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1. Introduction. In the classification of almost alternative algebras relative 
quasiequivalence by Albert two new classes of algebras of type (7, ô) were 
introduced, namely those of type (1, 1) and ( —1, 0) (1, equations (34), (35), 
and Theorem 6). Since rings of type (1, 1) and ( — 1, 0) are anti-isomorphic 
it suffices to consider those of type (1, 1). They may be defined as rings 
satisfying 

(1) B(x, y, z) = (x, y, z) - (x, z, y) = 0, 
and 

(2) A (x, y} z) = (x, y, z) + (y, z, x) + (z, x, y) = 0, 

for all elements x, y, and z of the ring, where the associator (a, b, c) is given 
by (a, b, c) = (ab)c — a (be). 

Actually the identity 

(2') (x, x, x) = 0, 

together with (1) implies (2) whenever the characteristic of the ring is dif­
ferent from 2. This may readily be verified by linearizing (2'). Consequently 
we may use (1) and (2') as the defining relations for a ring of type (1, 1). 

Additional results on rings of type (1,1) were obtained by Kokoris (3; 4) 
and the author (2). The main result of the present paper, which is stated in 
the title, draws upon these results. Let R be a ring of type (1, 1), u any element 
of R of the form u = (x, y, x), and C the right ideal of R generated by u. 
Then uC = 0 = Cu (Theorem 2). This turns out to be the key result in the 
structure theory for it assures the existence of an abundance of right ideals 
even under the assumption of simplicity (Theorems 6 and 8). In contrast to 
this, if R is also not associative then it has no proper left ideals (Theorem 4). 
Every minimal right ideal A of R has the property A2 = 0 (Theorem 5). 
With the additional hypothesis of chain conditions on right ideals no maximal 
right ideal of R can be nil and the union of the minimal right ideals of R is 
contained in the intersection of the maximal right ideals (Theorem 8). By 
assuming either that R has an idempotent or that R is a finite dimensional 
algebra one can utilize the information about the right ideals of R in order to 
reach a contradiction. In fact even primitive rings and hence semi-simple 
rings of type (1,1) turn out to be associative [Theorem 11 and its Corollaries]. 
The characteristic of R is assumed to be different from 2 and 3, and in §4 
different from 5 as well. 
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We also consider the more general question of rings of type (7, <5). When 
y 5* 1, — 1 it turns out that a simple ring that is not associative, has no 
proper left or right ideals, and therefore the techniques developed for rings of 
type (1,1) are not applicable. 

2. Identities. Fundamental to all our results on rings of type (1, 1) is 
Theorem 2, already mentioned in the Introduction, which permits the con­
struction of right ideals. This result must be obtained through complicated 
computation. It is a more sophisticated version of the identity (x, y, x)2 = 0, 
which constituted the main result of (2). We shall save considerable time and 
effort by recalling the following identities that hold for all elements w, x, y, z 
of a ring of type (1, 1). Except for (10), which is a specialization of (1) and 
(2), these identities may easily be located in (2). The commutator (x, y) is 
defined by (x, y) = xy — yx. 

(3) (x, (x, y, z)) = 0, 

(4) C(w, x, y, z) = (w, (x, y, z)) + (x, (w, y, z)) = 0, 

(5) D(x, y, z) = (x, yz) — y(x, z) — (x, y)z + (x, y, z) = 0, 

(6) F(w, x, yj z) = (wx, y, z) — (w, xy, z) + (w, x, yz) — w(x, y, z) 
— (w, x, y)z — 0, 

(7) H(w,x,y,z) = (w, (w, x, y)z) — (w, (w, x, z)y) = 0, 

(8) ((x, y, z),x, x) = 0, 

(9) ((x, y, x), y, x) = ((x, y, x), y) = ((x, y, x), yx) = 0, 

(10) — (y, x, x) = 2(x, y y x) = 2(x, x, y). 

In addition to these identities we shall also make use of a result of Kokoris 
(4), that every subring of a ring of type (1, 1) that is generated by a single 
element is associative. 

Our first objective is to establish the following generalization of (3). 

THEOREM 1. Let v be any element of the form v = (w, x, 3;), where w, x, y are 
elements of a ring R of type (1, 1). Then the right ideal D generated by v has the 
property that (w, D) = 0. 

Proof. Let 5 = (y, x, x) and u = (x, y, x). Then — 5 = 2u, as a result of 
(10). Since («, yx) = 0 is implied by (9), we know that (5, yx) = 0. Also 

But 

0 = C(y, yx, x, x) = (y, (yx, x, x)) + (yx, s) = (y, (yx, x, x)). 

0 = F(y, x, x, x) 

= (yx, x, x) — (y, x2, x) + (y, x, x2) — y(x, x, x) — (y, x, x)x 

= (yx, x, x) — (y, x, x)x, 
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as a result of (1). Since (y, (yx, x, x)) = 0, we must also have {y, (y, x, x)x) = 0. 
Replacing x by x + z in this last identity and utilizing (1) and (7), it must 
follow that 3(3/, (y, x, x)z) -\- 3(y,(y, z, z)x) = 0. Now replacing x by — x in 
this last identity and adding one obtains 6 (3/, (3/, x, x)z) = 0. Because of our 
assumption on the characteristic of R we may divide by 6, so that (y, (y, x, x)z) 
= 0. At this point replace x by x + w. Then utilization of (1) results in 
(y,(y, w, x)z) = 0. In summary, we have shown that 

(11) (w, (w, x, y)p) = 0. 

From here on we consider elements of the form 

(w, x, y)RpRqRZz . . . RZn 

where Rk is the mapping a —» ak. Our inductive assumption will be that w 
commutes with all such elements for a given n and we shall attempt to prove 
this for n + 1. Incidentally (11) suffices to start off the induction. In case 
w = 2 w e merely leave off 

T = RzdR24 . . . RZn+l. 

Consider therefore t = (w, [(w, x, y)p-q]T). In attempting to show that 
/ = 0, the first step consists of establishing that the value of t is unchanged 
under all permutations on x, y, p, q. That the interchange of x and y does not 
alter the value of t is a consequence of (1). Starting with 

0 = F(w, x, y, p) = (wx, y, p) — (w, xy, p) + (w, x, yp) — w(x, y, p) — 
(w, x, y)p, 

we apply the mapping RqT to this equation and commute the result with w. 
Because of the induction hypothesis we have 

(w, (w, xy, p)RqT) = 0 = (w, (w, x, yp)RqT). 

Therefore 

(w, (wx,y, p)RqT) — (w, [w(x,y, p)]RqT) — (w, [(w, x, y)p-q]T) = 0. 

In the first two terms of this last identity one may interchange y and p with­
out changing their values, hence this must be true of the third term. But 
that term is —t. Finally the induction hypothesis implies (w, [(w, x, y) -pq]T) 
= 0, so that 

/ = (w, [(w,x,y)p-q]T) = (w, ((w, x, y), p, q)T). 

But in the last term p and q may be permuted without change in value, so 
that this must also be true of /. This suffices to demonstrate that every permu­
tation of x, y, p, q leaves t unchanged. Suppose now that 

/' = (w, [(w,x,x)x'x]T). 

Because of (8) and (10), t' = (w, [(w, x, x)-x2]T), and the latter is zero as a 
result of the induction hypothesis. Therefore t' — 0. In t' replace x by x + p 
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and also by x — p and add the two expressions. Now, utilizing the fact that 
every permutation of x, y, p, q in t does not alter the value of /, we see that 
12(w, [(w, xy x)p-p]T) = 0, so that (w, [(w, x, x)p-p)T) = 0. By replacing x 
by x + y in the last identity and then replacing p by p + q it becomes clear 
that (w, [(w, x, y)p-q\T) = 0. This of course completes the induction. How­
ever, (w, D) consists of sums of elements that are of the same type as t, but 
where n is arbitrary. Consequently (w, D) = 0. This completes the proof of 
the theorem. 

At this point we are ready to prove the basic 

THEOREM 2. Let u be any element of the form u = (x, y, x), where x and y 
are elements of a ring R of type (1,1). Then the right ideal C generated by u has 
the property that uC = 0 = Cu. 

Proof. Let c be an arbitrary element of C. Then Theorem 1 implies that 
(c, x) = 0. Because of (10), (y, x, x) = — 2(x, y, x) = — 2u, so that the right 
ideal generated by (y, x, x) must also be C. A second application of Theorem 1 
yields that (c, y) = 0. Suppose that 

T = RZlRz2 • • • Rzn> 

Then as a consequence of Theorem 1 it follows that ((r, a, b)T, r) — 0. If we 
replace r by r + s in this last identity it becomes clear that 

(12) «s,a,b)T,r) = - ((r, a, b)T, s). 

Suppose then that we set r = yx, s — y, and a = b = x in (12). Then we 
obtain ((y, x, x)T, yx) = — ((yx, x, x)T, y). However, it follows from 

0 = F(y, x, x, x) 

= (yx,XjX) — (y, x2, x) + (y, x, x2) — y(x, x, x) — (y,x,x)x 

= (yx, x, x) — (y, x, x)x, 

that [(y,x,x)x]T= (yx,x,x)T. Since [(y,xyx)x]T is an element of C and 
(C, y) = 0, it must be that ((xy, x, x)T, y) = 0. But then it follows from 
above that ((y, x, x)T, yx) = 0. In other words (c, yx) — 0, because every 
element of C may be written as a sum of elements of the form (y, x, x) T. We 
have already established that (c, y) = (c, x) = 0 , so that 

0 = D(c, y, x) = (c, yx) - y(c, x) - (c, y)x + (c, y} x) = (c, y, x). 

But then (c, x, y) — 0, as a result of (1). Expanding 

0 = D(c, x, y) = (c, xy) - x(c, y) - (c, x)y + (c, x, y) = (c, xy), 

it also follows that (c, xy) = 0. In summary, we have shown that 

(13) (c, xy) = (c, yx) = (c, x) = (c, y) = (c, x, y) = (c, y, x) = 0. 

Also setting r = u, s = y, and a = b = x in (12) we find that ((y, x, x)T, u) = 
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— ((u9x,x) T, y). But (u,x,x) = 0, as a result of (8), so that ((y,x, x) T, u) = 0. 
From this one may conclude as before that 

(14) (c, u) = 0. 

Since u = (xy)x — x(yx) it follows from (14) that — (c,xy-x) + (c,x-yx) = 0. 
But then 

0 = —D(c, xy, x) + D(c, x, yx) 

= — (c, xy-x) + xy- (c, x) + (c, xy)x — (c, xy, x) 
+ (CjX-yx) — x(c,yx) — (c,x)-yx + {c,x,yx) 

= (c,x,yx) — (c,xy,x), 

as a result of (13). But then the last identity may be used in 

0 = F(c, x, y, x) = {ex, y, x) — (c, xy, x) + (c, x, yx) — c(x, y, x) — (c, x, y)x, 

together with (13) and the observation that ex is an element of C, to establish 
— c(Xj y y x) = 0. This implies that cu = 0. But then as a result of (14) we also 
must have uc = 0. This argument holds for every element c of C, so that 
uC = 0 = Cu. This completes the proof of the theorem. 

3. The structure of left and right ideals. In this section R will be 
assumed to be a simple ring of type (1, 1), of characteristic different from 2 and 
3, that is, not associative. In this connection simple means that the only two-
sided ideals of R are either R or 0. This hypothesis on R may of course lead to 
a contradiction, in which case we would be justified in concluding that simple 
rings of type (1, 1) are associative. Indeed we obtain this result in §4 with the 
added assumption that R is a finite dimensional algebra. In the present section 
we shall adhere to the more general situation. 

THEOREM 3. Rings of type (1, 1) that have no proper right ideals are associative. 

Proof. Form u = (x, y, x), for arbitrary elements x and y of R. Let C be the 
right ideal generated by u. Then either C = 0, in which case u = 0, or C — R. 
In the latter case we may make use of Theorem 2 in order to obtain that 
uR — 0 = Ru. The set of all elements q of R with the property that qR — 0 
= Rq may be verified to form a two-sided ideal of R. Since R is simple, either 
all such q are zero, or R2 = 0. In the latter instance R would be associative, 
contrary to assumption. Therefore in all cases u = (x, y, x) = 0. But then 
(1) and (2) may be employed to establish that (y, x, x) = 0. Replacing x 
by x + z in this last identity we are forced to concludeth at R is associative, 
a contradiction. The contradiction is the result of the assumption that R 
was not associative. This concludes the proof of the theorem. 

The situation on left ideals is just the reverse. 

THEOREM 4. Simple rings of type (1, 1) that are not associative have no proper 
left ideals. 
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Proof. Let B be a proper left ideal of R. An element 5 of B will be defined to 
be special (relative to B) in case sR is always contained in B. It is easy to 
verify that the set S of special elements is closed under subtraction. It turns 
out we can even show that the special elements form a two-sided ideal of R. 
Select arbitrary elements x, y, z in R, a, b in B, and 5 in S. Then (x, y, b) 
= (xy)b — x(yb) is an element of the left ideal B. Then because of (1), (x, b, y) 
must also be in B. But then (b, x, y) is also in B, as a result of (2). Since 5 
is in B and B is a left ideal of R it follows that xs is in B. On the other hand 
(xs)y = (x, s, y) + x{sy). But it follows from the definition of 5 that sy must 
be in B, so that x{sy) is also in B. Since 5 is in B it follows from previous dis­
cussion that (x, s, y) is in B. As a result both xs and (xs)}/ are in B, hence xs 
is special. Then we know that S is a left ideal of R. In a similar manner sx 
is in B because of the definition of S, while {sx)y = (5, x, y) + s{xy) is also 
in B. Then 5 is a two-sided ideal of R. Since 5 is contained in B and J5 is a 
proper left ideal of R, we must have S 9e R. But R is simple, so that 5 = 0. 
This is very useful information since we can show that various elements of R 
must be special. Finally we shall be able to deduce that B = 0, which is the 
desired contradiction. To begin with {a, b, x) is clearly in B. Also 

0 = F {a, b, x, y) = {ab, x, y) — {a, bx, y) + {a, b, xy) — a(b, x, x) — {a, £, x)}>, 

so that — {a, ft, x)^ is also in B. Hence {a, b, x) is special and consequently 
{a, 6, x) = 0. In other words {B, B, R) = 0. Then from (1) and (2) it follows 
that also (B, R, B) = 0 and (R, B, B) = 0. For this reason 

0 = Fix, y, b, b) 

= {xy, b, b) — (x, yb, b) + (x, y, b2) — x{yy b, b) — (x, y, b)b 

— (x, yj b2) — (x, y, b)b, 

so that (x, y, b2) = (x, 3/, b)b. On the other hand 

0 = F(x, b, b, y) + F(x, b, y, b) 
= {xb, b, y) — (x, b2, y) + (x, b, by) — x{b, 6, y) — (x, b, b)y 

+ {xb, y, b) — (x, by, b) + {x, b, yb) — x{b, y, b) — {x, b, y)b 

= — (x, b2, y) + (x, b, by) — (x, by, b) — (x, b, y)b. 

But (x, b, by) — (x, by, b) = 0 because of (1), while (x, b2, y) = (x, y, b2)f and 
(x, b, y)b = (x, y, b)b, for the same reason. But then (x, y, b2) = — (x, y, b)b, 
whereas we have already noted that (x, y, b2) = (x, y, b)b. Therefore (x, y, b2) 
— {%> y, b)b = 0. The nucleus N of R is defined as the set of all elements n 
in R such that {n, R, R) = {R, n, R) = {R, R, n) = 0. Because of (1) and 
(2), b2 must be in A7. Let n be an arbitrary element of N. Then 

0 = C{n, x, y, z) = {n, (x, y, z)) + (x, {n, y, z)) = {n, (x, y,z)), 

so that {n, {R, R, R)) = 0. Similarly (12) implies that {n, {R, R, R)R) = 0. 
However, the set of finite sums of elements that are of the form {R, R, R) 
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and of the form (i?, R, R)R form a two-sided ideal in an arbitrary ring R. 
If that ring is also simple and not associative then of course it follows that 
this ideal must be the whole ring. The conclusion we can draw in the present 
situation is that (n, R) = 0, so that (Z>2, R) = 0. Since b2 is an element of B 
and now also b2x = xb2 is an element of B we conclude that b2 must be special, 
hence b2 = 0. If we replace b by a + b then also ab + ba = 0. Since (x, y, b) 
is an element of B it must then follow that (x, y, b)a = — a(x, y, b). Also 

0 = C(a, x, y, b) 

= (a, (x, y, b)) + (x, (a, y, b)) = (a, (x, y, b)) 

= a(x, y, b) — (x, y, b)a. 

But then a(x, y, b) = (x, y, b)a = 0. This may be used in the expansion of 

0 = Fix, y, b, a) = (xy, b} a) — (x, yb, a) + (x, y, ba) — x(y, b, a) — 

(x, y, b)a, 

to^show that (x, y, ba) = 0. As before this implies ba is in the nucleus, and 
hence commutes with every element of R. Consequently one can show that 
ba is special and so ba = 0. In other words B2 = 0. Form i" = B + BR. Then 
(bx)y = (b, x, y) + b(xy). We have already noted that (b, x, y) is an element 
of B, and hence of / . Then / must be a right ideal of R. Similarly y{bx) = 
— (y, b} x) + (yb)x, where — (y, b, x) is an element of B and (yb)x is an 
element of BR. Thus y(bx) is an element of / . This suffices to show that / 
is a two-sided ideal of R. If I = 0, then B = 0, contrary to assumption. If 
on the other hand I = R, then BI = B(B + BR) = 0, so that BR = 0. But 
then I = B, and so R = B, contrary to assumption. In either case we have 
reached a contradiction. Consequently there can exist no proper left ideal B 
in R. This completes the proof of the theorem. 

If Theorem 4 were true for right ideals also, then of course this would prove 
simple rings of type (1, 1) to be associative, which is the strongest possible 
result one could hope to get. Arguments of the type used in the proof of 
Theorem 4 seem inadequate for this purpose. With some effort one can obtain 
a construction for a right ideal of R, properly contained within any non-zero 
right ideal A of R. Except when A is minimal, this construction does not seem 
to be especially enlightening, and since we can get some information on 
minimal right ideals more directly, we shall not go into this construction. 

THEOREM 5. If R is a simple ring of type (1, 1) that is not associative, and if 
A is a minimal right ideal of R, then A2 = 0. 

Proof. Let t = (a, x, x), where a is an arbitrary element of A and x an 
arbitrary element of R. Let C denote the right ideal generated by t. Since t 
is an element of A, C must also be contained in A. From the minimality of A 
as a right ideal it follows that either C = 0, or that C = A. If C = 0 then 
t = 0. On the other hand Theorem 2 implies that Ct = 0 = tC, so that if 
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C = A, then At = 0 = tA. In either case we may conclude that At = 0 = tA. 
Replacing x by x + y in this last identity and using (1) we conclude that 
A (a, x, y) = 0 = (a, x, y)A, where y is an arbitrary element of P . In other 
words A(A,R,R)=0=(A, P , R)A. Let P be the set of all elements p in 
A with the property that Ap = 4̂ (£i?) = 0. P is obviously closed under 
subtraction. With the last identity we shall be able to show that P is in fact 
a right ideal of R. Select arbitrary elements p in P , a, b, d in A, and x, y, z 
in R. Since p is in A, so is px. From the definition of P it follows that a(px) = 
0. Also a(px-y) = a(p, x, y) + a(p-xy) = a(p, x, y). Since 0 = .4(^4, P , P) , 
we have a(£, x, y) = 0, and thereby a(px-y) = 0. Consequently P is a right 
ideal of R and contained in A. Let us assume that A2 ?* 0. Then P ^ A. 
From the minimality of i as a right ideal it follows that P = 0. Our next 
objective will be to show that (A, A, R) is contained in P . We have seen pre­
viously that (A,A,R) is contained in A and also that A (A, R, R) = 0. 
But then 

0 = aF(b, d, x, y) 

= a(bd, x, y) — a(b, dx, y) + a(b, d, xy) — a[b(d, x, y)] — a[(by d} x)y] 

= -a[(b, d,x)y], 

and so (A, A, R) is contained in P . But then (A, A, R) = 0. As a consequence 
of the last identity 

0 = F (a, by x, y) = (ab, x, y) — (a, bx, y) + (a, b, xy) — a(b, x, y) 

— (a, £, x);y = (a6, x, y). 

In other words (^42, P , P) = 0. As in the proof of Theorem 4 we can now use 
0 = C(ab,x,y,z) to show that {A2, (Ry Ry R)) = 0, and (12) to show that 
{A2, (P, P , R)R) = 0. Since the two-sided ideal generated by all associators 
must be all of P , we have demonstrated that {A2, P) = 0. But then x{ab) = 
(ab)x = (a, by x) + a(ôx) = a(bx), proving that A2 is a two-sided ideal of P . 
Since we have assumed that A2 ?£ 0, it must be the case that A2 = P . But 
^42 is contained in A, so that A = P . This contradicts the assumption that /I 
is a minimal right ideal of P . Consequently ^42 = 0. This completes the proof 
of the theorem. 

The next result plays a very important part in the Main Theorem. 

THEOREM 6. Let R be a simple ring of type (1, 1), with chain conditions on 
right ideals, that is not associative. Then the number of maximal right ideals and 
the number of minimal right ideals are both greater than one. 

Proof. The existence of at least one maximal right ideal and of at least one 
minimal right ideal are insured by the chain conditions and Theorem 3. 
Suppose that P has only one maximal right ideal. Call it B. Consider an 
arbitrary element u of the form u = (y, x, x), and let C be the right ideal 
generated by u. Then, because of Theorem 2, uC = 0 = Cu. \î u is not an 
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element of B, then C is not contained in B. But B is the unique maximal right 
ideal of R and there is only one right ideal not contained in it, namely R. 
Thence uR = 0 = Ru. But the absolute divisors of zero of R form a two-sided 
ideal of R, which cannot be all of R. Consequently u = 0, contrary to assump­
tion. Thus u is an element of B for all x and y in R. Replace x by x + z in u. 

F I G . 1 

Then as a result of (1) we note that all associators of R must be contained in 
B and thereby also all right multiples of associators. But then B = R, a 
contradiction since B was assumed to be a maximal right ideal. Because of 
this contradiction B cannot be the unique maximal right ideal and consequently 
R must have at least two maximal right ideals. This completes the first half 
of the theorem. Suppose now that A is the only minimal right ideal of R. 
Define u as before, as well as C, so that uC — 0 = Cu. We see at once that 
either C contains A or C must be zero. In the latter case u = 0. In the former 
uA = 0 = Au. But then we may conclude that uA — 0 = Au m either case. 
Replacing x by x + z in the last identity and using (1) we obtain (R, R} R)A = 
0 = A (R, R, R). Let w, x, y, z be arbitrary elements of R and a an arbitrary 
element of A. Then 

0 = F(w, x, y, z)a 

= (wx, y, z)a — (w, xyy z)a + (w, x, yz)a — [w(x, y, z)]a — [(w, x, y)z]a 

= — [w(x, y, z)]a — [(w,x,y)z]a. 

https://doi.org/10.4153/CJM-1961-010-7 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1961-010-7


138 ERWIN KLEINFELD 

Therefore in q = [w(x, y, z)]a all permutations of x, y, and z do not alter the 
value of q. But 0 = (x, y, z) + (y, z} x) + (z, x, 3/), because of (2). Therefore 
3q = 0, so that q = 0. But then [(w, x, y)z]a = 0. In summary, we have 
shown that (R, R, R)A = 0, and that [(R, R, R)R]A = 0. As before we can 
deduce from this RA = 0, so that A = 0. However, A was chosen to be a 
minimal right ideal and this is clearly a contradiction. Hence R has at least 
two minimal right ideals. This concludes the proof of the theorem. 

The last result seems to leave open the possibility that a maximal right 
ideal might be a minimal right ideal. However we shall see later that this 
cannot happen. In fact every minimal right ideal will be seen to be contained 
in every maximal right ideal, and any such pair are always separated by at 
least one intermediate right ideal (Theorem 8). 

THEOREM 7. Let R be a simple ring of type (1, 1). Suppose A and B are right 
ideals of R such that A2 = 0, A + B = R, and B 9^ R. Then R is associative. 

Proof. Since A2 = 0, we see that (A, A, R) = 0. But then (A, R, A) = 0 
and (R,A,A) = 0 as a result of (1) and (2). Also (B, R, R) is contained in B 
and therefore so is (R, B, B), as a result of (2). Expanding 

(R, R, R) = (A + B, A + B, A + B) 
= (A, .4, A) + (B, B, B) + (A, B, B) + (B, A, B) + (£, B, A) 

+ (B,A,A) + (A,B,A) + (A,A,B), 

it becomes evident that (Ry R, R) is contained in B. But then also (R, R, R)R 
is contained in B. Since B 9^ R, the only two-sided ideal of R that is contained 
in B is zero. But we have just seen that the ideal generated by all associators 
is contained in B. Therefore R must be associative. This completes the proof 
of the theorem. 

COROLLARY. Let R be a simple ring of type (1, 1) that is not associative. If A 
is a minimal right ideal of R and B a maximal right ideal of R then A is contained 
in B. 

Proof. Suppose that A is not contained in B. Since B is a maximal right 
ideal of R, A + B = R. Since A is a minimal right ideal of R, we may use 
Theorem 5 to obtain A2 = 0. But then the hypothesis of Theorem 7 is satis­
fied, so that R must be associative. From this contradiction one deduces that 
A is contained in B. This completes the proof of the corollary. 

THEOREM 8. Let R be a simple ring of type (1, 1) with unit element and chain 
conditions on right ideals that is not associative. Let B be any maximal right 
ideal of R, A any minimal right ideal of R, D the intersection of all the maximal 
right ideals of R, and E the union of all the minimal right ideals of R. Then B is 
is not nil and 

0CACEQDCBCR. 
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Proof. Suppose t h a t B is nil ( that means every element of B is ni lpotent) . 
Theorem 6 implies the existence of another maximal r ight ideal B' 9^ B. 
Therefore B + B' = R. Since the unit element 1 is in R, there must exist 
elements x in B and y in Bf

} such t h a t 1 = x + y. Then 1 — x = y. Suppose 
t h a t xn = 0. Let 5 = 1 + x + . . . + xn~K Then (1 - x)s = 1 = ys. Bu t this 
implies t h a t 1 is in B', so t ha t B' = R, contrary to assumption. T h u s B cannot 
be nil. On the other hand Theorem 5 tells us t ha t A2 = 0, so t h a t A is certainly 
nil. Therefore B 9^ A. Because of Theorem 6, E ^ A and D 9e B. Clearly A 
is contained in E, and D is contained in B. From the Corollary to Theorem 7 
it follows t h a t A is contained in B and hence in D. But then E mus t be con­
tained in B. So far all the inclusions have been proper. However the best we 
can say about E and D is t h a t E is contained in D} bu t in this case we are 
unable to eliminate the possibility t ha t E = D. This completes the proof of 
the theorem. 

Fig. 1 indicates the simplest possible s t ructure of any ring R satisfying the 
hypothesis of Theorem 8, if indeed such a ring exists. T h e Bt denote maximal 
right ideals and the A ô minimal right ideals. D and E are defined in the s ta te­
ment of Theorem 8. 

4. M a i n s e c t i o n . We shall make use of the following theorem, whose proof 
appears in (4). 

T H E O R E M 9 (Kokoris). Let R be a simple ring of type (1, 1) that is not asso­
ciative, and e any idempotent of R. Then e must be the unit element 1 of R. 

There appears to be a minor gap in Kokoris ' proof, bu t fortunately a simple 
permutat ion of the facts already proved in (4) can be used to prove Theorem 9. 
We proceed with the details. In the proof of his Lemma 3, the element a = xy, 
where x is in Rio and y is in Ru is not the most general element of GV Rather 
Go consists of sums of such elements and hence one can only say t h a t Go is 
the sum of nilpotent elements rather than tha t Go is nil. Let us consider the 
case when R is simple and H = R. Then Ru = ROIROQ. Moreover, it is proved 
t h a t Ru commutes with R01R00, so tha t Ru is commutat ive . Now the fact t h a t 
Rn is the sum of nilpotent elements suffices to establish t ha t Rn is nil, and this 
of course contradicts the fact t ha t e is in Rn. 

We shall also make use of the following result about algebras of type (1 ,1 ) 
(understood to be finite dimensional), whose proof may be found in (1). 

T H E O R E M 10 (Albert). A nil algebra of type (1, 1) is nilpotent. With this 
background we are ready to prove the result stated in the title of the present paper. 

M A I N T H E O R E M . Simple algebras of type (1, 1) are associative. 

Proof. Let R be a simple algebra of type (1 ,1 ) t ha t is not associative. We 
shall a t t e m p t to show t h a t R satisfies the hypothesis of Theorem 8, bu t not 
one of the conclusions, thus obtaining the necessary contradiction. If R were 
nil then it would be nilpotent. Since R2 is an ideal of R, either R2 = R or R2 = 
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0. If R2 = 0, then R would be associative, contrary to assumption. On the 
other hand R2 = R would contradict the fact that R is nilpotent. Therefore 
R is not nil. Suppose x is some element of R that is not nilpotent. The sub-
algebra 5 of R that is generated by x therefore cannot be nil. Since 5 is a 
finite dimensional, associative algebra it must contain an idempotent e. But 
then Theorem 9 implies that e = 1. Thus R contains a unit element. Since R 
is a finite dimensional algebra with unit element it clearly has ascending and 
descending chain conditions on right ideals. Thus R satisfies the hypothesis 
of Theorem 8. Let B be any maximal right ideal of R. If 1 were an element in 
B then we would have B = R, a contradiction. Hence 1 is not an element of B. 
Let y be an arbitrary element of B and T the subalgebra generated by y. If 
T were not nil then it would have to contain an idempotent. However, that 
is impossible since Theorem 9 limits any idempotent in 5 to be 1, and we 
have already seen that 1 is not in B. Thus T is nilpotent, which implies that 
B is nil. We have reached a contradiction since one of the conclusions of 
Theorem 8 states that B cannot be nil. The contradiction arose from the 
assumption that R was not associative. Therefore R is associative. This con­
cludes the proof of the theorem. 

Once it is known that simple algebras of type (1, 1) are associative, it is 
easy to extend this result to semi-simple algebras. The radical may be defined 
as the maximal nil ideal. One such argument follows closely the one given in 
(3) for algebras of type (7, ô), where 7 9^ 1, — 1 , and need not be repeated 
here. 

At this point we shall demonstrate how the main theorem carries over to a 
large extent to rings without finiteness assumptions. This also results in a 
second and somewhat more direct proof of the main theorem (Corollary 3 of 
Theorem 11). As usual a ring R is defined to be primitive in case it has a 
maximal right ideal A, which contains no two-sided ideal of R other than the 
zero ideal and in case there exists an element e in R such that ex — x is always 
in A for all x in R. 

THEOREM 11. If Ris a primitive ring of type (1,1) then R is associative. 

COROLLARY 1. If R is a semi-simple ring of type (1, 1) then R is associative. 

COROLLARY 2. / / R is a simple ring of type (1, 1) and contains an idempotent 
then R is associative. 

COROLLARY 3. If R is a simple, finite dimensional algebra of type (1, I) then 
R is associative. 

Proof. Let A be a regular maximal right ideal of R which contains no two-
sided ideal of R other than the zero ideal and assume that R is not associative. 
We assert that there exists at least one element u of the form u = (x, yy x) 
which is not contained in A. For assume otherwise. Then {y, x, x) must also 
be in A. Replacing x by x + z it then follows that 2{y, z, x) is in A, for all 
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elements x, y and z in R. Now it is well known, and can easily be verified 
directly, that in an arbitrary ring all finite sums of elements of the form 
(R, R, R) and (R, R, R)R form a two-sided ideal I of R. In this instance / 
would be contained in A. But then by assumption we would have 7 = 0, and 
R would be associative. This is clearly a contradiction. Hence there must 
exist an element u = (x,y,x) which is not in A. Let C be the right ideal 
generated by u. Since A is a maximal right ideal it follows that A + C = R. 
Then we can find an element am A and an element c in C such that e = a + c. 
Forming eu — u = au + eu — u, we note that cu = 0 as a result of Theorem 
2, while eu — u is in A. Therefore au — u must be an element of A. Since A 
is a right ideal au belongs to A, hence u must also be in A. But this is clearly 
a contradiction, since we deliberately chose u not in A. Hence R must have 
been associative to begin with. This completes the proof of the theorem. 

Making use of the Jacobson-Brown radical of a ring it is clear that a semi-
simple ring is a subdirect sum of primitive rings, so that Corollary 1 follows 
at once from the theorem. 

If R is a simple, non-associative ring of type (1, 1) and contains an idem-
potent, then as a result of Theorem 9 R must contain a unit element 1. But 
then form a maximal right ideal not containing 1. This must indeed be a 
regular, maximal right ideal of R. It contains no ideal of R other than zero 
since R is simple. Therefore R is primitive, and hence associative as a result 
of the theorem. This is a contradiction. Hence R must have been associative 
to begin with. This establishes Corollary 2. 

If R is a simple, finite dimensional algebra of type (1, 1) then, as in the 
early part of the proof of the main theorem, R is either associative or contains 
an idempotent. Then one may use Corollary 2 in order to establish Corollary 
3. 

Rings of type (1, 1) with radical need not be associative, of course. In fact 
it is not difficult to construct finite dimensional algebras of type (1, 1) which 
are not associative. It is worth noting that there exists a division ring of 
characteristic 2 which satisfies both (1) and (2'), yet is not associative (5). 

5. Rings of type (7, ô), 7 ^ 1, — 1. A ring is said to be of type (7, ô) in case 
identities (2), and (15), which follows, hold. Identity (15) is given by 

(15) J(x, y, z) = y{x, z, y) + ô(y, z, x) + (s, x, y) = 0, 

where x, y, z are arbitrary elements of the ring and 7, ô are constant scalar 
elements. One may also assume that y2 = ô2 — ô + 1, for otherwise one can 
readily verify the ring to be associative. Therefore the condition that 7 ^ 1 , 
— 1 is equivalent to the condition that ô 5* 0.1. In the remainder of this section 
we shall consider rings R of type (7, ô), y 9e 1, —1 whose characteristic is 
different from 2 and 3. We shall first develop some essential identities. As 
was shown in (2), 
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(16) G{w, x, y, z) = (w, (x, y, 2)) - (x, (y, z, w)) + (y, (z, w, x)) 
- (z, (w, x, 3/)) = 0, 

and since this may be proved in a ring satisfying (2) only, it must be satisfied 
by all elements of R. From 

0 = G(y, x, x, x) + (x, A (x, yy x)) 

= (y, (x, x, x)) - (x, (x, x, y)) + (x, (x, y, x)) - (x, (y, x, x)) 
+ (x, (x, y, x) + 0 , (y, x, x)) + (x, (x, x, y)) 

= 2(x, y, x)), 

it follows that (x, (x, y, x)) = 0. But then 

0 = (x, J(x, x, y)) 

= 7 f e (*, 3>, *)) + <Kx, (x, y, x)) + (x, (y, x, x)) 
= (x, (y, x, x)). 

But then 

0 = (x, A (x, 3;, x)) 

= (x, (x, y, x)) + (x, {y, x, x)) + (x, (x, x, y)) 
— (x, (x, x, 3;)). 

If in the last two identities we replace x by x + z and x — z and add, we 
obtain 

(17) K(x, y, z) = (x, (3/, x, z)) + (x, (y, z, x)) + (z, (y, x, x)) = 0, 

and 

(18) L(x, y, z) = (x, (z, x, 3/)) + (x, (x, z, 3/)) + (z, (x, x, 3/)) = 0. 

Now let 

/ = (x, (x, y, z)) + (x, (x, z, y)), and w = (x, (z, j , x)) + (x, {y, z, x)). 

Then 

0 = G(x, x, y, z) — i£(x, z, 3O + L(x, 3;, z) 

= (x, (x, y, z)) - (x, (y} z, x)) + (y, (z, x, x)) - (z, (x, x, 3/)) 
- (x, (z, x, 3O) - (x, (z, 3/, x)) - (y, (z, x, x)) + (x, (z, x, 3/)) 
+ (x, (x, z, 3/)) + (z, (x, x, 3/)) 

= (x, (x, 3/, z)) + (x, (x, z, 3O) - (x, (z, j , x)) - (x, (y, z, x)) 
= t — u. 

Consequently t = u. On the other hand 

0 = J(y, x, z) + / (z , x, 3O 

= y(y, z, x) + <5(x, z, 3/) + (z, y, x) + Y(Z, y, x) + <5(x, y, z) + (y\ z, x) 

= (7 + !)[(*, y» *) + (?»*> *)] + $[(*, y, z) + (x, z, y)]. 
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Commuting both sides with x one obtains (y + ô -\- l)t = 0, since t = u. 
However 

0 = J(x, y, z) + J(xf z, y) — A (x, y, z) — A (x, z, y) 

= y(x, z, y) + ô(y, zy x) + (z, x, y) + y(x, y, z) + ô(z, y, x) 
+ (y, x, z) — (x, y, z) — {y, z, x) — (z, x, y) — (x, z, y) 
~ (s, y} x) - (y, xy z) 

= (7 - 1)[(#, y, z) + (x, z, y)] + (5 - 1)[0, y, x) + (y, z, x)]. 

Commuting both sides with x one obtains (7 + ô — 2)t = 0. Since both 
(7 + d + \)t = 0, and (7 + b - 2)t = 0, it must be that 3t = 0, and so 
t = 0. Since u — t, we also have u = 0. We have shown that 

(19) (x, (x, y, z)) + (x, (x, z, y)) = 0 = (x, (2, y, x)) + (x, (y, z, x)). 

Incidentally up to this point we have made no use of the restriction on 7. 
However, the next result makes use of this assumption. 

THEOREM 12. Let R be a simple ring of type (7, <5), 7 ^ 1, —1 that is not 
associative. Then R has no proper left or right ideals. 

Proof. Let B be any proper right ideal of R. Define 5 as the set of all elements 
s of B with the property that Rs is always contained in B. Let x, y, z denote 
arbitrary elements of R} a, b arbitrary elements of B and s an arbitrary element 
of 5. Since B is a right ideal of R, (b, x, y) must be an element of B. But then 

0 = J(b, y,x) -A (J, y, x) 

= y(à, x, y) + ô(y, x, b) + (x, b, y) - (b, y, x) - (y, x, b) - (x, b, y) 

= (ô — 1) (y, x, b) + 7(6, x, y) - (b, y, x), 

so that (ô — l)(y, x, 6) is in 5 . Since ô 5̂  1, this implies that (y, x, 6) is in B. 
Expanding 0 == A(b,x,y), we note that also (y, b, x) is in B. Clearly 5 is 
closed under subtraction. We now show that in fact S is an ideal of B. Since 5 
is in By sy will be also. Then z(sy) = — (z, s, y) + (zs)y. We have already 
noted that (z, s> y) is in B. Also it follows from the definition of S that zs 
is in B. Since B is a right ideal of R, (zs)y must be in B. Thereby z(sy) is also 
in B. But this implies that sy is in S, so that 5 is a right ideal of R. Again from 
the definition of S it follows that y s is in B. Then z(ys) = — (z, y, s) + (zy)s, 
and so z(ys) is also in B. But then 3/5 is in 5 and therefore 5 is a two-sided ideal 
of R. However, B is a proper right ideal of R and 5 is contained in B. Conse­
quently, since R is simple, S = 0. Next we proceed to show that a number of 
elements are zero by virtue of the fact that we can prove they are contained 
in S. Thus 0 = F(x, y, a, b) = (xy, a, b) — (x, ya, b) + (x, y, ab) — x(y, a, b) 
— (x, y, a)b, implies that —x(y, a, b) is contained in B. But then (3/, a, b) is 
contained in S and hence (R, B, B) = 0. But then 

0 = J(x, a, b) — A (x, a, b) 

= 7(x, Z>, a) + 5 (a, ô, x) + (b, x, a) — (x, a, ô) — (a, b, x) — (ô, x, a) 

= (ô — l)(a, £, x). 
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Since Ô ^ 1, (5 , B, R) = 0. At this point 

0 = A (x, a, 6) = (x, a, 6) + (a, 6, x) -+- (by x, a) = (6, x, a), 

so that (B, R, B) = 0. In summary, we have shown that 

(20) (By B, R) = (By * , 5) = (#, 5 , J3) = 0. 

Set x = b} 3/ = JS = x in (19). Then we obtain (6, (6, x, x)) + (6, (6, x, x)) = 
0. Hence (6, (6, x, x)) = 0. We shall now establish that 

(21) (62, x, x) = 6(6, x, x) = (6, x, x)6. 

So far we have been able to show that the second and third terms of (21) are 
equal. 

0 = F(b, b, x, x) 

= (62, x, x) — (by bXy x) + (b, b, x2) — b(by x, x) — (by by x)x 

= (b2y Xy x) — b(by x, x ) , 

because of (20). Thus the first term of (21) is equal to the second term. This 
establishes (21). Since 

0 = J(Xy J y X) 

— y(%, x> y) + à (y, x, x) + (x, x, y) 
= (y + 1) (*> *i y) + à(y, *, x) 

and 7 ^ - 1 , we have 

(XyXyy) = - ( - J - . - W x , x ) . 

But then substituting y = b2 we obtain 

( X , X , Ô 2 ) = - (^-^(tfyXyX). 

Similarly, substituting y = b, 

(XyXyb) = ~ (^-±--^(byXyX) 

and so 

(x, x, 6)6 = - f _ A . - - j ( 6 , x, x)6. 

But we have already seen in (21) that (62, x, x) = (6, x, x)b. Then we may 
conclude that (x, x, 62) = (x, x, 6)6. Expanding 

0 = F(X, Xy by 6) 

= (x2, by 6) — (x, x6, 6) + (x, x, 62) — x(x, 6, 6) — (x, x, 6)6, 
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we see that — {x, xb, b) = 0, as a result of the previous identity and (20). But 
then 

0 - J{b, x, xb) 

— y{b, xb, x) + 8{x, xb, b) + {xb, b, x) 

= y{b, xb, x) + {xb, b, x). 

However, 

0 = F{b, x, b, x) 

= {bx, b, x) — {b, xb, x) + {b, x, bx) — b{x, b, x) — {b, x, b)x 

= — {b, xb, x) — b{x, b, x). 

This implies that {b, xb, x) = —b{x, b, x). But then —yb{x, b, x) + {xb, b, x) 
= 0. From 

0 = F{x, b, b, x) 

= {xb, b, x) — {x, b2, x) + {x, b, bx) — x{b, b, x) — {x, b, b)x 

= {xb, b, x) — {x, b2, x) 

it follows that {xb, b, x) = {x, b2, x). Thus —yb{x, b, x) + {x, b2, x) = 0. In 

0 = J{x, x, y) 

= y{x, y, x) + 8{x, y, x) + {y, x, x) 

= (y + 8) (XJ y, x) + {y, x, x), 

substitute y = b2 to obtain (7 + 5) {x, b2, x) + {b2, x, x) = 0, and also 
(7 + ô)b{x, b, x) + b{b, x, x) = 0. We have already established in (21) that 
{b2, x, x) = b{b, x, x), so that (7 + ô) {x, b2, x) = (7 + d)b{x, b, x). If 7 + 8 = 
0, then substituting in y2 = d2 — ô + 1 we see that 5 = 1, contrary to assump­
tion. Therefore (x, b2, x) = b{x, b, x). Since —yb{x, b, x) + {x, b2, x) = 0 has 
already been established, we combine the last two identities and get (1 — 7) 
b{x, b, x) = 0. But 7 ^ 1, so that b{x, b, x) = 0, and hence all the terms in 
(21) are zero. Replacing x by x + y in our last identity we see that 

(22) b{x, b,y) = -b{y, b,x). 

We showed that {x, xb, b) = 0 earlier in the proof. On the other hand 

0 = F{x, b, b, x) 
= {xb, b, x) — (x, b2, x) + {x, b, bx) — x{b, b, x) — {x, b, b)x 

= {xb, b, x). 

But then 

0 = J{xb, b, x) — 8A {b, x, xb) 

= y{xb, x, b) + 8{b, x, xb) + {x, xb, b) — 8{b, x, xb) — 8{x, xb, b) 
— b{xb, b, x) 

= y{xb, x, b). 

https://doi.org/10.4153/CJM-1961-010-7 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1961-010-7


146 ERWIN KLEINFELD 

Since 7 ^ 0 , (xb, x, b) = 0. Substituting x + y for x in this last identity we 
get 
(23) (xb,y,b) = -(yb,x,b). 

In the second part of (19) replace x by w + x, so that 

(w, (2, y, x)) + (x, (z, y, w)) + (x, (y, z, w)) + (w, (y, 2, x)) = 0. 

Now let w = z = b. Then because of (20), (b, (b, y, x)) + (b, (y, b, x)) = 0. 
From (19) and (2) one proves that (z, (y, z, x)) + (z, (x, z, 3;)) = 0. Then if we 
let z = b, (b, (y, b, x)) + (b, (x, b, y)) = 0. But then 

0 = (b, J(x, y, b)) 

= (b, T(X, b, y) + ô(y, J, x) + (6, x, 3O) 

= (y- Ô- l)(b, (x, J ,y)) . 

If 7 = 5 + 1 and 72 = ô2 - ô + 1 then 33 = 0 so that 5 = 0, contrary to 
assumption. Therefore (b, (x, b, y)) = 0. From this it follows readily that 

(24) (b, (b,y,x)) = 0 = (b, (y, J, x)). 

Then 

0 = F(i f y, x, i) 
= (6y, x, 6) — (6, 3/x, b) + (6, y, xô) — b(y, x, ô) — (b, y, x)6 

= (ô, y, xb) — b(y, x, b) — (b, y, x)b. 

Now using (24), 

b(y, x, b) + (5, y, x)£ = b(y, x, ô) + b(b, y, x) = ^J(y, x, ô) — 6(x, ô, y). 

Hence (b, y, xb) = — b(x,b,y) = b(y,b,x), using (22). We have demon­
strated that 
(25) (b,y,xb) = b(y, b,x). 

Now 
0 = F(y, 5, x, b) 

= (yb, x, ô) — (y, bx, b) + (y, b, xb) — y(b, x, b) — (y, b, x)b 

= (yb, x, b) + (y, b, xb) — (y, b, x)b. 

Therefore (yb, x, b) + (y, b, xb) = (y, b, x)b = b(y, b, x), as a result of (24). 
But then (y, b, xb) = — (yb, x, b) + b(y, b, x) = (xb, y, b) — b(x, b, y), be­
cause of (23) and (22). We have demonstrated that 

(26) (y, b, xb) = (xb, y, b) — b(x, b, y). 

Now 
0 = F(b, x, b, y) + A (xb, y, b) 

= (bx, b, y) — (b, xb, y) + (b, x, by) — b(x, b, y) 
— (b, x, b)y + (xb, y, b) + (y, b, xb) + (b, xb, y) 

= —b(x, b, y) + (xb, y, b) + (y, b, xb). 

But then comparison of the last identity with (26) shows that 

(27) (xb,y,b) =b(x,b,y), 
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and 

(28) (y, b, xb) = 0. 

From 0 = J(b, xb, y) = y(b, y, xb) + d(xb, y, b) + (y, b, xb), we get y(b, y, xb) 
+ ô(xb,y, b) = 0, using (28). But then as a result of (22), (25), and (27) 
(7 — ô)b(y, b, x) = 0. Since 7 5̂  5, then b(y, b, x) = 0. As before one may 
also deduce b(b, x, y) = 0, by use of (2) and (15). But then 

0 = Fib, b, x, y) 

= (b2, x, y) — (b, bx, y) + (b, b, xy) — b(b, x, y) — (b, b, x)y 

= (b2,x,y). 

Again using (2) and (15) one may deduce that (x, y, b2) = (y, b2, x) — 0. In 
other words b2 must lie in the nucleus A7 of R. Furthermore it follows from an 
argument presented in the Appendix of (4) that therefore (62, R) — 0. But 
then we have b2 in B and xb2 = b2x is also in B, so that b2 is in S. Therefore 
b2 = 0. Replacing b by a + b we see that 

(29) ab + ba = 0. 

Now 
0 = X(*, a, b) 

= (x, (a, x, b)) + (x, (a, 6, x)) + (b, (a, #, x)) 

= (6, (a, x, x)). 

But then (£, (x, a, x)) = 0, as a result of (2) and (15). On the other hand 
(x, a, x) is in B, so that 6(x, a, x) = — (x, a, x)b, using (29). Consequently 

(30) b(x, a, x) = 0 = (x, a, x)&. 

Then 

0 = F(x, a, x, 6) 

= (xa, x, ô) — (x, ax, b) + (^, a, xb) — x(a, x, b) — (x, a, x)# 
= (xa, x, ^) + (x, a, xb). 

As a result of substituting y = x in (28) we obtain (x, b, xb) = 0. At this 
point replace b by a + ô in the last identity. Then one gets (x, a, xb) = 
— (x, b, xa). Therefore (xa, x, b) = (x, b, xa). Adding to the last identity 

0 = A (xa, x, b) = (xa, x, b) + (x, b, xa) + (b, xa, x), 

we get 
2(xa, x, b) + (b, xa, x) = 0. 

From 

0 = F(b, x, a, x) 

= (bx, a, x) — (b, xa, x) + (b, x, ax) — b(x, a, x) — (b, x, a)x 

= — (b, xa, x) 

one may now deduce that 2(xa, x, b) = 0, so that (xa, x, b) = 0. But we have 
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noted previously that (xa, x, b) + (x, a, xb) = 0. Hence 

(31) (x,a,xb) = 0. 

We note that 

0 = F(x, a, y, b) 

= (xa, y, b) — (x, ay, b) + (x, a, yb) — x(a, y, b) — (x, a, y)6 

= (xa, y y b) + (x, a, yb) — (x, a, y)b. 

However, replacing x by x + y in (31) we see that (x, a, yb) = — (y, a, xb). 
Replacing b by a + b in (28) shows that — (y, a, x£>) = (y, b, xa). Therefore 
(x, a, yb) = (y, b, xa). Consequently (xa, y, b) + (y, b, xa) = (x, a, y)b. Sub­
tracting 0 = A (xa, y, b) = (xa, y, b) + (y, b, xa) + (b, xa, y) from the last 
equation we see that — (b, xa, y) = (x, a, y)b. Because of (29) it follows that 
(x, a, y)b = —b(x, a, y), and thereby (b, xa, y) = b(x,a,y). Comparing the 
last identity with 

0 = F(b, x, a, y) 

= (bx, a, y) — (b, xa, y) + (b, x, ay) — b(x, a, y) — (b, x, a)y 

= -(b,xa,y) - b(x,a,y), 

we conclude that (b, xa, y) — b(x, a, y) = 0. Consequently (B, RB, R) = 0. 
Define D = B -\~ RB. It is a simple matter to verify that D is a two-sided 
ideal of R. Since D contains B, a non-trivial right ideal of R, it must be that 
D = R. Therefore (B, RB, R) = 0 and (B, B, R) = 0 imply (B, R, R) = 
(B, D, R) = 0. But then B is contained in the nucleus N of R and as before 
then (B, R) = 0 follows from (2). This, however, suffices to show that B 
is contained in S, so that B = 0. But this is clearly a contradiction. It arose 
out of the original assumption that B was a proper right ideal of R. Therefore 
R can have no proper right ideals. The argument that R can have no proper 
left ideals follows from the fact that a ring of type (7, 5) is anti-isomorphic to 
one of type ( — 7, 1 — 8) (4, Theorem 1). This completes the proof of the 
theorem. 

We have purposely omitted from our discussion the rings of type ( — 1, 1) 
and their anti-isomorphic copies, the rings of type (1, 0). The former are 
right alternative rings that satisfy (2). From the structure theory of right 
alternative algebras it follows that simple algebras of type ( — 1, 1) whose 
characteristic is different from 2 and 3 are associative. This result is analogous 
to our Main Theorem. Rings of type ( — 1, 1) have been considered by Maneri 
for his PhD. dissertation. His results will be published elsewhere. 
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