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ABSTRACT. For fixed 0 < r < 1, let Ar = {z ∈ C : r < |z| < 1} be the annulus with boundary
∂Ar = T∪ rT, where T is the unit circle in the complex plane C. An operator having Ar as a spectral
set is called an Ar-contraction. Also, a normal operator with its spectrum lying in the boundary ∂Ar
is called an Ar-unitary. The C1,r class was introduced by Bello and Yakubovich in the following
way:

C1,r = {T : T is invertible and ∥T∥,∥rT−1∥ ≤ 1}.
McCullough and Pascoe defined the quantum annulus QAr by

QAr = {T : T is invertible and ∥rT∥,∥rT−1∥ ≤ 1}.
If Ar denotes the set of all Ar-contractions, then Ar ⊊ C1,r ⊊ QAr. We first find a model for an
operator in C1,r and also characterize the operators in C1,r in several different ways. We prove that
the classes C1,r and QAr are equivalent. Then, via this equivalence, we obtain analogous model and
characterizations for an operator in QAr.

1. INTRODUCTION

Throughout the paper, all operators are bounded linear operators acting on complex Hilbert spaces.
We denote by D,T,rD,rT the unit disk, the unit circle, the disk with radius r and the circle with
radius r respectively with center at the origin in the complex plane C. For a Hilbert space H , we
mean by B(H ) the algebra of operators acting on H . A contraction is an operator whose norm
is not greater than 1. For 0 < r < 1, let us consider the following annuli:

Ar = {z ∈ C : r < |z|< 1} ,
Ar = {z ∈ C : r < |z|< r−1}. (1.1)

A Hilbert space operator T is said to be an Ar-contraction if Ar is a spectral set for T , which is to
say that the spectrum σ(T )⊆ Ar and for every rational function f with poles off Ar von Neumann’s
inequality holds, i.e. ∥ f (T )∥ ≤ sup | f (z)|, where the supremum is taken over Ar. Here f (T ) =
p(T )q(T )−1, whence f = p/q with p,q ∈ C[z] and q having no zeros in Ar. An Ar-unitary is a
normal operator having its spectrum in the boundary T∪rT of the annulus Ar. In the seminal paper
[1], Agler proved that every Ar-contraction dilates to an Ar-unitary which announces the success
of rational dilation on an annulus. Hence, for any Ar-contraction T acting on a Hilbert space H ,
there is a Hilbert space K ⊇ H and an Ar-unitary N such that f (T ) = PH f (N)|H for every
rational function f with poles off Ar. This path-breaking work due to Agler motivates numerous
mathematicians to study further the functions and operators associated with an annulus which leads
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2 PAL AND TOMAR

to exciting works like [10, 11, 8, 9, 6, 7]. Also, see the references therein. Recently, Bello and
Yakubovich [4] introduced two important classes of operators associated with an annulus, namely
the Cα and C1,r classes which were defined in the following way:

Cα = {T : T is an invertible operator and α(T ) =−T ∗2T 2 +(1+ r2)T ∗T − r2I ≥ 0} ,
C1,r = {T : T is an invertible operator and ∥T∥, ∥rT−1∥ ≤ 1}.

We mention two important facts about these classes: first, the operators in Cα ,C1,r classes have
their spectrums in Ar and second, if Ar denotes the set of all Ar-contractions, then Ar,Cα ,C1,r
form a strictly increasing chain as was proved in [4].

Theorem 1.1 ([4], Theorem 1.1). Ar ⊊Cα ⊊C1,r .

Also, an explicit model was constructed for an operator in the Cα class by Bello and Yakubovich,
see Theorem 1.2 in [4]. Interestingly, McCullough and Pascoe [12] considered the annulus Ar as
in (1.1) and introduced the quantum annulus QAr which consists of invertible operators T such
that both rT and rT−1 are contractions, i.e.

QAr = {T : T is an invertible operator and ∥T∥, ∥T−1∥ ≤ r−1}.

Evidently, C1,r ⊊QAr which stretches the increasing chain of Theorem 1.1 one more step. In [12],
McCullough and Pascoe found the following model theorem for an operator in QAr.

Theorem 1.2 ([12], Theorem 1.1). An invertible operator T acting on a Hilbert space H is in QAr
if and only if there exists an invertible operator J acting on a larger Hilbert space K containing
H such that T n = PH Jn|H for all n ∈ Z and J, up to unitary equivalence, takes the following
form

J =U
[

rIK0 0
0 r−1IK1

]
where U is a unitary, K = K0 ⊕K1 and PH denotes the orthogonal projection of K onto H .

These wider classes of operators generalizing the Ar-contractions have been extensively studied
in recent past in [14, 16, 17] also.

In this article, we further analyse the C1,r class and the quantum annulus. We find the following
model-cum-characterization theorem for the C1,r class in terms of a pair of Ar-unitaries. Before we
state the theorem, let us mention that any rational function f with poles off Ar can be represented
as

f (z) =
p(z)

q1(z)q2(z)
, (1.2)

where p,q1 and q2 are polynomials in C[z] such that the zeros of q1 and q2 lie in C \D and rD
respectively.

Theorem 1.3. Let T be an invertible operator acting on a Hilbert space H . Then T ∈C1,r if and
only if there is a Hilbert space K ⊇ H , an Ar-unitary N on K and a self adjoint unitary F on
K such that

f (T ) = PH

(
p(N)q1(N)−1q2(FNF)−1

)∣∣∣∣
H

for every rational function f with poles off Ar (as in (1.2)).
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THE C1,r CLASS AND QUANTUM ANNULUS 3

Note that both N and FNF−1 as in the model above are Ar-unitaries. Next, we obtain the
following characterizations for an operator in the C1,r class. We mention that the equivalence of
the conditions (1) and (2) of this theorem follows from Proposition 3.2 in [12]. However, we
present a different proof for this part in this paper.

Theorem 1.4. Let T be an invertible operator acting on a Hilbert space H . Then the following
are equivalent:

(1) T ∈C1,r ;
(2) (1+ r2)IH −T ∗T − r2T−1(T−1)∗ ≥ 0 ;
(3) (T ∗T )1/2 ∈Cα ;
(4) (T ∗T )1/2 is an Ar-contraction ;
(5) there exist a unitary U and an Ar-contraction P on H such that T =UP.

These results will be proved in Section 3. Though, we have C1,r ⊊ QAr by definition, actually
these two classes are comparable. To see this, let us consider the map ϕ : Ar → Ar2 defined by
ϕ(z) = rz, which is a biholomorphism with ϕ−1(z) = r−1z. Now one can easily prove the following
lemma that establishes the equivalence of C1,r and QAr.

Lemma 1.5. An operator T ∈ C1,r if and only if r−1/2T ∈ QA√
r . Also, T ∈ QAr if and only if

rT ∈C1,r2 .

Hence, any result that holds for the C1,r class must have an analogue for the quantum annulus.
So, we have the following model theorem and characterizations for QAr that are analogous to
Theorems 1.3 & 1.4 respectively.

Theorem 1.6. Let T be an invertible operator acting on a Hilbert space H . Then T ∈QAr if and
only if there is a Hilbert space K ⊇ H , a normal operator N on K with σ(N)⊆ ∂Ar and a self
adjoint unitary F on K such that

g(T ) = PH

(
p(N)q1(N)−1q2(FNF)−1

)∣∣∣∣
H

for every rational function g = p/q1q2 with the zeros of q1 and q2 in C\ r−1D and rD respectively.

Theorem 1.7. Let T be an invertible operator on a Hilbert space H . Then the following are
equivalent:

(1) T ∈QAr;
(2) (r−2 + r2)IH −T ∗T −T−1(T−1)∗ ≥ 0;
(3) Ar is a spectral set for (T ∗T )1/2;
(4) there exist an operator P with Ar as a spectral set and a unitary Uon H such that T =UP.

Note that the model that we obtain for QAr as in Theorem 1.6 consists of a pair of normal
operators having their spectrums on the boundary of the annulus QAr. Since Lemma 1.5 allows us
to move back and forth between C1,r and QAr, we do not want to miss the opportunity to achieve
an alternative model for the C1,r class which goes parallel with the model for QAr obtained by
McCullough and Pascoe (i.e. Theorem 1.2).

Theorem 1.8. An invertible operator T acting on a Hilbert space H is in C1,r if and only if there
is an invertible operator J on a Hilbert space K ⊇ H such that T n = PH Jn|H for every n ∈ Z
and J admits the following form:

J =U
[

rIK0 0
0 IK1

]
,
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where U is a unitary and K = K0 ⊕K1.

We prove the results associated with QAr in Section 4. In Section 2, we prove a few relevant
and preparatory results.

2. PREPARATORY RESULTS

We begin with a famous result due to Ando which states that a pair of commuting contractions
T1,T2 can always be lifted simultaneously to a pair of commuting unitaries U1,U2.

Theorem 2.1 (Ando, [3]). Given a commuting pair of contractions (T1,T2) on a Hilbert space H ,
there exists a commuting pair of unitaries (U1,U2) on a Hilbert space K containing H such that

p(T1,T2) = PH p(U1,U2)|H
for every polynomial p in two variables.

We now state and prove a few basic properties of an operator in C1,r class which will be used in
the proof of the main theorems.

Lemma 2.2. For every operator T in C1,r class, we have r ≤ ∥T∥ ≤ 1.

A proof to this result follows from the fact that ∥T∥,∥rT−1∥ ≤ 1. The converse of Lemma

2.2 does not hold. Indeed, if we choose r = 1/2 and T =

[
0 1
1

100 0

]
, then T is invertible and

r ≤ ∥T∥ ≤ 1. However, T does not belong to C1,r as the spectrum σ(T ) is not contained in Ar.
Even more is true, the converse to Lemma 2.2 does not hold for Ar-contractions, i.e. an invertible
operator T with σ(T ) ⊆ Ar and r ≤ ∥T∥ ≤ 1 is not necessarily an Ar-contraction. The following
example due to G. Misra [13] shows this clearly. Before going to the example let us state an
interesting result due to Williams [18] showing an interplay between spectral set and complete
non-normality. It is to mention that an operator T ∈ B(H ) is said to be completely non-normal if
there is no nonzero closed subspace H1 of H that reduces T and T |H1 is normal.

Theorem 2.3 (Williams, [18]). If an operator T on a finite dimensional space is completely non-
normal and ∥T∥= 1, then D is a minimal spectral set for T , i.e. no proper closed subset of D is a
spectral set for T .

Example 2.4. For 0 < r < 1, the matrix T =

[√
r 1− r

0
√

r

]
is invertible and σ(T ) = {

√
r} ⊆ Ar.

Note that

T ∗T =

[
r

√
r(1− r)√

r(1− r) r+(1− r)2

]
and thus it follows that σ(T ∗T ) = {1,r2}. Therefore, ∥T∥2 = ∥T ∗T∥= 1. Hence, r ≤ ∥T∥ ≤ 1. It
is not difficult to see that T ∈C1,r. Since ∥T∥ = 1 and T is completely non-normal, Theorem 2.3
implies that D is a minimal spectral set for T. Hence Ar cannot be a spectral set for T .

Lemma 2.5. Let T be an invertible operator acting on a Hilbert space H . Then
(a) T is an Ar-contraction if and only if rT−1 is an Ar-contraction ;
(b) T is in C1,r if and only if rT−1 is in C1,r .
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Proof. The part-(b) is obvious and so we prove only part-(a). Let T be an Ar-contraction. Then
by Lemma 2.2, we have σ(T ) ⊆ Ar and r ≤ ∥T∥ ≤ 1. So, it follows from the Spectral Mapping
Theorem that

σ(rT−1) = {r/λ : λ ∈ σ(T )} ⊆ Ar.

Let f be any rational function with poles off Ar. Then we define a rational function g(z) = f (rz−1),
where z 7→ rz−1 is an automorphism of the annulus Ar. Evidently, g has its poles off Ar. Now,

∥ f (rT−1)∥= ∥g(T )∥ ≤ sup{|g(z)| : r ≤ |z| ≤ 1}
= |g(w)| for some w ∈ T∪ rT (by the Maximum-modulus principle)

= | f (rw−1)|
≤ sup{| f (z)| : r ≤ |z| ≤ 1}.

Therefore, Ar is a spectral set for rT−1. Again if Ar is a spectral set for S = rT−1, then by previous
part of the proof we have that rS−1 = T is also an Ar-contraction and the proof is complete.

Let T be an operator on a Hilbert space H and let γ be a simple closed curve in C such that
σ(T ) is contained in the interior of γ . If f is a holomorphic function on and in the interior of γ ,
then f (T ) can be defined in the following way:

f (T ) :=
1

2πi

∫
γ

f (w)(w−T )−1dw. (2.1)

It is merely mentioned that the above integral and hence the definition of f (T ) is independent of
the choice of γ . Before going to the next proposition we state a classic result whose proof is a
routine exercise.

Lemma 2.6. Let T ∈ B(H ) and let Ω be an open set containing σ(T ). If a sequence { fn} of
holomorphic functions on Ω converges uniformly to a function f on every compact subset of Ω,
then f is holomorphic on Ω and { fn(T )} as in (2.1) converges to f (T ) in operator norm.

Every rational function f with poles off Ar is analytic in an open neighbourhood containing Ar

and thus has a unique Laurent series f (z) =
∞

∑
j=−∞

f jz j. We show that for T ∈C1,r acting on H , the

series
∞

∑
j=−∞

f jT j defines an operator on H and f (T ) = p(T )q(T )−1 =
∞

∑
j=−∞

f jT j, where f = p/q

with q having no zeros inside Ar.

Proposition 2.7. Given an operator T ∈C1,r on a Hilbert space H and a rational function f with

poles off Ar, the series
∞

∑
j=−∞

f jT j defines a bounded linear operator on H and is same as f (T ).

Proof. Since T ∈C1,r, it follows from the Spectral Mapping Theorem that σ(T )⊆ Ar. Thus f (T )

is well-defined. The sequence f̃n(z) =
n
∑

j=−n
f jz j converges uniformly to f (z) on Ar and we have by

Lemma 2.6 that f̃n(T ) converges to f (T ) in operator norm topology. Thus, f (T ) =
∞

∑
j=−∞

f jT j.

In order to prove that an Ar-contraction T ∈B(H ) admits an Ar-unitary dilation N on K ⊇H ,
one needs to show that f (T ) = PH f (N)|H for every rational function f with poles off Ar. The
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next lemma shows that instead of all rational functions f it suffices to consider only the integral
powers of z, i.e. the functions of the type z j for j ∈ Z.

Lemma 2.8. For operators T and N in C1,r acting on Hilbert spaces H and K respectively with
K ⊇ H , the following are equivalent:

(1) f (T ) = PH f (N)|H for every rational function f with poles off Ar ;
(2) T j = PH N j|H for every j ∈ Z.

Proof. (1) =⇒ (2) is obvious. We prove (2) =⇒ (1). Let f be a rational function with poles off

Ar and let f (z) =
∞

∑
j=−∞

f jz j be its Laurent series. We have by Proposition 2.7 that f (T ) =
∞

∑
j=−∞

f jT j

and f (N) =
∞

∑
j=−∞

f jN j. For any h ∈ H , it follows that

f (T )h =
∞

∑
j=−∞

f jT jh =
∞

∑
j=−∞

f j(PH N jh) = PH

∞

∑
j=−∞

f jN jh = PH f (N)h.

Next, we show that the three classes Ar,Cα ,C1,r as in Theorem 1.1 agree under subnormality
condition. To do so, it suffices to show that every subnormal C1,r operator is an Ar-contraction.
First we state an elementary result whose proof is a routine exercise.

Lemma 2.9. Let N be a normal operator with σ(N)⊆ Ar. Then N is an Ar-contraction.

The next two results are also important in the context of this article.

Proposition 2.10. A subnormal operator T ∈C1,r if and only if T is an Ar-contraction.

Proof. Let T ∈C1,r be subnormal. We have that σ(T )⊆Ar. Let N be the minimal normal extension
of T . It follows from Theorem 2.11 in Chapter 2 of [5] that σ(N)⊆ σ(T ) and so, σ(N)⊆ Ar. Note
that N is invertible and since T = N|H , we have that T−1 = N−1|H . Therefore, T m = Nm|H for
every m ∈ Z. It follows from Lemma 2.8 that f (T ) = f (N)|H for every rational function f with
poles outside Ar. By Lemma 2.9, N is an Ar-contraction and so, ∥ f (T )∥ ≤ ∥ f (N)∥ ≤ sup{| f (z)| :
z ∈ Ar} for every rational function f with poles off Ar. Thus, T is an Ar-contraction. The converse
follows from Theorem 1.1.

Proposition 2.11. A subnormal operator T ∈QAr if and only if Ar is a spectral set for T .

Proof. Let T ∈ QAr be subnormal. We have by Lemma 1.5 that rT ∈ C1,r2 is also subnormal. It
follows from Proposition 2.10 that rT is an Ar2-contraction. Since ϕ : Ar → Ar2,ϕ(z) = rz is a
biholomorphism, we have that ϕ−1(rT ) = T has ϕ−1(Ar2) = Ar as a spectral set. The converse is
trivial.

However, an operator in QAr may not always have Ar as a spectral set. Actually, the class of
operators having Ar as a spectral set is contained in QAr and it follows trivially from the von
Neumann’s inequality. The following example shows that the containment is strict.

Example 2.12. For 0 < r < 1, consider the matrix T =

[
1 −r+ r−1

0 1

]
. It is not difficult to see that

T is invertible and ∥T∥= ∥T−1∥= r−1. Therefore, T ∈QAr. Since ∥rT∥= 1 and rT is completely
non-normal, Theorem 2.3 implies that D is a minimal spectral set for rT . Consequently, r−1D is a
minimal spectral set for T . Hence, Ar cannot be a spectral set for T .
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Lemma 2.13. Let T ∈C1,r. If f as in (1.2) is any rational function with poles off Ar, then

f (z) =
(

∞

∑
n=0

anzn
)(

∞

∑
n=0

bnz−n
)

and f (T ) =
(

∞

∑
n=0

anT n
)(

∞

∑
n=0

bnT−n
)
,

for some scalar coefficients an,bn.

Proof. For any rational function f with poles off Ar we have from (1.2) that

f (z) =
p(z)

q1(z)q2(z)
,

where p,q1 and q2 are polynomials with zeros of q1 in C \D and zeros of q2 in rD. Suppose
α1, . . . ,αk ∈ C\D are the zeros of q1 and β1, . . . ,βl ∈ rD are the zeros of q2. Then

q1(z) = α(z−α1)(z−α2) . . .(z−αk) and q2(z) = β (z−β1)(z−β2) . . .(z−βl),

for some α,β ∈ C. Now for each α j,βi and for any z ∈ Ar, we have

1
z−α j

=
−1

α j(1− z/α j)
=−

∞

∑
n=0

zn

α
n+1
j

and
1

z−βi
=

1
z(1−βi/z)

=
∞

∑
n=0

β
n
i z−(n+1),

where both the series converge uniformly on Ar. Thus, for any z ∈ Ar we have that

1
q1(z)

=
∞

∑
n=0

qn1zn and
1

q2(z)
=

∞

∑
n=0

qn2

zn

for some scalar coefficients qn1,qn2. Consequently,

f (z) = p(z)
(

∞

∑
n=0

qn1zn
)(

∞

∑
n=0

qn2z−n
)
.

Evidently it follows from Lemma 2.6 that

f (T ) = p(T )
(

∞

∑
n=0

qn1T n
)(

∞

∑
n=0

qn2T−n
)

and the proof is complete.

We conclude this Section by recalling from the literature a useful result on joint spectrum.

Theorem 2.14 ([15], Theorem 4.9). If T = (T1, . . . ,Tn) is a tuple of commuting operators on a
Hilbert space X and if σT (T ) = K1 ∪K2, where K1 and K2 are disjoint compact sets in Cn, then
there are closed linear subspaces X1 and X2 of X such that

(1) X = X1 ⊕X2;
(2) X1,X2 are invariant under any operator which commutes with each Tk;
(3) σT (T |X1) = K1 and σT (T |X2) = K2, where T |Xi = (T1|Xi, . . . ,Tn|Xi) for i = 1,2.
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3. CHARACTERIZATIONS AND OPERATOR MODEL FOR THE C1,r CLASS

While investigating the success or failure of rational dilation on the closure of a domain Ω, a
primary step towards the endeavour is to study the normal operators having their spectrum in the
boundary ∂Ω. Such operators constitute an analogue of unitaries, which are normal operators
associated with the boundary of the unit disk. For an annulus Ar, they are Ar-unitaries. In this
Section, we first characterize an Ar-unitary as a direct sum U1 ⊕ rU2 for a pair of unitaries U1,U2.
Using this characterization, we frame a model (see Theorem 1.3) for an operator in C1,r class and
the model consists of a pair of Ar-unitaries. For the sake of brevity, we fix the following notations
for a contraction T ∈ B(H ):

T (n) = T n (n ≥ 1), T (0) = IH , T (n) = T ∗|n| (n ≤−1).

Evidently, ∥T∥ ≤ 1 if and only if I − T ∗T ≥ 0. Let DT = (I − T ∗T )1/2 be the unique positive
square root of a contraction T .

Theorem 3.1. An operator T ∈ B(H ) is an Ar-unitary if and only if H decomposes into an
orthogonal sum H = H1 ⊕H2 such that H1,H2 reduce T and T1 = T |H1,T2 = rT−1|H2 are
unitaries. This decomposition is uniquely determined. Indeed, we have that

H1 = {h ∈ H : ∥T nh∥= ∥h∥= ∥T ∗nh∥, n = 1,2, . . .}
and

H2 = {h ∈ H : ∥T nh∥= rn∥h∥= ∥T ∗nh∥, n =−1,−2, . . .}.
The space H1 or H2 may coincide with the trivial space {0}. With respect to the decomposition
H = H1 ⊕H2, T has the following block-matrix form:

T =

[
T1 0
0 rT−1

2

]
.

Proof. Since T is an Ar-unitary, we have by Theorem 1.1 that T is in C1,r and thus T and rT−1

are contractions. Hence, T (n) and (rT−1)(n) are contractions for every integer n. For each fixed
n ∈ Z, it is evident that

KerDT (n) = {h ∈ H : ∥T (n)h∥= ∥h∥} and KerD(rT−1)(n) = {h ∈ H : ∥rT−1(n)h∥= ∥h∥}.
Therefore, we have

H1 =
⋂

n∈Z\{0}
Ker DT (n) and H2 =

⋂
n∈Z\{0}

Ker D(rT−1)(n).

It is obvious that H1 and H2 are closed linear subspaces of H . For any h ∈ H1, we have

∥T nT h∥= ∥T n+1h∥= ∥h∥= ∥T h∥ (n = 0,1,2, . . .),

∥T ∗nT h∥= ∥T ∗n−1T ∗T h∥= ∥T ∗n−1h∥= ∥h∥= ∥T h∥ (n = 1,2, . . .),

which follow from the fact that for a contraction T, ∥T h∥ = ∥h∥ if and only if T ∗T h = h. Hence,
T h∈H1. Similarly, one can show that T ∗h∈H1. Thus H1 reduces T . A similar argument implies
that H2 reduces T . If we set T1 = T |H1 and T2 = rT−1|H2 , then it follows from the definition of
H1 and H2 that T1 and T2 are unitaries on H1 and H2 respectively. Consequently, we have that

⟨h1,h2⟩= ⟨T ∗T h1,(rT−1)(rT−1)∗h2⟩= ⟨T−1T−1∗T ∗T h1,r2h2⟩= r2⟨h1,h2⟩
for h1 ∈ H1,h2 ∈ H2 and so, ⟨h1,h2⟩ = 0 as 0 < r < 1. Hence, H1 and H2 are orthogonal.
Consider the subspace H3 = H ⊖

(
H1 ⊕H2

)
which reduces T and thus, T3 = T |H3 is normal.
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Since σ(T3) ⊆ σ(T ) ⊆ T∪ rT, we have that σ(T3) = K1 ∪K2, where K1 = σ(T3)∩T and K2 =
σ(T3)∩ rT. Since T3 is normal, we have by Theorem 2.14 that there are closed subspaces H ′

3 and
H ′′

3 of H3 reducing T3 such that

H3 = H ′
3 ⊕H ′′

3 , σ(T |H ′
3
) = K1 ⊆ T and σ(T |H ′′

3
) = K2 ⊆ rT.

It shows that T and rT−1 are unitaries on H ′
3 and H ′′

3 respectively. Thus, H ′
3 ⊆ H1 and H ′′

3 ⊆
H2 implying that H3 =H ′

3 ⊕H ′′
3 ⊆H1⊕H2. Consequently, H3 = {0} and so, H =H1⊕H2.

Also, it is clear from the construction that H1 and H2 are the maximal closed reducing subspaces
of H on which T and rT−1 act as unitaries respectively. Hence, H1,H2 are uniquely determined
and the proof is complete.

Now we are in a position to give a proof to Theorem 1.3, one of the main results of this article.

Proof of Theorem 1.3. Let T ∈ C1,r. Then (T,rT−1) is a commuting pair of contractions acting
on H . It follows from Ando’s dilation, Theorem 2.1, that there are commuting unitaries U1,rU−1

2
on a Hilbert space K0 ⊇ H such that

p(T,rT−1)h = PH p(U1,rU−1
2 )h (3.1)

for every h ∈ H and for every polynomial p ∈ C[z1,z2]. Consequently, we have that

T jh = PH U j
1 h and T− jh = PH U− j

2 h, for h ∈ H and j = 0,1,2, . . . . (3.2)

Let f be a rational function with poles off Ar. Then, f (z) = p(z)q1(z)−1q2(z)−1 as in (1.2), where
q1,q2 have their zeros in C \D and rD respectively. For any h ∈ H , we have from Lemma 2.13
that

f (T )h = p(T )
(

∞

∑
n=0

qn1T n
)(

∞

∑
n=0

qn2T−n
)

h

= lim
m→∞

[
p(T )

( m

∑
n=0

qn1T n
)( m

∑
n=0

qn2T−n
)]

h

= lim
m→∞

[
PH p(U1)

( m

∑
n=0

qn1Un
1

)( m

∑
n=0

qn2U−n
2

)]
h [by (3.1) & (3.2)]

= PH p(U1)

(
∞

∑
n=0

qn1Un
1

)(
∞

∑
n=0

qn2U−n
2

)
h

= PH p(U1)q1(U1)
−1q2(U2)

−1h.

Set

N =

[
U1 0
0 U2

]
and F =

[
0 IK0

IK0 0

]
on K = K0 ⊕K0.

Note that F is a self-adjoint unitary. Since U1 and r−1U2 are unitaries on K0, it follows from
Theorem 3.1 that N is an Ar-unitary. We have that H ⊆ K0. Let V : H → K be defined as
V h=(h,0). Evidently, V is an isometric embedding and V ∗(x1,x2)=PH x1 for every (x1,x2)∈K .
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So, for any h ∈ H we have that

V ∗
(

p(N)q1(N)−1Fq2(N)−1F
)

V h =V ∗
(

p(N)q1(N)−1Fq2(N)−1
[

0 IK0
IK0 0

])[
h
0

]
=V ∗

(
p(N)q1(N)−1F

[
q2(U1)

−1 0
0 q2(U2)

−1

])[
0
h

]
=V ∗

(
p(N)q1(N)−1

[
0 IK0

IK0 0

])[
0

q2(U2)
−1h

]
=V ∗

[
p(U1)q1(U1)

−1 0
0 p(U2)q1(U2)

−1

][
q2(U2)

−1h
0

]
=V ∗

[
p(U1)q1(U1)

−1q2(U2)
−1h

0

]
= PH p(U1)q1(U1)

−1q2(U2)
−1h

= f (T )h.

Also, we have

FNF =

[
0 IK0

IK0 0

][
U1 0
0 U2

][
0 IK0

IK0 0

]
=

[
U2 0
0 U1

]
and hence q2(FNF) = Fq2(N)F . Note that FNF is unitarily equivalent to N and hence is an
Ar-unitary. Since F is a self-adjoint unitary, we have that q2(FNF)−1 = Fq2(N)−1F . Putting
everything together, we have that

f (T )h =V ∗
(

p(N)q1(N)−1q2(FNF)−1
)

V h

for any rational function f with poles off Ar and for every h ∈ H . To see the converse, assume
that there is a Hilbert space K ⊇ H , an Ar-unitary N on K and a self adjoint unitary F on K
such that

f (T ) = PH

(
p(N)q1(N)−1q2(FNF)−1

)∣∣∣∣
H

for every rational function f with poles off Ar (as in (1.2)). Then T = PH N|H and T−1 =
PH FN−1F |H . Since N is an Ar-unitary, it follows from Theorem 1.1 that N ∈ C1,r. Thus
∥T∥ ≤ ∥N∥ ≤ 1 and ∥T−1∥ ≤ ∥FN−1F∥ ≤ ∥N−1∥ ≤ r−1. Consequently, T ∈ C1,r. The proof
is now complete.

Remark 3.2. In Theorem 1.3, if we denote the Ar-unitary FNF by Ñ, then it follows as a special
case that for every Ar-contraction T ∈ B(H ), there is a Hilbert space K ⊇ H and an Ar-unitary
Ñ ∈ B(K ) such that

f (T ) = PH f (Ñ)|H
for every rational function of the form f = 1/q such that the zeros of q lie inside rD. Also, if
g = p/q1 with q1 having its zeros inside C\D, then also we have

g(T ) = PH g(N)|H ,

for some Ar-unitary N ∈ B(K1) such that K1 ⊇ H .
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We conclude this Section by providing Theorem 1.4, another main theorem of this paper that
characterizes an operator in C1,r in different ways. Once again we mention that the equivalence of
parts (1) & (2) of this theorem follows from Proposition 3.2 in [12]. However, we present here a
different proof for this part also.

Proof of Theorem 1.4. (1) =⇒ (2). Let T ∈C1,r. It is easy to see that

D2
T D2

(rT−1)∗ = D2
(rT−1)∗D

2
T = (1+ r2)IH −T ∗T − r2T−1(T−1)∗. (3.3)

Consequently, p(D2
T )p(D2

(rT−1)∗
) = p(D2

(rT−1)∗
)p(D2

T ) for every polynomial p ∈ C[z]. Choose a

sequence of polynomials pn(x) that converges uniformly to x1/2 on the interval 0 ≤ x ≤ 1. It
follows from the spectral theorem that the sequence of operators pn(B) converges to B1/2 for any
positive operator B such that 0 ≤ B ≤ IH . Applying (3.3) to these polynomials and taking the limit
as n → ∞, we have

DT D(rT−1)∗ = D(rT−1)∗DT .

Thus, for any h ∈ H , we have that〈(
(1+ r2)IH −T ∗T − r2T−1(T−1)∗

)
h,h

〉
=
〈

D2
T D2

(rT−1)∗h,h
〉
= ∥DT D(rT−1)∗h∥2 ≥ 0.

(2) =⇒ (3). Let ∆T = (1+ r2)IH −T ∗T − r2T−1(T−1)∗ ≥ 0 and let P = (T ∗T )1/2. Note that P
is invertible as T is invertible. Moreover, we have

0 ≤ P∗
∆T P = P((1+ r2)IH −P2 − r2P−2)P = (IH −P2)(P2 − r2IH ) = α(P∗,P).

(3) =⇒ (4). Let P = (T ∗T )1/2 ∈Cα . Then α(P∗,P) = (IH −P2)(P2−r2IH )≥ 0. Let λ ∈ σ(P).
It follows from the spectral theorem that (1−λ 2)(λ 2 − r2) ≥ 0 and this holds if and only if r ≤
λ ≤ 1. Therefore, σ(P)⊆ Ar. Consequently, we have by Lemma 2.9 that P is an Ar-contraction.

(4) =⇒ (5). Let P = (T ∗T )1/2 be an Ar-contraction. For U = T P−1, we have that

U∗U = P−1T ∗T P−1 = P−1P2P−1 = IH and UU∗ = T P−2T ∗ = T (T ∗T )−1T ∗ = IH .

Hence, U is a unitary on H and T =UP.

(5) =⇒ (1). Let T =UP for a unitary U and an Ar-contraction P on H . Then rT−1 = (rP−1)U∗.
Consequently, we have that ∥T∥≤ ∥P∥≤ 1 and ∥rT−1∥≤ ∥rP−1∥≤ 1. The proof is now complete.

4. THE QUANTUM ANNULUS

In this Section, we provide a model for operators in the quantum annulus QAr. Recall that

QAr = {T : T is invertible and ∥rT∥,∥rT−1∥ ≤ 1},

which is the quantization of the closed annulus Ar = {z ∈ C : z ̸= 0 and |rz|, |rz−1| ≤ 1} in the
sense that the scalars in the annulus are replaced by operators with similar norm-bounds. With this
terminology, C1,r is nothing but the quantization of Ar. It is evident that C1,r is a proper subset of
QAr. However, Lemma 1.5 shows that these two classes are actually equivalent. Thus, in light of
Theorem 1.3, we have an analogous model for QAr in Theorem 1.6 whose proof is given below.
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Proof of Theorem 1.6. The converse is straightforward. We assume that T ∈ QAr. We have by
Lemma 1.5 that rT ∈C1,r2 . It follows from Theorem 1.3 that there is a Hilbert space K ⊇ H , an
Ar2-unitary Ñ on K and a self adjoint unitary F on K such that

f (rT ) = PH

(
f0(Ñ) f1(Ñ)−1 f2(FÑF)−1

)∣∣∣∣
H

(4.1)

for every rational function f = f0/ f1 f2 with zeros of f1 and f2 lying in C\D and r2D respectively.
Let g = p/q1q2 with zeros of q1 and q2 in C\ r−1D and rD respectively. We define

f (z) = g(r−1z) =
p(r−1z)

q1(r−1z)q2(r−1z)
,

which is holomorphic on Ar2 with zeros of q1(r−1z) and q2(r−1z) lying in C \D and r2D respec-
tively. We have by (4.1) that

g(T ) = f (rT ) = PH

(
p(r−1Ñ)q1(r−1Ñ)−1q2(r−1FÑF)−1

)∣∣∣∣
H

.

Let N = r−1Ñ. Then N is a normal operator and we have that

σ(N) = {r−1
λ : λ ∈ σ(Ñ)} ⊆ {r−1

λ : |λ |= 1 or |λ |= r2}= ∂Ar.

The proof is now complete.
Since we have an equivalence of the two classes C1,r and QAr by Lemma 1.5, we have a model

in Theorem 1.8 for C1,r analogous to the model for QAr due to McCullough and Pascoe. We
present a brief proof to this below.

Proof of Theorem 1.8. The converse is trivial. Let us assume that T ∈ C1,r. By Lemma 1.5,
r−1/2T ∈ QA√

r. It follows from Theorem 1.2 that there is a unitary U on some larger Hilbert
space K ⊇ H , an invertible operator J̃ on K such that (r−1/2T )n = PH J̃n|H for all n ∈ Z and
that

J̃ =U
[

r1/2IK0 0
0 r−1/2IK1

]
,

where U is a unitary and K = K0 ⊕K1. Take J = r1/2J̃ and the desired conclusion follows.

Theorem 1.8 gives a model for an operator in the C1,r class. Therefore, the model operator J as in
Theorem 1.8 cannot be an Ar-unitary. The reason is obvious; an Ar-unitary can provide a model for
the Ar-contractions and the C1,r class is strictly bigger than that of the Ar-contractions. So, a natural
question arises: when the model operator J becomes an Ar-unitary so that the initial operator
T ∈ C1,r becomes an Ar-contraction ? Below we provide a necessary and sufficient condition for
the same.

Proposition 4.1. Let J acting on a Hilbert space K be as in Theorem 1.8. Then the following are
equivalent:

(1) J is an Ar-unitary ;
(2) J is normal ;

(3) UJr = JrU where Jr =

[
rIK0 0

0 IK1

]
.
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Proof. (1) =⇒ (2) follows trivially. We shall prove (2) =⇒ (3) =⇒ (1).

(2) =⇒ (3). Let J = UJr be normal. Then J∗J = JJ∗ implies that UJ2
r = J2

r U . Since Jr is self-
adjoint, one can prove that UJr = JrU by an application of spectral theorem as discussed in the
proof of Theorem 1.4.

(3) =⇒ (1). Let UJr = JrU and let U =

[
U11 U12
U21 U22

]
with respect to K = K0 ⊕K1. Then

0 =UJr − JrU =

[
rU11 U12
rU21 U22

]
−
[

rU11 rU12
U21 U22

]
=

[
0 (1− r)U12

(r−1)U21 0

]
,

which is possible if and only if U12 = U21 = 0 as r < 1. Hence, U11 and U22 are unitaries on K0
and K1 respectively. Furthermore, we have that

J =

[
rU11 0

0 U22

]
.

It follows from Theorem 3.1 that J is an Ar-unitary which completes the proof.

Proof of Theorem 1.7. Follows directly from Theorem 1.4 and Lemma 1.5.

Concluding remark. The model operators by Bello-Yakubovich [4] for Cα class or by McCullough-
Pascoe [12] for QAr cannot be normal or subnormal operators as a subnormal operator in C1,r is
an Ar-contraction by Proposition 2.10 and a subnormal operator in QAr has Ar as a spectral set
by Proposition 2.11. The chain Ar ⊊ Cα ⊊ C1,r clearly shows that an operator in Ar cannot be
a model for C1,r. Also Example 2.12 confirms that the operators having Ar as a spectral set is
properly contained in QAr and thus cannot be a model for the QAr. However, our models for both
C1,r and QAr consist of a pair of normal operators having their spectrums on the boundary of the
annuli Ar and Ar respectively.
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