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107.40 Four points, six distances

Given four points in the plane there are six distances between pairs of
points. But given six positive numbers, can they always be the six distances
between four points in the plane? Evidently not, since if all the numbers are
1 then three points will form an equilaterial triangle and there is no way to
fit a fourth point with distance 1 from those three. However this is possible
in three dimensions, as the vertices of a regular tetrahedron. As another
example, if the six numbers are 1, 2, 4, 7, 12, 20 then even going into three
dimensions won't help, since no three of these can be the sides of a triangle.
Indeed it is evident that of the 20 triples chosen from the six numbers, at
least four must be the sides of real triangles for the configuration to exist.
We do allow three or even all four of the points to be collinear, in which
case some triples of numbers may give degenerate, but nonetheless real,
triangles. (I use the term ‘real triangle’ for one whose longest, or equal
longest, side is  the sum of the other two, and ‘degenerate triangle’ for the
case of equality.)

≤

1.  Four points in a plane
Four distinct points in a euclidean plane have five ‘degrees of freedom’

in the sense that, placing one point at the origin and another on the -axis,
there are then five numbers which determine the positions of all points: the
-coordinate of the second point and the ,  coordinates of the other two.

Six equations in five unknowns should leave a single condition for a
solution to exist.

x

x x y

This condition is not hard to find.* Let , , ,  be given points in 3-
space, and  be a general point in 3-space. Then, for any real
numbers  the equation

A B C D
P = (x, y, z)

a, b, c, d, e,

a (PA)2 + b (PB)2 + c (PC)2 + d (PD)2 + e = 0 (1)
(where  for example means the distance from  to ) is the equation of a
sphere, since there are no ‘cross terms’ involving two of , ,  and the
coefficients of  and  are all equal to . What we need
is for the sphere to pass through all four points  and, crucially, for
the sphere to be in actuality a plane which means that .
So we now put , , ,  in succession in (1) and
add the equation . This gives five equations in five
unknowns, which in matrix form is

PA P A
x y z

x2, y2 z2 a + b + c + d
A, B, C, D

a + b + c + d = 0
P = A P = B P = C P = D

a + b + c + d = 0

( ) ( ) = ( ) . (2)

0 (AB)2 (AC)2 (AD)2  1 
(AB)2 0 (BC)2 (BD)2  1 
(AC)2 (BC)2 0 (CD)2  1 
(AD)2 (BD)2 (CD)2 0  1 

1 1 1 1  0 

a
b
c
d
e

0
0
0
0
0

* This argument was shown to me several decades ago by John Tyrrell.
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The  matrix above will be called  in what follows. Then (2) has a
solution with  not all zero if, and only if, the determinant of  is
0. For example, with all distances equal to 1 the determinant is 4, but if

 and  (an equilateral
triangle  and its centroid ) the determinant is 0.

5 × 5 M
a, b, c, d, e M

AB = BC = AC = 1 AD = BD = CD = 3 / 3
ABC D

Hence:

A necessary condition for six distances to be realised by four
points in a plane is  where  is the  matrix
in (2).

det (M) = 0 M 5 × 5

The attractive feature about the necessary condition  is that
it is completely symmetric in the six distances. An alternative approach is
given in the next section, on the situation in 3-space. Unfortunately the
necessary condition is not sufficient, since any three of the four points in the
plane must form a real triangle, that is with the longest side less than or
equal to the sum of the lengths of the other two sides. For example taking

, ,  these cannot be the sides of a real triangle, so
no fourth point can be added, keeping these distances between three of the
four. Yet substituting these, and ,  the condition

 comes to  which has two coincident
positive solutions for , namely . If on the other hand we choose

, ,  (not the sides of a triangle) then there is a
consistent solution, such as ,  and . In this case,

, ,  are in a straight line since . An example with two
solutions for  is , , , , ,

 where the plus sign in the choice of  just squeaks
through the requirement that  is a real (and non-degenerate) triangle:

 approximately.

det (M) = 0

AB = 1 BC = 2 AC = 4

AD = 4 BD = 5
det (M) = 0 ((CD)2 − 84)2 = 0

CD 2 21
AB = 1 AC = 2 AD = 4

BC = 3 CD = 5 BD = 29
2

B A C AB + AC = BC
CD AB = 1 AC = 2 AD = 4 BC = 2 BD = 13

CD = 15 ± 3 CD
BCD

BD + BC − CD = 0.00052

Definition: Three positive numbers such that the largest, or equal largest, is
less than or equal to the sum of the other two will be said to have the
triangle property.

Hence:
To the above necessary condition we must add that, for the four
triples of distances obtained by omitting in succession one of
the points , , , , all have the triangle property.A B C D
In terms of the list of six numbers to be used as distances this
means that they can be divided into four sets of three numbers,
each pair of these four sets having a single number in common,
and each set of three having the triangle property.

We shall in fact usually think of distances as being assigned between
definite pairs of points among .A, B, C, D
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Example 1 (the  problem):pqr

A B

C
p

θ

c
q r

c

D

FIGURE 1

Let , ,  be the distances of  from three corners of a square of side ,
as shown. Given  (all ) when will there exist ? The
condition  becomes

p q r D c
p, q, r > 0 c > 0

det (M) = 0

2c4 − 2c2 (p2 + r2) + (p2 − q2)2
+ (q2 − r2)2

= 0,
which, as a quadratic in , has real solutions if, and only if, c2

(p2 + r2)2
> 2 ((p2 − q2)2

+ (q2 − r2)2) .
When real the solutions for  are always positive since (i) they have the
same sign, and (ii) the turning point of the graph of the above quadratic in
occurs at . (Alternatively the sum of the roots is > 0
and product of the roots is  .)

c
c2

c2 = 1
2 (p2 + r2) > 0

≥ 0
An interesting case is   (for example , ,

), where the condition boils down to
 in the numerical example). In fact some straightforward

trigonometry (cosine and sine rules) shows that  and
 or  respectively for the + and − signs. In this case there is no

problem with the existence of the triangles.

p2 + 2q2 = r2 p = 1 q = 2
r = 3 c2 = p2 + q2 ± pq 2
(c2 = 5 ± 2 2

sin θ + cos θ = 0
θ = 135° 45°

If  then  and , so  is
straight.

p = q = r c = p 2 p2 + q2 = q2 + r2 = c2 CDB

Taking , ,  in  gives ,
which has no real roots. A trigonometrical argument also shows that

 which is impossible.

p = 1 q = 3 r = 2 det (M) = 0 2c4 − 10c2 + 89 = 0

cos θ + sin θ = 15
6 > 2

Example 2: Let , ,  so that , ,  are in a
straight line. Then  gives, after some rearrangement, the
standard formula (Stewart's Theorem, 1746)

AB = x BC = y AC = x + y A B C
det (M) = 0

(BD)2 =
x (CD)2 + y (AD)2

x + y
− xy.
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When  so that  is a median of triangle  then this reduces to
Apollonius's theorem

x = y BD ACD

(2BD)2 = 2 ((AD)2 + (CD)2) − (AC)2 .

Example 3: Let  so that , ,  are the vertices of an
equilateral triangle. Then the condition relating the distances of these points
from  is

AB = BC = AC = 1 A B C

D

(AD)4 + (BD)4 + (CD)4 − (AD)2 (BD)2 − (AD)2 (CD)2 − (BD)2 (CD)2

− (AD)2 − (BD)2 − (CD)2 + 1 = 0.
In this case it is geometrically evident that if  and  are chosen such
that , ,  form a proper triangle, then there will aways exist a positive
solution to this equation for , indeed two solutions in general, realising
this set of six numbers as distances between four points , , , . In fact,
the condition for the equation, regarded as a quadratic equation in , to
have real positive roots factorises as

AD BD
A B D

CD
A B C D

(CD)2

(AD + 1 − BD)(BD + 1 − AD)(AD + BD − 1)(AD + BD + 1) ≥ 0.
This certainly holds if  is a real triangle (recall ), and, if it is
not, then the configuration of four points , , ,  cannot exist.

ABD AB = 1
A B C D

2.  Four points in 3-space
Again we are given six numbers , , , , , , all positive, which we

want to be the distances between four points, this time in 3-space. Four
points in 3-space have six ‘degrees of freedom’ and there are six distances,
so this time we can expect there to be no general equation connecting the six
distances; however there will be inequalities among the distances which
impose constraints. For example, the triangle property must be respected,
but there might be others.

a b c d e f

The ‘sphere’ argument used above for the planar case does not appear to
yield anything interesting, so here is a direct approach. It is not so
symmetrical as the ‘sphere’ argument, but has the advantage that given one
real triangle, with sides , , , which must exist for any hope of realising
the whole of the six lengths, there is a single necessary and sufficient
condition for the configuration to be possible.

a b c

Let us choose three numbers, say , ,  of the six, all > 0, which satisfy
the triangle property and use those to construct a triangle , where we
choose , ,  and , where

 (or else , ,  are collinear and the figure of four points is planar).
We also write  and . Thus

a b c
ABC

A = (0,  0,  0) B = (c,  0,  0) c > 0 C = (u, v,  0)
v ≠ 0 A B C

AC = b BC = a

(i) : u2 + v2 = b2;  (ii) : (u − c)2 + v2 = a2.
If no such triple exists then the six distances cannot be realised. Further let

. The remaining three distances are ,  andD = (x, y, z) AD = d BD = e
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, say (see Figure 2a). ThenCD = f

(iii) : x2 + y2 + z2 = d2, (iv) : (x − c)2 + y2 + z2 = e2,

(v) : (x − u)2 + (y − v)2 + z2 = f 2.
Using (i) to simplify (ii) allows us to solve for  in terms of , , , then (i)
gives us  . Using (iv)-(iii) we have  (introducing  and  now), and

, using (i), gives , allowing a solution for . In fact

u a b c
v2 x d e

(v)-(iii) 2ux + 2vy y2

x =
c2 + d2 − e2

2c
,  2ux + 2vy = b2 + d2 − f 2,

u =
b2 + c2 − a2

2c
, v2 =

4b2c2 − (b2 + c2 − a2)2

4c2
.

Finally the consistency condition becomes ,
equality being the planar case as above. Making the substitutions for  and

 results in rather a complicated condition, best found using software such
as Maple! We find that  has an interesting denominator,

, which is negative for a
non-degenerate triangle . Taking this sign into account then some
experimentation shows that it is possible to do some grouping of terms: the
condition  is

z2 = d2 − x2 − y2 ≥ 0
x2

y2

d2 − x2 − y2

(a − b + c) (a + b + c) (a − b − c) (a + b − c)
ABC

z2 ≥ 0

a2d2 (−a2 + b2 + c2) + b2e2 (a2 − b2 + c2) + c2f 2 (a2 + b2 − c2)
−a2(d2 − e2)(d2 − f 2) − b2(e2 − d2)(e2 − f 2) − c2(f 2 − d2)(f 2 − e2) − a2b2c2 ≥ 0.  (3)

(a)

x

y

z

a

bc

d
e f

B (c, 0, 0)

A

C (u, v, 0)

D (x, y, z)

x
y

z

A

D (x, y, z)

(b)

( c, , 00 )C

r=e q=d p=f

c 2
c c

B (c, 0, 0)

FIGURE 2

As an example, if  (equilateral triangle in the plane
) and  then the condition becomes . Equality

here is realised by an equilaterial triangle with its centroid (the planar case)
but in three dimensions the other three equal lengths can be any number
greater than .

a = b = c = 1
z = 0 d = e = f d ≥ 1

3 3

1
3 3
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Example 4 (the  problem in 3D):pqr
See Figure 2b. Here,  and , while , ,

in the general discussion above. Writing  for  the condition (3) becomes
b = c a = c 2 f = p d = q e = r

C c2

2C2 − 2 (p2 + r2) C + (p2 − q2)2
+ (q2 − r2)2

≤ 0.
This quadratic equation in  has real roots providedC

|p − r| ≤ q 2 ≤ p + r. (4)
The sum and product of the real roots being both positive (from the

coefficient of  and the constant term respectively), this implies that both
roots are positive, hence yield real values of . Because the quadratic is ‘U-
shaped’ the interval of real values of  will be between the real roots,
assuming these exist, that is if (4) holds.

C
c

C = c2

For example, if , ,  then the interval of possible
values of  is , the two endpoints representing
the two values for the planar situation as in Example 1.

p = 1 q = 2 r = 3
c2 5 − 2 2 ≤ c2 ≤ 5 + 2 2

Note that , ,  fails to satisfy (4) so is not realisable in
three dimensions.

p = 1 q = 3 r = 2

If  then one of the solutions for  is 0, which we are
not allowing; the other solution is . For example if
the solutions for  are 0, 2, so that  can now lie in the half-open interval

.

p = q = r C = c2

C = 2p2 p = q = r = 1
C c

0 < c ≤ 2

3.  Higher numbers of points?
Five points have 10 mutual distances, and in 3-space they have nine

degrees of freedom, three more than for four points. So there should be a
single relationship between the 10 distances which, together with some
inequality requirements, determines whether a configuration of five points
exists. Indeed an argument exactly parallel to that in Section 1 gives a
determinantal criterion which is necessary but not sufficient. This time the
sphere is in 4-space and needs to contain the five points and to have ‘infinite
radius’ so that the sphere is really a ‘flat’ 3-space. The same applies to
higher dimensions,  points in -space: there will be a necessary
determinantal criterion for the  distances to be realisable.

6 × 6

n + 2 n
1
2 (n + 1) (n + 2)

On the other hand,  distinct points in -dimensional space (such as
4 points in 3-space) have between them  coordinates. For the
purpose of considering just the distances between these points—of which
there are  altogether—we need to allow for distance-preserving
transformations (isometries) of -space. The ‘special orthogonal group’

 of all isometries in -space preserving orientation and fixing a given
point has dimension , a standard result which can be found in
many internet sources. Including the translations, which have dimension ,
gives  dimensions for all isometries. So we need to subtract this
from the number  of coordinates to obtain the number of ‘degrees
of freedom’ of the  points, leaving  degrees of freedom. For

n + 1 n
n (n + 1)

1
2n (n + 1)

n
SO (n) n

1
2n (n − 1)

n
1
2n (n + 1)

n (n + 1)
n + 1 1

2n (n + 1)
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example, with  this gives 3 degrees of freedom for 3 points in the
plane, and with  it gives 6 degrees of freedom for 4 points in 3-space,
as noted above. So the number of degrees of freedom for  points in -
space is always the same as the number of mutual distances between them.
The result for  outlined in Section 2 above is therefore typical: there
will not be an identity to be satisfied by the  distances, but there
will be one or more inequalities to ensure that distances correspond with
configurations of points.

n = 2
n = 3

n + 1 n

n = 3
1
2n (n + 1)

Question: what can be said about the case of four concyclic points and
their six distances?
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107.41 Langley's Problem: 100 years on

Edward Mann Langley was the founder and first editor of The
Mathematical Gazette. Among his many contributions is a short note [1]. In
just two lines of text, squeezed in at the bottom of a page, he sets a tantalising
problem. Figure 1 shows it in diagrammatic form. Given that ,

, ,  readers were asked to prove that .
AB = AC

a = 20° b = 50° c = 60° θ = 30°

E

D θ

C
c b

B

A

a

FIGURE 1

Solutions were published in a subsequent issue [2]. Some made use of
trigonometry, others only the most elementary geometry.
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