional for each λ ∈ iso σ (B),
(c) Weyl’s theorem holds for A ⊕ B.

Then Weyl’s theorem holds for MC, for arbitrary bounded operators C : Y → X.

Here recall that the “quasinilpotent part" of T ∈ B(E) is defined by

H0(T) = {
x ∈ E : ||Tnx|| 1

n → 0
}
.

We should like to point out that Theorem 1.1 and Proposition 3.1 suggest different
sufficient conditions for MC to obey Weyl’s theorem. Actually, we can notice that
the assumptions of Theorem 1.1 do not imply (b) of Proposition 3.1, and that the
assumptions of Proposition 3.1 do not imply that A and B are reguloid. Moreover, as
is shown in Theorem 3.3 below, it is interesting that, without any additional conditions,
we can reach the same conclusion that Weyl’s theorem holds for f (MC).

To show this, we first need the following lemma.

LEMMA 3.2. Let A ∈ B(X) and B ∈ B(Y ) both have SVEP. If (a), (b), and (c) in
Proposition 3.1 are assumed, then MC is isoloid.

Proof. To show that MC is isoloid, suppose that λ ∈ isoσ (MC). Then λ ∈
iso (σ (A) ∪ σ (B)). If λ ∈ σ (A), as in the proof of Lemma 2.1, we have that
(MC − λI)−1(0) �= {0}. Alternatively, if λ ∈ σ (B) \ σ (A), then λ ∈ isoσ (B) and A − λ is
invertible. Thus λ ∈ π00(B) by (b) of Proposition 3.1, which implies that λ ∈ π00(A ⊕ B)
by (c) of Proposition 3.1. Hence MC − λI is Weyl, which forces that (MC − λI)−1(0) �=
{0}. Consequently, MC is isoloid. �

We have an improvement of Proposition 3.1.

THEOREM 3.3. Let A ∈ B(X) and B ∈ B(Y ) both have SVEP. If (a), (b), and (c)
in Proposition 3.1 are assumed, then Weyl’s theorem holds for f (MC), for every f ∈
H(σ (T)).

Proof. The proof is exactly same as the proof of Theorem 1.1; i.e., after combining
Lemma 3.2 and [10, Lemma], and applying Proposition 3.1 and Lemma 2.3, we can
show that Weyl’s theorem holds for f (MC). �

To state the next, recall [14] that the spectral picture of an operator T ∈ BL(X),
denoted SP(T), consists of the set σe(T), the collection of holes and pseudoholes in
σe(T), and the indices associated with these holes and pseudoholes. The following
result is well known [11, Lemma 2.2].

LEMMA 3.4. For A ∈ B(X) and B ∈ B(Y ), if either SP(A) or SP(B) have no
pseudoholes, then we have

(a) σw(A ⊕ B) = σw(MC),
(b) σ (A) ∪ σ (B) = σ (MC) ∪ U , where U is the union of the holes in σ (MC) which

happen to be subsets of (σ (A) ∩ σ (B)) \ σw(A ⊕ B).

Using the lemma above, W. Y. Lee ([11, Theorem 2.4]) proved the following result.
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PROPOSITION 3.5. For A ∈ B(X) and B ∈ B(Y ), let SP(A) or SP(B) have no
pseudoholes. If

(a) A is isoloid for which Weyl’s theorem holds,
(b) Weyl’s theorem holds for A ⊕ B,

then Weyl’s theorem holds for MC, for arbitrary bounded operators C : Y → X.

We also notice that Theorem 1.1 and Proposition 3.5 suggest different sufficient
conditions for MC to obey Weyl’s theorem. Actually, we notice that the assumptions of
Proposition 3.5 and Theorem 1.1 have no direct co-relation, but if the condition that B
is reguloid is added to the assumption of Proposition 3.5, then we have the following
result.

LEMMA 3.6. For A ∈ B(X) and B ∈ B(Y ), let SP(A) or SP(B) have no pseudoholes.
If A is isoloid and B are reguloid, then MC is isoloid.

Proof. Suppose that λ ∈ iso(MC). If λ ∈ isoσ (MC) \ isoσ (A ⊕ B), then λ ∈ (σ (A) ∩
σ (B)) \ σw(A ⊕ B). Thus Lemma 3.4 (a) implies that λ �∈ σw(MC); i.e., MC − λI is Weyl,
and hence MC − λI is not injective; i.e., (MC − λI)−1(0) �= {0}. On the other hand, if
λ ∈ isoσ (MC) ∩ isoσ (A ⊕ B), then λ ∈ (σ (A) ∪ σ (B)), and so we can apply the same
argument as in the proof of Lemma 2.2. Hence we have that MC is isoloid. �

We conclude by proving the following result.

THEOREM 3.7. For A ∈ B(X) and B ∈ B(Y ), let SP(A) or SP(B) have no pseudo-
holes. If

(a) A is isoloid for which Weyl’s theorem holds,
(b) Weyl’s theorem holds for A ⊕ B,
(c) B is reguloid,

then Weyl’s theorem holds for f (MC), for every f ∈ H(σ (T)).

Proof. By combining Lemma 3.6 and [10, Lemma], applying Proposition 3.5 and
Lemma 2.3, we can get that Weyl’s theorem holds for f (MC). �
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