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Abstract

In this paper we first show that for a locally compact amenable group G, every proper abstract Segal
algebra of the Fourier algebra on G is not approximately amenable; consequently, every proper Segal
algebra on a locally compact abelian group is not approximately amenable. Then using the hypergroup
generated by the dual of a compact group, it is shown that all proper Segal algebras of a class of compact
groups including the 2 × 2 special unitary group, SU(2), are not approximately amenable.

2010 Mathematics subject classification: primary 46H20; secondary 43A20, 43A62, 46H10.

Keywords and phrases: approximately amenable Banach algebra, Segal algebra, abstract Segal algebra,
locally compact abelian group, compact group, hypergroup, Leptin condition.

1. Introduction

The notion of approximate amenability of a Banach algebra was introduced by
Ghahramani and Loy in [8]. A Banach algebraA is said to be approximately amenable
if for everyA-bimodule X and every bounded derivation D :A→ X, there exists a net
(Dα) of inner derivations such that

lim
α

Dα(a) = D(a) for all a ∈ A.

This is not the original definition but it is equivalent. In [8], it is observed that
approximately amenable algebras have approximate identities; moreover, closed ideals
with a bounded approximate identity and quotient algebras of approximate amenable
Banach algebras are approximately amenable.

In this paper, we study the approximate amenability of proper abstract Segal
algebras of Fourier algebras and, subsequently, Segal algebras on abelian groups and
compact groups. The definition of Segal algebras will be given in Section 2.
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Approximate amenability of Segal algebras has been studied in several papers.
Dales and Loy, in [4], studied approximate amenability of Segal algebras on T and R.
They showed that certain Segal algebras on T andR are not approximately amenable. It
was further conjectured that no proper Segal algebra on T is approximately amenable.
Choi and Ghahramani, in [3], have shown the stronger fact that no proper Segal algebra
on Td or Rd is approximately amenable. We extend the result of Choi and Ghahramani
to apply to all locally compact abelian groups, not just Td and Rd. Our approach, like
that of Choi–Ghahramani and Dales–Loy, is to apply the Fourier transform and work
with abstract Segal subalgebras of the Fourier algebra of a locally compact abelian
group.

In fact, we prove a more general result in Section 2: when G is an amenable locally
compact group, no proper Segal subalgebra of the Fourier algebra is approximately
amenable. The proof makes use of the equivalence between amenability of G and the
so-called Leptin condition on G.

In the rest of the paper, we try to apply similar tools, this time for compact groups.
In Section 3 our idea is to view the dual of compact groups as a discrete hypergroup.
The Fourier space of hypergroups is studied as well. In Section 4, we introduce an
analogue for hypergroups of the classical Leptin condition, and show that this holds for
certain examples. In Section 5, we apply these tools to show that for a class of compact
groups including SU(2), every proper Segal algebra is not approximately amenable.

2. Abstract Segal algebras of Fourier algebra on amenable groups

Let A be a commutative Banach algebra. We denote by σ(A) the spectrum
of A which is also called the maximal ideal space or character space of A. A
commutative Banach algebra A is called regular, if for every φ in σ(A) and every
open neighbourhood U of φ in the Gelfand topology, there exists an element a ∈ A
such that φ(a) = 1 and ψ(a) = 0 for each ψ ∈ σ(A) \ U. Using Gelfand representation
theory, for a commutative semisimple regular Banach algebra A, it can be viewed as
an algebra of continuous functions on its spectrum, σ(A). For each a ∈ A, supp(â) is
defined as the support of the function â.

Let G be a locally compact group, equipped with a fixed left Haar measure λ. The
Fourier algebra of G was defined and studied by Eymard in [6]. In the following
lemma, we summarize the main features of the Fourier algebra, denoted by A(G),
which we need here. We denote by Cc(G) the space of continuous, compactly
supported, complex-valued functions on G.

L 2.1. Let G be a locally compact group and K be a compact subset of G, and
let U be an open subset of G such that K ⊂ U. For each relatively compact open set V
such that KVV−1 ⊆ U, we can find uV ∈ A(G) ∩Cc(G) such that:

(1) uV (G) ⊆ [0, 1];
(2) uV |K ≡ 1;
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(3) supp(uV ) ⊆ U;
(4) ‖uV‖A(G) ≤ (λ(KV)/λ(V))

1
2 .

The existence of uV ∈ A(G) ∩Cc(G) satisfying (1)–(3) is proved in [6, Lemma 3.2].
Also based on the proof of [6, Lemma 3.2] and the definition of the norm of A(G), one
can show (4).

Since σ(A(G)) = G, Lemma 2.1 shows that A(G) is a commutative semisimple
regular algebra.

We say that the Banach algebra (B, ‖ · ‖B) is an abstract Segal algebra of a Banach
algebra (A, ‖ · ‖A) if:

(1) B is a dense left ideal inA;
(2) there exists M > 0 such that ‖b‖A ≤ M‖b‖B for each b ∈ B;
(3) there exists C > 0 such that ‖ab‖B ≤C‖a‖A‖b‖B for all a, b ∈ B.

If B is a proper subalgebra ofA, we call it a proper abstract Segal algebra ofA.
Let G be a locally compact group. A linear subspace S 1(G) of L1(G), the group

algebra of G, is said to be a Segal algebra on G, if it satisfies the following conditions:

(1) S 1(G) is dense in L1(G);
(2) S 1(G) is a Banach space under some norm ‖ · ‖S 1 and ‖ f ‖S 1 ≥ ‖ f ‖1 for all

f ∈ S 1(G);
(3) S 1(G) is left translation invariant and the map x 7→ Lx f of G into S 1(G) is

continuous, where Lx f (y) = f (x−1y);
(4) ‖Lx f ‖S 1 = ‖ f ‖S 1 for all f ∈ S 1(G) and x ∈G.

Note that every Segal algebra on G is an abstract Segal algebra of L1(G) with
convolution product. Similarly, we call a Segal algebra on G proper if it is a proper
subalgebra of L1(G). For the sake of completeness we will give some examples of
Segal algebras.
• Let LA(G) := L1(G) ∩ A(G) and |||h||| := ‖h‖1 + ‖h‖A(G) for h ∈ LA(G). Then

LA(G) with norm ||| · ||| is a Banach space; this space was studied extensively
by Ghahramani and Lau in [7]. They have shown that LA(G) with the
convolution product is a Banach algebra called the Lebesgue–Fourier algebra
of G; moreover, it is a Segal algebra on the locally compact group G. LA(G) is
a proper Segal algebra on G if and only if G is not discrete.

Also, LA(G) with pointwise multiplication is a Banach algebra and even an
abstract Segal algebra of A(G). Similarly, LA(G) is a proper subset of A(G) if
and only if G is not compact.

• The convolution algebra L1(G) ∩ Lp(G) for 1 ≤ p <∞ equipped with the norm
‖ f ‖1 + ‖ f ‖p is a Segal algebra.

• Similarly, L1(G) ∩C0(G) with respect to the norm ‖ f ‖1 + ‖ f ‖∞ is a Segal
algebra, where C0(G) is the C∗-algebra of continuous functions on G vanishing
at infinity.

• Let G be a compact group, F denote the Fourier transform, and Lp(Ĝ) be the
space which will be defined in (3.1). We can see that F −1(Lp(Ĝ)), which we
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denote by Cp(G), equipped with convolution, is a subalgebra of L1(G). For
‖ f ‖Cp(G) := ‖F f ‖

Lp(Ĝ), one can show that for each 1 ≤ p ≤ 2, (Cp(G), ‖ · ‖Cp(G))
is a Segal algebra on G.

P 2.2. Let A be a commutative semisimple regular Banach algebra and let
B be an abstract Segal algebra ofA. ThenB is also semisimple and regular. Moreover,
B contains all elements a ∈ A such that supp(â) is compact.

P. By [2, Theorem 2.1], σ(B) is homeomorphic to σ(A) and B is semisimple.
Theorem 3.6.15 and Theorem 3.7.1 of [15] imply that for a commutative regular

Banach algebraA and a closed subset E of σ(A) in the Gelfand spectrum topology, if
a ∈ A such that |φ(a)| ≥ δ > 0 for every φ ∈ E, then there exists some a′ ∈ A such that
φ(aa′) = 1 for every φ ∈ E. We call this property local invertibility.

Now, [14, Proposition 2.1.14] says that if A is a commutative semisimple algebra
with local invertibility and I an ideal of A such that

⋂
a∈I Ker â = ∅, then I contains

all elements a ∈ A such that â has compact support in σ(A). In particular, this applies
to B because of density.

Since A is regular, for a closed set E ⊆ σ(A) and φ ∈ σ(A) \ E, we have some
a ∈ A such that â|E ≡ 0, â(φ) = 1, and supp(â) is a compact subset of σ(A). Therefore,
a ∈ B, implying that B is regular. �

In [3], a nice criterion is developed to prove the nonapproximate amenability of
Banach algebras. At several points we will rely crucially on this criterion. For
this reason, we present a version of the criterion below. Recall that for a Banach
algebra A, a sequence (an)n∈N ⊆A is called multiplier-bounded if, for some M > 0,
supn∈N ‖anb‖ ≤ M‖b‖ for all b ∈ A.

T 2.3. LetA be a Banach algebra. Suppose that there exists an unbounded but
multiplier-bounded sequence (an)n≥1 ⊆A such that

anan+1 = an = an+1an

for all n. ThenA is not approximately amenable.

The following theorem is the main theorem of this section.

T 2.4. Let G be a locally compact amenable group and SA(G) a proper
abstract Segal algebra of A(G). Then SA(G) is not approximately amenable.

P. Since SA(G) is a proper abstract Segal algebra of A(G), the norms ‖ · ‖SA(G) and
‖ · ‖A(G) can not be equivalent. On the other hand, ‖ f ‖A(G) ≤ M‖ f ‖SA(G) for f ∈ SA(G)
and some M > 0. Therefore, we can find a sequence ( fn)n∈N in Cc(G) ∩ A(G), and
hence by Proposition 2.2 in SA(G), such that

n‖ fn‖A(G) ≤ ‖ fn‖SA(G) for all n ∈ N. (2.1)

If G is a locally compact group, then G is amenable if and only if it satisfies the
Leptin condition, that is, for every ε > 0 and compact set K ⊆G, there exists a relatively
compact neighborhood V of e such that λ(KV)/λ(V) < 1 + ε [13, Section 2.7].
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Fix D > 1. Using the Leptin condition and Lemma 2.1, we can generate a sequence
(un)n∈N inductively in A(G) ∩Cc(G) ⊆ SA(G) such that un|supp fn ≡ 1, supp un ⊆ {x ∈G :
un+1(x) = 1}, and ‖un‖A(G) ≤ D. Hence un fn = fn and unun+1 = un for every n ∈ N.

So here we only need to prove unboundedness of (un)n≥1 in ‖ · ‖SA(G). Suppose
otherwise that supn∈N ‖un‖SA(G) = C′ for some 0 <C′ <∞. Then for each n ∈ N, one
can write

‖ fn‖SA(G) = ‖un fn‖SA(G) ≤C‖ fn‖A(G)‖un‖SA(G) ≤C′C‖ fn‖A(G)

for some fixed C > 0. But this violates the condition (2.1); therefore, (un)n∈N

is unbounded in ‖ · ‖SA(G). Consequently, Theorem 2.3 shows that SA(G) is not
approximately amenable. �

We should recall that the Leptin condition played a crucial role in the proof. As we
mentioned before, the approximate amenability of all proper Segal algebras on Rd has
been studied by Choi and Ghahramani in [3]. We are therefore motivated to conclude
a generalization of their result in the following corollary.

C 2.5. Let G be a locally compact abelian group. Then every proper Segal
subalgebra of L1(G) is not approximately amenable.

P. Let S 1(G) be a proper Segal algebra on G. Applying the Fourier transform on
L1(G), we may transform S 1(G) to a proper abstract Segal algebra SA(Ĝ) of A(Ĝ), the
Fourier algebra on the dual of group G. By Theorem 2.4, SA(Ĝ) is not approximately
amenable. �

R. In particular, by Theorem 2.4, for an amenable locally compact group G the
Lebesgue–Fourier algebra with pointwise multiplication is approximately amenable if
and only if G is a compact group, in which case it equals the Fourier algebra of G.
Moreover, by Corollary 2.5, for a locally compact abelian group G, the Lebesgue–
Fourier algebra with convolution product is approximately amenable if and only if G
is discrete, in which case it equals `1(G).

3. Hypergroups and their Fourier algebra

Although the dual of a compact group is not a group, in general, it is a (commutative
discrete) hypergroup. We give the background needed for this result in Section 3.1.
Muruganandam, in [12], gave a definition of the Fourier space, A(H), of a hypergroup
H and showed that A(H) is a Banach algebra with pointwise product for certain
commutative hypergroups. In Section 3.2, we study the Fourier space on the dual
of a compact group G, denoted by A(Ĝ). We show that indeed for each compact group
G, A(Ĝ) is a Banach algebra.

3.1. Preliminaries and notations. For studying hypergroups, we mainly rely on [1].
As a short summary for hypergroups we give the following definitions and facts.
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Let (H, ∗,˜) be a (locally compact) hypergroup possessing a Haar measure h. The
notation A ∗ B stands for⋃

{supp(δx ∗ δy) : for all x ∈ A, y ∈ B}

for A, B subsets of the hypergroup H. With abuse of notation, we use x ∗ A to
imply {x} ∗ A. Let Cc(H) be the space of all complex-valued, compactly supported,
continuous functions over H. We define

Lx f (y) =

∫
H

f (t) dδx ∗ δy(t) f ∈Cc(H), x, y ∈ H.

Defining

f ∗h g(x) :=
∫

H
f (t)Lt̃g(x) dh(t), f̃ (x) := f (x̃) and f ∗ := ( f̃ ),

we can see that all of the functions f : H→ C such that

‖ f ‖L1(H,h) :=
∫

H
| f (t)| dh(t) <∞

form a Banach ∗-algebra, denoted by (L1(H, h), ∗h, ‖ · ‖h); it is called the hypergroup
algebra of H.

If H is discrete and h(e) = 1,

h(x) = (δx̃ ∗ δx(e))−1.

L 3.1. Let H be a discrete hypergroup. For each pair x, y ∈ H,

δx ∗h δy(z) = δx ∗ δy(z)
h(x)h(y)

h(z)

for each z ∈ H.

In this section, let G be a compact group and Ĝ the set of all irreducible unitary
representations of G. In this paper, we follow the notation of [5] for the dual of
compact groups. Where Hπ is the finite-dimensional Hilbert space related to the
representation π ∈ Ĝ, we define χπ := Trπ, the group character generated by π, and
dπ denotes the dimension of Hπ. Let φ = {φπ : π ∈ Ĝ} if φπ ∈ B(Hπ) for each π, and
define

‖φ‖
L∞(Ĝ) := sup

π
‖φπ‖∞

for ‖ · ‖∞, the operator norm. The set of all those φ with ‖φ‖
L∞(Ĝ) <∞ forms a C∗-

algebra; we denote it by L∞(Ĝ). It is well known that L∞(Ĝ) is isomorphic to the von
Neumann algebra of G that is the dual of A(G), see [5, 8.4.17]. We define

Lp(Ĝ) =

{
φ ∈ L∞(Ĝ) : ‖φ‖p

Lp(Ĝ)
:=

∑
π∈Ĝ

dπ‖φπ‖
p
p <∞

}
, (3.1)
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for ‖ · ‖p, the p-Schatten norm. For each p, Lp(Ĝ) is an ideal of L∞(Ĝ), see
[5, Section 8.3]. Moreover, we define

C0(Ĝ) =

{
φ ∈ L∞(Ĝ) : lim

π→∞
‖φπ‖∞ = 0

}
.

For each f ∈ L1(G), F ( f ) = ( f̂ (π))π∈Ĝ belongs to C0(Ĝ), where F denotes the Fourier
transform and

f̂ (π) =

∫
G

f (x)π(x−1) dx.

Indeed, F (L1(G)) is a dense subset of C0(Ĝ) andF is an isomorphism from the Banach
algebra L1(G) onto its image.

For each two irreducible representations π1, π2 ∈ Ĝ, we know that π1 ⊗ π2 can be
written as a direct product of π′1, . . . , π

′
n elements of Ĝ with respective multiplicities

m1, . . . , mn, that is,

π1 ⊗ π2 �
n⊕

i=1

miπ
′
i .

We define a convolution on `1(Ĝ) by

δπ1 ∗ δπ2 :=
n∑

i=1

midπ′i
dπ1 dπ2

δπ′i (3.2)

and define an involution by π̃ = π for all π, π1, π2 ∈ Ĝ. It is straightforward to
verify that (Ĝ, ∗,˜) forms a discrete commutative hypergroup such that π0, the trivial
representation of G, is the identity element of Ĝ and h(π) = d2

π is the Haar measure
of Ĝ.

E 3.2. Let ŜU(2) be the hypergroup of all irreducible representations of the
compact group SU(2). We know that

ŜU(2) = (π`)`∈0, 1
2 ,1,

3
2 ,...
,

where the dimension of π` is 2` + 1, see [9, 29.13]. Moreover,

π` ⊕ π`′ =

`+`′⊕
r=|`−`′ |

πr = π|`−`′ | ⊕ π|`−`′ |+1 ⊕ · · · ⊕ π`+`′ (by [9, Theorem 29.26]).

So, using definition (3.2), we have that

δπ` ∗ δπ`′ =

`+`′∑
r=|`−`′ |

(2r + 1)
(2` + 1)(2`′ + 1)

δπr .

Also π̃` = π` and h(π`) = (2` + 1)2 for all `.
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E 3.3. Suppose that {Gi}i∈I is a nonempty family of compact groups for
arbitrary indexing set I. Let G :=

∏
i∈I Gi be the product of {Gi}i∈I, that is, G = {(xi)i∈I :

xi ∈Gi} equipped with product topology. Then G is a compact group and by [9,
Theorem 27.43],

Ĝ =

{
π =

⊗
i∈I

πi : such that πi ∈ Ĝi and πi = π0 except for finitely many i
}

equipped with the discrete topology. Moreover, for each π =
⊗

i∈I πi ∈ Ĝ, dπ =∏
i∈I dπi .
If πk =

⊗
i∈I π

(k)
i ∈ Ĝ for k = 1, 2, one can show that

δπ1 ∗ δπ2 (π) =
∏
i∈I

δπ(1)
i
∗Ĝi

δπ(2)
i

(πi) for π =
⊗

i∈I

πi ∈ Ĝ,

where ∗Ĝi
is the hypergroup product in Ĝi for each i ∈ I. Also, each character χ of

G corresponds to a family of characters (χi)i∈I such that χi is a character of Gi and
χ(x) =

∏
i∈I χi(xi) for each x = (xi)i∈I ∈G. Note that χi ≡ 1 for all of i ∈ I except finitely

many.

3.2. The Fourier algebra of the dual of a compact group. For a compact
hypergroup H, Vrem in [17] defined the Fourier space similar to the Fourier algebra
of a compact group. Later, Muruganandam, in [12], defined the Fourier–Stieltjes
space on an arbitrary (not necessarily compact) hypergroup H using irreducible
representations of H analogous to the Fourier–Stieltjes algebra on locally compact
groups. Subsequently, he defined the Fourier space of a hypergroup H, as a
closed subspace of the Fourier–Stieltjes algebra, generated by { f ∗h f̃ : f ∈ L2(H, h)}.
Muruganandam also showed that when H is commutative, A(H) is { f ∗h g̃ : f , g ∈
L2(H, h)} and ‖u‖A(H) = inf ‖ f ‖2‖g‖2 for all f , g ∈ L2(H, h) such that u = f ∗ g̃. He calls
the hypergroup H a regular Fourier hypergroup, if the Banach space (A(H), ‖ · ‖A(H))
equipped with pointwise product is a Banach algebra.

We prove a hypergroup version of Lemma 2.1 which shows some important
properties of the Banach space A(H) for an arbitrary hypergroup H (not necessarily
a regular Fourier hypergroup). Some parts of the following lemma have already
been shown in [17] for compact hypergroups and that proof is applicable to general
hypergroups. Here we present a complete proof for the lemma.

L 3.4. Let H be a hypergroup, K a compact subset of H and U an open subset
of H such that K ⊂ U. Then for each relatively compact open set V such that

K ∗ V ∗ Ṽ ⊆ U, there exists some uV ∈ A(H) ∩Cc(H) such that:

(1) uV (H) ≥ 0;
(2) uV |K = 1;
(3) supp(uV ) ⊆ U;
(4) ‖uV‖A(H) ≤ (hH(K ∗ V)/hH(V))

1
2 .
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P. Let us define

uV :=
1

hH(V)
1K∗V ∗h 1̃V .

Clearly uV ≥ 0. Moreover, for each x ∈ K,

hH(V)uV (x) = 1K∗V ∗h 1̃V (x)

=

∫
H

1K∗V (t)Lt̃1̃V (x) dhH(t)

=

∫
H

1K∗V (t)Lx̃1V (t) dhH(t)

=

∫
t∈H

Lx1K∗V (t)1V (t) dhH(t) (by [1, Theorem 1.3.21])

=

∫
V
〈1K∗V , δx ∗ δt〉 dhH(t)

= hH(V).

Also [1, Proposition 1.2.12] implies that

supp(1K∗V ∗h 1̃V ) ⊆ (K ∗ V ∗ Ṽ) ⊆ U,

which implies that uV is compact supported. Finally, by [12, Proposition 2.8], we
know that

‖uV‖A(H) ≤
‖1K∗V‖2‖1V‖2

hH(V)
=

hH(K ∗ V)
1
2 hH(1V )

1
2

hH(V)
=

hH(K ∗ V)
1
2

hH(V)
1
2

.

This concludes the proof. �

R. For each pair K, U such that K ⊂ U, we can always find a relatively compact
neighborhood V of eH that satisfies the conditions in Lemma 3.4. But the proof is quite
long and in our application the existence of such V will be clear.

Given a commutative hypergroup, it is not immediate whether it is a regular Fourier
hypergroup or not. We will show that when G is a compact group, the hypergroup Ĝ
is a regular Fourier hypergroup.

D 3.6. For A(G), the Fourier algebra on G, we define

ZA(G) := { f ∈ A(G) : f (yxy−1) = f (x) for all x ∈G},

which is a Banach algebra with pointwise product and ‖ · ‖A(G).

T 3.7. Let G be a compact group. Then Ĝ is a regular Fourier hypergroup
and A(Ĝ) is isometrically isomorphic with the center of the group algebra G, that is,
A(Ĝ) � ZL1(G). Moreover, the hypergroup algebra of Ĝ, L1(Ĝ, h), is isometrically
isomorphic with ZA(G).
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P. Let F be the Fourier transform on L1(G). We know that F |L2(G) is an isometric
isomorphism from L2(G) onto L2(Ĝ). By the properties of the Fourier transform, [5,
Proposition 4.2], for each f ∈ ZL2(G) and g ∈ L1(G)

F ( f ) ◦ F (g) = F ( f ∗ g) = F (g ∗ f ) = F (g) ◦ F ( f ). (3.3)

So F ( f ) commutes with all elements of C0(Ĝ); therefore, F ( f ) = (απIdπ×dπ)π∈Ĝ for a
family of scalars (απ)π∈Ĝ in C. Hence,

‖F ( f )‖22 =
∑
π∈Ĝ

dπ‖ f̂ (π)‖22 =
∑
π∈Ĝ

dπα
2
π‖Idπ×dπ‖

2
2 =

∑
π∈Ĝ

α2
πdπ

2 =
∑
π∈Ĝ

α2
πh(π).

Using the preceding identity, we define T : ZL2(G)→ L2(Ĝ, h) by T ( f ) = (απ)π∈Ĝ.
Note that { χπ}π∈Ĝ forms an orthonormal basis for ZL2(G). Since F (χπ̃) = d−1

π̃ Idπ̃×π̃ ,
T ( f̃ ) = T ( f )̃ for each f ∈ L2(G), where f̃ (x) = f (x−1). So T is an isometric
isomorphism from ZL2(G) onto L2(Ĝ, h).

We claim that T ( f g̃) = T ( f ) ∗h T (g)̃ for all f , g ∈ ZL2(G). To prove our claim it
is enough to show that T (χπ1χπ2 ) = T (χπ1 ) ∗h T (χπ2 ) for π1, π2 ∈ Ĝ. Therefore, using
Lemma 3.1, for each two representations π1, π2 ∈ Ĝ,

T (χπ1χπ2 ) = T

( n∑
i=1

miχπ′i

)
=

n∑
i=1

miT (χπ′i )

=

n∑
i=1

mid
−1
π′i
δπ′i

= d−1
π1
δπ1 ∗h d−1

π2
δπ2

= T (χπ1 ) ∗h T (χπ2 ).

Now we can define a surjective extension T : ZL1(G)→ A(Ĝ), using the fact that
lin{ χπ}π∈Ĝ is dense in ZL1(G) as well and ‖ f ‖1 = inf ‖g1‖2‖g2‖2 for all g1, g2 ∈ L2(G)
such that f = g1g̃2. Using the definition of the norm of A(Ĝ), ‖T ( f )‖A(Ĝ) = ‖ f ‖1 for
each f ∈ ZL1(G). To show that the extension of T is onto, for each pair g1, g2 ∈

ZL2(G), we note that g1g̃2 ∈ ZL1(G). So, T is an isometric isomorphism. This implies
that A(Ĝ) is a Banach algebra with pointwise product and hence (A(Ĝ), ·, ‖ · ‖A(Ĝ)) �
(ZL1(G), ∗, ‖ · ‖1).

The second part is similar to the first part of the proof. This time we consider the
restriction of the Fourier transform from ZA(G) onto L1(Ĝ). Again by an argument
similar to (3.3), we define an isometric mapping T ′ from ZA(G) onto L1(Ĝ, h). Since
lin{ χπ}π∈Ĝ is dense in ZA(G), we observe that T ′ is an isometric isomorphism from
ZA(G) as a ∗-algebra with complex conjugate and pointwise product onto L1(Ĝ, h) as
a ∗-algebra with convolution ∗h. �
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4. The Leptin condition on hypergroups

In the proof of Theorem 2.4, we used the Leptin condition for amenable groups.
In this subsection we study the Leptin condition for hypergroups. In [16], the Reiter
condition was introduced for amenable hypergroups. Although the Reiter condition
on hypergroups behaves similar to amenable groups, the Leptin condition is a problem
for hypergroups. This difficulty is resulted mainly from the following fact: in general
hypergroups, when we convolve the Dirac measures of two elements, although the
probabilistic measure which is yielded from this convolution is finitely supported, we
do not necessarily have a bound on the cardinality of its size. There are some attempts
to answer this question for some special hypergroups in [10].

Recall that for each two subsets A and B of X, we denote the set (A \ B) ∪ (B \ A)
by A 4 B.

D 4.1. Let H be a hypergroup. We say that H satisfies the Leptin condition if
for every compact subset K of H and ε > 0, there exists a measurable set V in H such
that 0 < h(V) <∞ and h(K ∗ V)/h(V) < 1 + ε.

We will use the Leptin condition, in the case where H is the dual of a compact group
G, to study approximate amenability for Segal algebras on G.

R. In the definition of the Leptin condition mentioned above, we can suppose
that V is a compact measurable set. To show this fact suppose that H satisfies the
Leptin condition. For a compact subset K of H and ε > 0, there exists a measurable
set V such that h(K ∗ V)/h(V) < 1 + ε. Using regularity of h, for each positive integer
n, we can find compact set V1 ⊆ V such that h(V \ V1) < h(V)/n. This implies that
0 < h(V1) and h(V)/h(V1) < n/(n − 1). Therefore,

h(K ∗ V1)
h(V1)

≤
h(V)
h(V1)

(h(K ∗ V1)
h(V)

)
<

n
n − 1

(1 + ε).

So we can add compactness of V to the definition of the Leptin condition.

Note that since the duals of compact groups are commutative, they are all amenable
hypergroups [16], but as we mentioned this amenability does not say anything about
the Leptin condition on these hypergroups. So the next question is: for which compact
groups G do the hypergroups Ĝ satisfy the Leptin condition? We will now show that
Examples 3.2 and 3.3 sometimes satisfy this condition.

P 4.3. The hypergroup ŜU(2) satisfies the Leptin condition.

P. Take a compact subset K of ŜU(2) and ε > 0, k := sup{` : π` ∈ K}. We select
m ≥ k such that for V = {π`}

m
`=0,

h(πk ∗ V)
h(V)

=

∑2m+2k+1
`=1 `2∑2m+1
`=1 `2

=

1
3 (2m + 2k + 1)3 + 1

2 (2m + 2k + 1)2 + 1
6 (2m + 2k + 1)

1
3 (2m + 1)3 + 1

2 (2m + 1)2 + 1
6 (2m + 1)

< 1 + ε.

(4.1)
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Then for each x ∈ K, x ∗ V ⊆ πk ∗ V . So, using (4.1),

h(K ∗ V)
h(V)

=
h(πk ∗ V)

h(V)
< 1 + ε.

This concludes the proof. �

P 4.4. Let {Gi}i∈I be a family of compact groups whose duals have the Leptin
condition and G =

∏
i∈I Gi be their product equipped with product topology. Then Ĝ

satisfies the Leptin condition.

P. Let K ⊆ Ĝ be an arbitrary compact subset. Then, there exists some F ⊆ I finite
such that K ⊆

⊗
i∈F Ki ⊗ Ec

F , where Ki is a compact subset of Ĝi, and Ec
F =

⊗
i∈I\F π0,

where the π0 are the trivial representations of the corresponding Ĝi.
Using the Leptin condition for each Gi, there exists some compact set Vi which

satisfies the Leptin condition for Ki and ε > 0, that is, hGi (Ki ∗ Vi) < (1 + ε)hGi (Vi).
Therefore, for the compact set V = (

⊗
i∈F Vi) ⊗ Ec

F ,

h(K ∗ V)
h(V)

≤
∏
i∈F

hGi (Ki ∗ Vi)
hGi (Vi)

< (1 + ε)|F|.

This concludes the proof. �

R. If G is finite then Ĝ satisfies the Leptin condition; hence, for a family of finite
groups, say {Gi}i∈I, G :=

∏
i∈I Gi, Ĝ satisfies the Leptin condition.

5. Segal algebras on compact groups whose duals satisfy the Leptin condition

In this section, we apply this hypergroup approach to answer the question of
approximate amenability of Segal algebras. We show that every proper Segal algebra
on G is not approximately amenable if G is a compact group and Ĝ satisfies the Leptin
condition. To prove this theorem we need some preliminary results. The proof of the
following lemma is adopted from [11, Lemma 1].

L 5.1. Let A be a Banach algebra and J be a dense left ideal of A. Then for
each idempotent element p in the center of the algebra A, that is, p2 = p ∈ Z(A), p
belongs to J .

P. Since J is dense in A, there exists an element a ∈ J such that ‖p − a‖A < 1.
Let us define

b := p +

∞∑
n=1

(p − a)n.
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One can check that pb − pb(p − a) = pba, which is an element in J . On the other
hand,

pb − pb(p − a) = p
(
p +

∞∑
n=1

(p − a)n
)
− p

(
p +

∞∑
n=1

(p − a)n
)
(p − a)

= p + p
∞∑

n=1

(p − a)n − p
∞∑

n=2

(p − a)n − p(p − a)

= p + p(p − a) − p(p − a) = p.

This concludes the proof. �

C 5.2. Let G be a compact group. Then lin{ χπ}π∈Ĝ is ‖ · ‖1-dense in ZL1(G)
and for every Segal algebra S 1(G), its center, ZS 1(G), contains lin{ χπ}π∈Ĝ.

P. Let T be the map defined in the proof of Theorem 3.7. Then, T (ZL1(G)) =

A(Ĝ). Also for the discrete hypergroup Ĝ, A(Ĝ) equals the ‖ · ‖A(Ĝ)-closure of
lin{δπ}π∈Ĝ [12]. Therefore, ZL1(G) is the ‖ · ‖1-closure of lin{ χπ}π∈Ĝ, since T (χπ) =

d−1
π δπ for each π ∈ Ĝ. On the other hand, by Lemma 5.1, S 1(G) contains all central

idempotents dπχπ for each π ∈ Ĝ. �

The main theorem of this section is as follows.

T 5.3. Let G be a compact group such that Ĝ satisfies the Leptin condition.
Then every proper Segal algebra on G is not approximately amenable.

P. Let S 1(G) be a proper Segal algebra on G. Fix D > 1. Using the Leptin
condition on Ĝ, for every arbitrary nonvoid finite set K in Ĝ, we can find a finite
subset VK of Ĝ such that h(K ∗ VK)/h(VK) < D2. Using Lemma 3.4, for

vK :=
1

h(VK)
1K∗VK ∗h 1̃VK

we have ‖vK‖A(Ĝ) < D and vK |K ≡ 1. We consider the net {vK : K ⊆ Ĝ compact} in

A(Ĝ) where vK2 � vK1 whenever vK1 vK2 = vK1 . So (vK)K⊆Ĝ forms a ‖ · ‖A(Ĝ)-bounded

net in A(Ĝ) ∩ cc(Ĝ). Let f ∈ A(Ĝ) ∩ cc(Ĝ) with K = supp f . Then vK f = f . Therefore,
(vK)K⊆Ĝ is a bounded approximate identity of A(Ĝ).

Using T defined in the proof of Theorem 3.7, we can define the net (uK)K⊆Ĝ in
S 1(G) by uK := T −1(vK). We show that (uK)K⊆Ĝ satisfies some conditions. First of
all, since T is an isometry from ZL1(G) onto A(Ĝ), (uK)K⊆Ĝ is a ‖ · ‖1-bounded net in
S 1(G), by Lemma 5.1. Moreover, since T is an isomorphism,

uK1 ∗ uK2 = T −1(vK1 ) ∗ T −1(vK2 ) = T −1(vK1 vK2 ) = T −1(vK1 ) = uK1

for vK2 � vK1 , which we equivalently denote by uK2 � uK1 . Let (uK)K⊆Ĝ be the net
constructed.
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Claim. For every K0 ⊆ Ĝ, K0 finite, the net {uK : uK � uK0} is unbounded in the norm
of S 1(G).

To prove the claim, assume towards a contradiction that there exists a finite K0 and
C > 0 such that ‖uK‖S 1(G) ≤C for all uK � uK0 . Since G is compact and S 1(G) is a
Segal algebra, we know, by [11], that S 1(G) has a central approximate identity which
is bounded in L1-norm. Denote this by (eα)α. By Corollary 5.2, let us generate a
net (e′α,ε)α,1>ε>0 in lin{ χπ}π∈Ĝ, where ‖e′α,ε − eα‖1 < ε for each pair of (α, ε); therefore,
(e′α,ε)α,1>ε>0 ⊆ ZS 1(G). We show that (e′α,ε)α,1>ε>0 is still a central ‖ · ‖1-bounded
approximate identity of S 1(G). Doing so, for each f ∈ S 1(G), note that

‖e′α,ε ∗ f − f ‖S 1(G) ≤ ‖e
′
α,ε ∗ f − eα ∗ f ‖S 1(G) + ‖eα ∗ f − f ‖S 1(G)

≤ ‖e′α,ε − eα‖1‖ f ‖S 1(G) + ‖eα ∗ f − f ‖S 1(G),

which goes toward 0 as α grows and ε→ 0. Moreover, for each (α, ε), there exists
some finite set K′ such that K0 ⊆ K′ ⊆ Ĝ and T (e′α,ε)vK = T (e′α,ε) for each vK′ 4 vK ;
hence,

‖e′α,ε‖S 1(G) = lim
K0⊆K→Ĝ

‖e′α,ε ∗ uK‖S 1(G).

Consequently,

‖e′α,ε‖S 1(G) = lim
K0⊆K→Ĝ

‖e′α,ε ∗ uK‖S 1(G)

≤ sup
K0⊂K⊆Ĝ

‖e′α,ε‖1‖uK‖S 1(G) ≤C‖e′α,ε‖1.

This implies that (e′α,ε)α,1>ε>0 is ‖ · ‖S 1(G)-bounded. But a Segal algebra cannot have
a bounded approximate identity unless it coincides with the group algebra [2], which
contradicts the properness of S 1(G). Hence, the claim is proved.

To generate a sequence which satisfies the conditions of Theorem 2.3, fix a
nonempty finite set K0 ⊆ Ĝ. By our claim, we inductively construct a sequence of
finite sets K0 ⊂ K1 ⊂ · · · in Ĝ such that uKn � uKn−1 and ‖uKn‖S 1(G) ≥ n for all n ∈ N.
Since uKn ∗ uKn−1 = uKn−1 , by Theorem 2.3, S 1(G) is not approximately amenable. �

C 5.4. Every proper Segal algebra on SU(2) is not approximately amenable.

R. After this work was submitted, we found that a weaker version of the Leptin
condition is satisfied by the dual of SU(3). One can use this to show that proper Segal
algebras on SU(3) are not approximately amenable. This will appear in a subsequent
paper which is currently in preparation.

C 5.6. Let {Gi}i∈I be a nonempty family of compact groups whose duals
satisfy the Leptin condition, and G =

∏
i∈I Gi equipped with product topology. Then

every proper Segal algebra on G is not approximately amenable.
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6. Further questions

• Is every proper Segal algebra on a compact group G not approximately
amenable? This question was first asked about locally compact abelian groups
by Dales and Loy [4], which we have answered in this paper. We have also
shown that the conjecture holds for the compact group SU(2) and for products of
finite groups.

• For which other compact groups do their duals satisfy the Leptin condition? Can
one find a compact group G whose dual does not satisfy the Leptin condition?
One may want to study the Leptin condition for the dual of other compact
connected Lie groups, say SU(n). A further study on SU(3), done by the author,
suggests that ŜU(3) may not satisfy the Leptin condition. But this statement is
still a conjecture.

• For locally compact groups, the existence of a bounded approximate identity of
the Fourier algebra implies the Leptin condition. In the hypergroup case, it seems
that we cannot prove this implication. Can we find a regular Fourier hypergroup
H whose Fourier algebra has a bounded approximate identity while H does not
satisfies the Leptin condition?
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