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We aim to estimate school value-added dynamically in time. Our principal motivation for doing so
is to establish school effectiveness persistence while taking into account the temporal dependence that
typically exists in school performance from one year to the next. We propose two methods of incorporating
temporal dependence in value-added models. In the first we model the random school effects that are
commonly present in value-added models with an auto-regressive process. In the second approach, we
incorporate dependence in value-added estimators by modeling the performance of one cohort based on
the previous cohort’s performance. An identification analysis allows us to make explicit the meaning of
the corresponding value-added indicators: based on these meanings, we show that each model is useful for
monitoring specific aspects of school persistence. Furthermore, we carefully detail how value-added can be
estimated over time.We show through simulations that ignoring temporal dependence when it exists results
in diminished efficiency in value-added estimation while incorporating it results in improved estimation
(even when temporal dependence is weak). Finally, we illustrate the methodology by considering two
cohorts from Chile’s national standardized test in mathematics.
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1. Introduction

Value-added models are frequently utilized to evaluate the contributions of educational insti-
tutions or stakeholders to the educational process. In certain instances, these models have directly
influenced education policies (Sass et al., 2012; Koedel et al., 2015; Kyriakides et al., 2018; Liu &
Loeb, 2019; Hanushek, 2020). While there are several criticisms regarding their use (EPI Briefing
Paper, 2010; Scherrer, 2011; Ehlert et al., 2014; Amrein-Beardsley & Holloway, 2019) , these
critiques are primarily directed at the contexts in which they are applied, rather than their intrinsic
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value in advancing educational research (McCaffey et al., 2004; Reynolds et al., 2014) . Nonethe-
less, value-added models appear to be valuable for monitoring the effectiveness of schools when
different measures at both the school and student levels are taken over time.

Broadly speaking, two overarching perspectives regarding value-added model building exist
in the school effectiveness literature. The first one considers an invariant group of people subjected
to multiple measures over a time period. In this perspective, the school effect is constant over
the time, capturing thus the effect of the school after considering the full process; this type of
approach is developed through the so-called growth models (Potthoff & Roy, 1964; Strenio et
al., 1983; Fitzmaurice et al., 2004; Guldemond & Bosker, 2009; Bianconcini & Cagnone, 2012)
. In the second perspective, the composition of the group of individuals changes over time: each
group is measured twice (pre- and post-test), allowing the identification of the school effect for
each period; in this perspective, student achievement (which is often a standardized test score)
is regressed onto previous attainment scores (i.e., standardized test result at the beginning of the
value-added period).

This paper focuses on the second perspective because we aim to investigate how the perfor-
mance of a previous cohort influences school effectiveness as the school accepts a new cohort. For
instance, in our case study, the first cohort consists of students who were in the 4th grade in 2012,
took the pre-test, and then took the post-test in 2014 as 6th graders. Subsequently, the second
cohort, comprising students who took the pre-test in the 4th grade during the 2014 school year,
took the post-test in 2016 as 6th graders. For similarly structured data, refer to Fig. 1 in Papay
(2011, Figure 1).

When estimating a particular institution’s value-added across multiple cohorts of students,
there is much interest to determine the extent to which a school’s effectiveness persists over time.
One approach of modeling such a persistence is by considering school and/or teacher effects
as “the effects cumulate over time” (Briggs & Weeks, 2011, p. 620). The underlying idea is
that effectiveness varies over time, and school and/or teacher effects represent school or teacher
impacts within each academic year (Sanders & Horn, 1994; Ballou et al., 2004) . At the model
specification level, the test score of a student at time t is determined by covariates, particularly
the test score at time t − 1, and a linear combination of school and/or teacher effects from t to
the initial data collection time (McCaffey et al., 2004; Lockwood et al., 2007; Rothstein, 2010;
Kinsler, 2012) . It’s worth noting that this approach typically necessitates cohort scores available
for at least two time periods (Vanwynsberghe et al., 2017; Tymms et al., 2018) .

Analternative approach to analyzing the persistence of school effectiveness involves assessing
school value-added indicators over time. It’s reasonable to assume that school effectiveness would
generally exhibit stability, barring abrupt changes in faculty, resources, and leadership. From a
statistical perspective, this suggests that value-added estimators would demonstrate temporal
dependence. Consequently, proposing a model independently for each cohort of students might,
at first glance, overlook the correlation among these estimators and result in a loss of efficiency
when estimating the persistency of school effectiveness. Unfortunately, this approach is currently
common practice.

Efforts to address this temporal dependence in value-added models often involve two-step
procedures based on correlating value-added estimates post-model fit with each cohort being
modeled separately (Gray et al., 2001; Thomas et al., 2007; Bellei et al., 2016) . However,
this approach is suboptimal, as highlighted by Leckie (2018), who recently explored this method
and demonstrated persistent biases. As mentioned by Leckie (2018), a much preferable approach
would be to incorporate temporal dependence coherently in a statistical model by jointlymodeling
cohorts. This can be achieved in various ways, with Leckie (2018) proposing one such approach.

Our goal here is therefore to further develop time-dependent value-added models. We specify
a time-dependent value-added model to answer the following question: is it possible that the cur-
rent effectiveness of a school as it takes in a new cohort is jointly influenced by both its previous
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effectiveness and some previous information from the former cohort? To answer this question,
an identification analysis is necessary. The analysis we carry out shows that the parameters char-
acterizing both the dependence of the previous school effectiveness and the previous cohort are
identified. By using the model-free definition of value-added (Manzi et al., 2014), we derive the
corresponding school value-added indicators. Afterward, we establish an interpretation of school
effectiveness persistence for the case of two cohorts, which consists of decomposing the school
value-added for cohort 2 into two components: the first one corresponds to the expectation of the
school value-added for cohort 2 conditionally on the school value-added for cohort 1, whereas
the second component corresponds to the school value-added for cohort 2 minus the latter con-
ditional expectation. This type of decomposition, typically used in other fields of psychometrics
(e.g., Classical Test Theory Zimmerman, 1975), Factor Analysis (Lord & Novick, 1968, Chapter
24) and School Effectiveness Manzi et al. (2014)), has the advantage that the first component
corresponds to the explanation of cohort 2’s school value-added by the school value-added for
cohort 1, while the second component corresponds to everything in value-added for cohort 2 that
cannot be explained by value-added for cohort 1. Thus, the persistence of school efficiency corre-
sponds to an additive combination of both the school value-added for cohort 1 and the information
coming from cohort 1. Moreover, we prove that the first additive component is related to a model
that is nested in our general formulation, which we denote by Model 1: it is characterized by
assuming that the school effects are correlated over time as in ARIMA-type models. Similarly,
we prove that the second additive component is related to a separate model nested in our general
formulation, which we denote by Model 2: it is characterized by assuming that the current school
effect is influenced by the post-tests from previous cohorts as a kind of “information shock”.

The rest of this paper is organized as follows. The time-dependent value-added models and
the structural interpretation of the value-added indicators are derived and discussed in Sect. 2.
Computation and model fitting, both based on Bayesian procedures, are briefly explained in
Sect. 3. A simulation study to explore the impact of ignoring temporal dependence on value-
added estimates is conducted in Sect. 4. Section5 details a case study using data of the Chilean
educational system. Conclusions and future work are gathered in Sect. 6.

2. Time-Dependent Value-Added Model

In this section we describe our approach to incorporate temporal dependence in value-added
models. To begin we introduce notation that will be used throughout the article. Let Yti j denote
the j th measurement coming from the i th school for cohort t where j = 1, . . . , nti , i = 1, . . . , I ,
and t = 1, . . . T (in our application T = 2). Further, let Y ti = (Yti1, . . . ,Ytinti )

′ be a nti × 1
vector of response values for cohort t of the i th school. Let X ti j be a pt × 1 vector of covariates
measured from the j th student at the i th school for cohort t and X ti = (X ti1, . . . , X tinti )

′ denote
the nti × pt “stacked matrix” of all covariate vectors measured from the i th school for cohort t .
Note that this matrix does not include a column vector of ones. When it is necessary to refer to
the pth covariate, we will use Xti j,p. We will use αti to denote the i th latent school effect for
cohort t respectively. Finally, β t will denote a pt × 1 vector of regression coefficients for cohort
t ; the remaining parameters will be made explicit in the sequential specification below; for the
time being, the set of all parameters for cohort t (including β t ) will be denoted by ψ t .

2.1. Sequential Model Specification

When more than one cohort is available, the school effect αti can in principle be influenced
by two types of temporal factors: one that is unobserved and corresponds to the school effect of
the previous cohort, namely αt−1i ; and one that is observed corresponding to (a function of the)
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post-tests from the previous cohort, namely Y t−1i . Thus, temporal dependence in value-added
models is not only based on dependence between a school’s current cohort performance and its
previous one (which is captured by αt−1i ), but also includes the impact that the information shock
contained in Y t−1i has on current school performance.

As a result, a temporal dependent value-added model should be sequentially specified. More
specifically, denoting Y t

1,i = {Y1i ,Y2i , . . . ,Y ti } (with similar notation for X t
1,i , αt

1,i and ψ t
1)

as the collection of response values (and covariates, latent school effects and parameters, respec-
tively) for the i th school from time period one to time period t , the joint distribution generating
{(Y t

1,i , X
t
1,i , α

t
1,i , ψ

t
1) : t = 1, . . . , T } for each school i is sequentially decomposed as follows:

Y ti ⊥⊥ Y t−1
1,i , XT

1,i , α
t
1,i ,ψ

T
1 | X ti , αti ,β t , σ

2
t t ≥ 2; (2.1)

(Y ti | X ti , αti ,β t , σ
2
t ) ∼ N (X tiβ t + αti ınti , σ

2
t Inti ), t ≥ 2; (2.2)

αti ⊥⊥ Y t−1
1,i , XT

1,i , α
t−1
1,i ,ψT

1 | Y t−1i , αt−1i , φ0t , φ1t , γt , τ
2
t t ≥ 2; (2.3)

(αti | Y t−1i , αt−1i , φ0t , φ1t , γt , τ
2
t ) ∼ N (φ0t + φ1tαt−1i

+γt Y t−1i , τ
2
t (1 − φ2

1t )), t ≥ 2; (2.4)

Y1i ⊥⊥ XT
2,i ,ψ

T
1 | X1i , α1i ,β1, σ

2
1 ; (2.5)

(Y1i | X1i , α1i ,β1, σ
2
1 ) ∼ N (X1iβ1 + α1i ın1i , σ

2
1 In1i ); (2.6)

α1i ⊥⊥ XT
1,i ,ψ

T
1 | φ01, τ

2
1 ; (2.7)

(α1i | φ01, τ
2
1 ) ∼ N (φ01, τ

2
1 ); (2.8)

XT
1,i ⊥⊥ ψT

1 ; (2.9)

XT
1,i is left unspecified; (2.10)

ψT
1 ∼ πψ , (2.11)

where the parameter ψ t
.= (β t , σ

2
t , τ 2t , φ0t , γt , φ1t ) ∈ R

pt × R
2+ × R

2 × [−1, 1] for t ≥ 2 and
ψ1

.= (β1, σ
2
1 , τ 21 , φ01) ∈ R

p1 × R
2+ × R. Here, ın is a vector of ones that is of length n and

Y t−1i = 1
nt−1i

∑nt−1i
j=1 Yt−1i j . The symbol

.=means “defined as”. Note that in (2.1), (2.3) and (2.5),

we consider XT
1,i rather than X t

1,i because both Y ti and αti are related to the covariates at time
t only, namely X ti ; similarly, for the parameters. To understand the logic behind this sequential
specification, readers are encouraged to consult Section C of the Supplementary Material, where
such a decomposition is explained for the case of T = 2 cohorts.

A few more detailed comments regarding the sequential specification of our time-dependent
value-added model are warranted.

1. For each cohort t , condition (2.1) implies that Y ti is stochastically determined by the
covariates X ti and the random school effect αti ; the parameters characterizing this con-
ditional distribution are (βt , σ

2
t ). Condition (2.2) not only defines a specific functional

relationship of the conditional expectation E(Yti j | X ti , αti ), but also makes explicit
that, conditionally on (X ti , αti ,β t , σ

2
t ), the Yti j ’s are mutually independent. This con-

dition, known as the Axiom of Local Independence, defines the school effect in the sense
that it explains the heterogeneity that is present in the Yti j ’s and that is not explained by
the covariates X ti j ; for details, see Manzi et al. (2014) and Page et al. (2017). Similar
comments can be made for conditions (2.5) and (2.6).

2. Conditions (2.3) and (2.4) specify the temporal dependence of the proposed value-added
model: the school effect αti that impacts the t-th cohort’s performance is determined
by both the school effect αt−1i and the information shock contained in the post-tests of
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cohort t − 1. This conditional model is parameterized by (φ0t , φ1t , γt , τ
2
t ). Conditions

(2.7) and (2.8) specify the initial condition at the school effect level; this model is
parameterized by (φ01, τ

2
1 ).

3. Condition (2.10) means that the covariates XT
1,i are exogenous with respect to the school

effect α1i . This exogeneity explains why the covariates are left unspecified as stated in
condition (2.10). For details on exogeneity, see Engle et al. (1983) and Mouchart and
Oulhaj (2006).

Remark 1. An important and well-known approach to modeling value-added with multiple test
measures over time is provided by growth models. Growth models with latent variables have been
considered to measure achievement, offering a pathway to model value-added across multiple
measures (e.g., Bianconcini & Cagnone, 2012). In this remark, we aim to contrast this approach
with the model studied in the current paper. Firstly, in growth models, an invariant group of people
is subject to multiple measures over a time period. By contrast, in our approach, the composition
of the group of individuals changes over time. Each group is measured twice (pre- and post-test),
allowing the identification of the school effect for each period. Another difference lies in the
interpretation of the random effect (or latent variable, in the parlance of growth models). Growth
models consider the random effect to be invariant over time, meaning that it captures the value
of the school after observing the full measures over the time period. In our modeling strategy,
conversely, the latent random effect is dynamic, meaning that it changes over time as it captures
the school effect over each period (1, 2], (2, 3], etc. ��

2.2. Likelihood Function

The sequential specification (2.1)–(2.11) corresponds to aBayesian decomposition of the joint
distribution of (Y T

1,i , X
T
1,i , α

T
1,i ,ψ

T
1 ) for each school i across varying numbers of cohorts, denoted

by T . The question concerns the criterion for selecting the likelihood function or statistical model,
which is characterized by generating the observations alone. In other words, are the school effects
αT
i,1 treated as parameters of the likelihood function, or is the likelihood derived after integrating

them out? This inquiry is closely tied to the two overarching perspectives in value-added model
construction: one that treats the school effect as a random effect, while the other regards it as a
fixed effect (see, among many others, Aitkin and Longford (1986), Tekwe et al. (2004)).

In the fixed-effect perspective, the school intercept is included among the parameters of the
likelihood function, whereas in the random-effect perspective, the likelihood function is derived
after integrating out the school effect, making the school effect not a parameter of the likelihood
function. The decision between the fixed-effect or random-effect approach should be based on
the induced statistical model, that is, on our “understanding of the way in which the data are
supposed to, or did in fact, originate” (Fisher, 1973, p.8). In the context of school effectiveness,
it’s crucial to conceptualize the school effect by considering its impact on observable variables. In
the fixed-effect perspective, the school effect contributes the same amount to the student achieve-
ment regressed onto previous attainment scores (and potentially other factors). Thus, a school in
this framework is seen as an entity adding a constant effect to each student’s predicted achieve-
ment, without relating achievement scores among students. On the other hand, in a random-effect
approach, the school effect is defined through the Axiom of Local Independence, which implies
that the school effect explains the heterogeneity that is present in the students achievement and
that is not explained by the previous attaintment scores (and possibly other factors). Consequently,
under this approach, a school is perceived as an entity that introduces heterogeneity in students’
achievements. This criterion is sometimes utilized in econometrics to differentiate between fixed-
effect and random-effect models (Hsiao, 2014). Additionally, when considering the type of data
generating process being modeled, empirical comparisons between models attempting to char-
acterize different phenomena—such as contrasting the corresponding estimates of value-added
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indicators from both approaches (Longford, 2012; Clarke et al., 2015) —might not necessarily
aid in selecting the appropriate model. For details on this criterion, the reader is referred to the
Supplementary Material, Appendix B.

FollowingManzi et al. (2014) and Page et al. (2017), we adhere to the random-effect paradigm
because of the underlying conception of school. Consequently, the likelihood function is derived
after integrating out the school effects. The subsequent result derives the explicit joint distribution
of the observations Y T

1,i given (XT
1i ,ψ

T
1 ):

Theorem 1. Given the sequential model (2.1)–(2.11), the joint distribution of Y T
1,i given

(XT
1i ,ψ

T
1 ) is a normal distribution for every school i . For T = 2 cohorts, its expectation is

given by

(
η02 ın2i + X2iβ2 + γ2X1iβ1 ın2i

φ01 ın1i + X1iβ1

)

(2.12)

where X1i = 1
n1i

ı ′n1i X1i is a 1 × p1 vector of empirical means at the school level so that X1iβ1

is a scalar, and η02
.= {φ02 + φ01(φ12 + γ2)}; and its variance-covariance matrix is given by

(
ω2i Jn2i + σ 2

2 In2i δ12i ın2i ı
′
n1i

τ 21 Jn1i + σ 2
1 In1i

)

, (2.13)

where

ω2i
.= τ 21 (φ12 + γ2)

2 + γ 2
2 σ 2

1

n1i
+ τ 22 (1 − φ2

12), δ12i
.= φ12τ

2
1 + γ2

(

τ 21 + σ 2
1

n1i

)

(2.14)

and Jn
.= ın ı ′n.

For T > 2 cohorts, the expectation is given by

E(Y t
1,i | XT

1i ,ψ
T
1 ) = X tiβ t + E(αti | XT

1i ,ψ
T
1 ) for 3 ≤ t ≤ T, (2.15)

where, for 3 ≤ t ≤ T ,

E(αti | XT
1i ,ψ

T
1 ) = φ0t +

t∑


=2

t∏

k=


(φ1k + γk)φ0,
−1

+ γtX t−1,iβ t−1 +
t∑


=2

t∏

k=


(φ1k + γk)γ
−1X
−2,iβ
−2 (2.16)

the variances are given by

V (Y ti | XT
1i ,ψ

T
1 ) = V (αti | X t

1i ,ψ
T
1 )ιnti ι

t
nti ;

and the covariances are given for every 1 � s < t � T by

cov(Y si ,Y ti | XT
1i ,ψ

T
1 ) = V (αsi | X t

1i ,ψ
T
1 )ιnti ι

t
nsi

t−s−1∏

k=0

(φ1,t−k + γt−k).
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where

V (αti | X t
1i ,ψ

T
1 ) = V (α1i | X t

1i ,ψ
T
1 )

t−1∏

k=0

Ak +
t−2∑

k=0

Bk

k−1∏

l=−1

Al

with Ak = (φ1,t−k + γt−k)
2 and Bk = n−1

t−k−1,iγ
2
t−kσ

2
t−k−1 + τ 2t−k(1−φ2

1,t−k) for every 0 � k �
t − 1 and A−1 = 1.

The proof of this result is to be found in the Supplementary Material: Section C provides the
details for T = 2 cohorts; Section D provides the details for T ≥ 3 cohorts.

Let us conclude by noting that in the Bayesian specification, if the distributions of random
effects are interpreted as prior distributions, then the Bayesian model corresponds to the equiva-
lent of the classical fixed-effect model. On the other hand, the Bayesian equivalent of the classical
random-effect model entails using the probability distribution obtained after integrating the ran-
dom effects as the likelihood function (or statisticalmodel), which is the approachwe have chosen.
For further discussion on the importance of explicitly defining the likelihood function within a
Bayesian framework, please refer to the Supplementary Material, Section A.

2.3. Parameter Identification for Two Cohorts

According to the Likelihood Principle, for a given model all the information the data contains
about the model parameters is given by the likelihood function (Lindley, 1983). We argue that
such information is related to the identified parameters only; for a discussion, see Supplementary
Material, Section A. Thus, in the context of the temporally dynamic, cohort-varying value-added
model, parameter identifiability should be analyzed with respect to the conditional distribution of
Y T
1,i given (XT

1i ,ψ
T
1 ). It’s worth emphasizing that although both model specification and param-

eter estimation are entirely Bayesian, the identifiability of parameters should also be established
beforehand. Furthermore, it should be noted that the prior distribution on ψT

1 has no impact
on the identification analysis, except through events where the prior probability equals 0 or 1.
For detailed insights, please see Supplementary Material, Section A. This elucidates why, in the
sequential specification, the prior distribution ψT

1 in (2.11) remains unspecified.
Following the identification strategy outlined in San Martín et al. (2011), San Martín et al.

(2013), San Martín et al. (2015), and Fariña et al. (2019), we demonstrate the identification of
(ψ1,ψ2) for the case of T = 2 cohorts through the following arguments, which remain analogous
for more than two cohorts:

1. From the conditional expectation of Y1i , φ01 and β1 are identifiable provided that
ın1i /∈ R(X1i ), which holds by construction. HereR(A) represents the space generated
by the columns of the matrix A.

2. From the conditional expectation of Y2i , η02+γ2X1iβ1 and β2 are identifiable provided
that ın2i /∈ R(X2i ), which holds by construction.

3. From the variance of Y1i , τ 21 and σ 2
1 are identified. Similarly, from the variance of Y2i ,

σ 2
2 and ω2i are identified for all school i .

4. From the covariance between Y1i and Y2i , δ12i are identified for all school i . Now, if
there exist at least two schools i and k such that, for the first cohort, the total number of
students is different, then

δ12i − δ12k = γ2 σ 2
1

(
1

n1i
− 1

n2k

)

,
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from which it follows that γ2 is identified. Furthermore, using the definition of δ12i , it
follows that φ12 is identified; and using the definition and identifiability ofω2i , it follows
that τ 22 is identified.

5. Using the identifiability of γ2,β1 and η02 + γ2X1iβ1, it follows that η02 is identifiedx‘.
Finally, from the definition of η02, it follows that φ02 is identified. ��

We summarize the previous arguments in the following proposition:

Proposition 1. In the statistical model parameterized by (2.12) and (2.13), the parameters
(ψ1,ψ2) are identified provided that ın1i /∈ R(X1i ), ın2i /∈ R(X2i ) and there exist at least
two schools i and k such that, for the first cohort, the total number of students is different.

In the remainder of this paper, the discussion is focused on T = 2 cohorts due to the nature
of our case study.

2.4. Nested Value-Added Models

The sequential specification (2.1)–(2.11) for T = 2 cohorts (referred to as the “Full Model”
or also asModel 3) aims to address whether a school’s effectiveness upon receiving a new cohort
is jointly influenced by both the effectiveness of the school for the previous cohort and some
observed information from that cohort. The identification analysis assures us that such a scenario
is empirically plausible. The crux of the underlying model lies in the temporal dependency of the
latent school effect α2i for cohort 2 on both the latent school effect α1i for cohort 1 and the mean
of the cohort 1 post-tests Y1i j ’s, as captured by the conditional distribution (2.4). At the statistical
model level, the parameters of this conditional distribution, alongside σ 2

1 and τ 21 , delineate both
the within- and between-cohorts dependencies among the post-test scores. As a matter of fact,

cov(Y2ir ,Y2is | X2
1,i ,ψ

2
1) = τ 21 (φ12 + γ2)

2 + γ 2
2 σ 2

1

n1i
+ τ 22 (1 − φ2

12), r 
= s; (2.17)

cov(Y1i j ,Y2ik | X2
1,i ,ψ

2
1) = τ 21 (φ12 + γ2) + γ2σ

2
1

n1i
, j 
= k. (2.18)

It can be noticed that the within-cohort covariance (2.17) is positive for all γ2 ∈ R and φ12 ∈
[−1, 1], and hence the corresponding correlation; this is a standard fact in value-added models.
Evenmore interesting is that the post-tests scores of the twocohorts are correlated; its signbasically
depends on both the sign of φ12+γ2 (which in turn determines the sign of the correlation between
the school effects α1i and α2i ) and the sign of γ2:

1. If the information shock parameter γ2 is such that |γ2| ≥ 1, for all schools the sign of
(2.18) as well as of the correlation between α1i and α2i corresponds to the sign of γ2.

2. If the information shock parameter γ2 is such that |γ2| < 1, then we distinguish the
following cases:

(a) If γ2 ∈ (−1, 0) and φ12 + γ2 < 0 then, for all schools, the sign of (2.18) is
negative.

(b) If γ2 ∈ (−1, 0) and φ12 +γ2 > 0 then, for a school i , the sign of (2.18) is positive
if τ 21 > σ 2

1 /n1i ; and it is negative if τ 21 < σ 2
1 /n1i .

(c) If γ2 ∈ (0, 1) and φ12 + γ2 > 0 then, for all schools, the sign of (2.18) is positive.
(d) If γ2 ∈ (0, 1) and φ12 + γ2 < 0 then, for a school i , the sign of (2.18) is positive

if τ 21 < σ 2
1 /n1i ; and it is negative if τ 21 > σ 2

1 /n1i .

Note also that, for |γ2| < 1, the sign of the correlation between α1i and α2i corresponds,
for all schools, to the sign of φ12 + γ2.
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These considerations motivate considering special cases of Model 3 that are based on particular
values for the parameters φ12 and γ2. This results in three models that are nested in Model 3:

1. Model 0 is obtained by setting (φ12, γ2) = (0, 0). In this case, the within-cohort covari-
ance (2.17) is equal to τ 22 , whereas both the between-cohort covariance (2.18) and
covariance between α1i and α2i are equal to 0. In other words, all temporal dependence
between cohorts breaks and therefore this model reflects the situation in which a school
that does not learn from its past, nor does it intend to affect its future. Under condition
(φ12, γ2) = (0, 0), it follows that

α2i ⊥⊥ X2
1,i ,Y1i , α1i ,ψ

2
1 | φ02, τ

2
2 . (2.19)

Consequently, Model 0 can be specified hierarchically as

(a) (Y2i | X2i , α2i ,ψ
2
1) ∼ N (X2iβ2 + α2i ın2i , σ

2
2 In2i );

(b) (α2i | ψ2
1) ∼ N (φ02, τ

2
2 );

(c) (Y1i | X1i , α1i , ,ψ
2
1) ∼ N (X1iβ1 + α1i ın1i , σ

2
1 In1i );

(d) (α1i | ψ2
1) ∼ N (φ01, τ

2
1 ).

2. Model 1 is obtained by setting γ2 = 0. In this case, thewithin-cohort covariance (2.17) is
equal to τ 21 φ2

12+τ 22 (1−φ2
12),which is always positive for allφ12 ∈ [−1, 1]. The between-

cohort covariance (2.18) is equal toφ12τ
2
1 , which is equivalent to the covariance between

α2i and α1i : if the school effect for cohort 2 is negatively (resp., positively) correlated
to the school effect for cohort 1, then the between-cohort correlation is negative (resp.
positive). In other words, the relationship that the school effect has with its past school
effect is reflected (at the sign level) in the observed relationship between the post-test
scores between the two cohorts. Under condition γ2 = 0, it follows that

α2i ⊥⊥ X2
1,i ,Y1i ,ψ

2
1 | α1i , φ02, φ12, τ

2
2 . (2.20)

Consequently, Model 1 can be specified hierarchically as

(a) (Y2i | X2i , α2i ,ψ
2
1) ∼ N (X2iβ2 + α2i ın2i , σ

2
2 In2i );

(b) (α2i | α1i , ,ψ
2
1) ∼ N (φ02 + φ12α1i , τ

2
2 (1 − φ2

12));
(c) (Y1i | X1i , α1i , ,ψ

2
1) ∼ N (X1iβ1 + α1i ın1i , σ

2
1 In1i );

(d) (α1i |,ψ2
1) ∼ N (φ01, τ

2
1 ).

As it can be recognized, this structure corresponds to an ARIMA-type model.
3. Model 2 is obtained by setting φ12 = 0. In this case, the within-cohort covariance (2.17)

is equal to τ 21 γ 2
2 +γ 2

2 σ 2
1 /n1i +τ 22 , which is always positive for all γ2 ∈ R. The between-

cohort covariance (2.18) is equal to γ2(τ
2
1 + σ 2

1 /n1i ): its sign depends on the sign of
γ2. Furthermore, if γ2 > 0 (resp., γ2 < 0), the between-cohort covariance is larger
(resp., smaller) than the covariance between α2i and α1i . In other words, the shock of
information captured by γ2 impacts both the correlation between the school effects and
the between-cohort correlation: these dependency relationships provide an idea of what
the model means by “shock of information”. Under condition φ12 = 0, it follows that

α2i ⊥⊥ X2
1,i , α1i ,ψ

2
1 | Y1i , φ02, γ2, τ

2
2 . (2.21)

Consequently, Model 2 can be specified hierarchically as
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(a) (Y2i | X2i , α2i ,ψ
2
1) ∼ N (X2iβ2 + α2i ın2i , σ

2
2 In2i );

(b) (α2i | Y1i ,ψ
2
1) ∼ N (φ02 + γ2Ȳ1i•, τ 22 );

(c) (Y1i | X1i , α1i ,ψ
2
1) ∼ N (X1iβ1 + α1i ın1i , σ

2
1 In1i );

(d) (α1i | ψ2
1) ∼ N (φ01, τ

2
1 ).

Since

(2.19) �⇒ (2.20) �⇒ (2.3) with T = 2
(2.19) �⇒ (2.21) �⇒ (2.3) with T = 2,

Model 0 is nested in Model 1, which in turn is nested in Model 3; and Model 0 is nested in Model
2, which in turn is nested in Model 3.

2.5. Value-Added Definition

The concept of school value-added refers to the difference between the expected grade of a
student at a given school and the expected grade of the same student at an average school. It is,
in other terms, the gain (or loss) in the expected score at a specific school compared to a baseline
established by an average score.

A model-free definition of school value added was introduced in Manzi et al. (2014). In the
notation of the present paper, it is given by

V Ati (X ti )
.= 1

nti

nti∑

j=1

[
E(Yti j | X ti j , αi ) − E(Yti j | X ti j )

]
. (2.22)

It may be necessary to clarify what “model-free definition” means in this context. This definition
involves conditional expectations that do not refer to any specific model, although later in this
paper, we shall compute them within the context of the precise model presented from equations
(2.1) to (2.11). Indeed, conditional expectations are related to the statistical distribution of data and,
like expectations, can be defined and estimated without referring to any model. In probability the-
ory, conditional expectations can be defined either through orthogonal projection of data (Neveu,
1972; Florens et al., 2007) or, more broadly, by the Radon–Nikodym Theorem (Kolmogorov,
1950; Billingsley, 1968). We view the aforementioned definition as advantageous because it pro-
vides a statistical interpretation of the concept of school value-added that is not reliant on any
specific model. Therefore, it can be applied to any particular situation where the psychometrician
assumes a model (or compares them).

Definition (2.22) offers a characterization of the average or reference school that is entirely
determined by the vector of covariates X ti . If the covariates change, it impacts not only the con-
ceptualization of the average school but also the interpretation of school effectiveness and the
value-added indicators themselves. Consequently, this definition implies that school effective-
ness should not be viewed as a universally meaningful concept (i.e., a school being effective or
ineffective in the same manner under all circumstances). Instead, it is a contextually idiosyncratic
concept that should not be reified. The relevant context for this analysis is defined by the covari-
ates included in the model. Therefore, their selection should be closely tied to the policy context
requiring a value-added analysis, as well as to the social context within which an educational
system operates.
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Using (2.22), we derive the following value-added indicator for Model 3:

V A1i (X1i ) = α1i − φ01,

V A2i (X2i ) = α2i − [
φ02 + φ01(φ12 + γ2)

] − γ2

n2i
β ′
1

n2i∑

j=1

E(X
′
1i | X2i j ).

(2.23)

For further details, see “Appendix A.1”. The value-added indicators for Models 0, 1, and 2 are
obtained by setting φ12 = γ2 = 0, γ2 = 0, and φ12 = 0, respectively.

Note that V A2i (X2i ) represents the school effect α2i (centered at 0 by φ02 +φ01(φ12 + γ2)),
adjusted by an additive termdependent on (n2i )−1 ∑n2i

j=1 E(X
′
1i | X2i j ). Assuming this regression

to be linear, it can be demonstrated that

1

n2i

n2i∑

j=1

E(X
′
1i | X2i j ) =

⎛

⎜
⎜
⎜
⎝

b10 b11 0 · · · 0
b20 0 b22 · · · 0
...

...
...

. . . 0
bp0 0 0 · · · bpp

⎞

⎟
⎟
⎟
⎠

(
1
X2i

)

,

where p
.= p1 = p2; in this form, the regression parameters are identifiable. For more details,

see “Appendix A.2”.

Remark 2. For T ≥ 3 cohorts, the value-added V AT i (XT i ) is given by

V AT i (XT i ) = αT i − E(αT i | XT i ,ψ
T
1 )

= αT i − E[E(αT i | XT
1i ,ψ

T
1 ) | XT i ,ψ

T
1 ].

Using (2.16), we conclude that

V AT i (XT i ) = αT i − φ0t −
t∑


=2

t∏

k=


(φ1k + γk)φ0,
−1 − γt E
(
X

′
t−1,i | XT i

)
β t−1 −

t∑


=2

t∏

k=


(φ1k + γk)γ
−1E
(
X

′

−2,i | XT i

)
β
−2.

��

2.6. Structural Interpretation of the Persistence of School Effectiveness

Time-dependent value-added models are intended to model the persistence of school effec-
tiveness. Following Gray et al. (1996, 1999), the persistence of school effectiveness is described
through trajectories of school value-added. This meaning of persistence critically depends on the
time-dependent value-added model that is used. Studies devised to describe the persistence of
school effectiveness have appeared in the literature, but are (implicitly) based on Model 0 (see,
e.g., Gray et al., 2001, Thomas et al., 2007, Bellei et al., 2016). These approaches are limited
because they assume that a school’s current effectiveness is not affected by what the school did in
the past. It seems reasonable to expect that a school’s past performance would be useful in deter-
mining the future effectiveness of the school. Our approach that is based on Model 3, including
its particular cases Model 1 and Model 2, overcomes this limitation.
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Under the Model 0, Model 1, Model 2 or Model 3, the school valued-added for cohort 1
coincide with their respective school effect α1i centered at 0 by φ01. To understand the extent
to which the school value-added for cohort 1 explains the school value-added for cohort 2, we
decompose the latter into two components: the first component captures the explanation of the
second value-added by the first one, whereas the second corresponds to everything of the second
value-added that is not explained by the first; that is,

V A2i (X2i ) = E
[
V A2i (X2i ) | V A1i (X1i ), X2

1,i ,ψ
2
1

]

+
{
V A2i (X2i ) − E

[
V A2i (X2i ) | V A1i (X1i ), X2

1,i ,ψ
2
1

]}
, (2.24)

where

E
[
V A2i (X2i ) | V A1i (X1i ), X2

1,i ,ψ
2
1

]
= (φ12 + γ2) V A1i (X1i )

+ γ2

n2i

n2i∑

j=1

[
X1i − E(X1i | X2i j )

]
β1; (2.25)

for a proof, see Supplementary Material, Section E. It can also be verified that

Var
[
E(V A2i (X2i ) | V A1i (X1i ), X2

1,i ,ψ
2
1) | X2

1,i ,ψ
2
1

]
= τ 21 (φ12 + γ2)

2, (2.26)

and

Var
[
V A2i (X2i ) | X2

1,i ,ψ
2
1

]
= ω2i . (2.27)

Since by construction both terms at the right hand of decomposition (2.24) are uncorrelated, it
follows that the variance of the second term at the right hand (typically calledmeasurement error)
is given by

Var
[
V A2i (X2i ) − E

(
V A2i (X2i ) | V A1i (X1i ), X2

1,i ,ψ
2
1

)
| X2

1,i ,ψ
2
1

]

= γ 2
2 σ 2

1

n1i
+ τ 22 (1 − φ2

12); (2.28)

for a proof, see Supplementary Material, Section E.
To facilitate the interpretation of (2.25), consider the case of only one covariate, namely the

pre-test. In this case, p = 1 and therefore

1

n2i

n2i∑

j=1

E(X1i | X2i j ) = E(X1i | X2i )

so that the average pre-test of the first cohort is regressed on the average pre-test of the second
cohort. Then:

1. In the explanation of V A2i (X2i ) by (V A1i (X1i ), X2
1,i ), there are two components:
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(a) The first component depends on (φ12 + γ2) V A1i (X1i ): the parameter (φ12 + γ2)

determines the sign of the correlation between α1i and α2i : if such a correla-
tion is positive (resp., negative), V A1i (X1i ) is amplified (resp., contracted) as an
explanatory factor of V A2i (X2i ).

(b) The second component corresponds to the residual of the regression of the aver-
age pre-test of the first cohort on the average pre-test of the second cohort: it is
actually a regression that inverts variables temporal order. Recall that the school
has already treated the first cohort. Now, if the average pre-test of the second
cohort is uncorrelated with the average pre-test of the first cohort, then the initial
information provided by the second cohort is in every respect different from the
initial information provided by the first cohort. The school is facing a new ini-
tial condition and, consequently, the residual is the bigger one. Similarly, if the
average previous exam of the second cohort predicts the average previous exam
of the first cohort, then the school has initial information similar from when the
first cohort was treated and therefore the residual is the smaller one. This residual,
pre-multiplying by γ2, is the second explanatory factor. Note that this interpreta-
tion remains valid for the case of T > 2 cohorts, particularly regarding the role

played by the parameters γt ’s and the regressions of the form E
(
X

′
t,i | XT i

)
.

2. How much of the variance of V A2i (X2i ) does E [V A2i (X2i ) | V A1i (X1i ), X2
1,i ,ψ

2
1 ]

explain? This question can be addressed by computing the so-called reliability, which
in this case is given by

τ 21 (φ12 + γ2)
2

ω2i
.

Note that it is always strictly less than 1, which means that E [V A2i (X2i ) |
V A1i (X1i ), X2

1,i ,ψ
2
1 ] does not exhaust the entire explanation of V A2i (X2i ): in the

persistence of school effectiveness there are always new aspects that V A1i (X1i ) cannot
predict.

Along with this general interpretation of school persistence, it is instructive to show how they are
simplified in Models 1 and 2.

Under Model 1, γ2 = 0 and therefore

E [V A2i (X2i ) | V A1i (X1i ), X2
1,i ,ψ

2
1 ] = φ12 V A1i (X1i ), (2.29)

and the reliability becomes equal to τ 21 φ2
12/[τ 21 φ2

12 + τ 22 (1 − φ2
12)]. As a result, the persistence

of school value-added corresponds to a uniform reduction or shrinkage of V A1i (X1i ). Thus,
an empirical analysis of the persistence of school effectiveness under Model 1 means analyzing
to what extent a school that takes on new cohorts maintains the effectiveness achieved when
accommodating the first cohort, leacing additional aspects included in V A2i (X2i ) unexplained
by the past of the school. What is clear is that Model 1 is very different from Model 3.

Under Model 2, φ12 = 0 and therefore

E
[
V A2i (X2i ) | V A1i (X1i ), X2

1,i ,ψ
2
1

]
= γ2 V A1i (X1i ) + γ2

n2i

n2i∑

j=1

[
X1i − E(X1i | X2i j )

]
β1,

(2.30)
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and the reliability becomes equal to

τ 21 γ 2
2

τ 21 γ 2
2 + γ 2

2 σ 2
1

n1i
+ τ 21

which is still strictly smaller than 1. As a result, when the sign of γ2 + φ12 in Model 3 is
determined by γ2, the structural interpretation of the persistence of school effectiveness inModel 2
is practically the same asModel 3. Taking into account such an interpretation, school effectiveness
corresponds to what a school does/adds with/to a new cohort after discounting what the school
learned to do/add while accommodating the previous cohort.

3. Computation and Model Fitting

We adopt a Bayesian approach and as a result prior distributions for all parameters forModels
0–3 need to be specified. For parameters common to eachmodelwe employ the following regularly
used conjugate priors τ 2t ∼ IG(1, 1), φ0t ∼ N (0, 102), βt ∼ N (0, 102), and σ 2

ti ∼ IG(1, 1)
for t = 1, 2 and i = 1, . . . ,m. Here IG(a, b) denotes an inverse gamma distribution with shape
a and scale b. For Model 1 and 3 we use φ12 ∼ UN (−1, 1) where UN denotes a Uniform
distribution and for Model 2 and 3, γ2 ∼ N (0, 102). Fitting Models 0–3 and estimating value-
added across time as described in Sect. 2.5 requires sampling from joint posterior distribution
of all model parameters. To carry this out we developed a straightforward Markov Chain Monte
Carlo (MCMC) algorithm that uses a Gibbs sampler to update all parameters on a one-by-one
basis save φ12. To update this parameter within the MCMC sampler a random walk metropolis
step with a gaussian candidate proposal is used. All computer codes needed to fit models and
estimate each school’s value-added are provide in the R package modernVA (Page, 2020).

4. Simulation Study

4.1. Design of the Simulation Study

The objective of the simulation study is to explore the impact that ignoring temporal depen-
dence may have on value-added estimates. The experiment consisted of using Models 0, 1, 2, and
3 as data generating mechanisms and then for each synthetic data, using Models 0, 1, 2, and 3 to
estimate value-added across time for each institution. In more detail, we set I = 250 and ni = 25
for i = 1, . . . , I and using Model 0, 1, 2, or 3 generated post-test scores (i.e., Y1 and Y2) by
setting β1 = 0.6, β2 = 0.75, σ 2

1 = σ 2
2 = 25 and τ 21 = τ 22 = 100. The pre-test scores (i.e., X1 and

X2) for both time periods were generated independently using N (0, 200). The intercept values
at each time point were φ01 = φ02 = 10. Synthetic data sets based on Models 1, 2, and 3 were
generated by considering φ12 ∈ {0.1, 0.25, 0.5, 0.75, 0.9} and γ2 ∈ {0.1, 0.25, 0.5, 1.0, 2.0}.

For each data generating scenario 1000 datasets were created and to each the 4 models were
fit. For each model the value-added at each time period was estimated for each school using
posterior means of the estimators provided in (2.23) for φ12 = γ2 = 0 (value-added for Model
0), for γ2 = 0 (value-added for Model 1), for φ12 = 0 (value-added for Model 2) and for φ12 
=
and γ2 
= 0 (value-added for Model 3). Producing credible intervals for value-added estimates
is straightforward once draws from the corresponding posterior distributions for each estimator
are collected. To compare the methods we average the mean squared error (MSE), coverage, and
95% credible interval widths across the 250 school’s value-added estimates for each time point.
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Figure 1.
Results from the simulation study when using Model 1 as a data generating mechanism. The MSE, interval widths, and
coverage values are averages across 1000 generated sets and the 250 schools.

Coverage was estimated by calculating the proportion of the 95% credible intervals that contained
the true value-added values (i.e., the values calculated using (2.23) for φ12 = γ2 = 0 (value-added
for Model 0), for γ2 = 0 (value-added for Model 1), for φ12 = 0 (value-added for Model 2) and
for φ12 
= and γ2 
= 0 (value-added for Model 3)). Results associated with using Model 1 as a
data generating mechanism are provided in Fig. 1, those for Model 2 are displayed in Fig. 2 and
those for Model 3 in Fig. 4. In the Figs. 1 and 2, the first row corresponds to results associated
with V A1(X1), the second row corresponds to V A2(X2), the third to α1 and the fourth to α2. The
first column displays MSE values associated with the posterior mean estimator of V A1, V A2, α1,
and α2 averaged over the I = 250 schools. The second column in both figures displays the 95%
credible interval width averaged over the 250 schools, and the third column corresponds to the
coverage property of the 95% credible intervals.

Downloaded from https://www.cambridge.org/core. 09 Jan 2025 at 03:58:38, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core


G. L. PAGE ET AL. 1089

�2

�1

VA2

VA1

0.0 0.5 1.0 1.5 2.0

0.0 0.5 1.0 1.5 2.0

0.0 0.5 1.0 1.5 2.0

0.0 0.5 1.0 1.5 2.0

2.010

2.015

2.020

2.025

2.030

2.035

2.0

2.5

3.0

3.5

4.0

4.5

1.4400

1.4425

1.4450

1.4475

1.445

1.450

1.455

1.460

�

M
S

E

�2

�1

VA2

VA1

0.0 0.5 1.0 1.5 2.0

0.0 0.5 1.0 1.5 2.0

0.0 0.5 1.0 1.5 2.0

0.0 0.5 1.0 1.5 2.0

4.540

4.545

4.550

4.555

4.560

4.5

5.0

5.5

6.0

6.5

3.835

3.840

3.845

3.850

3.845

3.850

3.855

3.860

3.865

�

95
%

 C
re

di
bl

e 
In

te
rv

al
 W

id
th

�2

�1

VA2

VA1

0.0 0.5 1.0 1.5 2.0

0.0 0.5 1.0 1.5 2.0

0.0 0.5 1.0 1.5 2.0

0.0 0.5 1.0 1.5 2.0

0.90

0.91

0.92

0.93

0.94

0.95

0.90

0.91

0.92

0.93

0.94

0.95

0.90

0.91

0.92

0.93

0.94

0.95

0.90

0.91

0.92

0.93

0.94

0.95

�

C
ov

er
ag

e 
R

at
e

Model

0
1
2
3

Figure 2.
Results from the simulation study when using Model 2 as a data generating mechanism. The MSE, interval widths, and
coverage values are averages across 1000 generated sets and the 250 schools.

4.2. Conclusions of the Simulation Study

Focusing on Fig. 1, it appears that Model 1 performs best in estimating value-added for both
time periods but much more so in the first time period. That is, the value-added estimates under
Model 1 have the smallest MSE and the shortest credible interval widths while maintaining the
same coverage rates as the other models. Even though Model 1 outperforms Model 3, Model 3’s
performance is vastly superior to that of model 0 and 2, which is to be expected. In addition,
it appears that even if dependence between cohorts doesn’t exist (i.e., φ12 = 0), little is lost by
using Model 1 (or 3) and in fact the benefits of using Model 1 (or 3) manifest themselves for
relatively small values of φ12 (e.g., φ12 ≈ 0.35). Finally, it seems that incorporating any type
of temporal dependence in a value-added model (even if misspecified) provides benefit as even
Model 2 outperforms Model 0 at estimating V A.

The same trends seen in Fig. 1 also appear in Fig. 2 (which displays results when Model 2
was used to generate data) although not as stark. It does seem that Model 2 over all out performs
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Figure 3.
Model fits measured using log pseudo marginal likelihood (LPML) for models 0, 1, and 2.

Model 0 at estimating value-added, but differences are more apparent in the estimation of the
individual school random effects. Interestingly Model 1 performs better than Model 2 for V A1,
while for V A2 the smaller MSE comes at a decrease in coverage for Model 1. Model 2 and 3 are
similar in most scenariose. As before, even though the temporal dependence in Model 1 and 3
is misspecified in this scenario, there are clear benefits to include temporal dependence in some
way as both Model’s 1 and 3 outperforms Model 0 at estimating value-added particularly for the
second cohort.

Next we provide Fig. 3 which displays the log pseudo marginal likelihood (LPML) values
which can be used to evaluate model fit (see, Christensen et al. 2011, Chapter 4.9.2). Larger LPML
values indicate a better fit. Here we see that even for weak temporal dependence incorporating
the dependence in the value-added model results in better model fit. Interestingly, Model 1 tends
to fit the data better than Model 2 even when Model 2 was used to generate data.

Lastly, Fig. 1 contains results when Model 3 is the true data generating mechanism. Here we
only focus on performance for estimating V A2 and trends are similar for other parameters and
this allows us to be more concise in our description. For this figure, each column corresponds to
the γ2 value used to generate data while the tick marks on the x-axis correspond to the φ12 values.
The first three rows correspond to the MSE, coverage and interval width associated with V A2.
The last row corresponds to the LPML model fit metric. Notice that as φ12 and γ2 both increase
(i.e., there is more temporal dependence), that Model 3 outperforms the other models in terms of
LPML. Model 1 has the smallest MSE values for γ2 but at the cost of a substantial decrease in
coverage. Model 3’s MSE and interval widths are the smaller than those of Model 0 and quite
comparable to Model 1 (though slightly smaller).

The take home message from Figs. 1, 2, 3 and 4 is that incorporating temporal dependence
in the model greatly improves value-added estimates when temporal dependence exists, and does
so at a minimal cost when temporal dependence between cohorts is absent. Since the meaning of
the value-added indicators in Models 1, 2, and 3 are very different in terms of school persistence
(see the discussions in Sect. 2.6), model selection should be motivated by the intended use of the
V A estimates.
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Figure 4.
Model fits using Model 3 as a data generating mechanism. The first three rows correspond to the MSE, interval width,
and coverage of V A2i . The last corresponds to the LPML. Columns indicate which γ2 value was used to generate data
and the x-axis tick marks indicate the same thing for φ12.

5. Analysis of SIMCE Data

5.1. The SIMCE Test

Chile administers a yearly large-scale standardized test called SIMCE (Sistema de Medición
de la Calidad de la Educación, Measurement System of Quality of Education). The main subjects
of this test are Language and Mathematics. The SIMCE test was created at the end of the 1980’s
and coincided with the privatization of education which introduced issues such as competence
among schools, private and public providers, vouchers to fund schools, universal school choice,
for-profit schools, and co-payment (from 1993 to 2015). In this context, the SIMCE test was an
instrument to aid parents in school choice decision-making, and to provide information necessary
for schools to undertake data-based decision-making that would enhance school improvement
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Table 1.
Model fit metrics for models 0, 1, and 2. For LPML, larger value indicates better fit, while for WAIC, smaller value
indicates better fit.

Model LPML WAIC

0 −1093957 2185061
1 −1093837 2184869
2 −1093844 2184913
3 −1093853 2184900

efforts; for more details, see Meckes and Carrasco (2010), Manzi and Preiss (2013), Manzi et al.
(2014) and Page et al. (2017).

5.2. Data to be Used in the Value-Added Analysis

We explore the extent of persistence in school effectiveness using two cohorts from schools to
which the SIMCE test was administered. Here we only consider the results from the Mathematics
part of the exam. The first cohort took the SIMCE exam as 4th graders in 2012 and then again
as 6th graders in 2014 and the second cohort took the SIMCE exam as 4th graders during the
2014 school year and again during the 2016 school year as 6th graders. Thus Xi j1 denotes the
4th grade SIMCE score of the i th student at the the j th school in 2012 and Xi j1 the 4th grade
SIMCE math score in 2014. Additionally, Yi j1 denotes the 6th grade math SIMCE score in 2014
and Yi j2 that of 2016. In total, the data set includes 2804 schools with the number of students per
school ranging from 6 to 236 in cohort 1 and 6 to 258 in cohort 2. To these data, we fit Models
0, 1, 2, and 3 by retaining 1,000 MCMC iterates after discarding the first 10,000 as burnin and
thinning by 200 (i.e., 210,000 total MCMC iterates were collected). Thinning was used, despite
the potential loss of efficiency, to produce (essentially) independent samples from the posterior.
The tdVA function in the modernVA R-package (Page, 2020) was used to fit all models and it
took approximately 180s for each.

5.3. Results

Before exploring school persistence in the four models, in Table 1 we provide the LPML and
WAIC model fit metrics for each model. Again, larger LPML values indicate a better fit while
smaller WAIC values indicate the same thing. It appears that both LPML andWAIC favor Models
1–3 over Model 0 with Model 1 fitting best based on both LPML and WAIC. The comparison
between Model 0 and 1, and between Model 0 and 2 along with Model 1 and 3 and Models 2 and
3 seem adequate with respect to the nested structure of the models. Next in Table 2 we provide
the posterior means and 95% credible intervals of β1 and β2 under each of the three models. Note
that Models 2 and 3 produce very similar estimates of β1 and β2 while those for Model 0 and
1 differ slightly. Even so, it appears that differences (in terms of magnitude) between the four
models in estimating β1 and β2 are minor.

5.3.1. School Persistence Under Model 1 As discussed in Sect. 2.6 persistence under Model 1
is based on φ12. Since |φ12| < 1, persistence under this model corresponds to a uniform reduction
in V A1i (X1i ) based on the magnitude of φ12. For the SIMCE data the posterior mean of φ12
turned out to be 0.6 with a 95% credible interval of (0.57, 0.63). Based on the simulation study,
the magnitude of the estimated value of φ12 is large enough to conclude that there is moderate to
strong school effectiveness persistence among the schools of Chile based on these two cohorts.
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Table 2.
Posterior summaries of β1 and β2 for each of the three models detailed in this paper.

β1 β2
Model Mean 95% CI Mean 95% CI

0 0.709 (0.705, 0.713) 0.722 (0.718, 0.726)
1 0.705 (0.701, 0.709) 0.717 (0.714, 0.722)
2 0.709 (0.705, 0.713) 0.713 (0.710, 0.718)
3 0.709 (0.705, 0.713) 0.714 (0.711, 0.718)

This results in a slight reduction in the credible interval widths for V A1i (X1i ) and V A2i (X2i )

compared to Model 0. In fact, the average credible interval width (across the 2804 schools) for
V A1i (X1i ) under Model 0 is 19.1 compared to 18.6 under Model 1 and 18.9 for V A2i (X2i ) under
Model 0 compared to 18.2 under Model 1.

As noted in (2.29), φ12 corresponds to the slope when regressing V A2 onto V A1 without
an intercept. To verify this, for schools that have an average pre-test score for cohort 1 between
261 and 269 and an average pre-test score for cohort 2 between 253 and 261 (this resulted in 85
schools) we fit a least squares regression of the estimated V A2 onto the estimated V A1 without
an intercept. The slope of this regression line turned out to be 0.603 which is very close to the
posterior mean of φ12. This emphasizes the fact that the V A2 is in general smaller than V A1 and,
therefore, we expect to observe that schools taking on the new second cohort to not necessarily
maintain the effectiveness achieved for the first cohort.

As a matter of fact, to further explore the school effectiveness persistence through reduction
or shrinkage of V A2i (X2i ) based on φ12, we provide Table 3. The table illustrates the “stability”
of value-added estimates for cohort 1 and cohort 2 under Model 1 by presenting the percentage of
schools (from the same 85 schools identified previously) according to the quartile in which they
were located based on cohort 1 and cohort 2’s value-added estimates. Note that since value-added
is a metric that makes a comparison to a “reference” school, comparing estimated value-added
percentiles across time is more reasonable than comparing the value-added estimates themselves.
Thus, the values in Table 3 correspond to the percent of schools that belong to a particular
combination of value-added quartiles between the two cohorts. For example, the entry at the
upper left corner shows that 13% of the 85 schools had value-added estimates for cohort 1 and
cohort 2 that belonged to the first quartile and the cell to its right shows that 5% of the 85 schools
had a value-added estimate for cohort 1 that belonged to the second quartile, while that of cohort
2 belonged the first quartile. Other entries in the table can be interpreted similarly. Thus, higher
values on the diagonal would indicate that the difference in value-added between the two cohorts
is small. Notice that under Model 1 it appears that most of the differences between the two
cohort’s value-added can be found among the schools that are in the second and third quartiles.
The majority of schools whose school effectiveness for cohort 1 is strong (or weak) also have
strong (or weak) effectiveness for cohort 2. In fact, very few schools go from high value-added
to low (or visa-versa) under Model 1.

To highlight further the bearing that φ12 has on school effectiveness persistence under Model
1 we provide as a contrast Table 4, which displays the same information as Table 3 but for Model
0. Contrasting the results in these two tables it is possible to see that differences between cohort
1 and cohort 2’s value-added estimates under Model 0 are greater than that under Model 1. This
can be seen first in terms of values on the diagonal, which are smaller in Table 4, 36% of schools,
relative to the 42% in Table 3. Similarly, under Model 0 almost a quarter of the schools (24%)
exhibited a change in the results of 2 or even 3 quartiles, as opposed the results under Model 1,
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Table 3.
The percent of schools in each value-added quartile based on cohort 1 and cohort 2 for Model 1.

Value-added quartile for cohort 1
[min, Q1] (%) (Q1, Q2] (%) (Q2, Q3] (%) (Q3,max] (%) Total (%)

Value-added [min, Q1] 13 5 8 0 26
quartile for (Q1, Q2] 7 11 6 1 25
cohort 2 (Q2, Q3] 3 6 5 11 25

(Q3,max] 2 3 6 13 24
Total 25 25 25 25 100

The schools included in this table are those that have average pre-test scores in cohort 1 between 261 and
269 and for cohort 2 between 253 and 261 (this resulted in 85 schools). Thus, the schools included in the
table have similar student abilities in both cohorts.

Table 4.
The percent of schools in each value-added quartile based on cohort 1 and cohort 2 for Model 0.

Value-added quartile for cohort 1
[min, Q1] (%) (Q1, Q2] (%) (Q2, Q3] (%) (Q3,max] (%) Total (%)

Value-added [min, Q1] 10 4 8 4 26
quartile for (Q1, Q2] 9 8 6 1 24
cohort 2 (Q2, Q3] 2 8 6 8 24

(Q3,max] 4 5 5 12 26
Total 25 25 25 25 100

The schools included in this table are those that have average pre-test scores in cohort 1 between 261 and
269 and for cohort 2 between 253 and 261 (this resulted in 85 schools). Thus, the schools included in the
table have similar student abilities in both cohorts.

where only 17% of the schools presented such large differences. Though this contrast indicates
that Model 1 produces more stable results than Model 0, it is important to keep in mind that the
stability of the results in absolute terms is low overall, which can be summarized overall through
the use of Cohen’s Kappa, which corresponds to.24 in Table 3 and.38 in Table 4.

The improvement of stability in the results is worth highlighting as a relevant by-product of
the use of Model 1 in this applied setting. Under Model 0, 4% of schools would receive results for
cohort 1 indicating that they are in the highest quartile only to then receive a report for cohort 2
indicating they are in the lowest quartile, a scenario which is effectively eliminated under Model
1. The stability of results across time in value-added models is particularly relevant in applied
settings, as presenting highly variable can appear to school officials as hard to interpret or simply as
noise, a result that can undermine the credibility of the system and diminish the overall usefulness
of the results.

Summarizing, though any value-added results will involve some degree of instability in the
relative positions of schools across time, the expectation is that the variation is attributable to
a real effect from schools related changes. However, the stability of value-added results will
be inevitably affected by multiple sources of error, including the reliability of the test scores,
the intraclass correlation of results at the school level, and the uncertainty associated with the
value-added estimates themselves. In this case, the lack of stability between cohort1 and cohort
2’s value-added estimates under Model 0 could be due either to failing to account for temporal
dependence between the school effects, or to some school changes between periods 1 and 2: this
ambiguity is avoided by using Model 1.
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Figure 5.
Scatter plot of X̄2i and X̄1i . The strong linear dependence between the pre-test of the two cohorts indicates that prior
information about the two cohorts is similar.

5.3.2. School Persistence Under Model 2 We now explore school persistence under Model 2.
As mentioned in Sect. 2.6 school persistence based on Model 2 focuses on to what extent a school
is able to do “new things” with a new cohort. If the information about the cohort is similar (i.e.
pre-test of both cohorts are similar), then cohorts have similar abilities and teaching strategies
devised for cohort 1 should be useful for cohort 2. The extent to which a school is able to do
“new things” is reflected in γ2. The posterior mean of γ2 turned out to be 0.35 with 95% credible
interval (0.34, 0.37). Thus based on Model 2, persistence in school effectiveness depends on the
way in which the corresponding school effect α2i is corrected by n−1

2i β1γ2 E(X̄1i | X̄2i ), where
β̂1 × γ̂2 ≈ 0.25.

To quantify the amount of prior information provided to schools for each cohort by way of
a pre-test we provide Fig. 5. The figure contains a scatterplot of X̄2i and X̄1i . The correlation
between the pairs (X̄1i , X̄2i ) turns out to be 0.68 indicating quite strong correlation between pre-
test of cohort 1 and cohort 2. To further explore persistence underModel 2, we group schools based
on the similarity between X̄1i and X̄2i . This is done by forming a group of schools whose residual
value (ri ) from the regression line found in Fig. 5 is |ri | < 1 (red group in Fig. 5), 1 ≤ |ri | < 2
(green group in Fig. 5), and |ri | > 2 (blue group in Fig. 5). For each group, tables similar to those
in Sect. 5.3.1 are provided based on schools that had significantly different value-added estimates
between the two cohorts (significance was establish if 95% credible intervals for V A1 and V A2
failed to intersect). First note that there are only a few schools that fall within the middle quartiles.
This is a result of only considering schools with significantly different value-added estimates
between cohorts. Notice further that as the information provided schools becomes less correlated
(i.e., points farther from the regression line), there is a higher percentage of schools that improve
their quartile group: 40% for red schools, 42% for green schools and 49% for blue schools.
Moreover, for red schools 14% do not change of quartile group, for green schools 13% do not
change, and for blue schools 13% do not change. This indicates that the less similar the pre-test
cohorts are, the better the persistence of the schools. This suggests that the schools in the sample
are able to improve their results by doing “new things” for the new cohort (Tables 5, 6, and 7).
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Table 5.
The percent of schools in each value-added quartile based on cohort 1 and cohort 2 based on Model 2’s value-added
estimates.

Value-added for cohort 1
[min, Q1] (%) (Q1, Q2] (%) (Q2, Q3] (%) (Q3,max] (%) Total (%)

Value-added [min, Q1] 2 5 9 6 22
for cohort 2 (Q1, Q2] 6 0 2 9 17

(Q2, Q3] 12 2 0 14 28
(Q3,max] 5 10 6 12 33
Total 25 17 17 41 100

Schools included are those that correspond to the red points in Fig. 5 and that had significantly different
value-added estimates in cohort 1 relatively to cohort 2 based on the criteria that the posterior 95% credible
intervals didn’t intersect. The total number of schools is 210.

Table 6.
The percent of schools in each value-added quartile based on cohort 1 and cohort 2 based on model 2’s value-added
estimates.

Value-added for cohort 1
[min, Q1] (%) (Q1, Q2] (%) (Q2, Q3] (%) (Q3,max] (%) Total (%)

Value-added [min, Q1] 3 3 7 7 20
for cohort 2 (Q1, Q2] 7 0 2 13 22

(Q2, Q3] 12 0 0 13 25
(Q3,max] 4 10 9 10 33
Total 26 13 18 43 100

Schools included correspond to the green points in Fig. 5 and that had significantly different value-added
estimates in cohort 1 relatively to cohort 2 based on the criteria that the posterior 95% credible intervals
didn’t intersect. The total number of schools is 208.

Table 7.
The percent of schools in each value-added quartile based on cohort 1 and cohort 2 for model 2 based on model 2’s
value-added estimates.

Value-added for cohort 1
[min, Q1] (%) (Q1, Q2] (%) (Q2, Q3] (%) (Q3,max] (%) Total (%)

Value-added [min, Q1] 3 7 9 7 26
for cohort 2 (Q1, Q2] 9 0 3 7 19

(Q2, Q3] 14 2 0 11 27
(Q3,max] 7 10 7 4 28
Total 33 19 19 29 100

Schools included correspond to the blue points in Fig. 5 and that had significantly different value-added
estimates in cohort 1 relatively to cohort 2 based on the criteria that the posterior 95 credible intervals didn’t
intersect. The total number of schools is 229.
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6. Conclusions

Value-added models are a plausible tool for monitoring the effectiveness of a school across
time. Fromapolicy perspective, it is important to identify schoolswhose effectiveness has changed
dramatically (either improvement or deterioration) and those that maintain their effectiveness.
However, the modeling challenge is being able to disentangle the instability of value-added indi-
cators due to internal and/or external changes affecting the effectiveness of schools from the
instability due to the specification of value-added models. To meet this challenge, we formulate
time dependent value-added models, which are basically characterized by specifying the school
effect related to cohort t as a function of the past performance of the school. By doing so, we
intend to eliminate one source of instability that is contained in a value-added model where the
school effects are mutually independent across time.

More specifically, we have proposed a value-added model that incorporates temporal depen-
dence from two different perspectives, namely a dependence in the school random effects (Model
1) and a “shock” based on the post-test performance from the previous cohort (Model 2). The
identification analysis indicated that both models are nested into Model 3, which in turn incorpo-
rates both temporal dependencies. The value-added indicators induced by Models 1 and 2 have
different statistical interpretations and, consequently, are useful for different policy purposes. As a
matter of fact, Model 1 assumes that the school effects are correlated over time as in ARIMA-type
models, whereas Model 2 assumes that the current school effect is influenced by the post-tests
from previous cohorts as a kind of “information shock”. An empirical analysis of the persistence
of school effectiveness under Model 1 means analyzing to what extent a school that takes on
new cohorts maintains the effectiveness achieved when accommodating the first cohort. Such an
effectiveness may be viewed as a base line: the farther a cohort is from the first, the harder it is to
maintain the effectiveness achieved with that first cohort. An empirical analysis of the persistence
of school effectiveness under Model 2, means analyzing to what extent a school that deals with a
new cohort is capable of doing “new things” with it. The focus of the empirical analysis is on the
future performance after taking into account the “shocks” of information. In spite of that, Model
3 incorporates both time dependencies, and allows us to see that the persistence of school effec-
tiveness corresponds to an additive combination of both the school value-added for cohort 1 and
the information coming from cohort 1: the first additive component is related to the ARIMA-type
model, whereas the second additive component is related to the “information shock” model. It is
important to point out that if the parameter of shock γ2 is large enough (in absolute value), then
the persistence of school effectiveness under Model 2 and 3 are quite similar.

In order to show that this modeling strategy leads to control one source of instability, we
have also discussed the effects of Models 1, 2 and 3 in contrast with the traditional value-added
Model 0 in terms of the stability of the school results in different cohorts. The results of the
applied example in this study show that the use of models that include temporal dependence
improves the consistency of the school results when contrasted with the single cohort model.
This result is potentially relevant for the use of value-added models in applied settings, as high
instability of the estimates can be hard to interpret, or worse, can be perceived as random by
schools officials, potentially affecting the credibility of the overall value-added system. Thus, it
seems that a reasonable approach to employing our method is to first fit Model 3 (i.e., the Full
Model) and then carry out hypothesis tests (our use Bayes Factors) to determine if would be
appropriate to use either Model 1 or 2 (i.e., assume that φ12 = 0 or γ2 = 0). What we provide
in this paper is an all encompassing modeling strategy regardless of which model a particular
data set favors. The interpretation of value-added and persistence in school effectiveness for all
models has been studied and all are based on theoretically sound arguments.

A related, and relevant, characteristic of the proposed models is the “shrinkage” effect asso-
ciated with the use of random effects. We consider this as another valuable characteristic of the
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proposed models, as the effect will tend to moderate results where there are fewer cases (i.e.,
less evidence) to draw inferences regarding the school value added effect. This more conservative
estimate will not necessarily disadvantage schools that may have fewer students in a particular
cohort, as in systems that have incentives to both punish and reward with lower VA estimates (and
particularly in those that just include incentives to punish schools), the conservative estimates will
tend to shield these schools from suffering penalties due to extreme negative results. Though this
effect will also preclude them from potentially being rewarded due to extreme positive results,
we contend that this is a reasonable trade-off; particularly when these effects will play out in
the face of less empirical evidence than the one available for other schools. This moderating
effect is particularly relevant as part of the larger issue of inclusion or removal of schools with
few observations as part of a national system, particularly given that the number of cases with
common responses can vary year to year. Though one approach is to remove these schools from
the analysis, we consider that shrinkage effects constitute a feature that opens the possibility of
maintaining them as part of a larger system even though in some years they would have been
excluded based on an arbitrary cut point for sample size was used.

From a modeling perspective, we emphasize that Model 3 (along with its nested models)
includes parameters that can be considered as characterizations of an educational system, namely
φ12 + γ2, γ2 and φ12: the first one characterizes, for all schools, the sign of the correlation
between school effect for cohort 1 and school effect for cohort 2; this correlation is essentially
characterized by φ12. The first and second parameters characterize, for all schools, the sign of
the between-cohort correlation. As next steps in developing this modeling approach we propose
specifying parameters like φ12 and γ2 at sub-groups levels to identify population heterogeneity
of these effects.

Last, but not least, we highlight the fact that the proposed models can be fit using the R
package modernVA (Page, 2020).
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A. Appendix

A.1. Value-added in the Full Model

Let us provide the derivations for Model 2 only: for the first cohort, we have

V A1i (X1i )
.= 1

n1i

n1i∑

j=1

[
E(Y1i j | X1i j , α1i ) − E(Y1i j | X1i j )

]

= 1

n1i

n1i∑

j=1

{
X ′
1i jβ1 + α1i − E[E(Y1i j | X2i j , X1i j ) | X1i j ]

}

= 1

n1i

n1i∑

j=1

{
X ′
1i jβ1 + α1i − E[φ01 + X ′

1i jβ1 | X1i j ]
}

= α1i − φ01.

Similarly, for cohort 2,

V A2i (X2i )
.= 1

n2i

n2i∑

j=1

[
E(Y2i j | X2i j , α2i ) − E(Y2i j | X2i j )

]

= 1

n2i

n2i∑

j=1

{
X ′
2i jβ2 + α2i − E[E(Y2i j | X2i j , X1i j ) | X2i j ]

}

= 1

n2i

n2i∑

j=1

{
X ′
2i jβ2 + α2i − E[φ02 + φ01(φ12 + γ2) + X ′

2i jβ2 + γ2X1iβ1 | X2i j ]
}

= α2i − [φ02 + φ01(φ12 + γ2)] − γ2

n2i
β ′
1

n2i∑

j=1

E(X
′
1i | X2i j ).

A.2. Correction factor for the school value-added under the Full Model

As it was discussed in Sect. 2.5, the school value-added for cohort 2 under the Full Model is equal
to the centered school effect α2i − (φ02 + φ01γ2) plus a correction factor given by

γ2

n2i
β ′
1

n2i∑

j=1

E(X
′
1i | X2i j ), where (γ2,β1) ∈ R × R

p1 .

Then

E(X
′
1i | X2i j ) =

⎛

⎜
⎜
⎜
⎝

E(X1i,1 | X2i j )

E(X1i,2 | X2i j )
...

E(X1i,p1 | X2i j )

⎞

⎟
⎟
⎟
⎠
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Now, for the k-th covariate, let us assume that E(X1i,k | X2i j ) = bk0 + b′
kX2i j , where bk is a

p2 × 1 vector and bk0 ∈ R. One possibility is to consider bk = dk ek where dk ∈ R and ek is the
k-th vector of the canonical basis of Rp2 . Therefore,

E(X
′
1i | X2i j ) =

⎛

⎜
⎜
⎜
⎝

b10 b11 b12 · · · b1p2
b20 b21 b22 · · · b2p2
...

...
...

...
...

bp10 bp11 bp12 · · · bp1 p2

⎞

⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎜
⎜
⎝

1
X2i j,1
X2i j,2

...

X2i j,p2

⎞

⎟
⎟
⎟
⎟
⎟
⎠

.= BZ2i j ,

where B is a p1 × (p2 + 1) matrix and Z2i j is a (p2 + 1) × 1 vector.
We stack the conditional expectations by considering the n2i students:

⎛

⎜
⎜
⎜
⎜
⎝

E(X
′
1i | X2i1)

E(X
′
1i | X2i2)

...

E(X
′
1i | X2in2i )

⎞

⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎝

BZ2i1
BZ2i2

...

BZ2in2i

⎞

⎟
⎟
⎟
⎠

= (
In2i ⊗ B

)

⎛

⎜
⎜
⎜
⎝

Z2i1
Z2i2

. . .

Z2in2i

⎞

⎟
⎟
⎟
⎠

Then

n2i∑

j=1

E(X
′
1i | X2i j ) = (ı ′n2i ⊗ I p1)

⎛

⎜
⎜
⎜
⎜
⎝

E(X
′
1i | X2i1)

E(X
′
1i | X2i2)

...

E(X
′
1i | X2in2i )

⎞

⎟
⎟
⎟
⎟
⎠

= (ı ′n2i ⊗ I p1)
(
In2i ⊗ B

)

⎛

⎜
⎜
⎜
⎝

Z2i1
Z2i2

. . .

Z2in2i

⎞

⎟
⎟
⎟
⎠

= (ı ′n2i ⊗ B)

⎛

⎜
⎜
⎜
⎝

Z2i1
Z2i2

. . .

Z2in2i

⎞

⎟
⎟
⎟
⎠

=
n2i∑

j=1

BZ2i j = B
n2i∑

j=1

Z2i j

Therefore,

1

n2i

n2i∑

j=1

E(X
′
1i | X2i j ) = B

1

n2i

n2i∑

j=1

Z2i j = B Z2i = B

⎛

⎜
⎜
⎜
⎝

1
X2i,1

...

X2i,p2

⎞

⎟
⎟
⎟
⎠

.
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Now, a linear regression is based on the decomposition

X
′
1i = E(X

′
1i | X2i j ) +

(
X

′
1i − E(X

′
1i | X2i j )

)
= E(X

′
1i | X2i j ) + ui .

Then, after averaging on j , we have

X
′
1i︸︷︷︸

p1×1

= B︸︷︷︸
p1×(p2+1)

Z2i︸︷︷︸
(p2+1)×1

+ui .

Therefore, assuming that there are I schools, we have

⎛

⎜
⎝

X
′
11
...

X
′
1I

⎞

⎟
⎠ = (I I ⊗ B)

⎛

⎜
⎝

Z
′
21
...

Z
′
2I

⎞

⎟
⎠ + u.
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