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Free Logic 1

1 Introduction
Imagine that you are sitting in an introductory university course on the Ancient
Mediterranean world, and the teacher poses the following questions: Did
Homer exist? Did Hippocrates? Did the cities of Troy and Atlantis? These seem
like substantial questions, which require serious archaeological and textual
research to answer responsibly. At any rate, your teacher treats them that way,
presenting various pieces of empirical evidence that bear on these questions,
and describing competing historical hypotheses concerning these topics.
Now imagine that your next class that day is Introduction to Logic. You have

just begun the section on first­order logic, and the teacher informs the class that
standard first­order logic contains names. These names, the teacher tells you,
must satisfy the

Principle of Univocality (PU): Every name refers to exactly one existing
individual (Carnap, 1956, p. 98).

This Principle can be thought of as the conjunction of two components, namely,
an existence condition and a uniqueness condition.

(PU­Existence) Every name refers to at least one existing individual.
(PU­Uniqueness) Every name refers to at most one existing individual.

For many names in ordinary language, both of these conditions hold. There is
exactly one country currently named ‘Zambia,’ and exactly one number named
by the numeral ‘7.’ For other names, the uniqueness condition does not imme­
diately hold, because many names are ambiguous (e.g., many people currently
alive on Earth have the name ‘María Rodríguez’). However, in most cases
where uniqueness fails like this, speakers can easily disambiguate any ambigu­
ous names they see or hear. For example, ‘Paris’ can be used to refer to a small
town in northeast Texas, or the largest metropolis in France. Therefore, with­
out further disambiguation, the sentence ‘Paris has over 200,000 inhabitants’
is ambiguous, and as a result it seems indeterminate whether that sentence is
true or false, since the town in Texas has fewer than 200,000 inhabitants while
the city in France has more than that number. However, if we replace the single
name ‘Paris’ in our languagewith two names, ‘Paris, France’ and ‘Paris, Texas,’
then the ambiguity disappears. Each of those two names refers uniquely, and
if we substitute exactly one of them into the previously indeterminate sentence
in place of ‘Paris,’ the resulting sentence becomes true on the first disambigu­
ation, and false on the second disambiguation. Hearers can also disambiguate
based on context clues: If a speaker is talking about seeing the Mona Lisa last
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2 Philosophy and Logic

Figure 1 Eiffel Tower in Paris, Texas, US.
Source: Carol Highsmith, commons.wikimedia.org/w/index.php?curid=51241417.

summer, then most likely any uses of ‘Paris’ will refer to Paris, France. (The
speaker’s use of the phrase ‘Eiffel Tower’ instead of ‘Mona Lisa’ would not
necessarily have the same effect: The town in Texas has also built a structure
it has named ‘Eiffel Tower’; see Figure 1.)
However, we sometimes use names that do not satisfy the Principle of

Univocality, and (unlike ‘Paris’) cannot be straightforwardly amended or dis­
ambiguated by context to meet that Principle. For example, when your Ancient
history lecturer tells you ‘The Greeks worshipped Zeus’ or ‘Atlantis never
existed,’ the names ‘Zeus’ and ‘Atlantis’ do not refer to anything that exists
in the actual world (assuming the Ancient Greek myths and legends are not
literally true). That is, the names ‘Zeus’ and ‘Atlantis’ do not satisfy (PU­
Existence). And your ancient history lecturer also informs you that, given the
evidence currently available to us, therewasmost likely no single person named
‘Homer’ who created the Iliad and theOdyssey. Rather, an oral tradition involv­
ing several people shaped the two epic poems that have come down to us.
And the situation with the name ‘Hippocrates’ is somewhat similar. The set
of medical texts we currently have from the Ancient Mediterranean, which ini­
tially appear to be written by a single physician, were most likely composed
by several different people writing under the name ‘Hippocrates.’ We know
relatively little about these people as individuals, besides the fact that each

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009122764
Downloaded from https://www.cambridge.org/core. IP address: 18.188.69.183, on 30 Jan 2025 at 16:41:49, subject to the Cambridge Core terms of

commons.wikimedia.org/w/index.php?curid=51241417
https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009122764
https://www.cambridge.org/core


Free Logic 3

wrote a text that has been traditionally attributed to Hippocrates. Thus, we lack
the resources needed to disambiguate the names ‘Homer’ and ‘Hippocrates’
successfully in the way we are able to disambiguate ‘Paris.’ Therefore, since
the names ‘Homer,’ ‘Hippocrates,’ and ‘Atlantis’ violate the Principle of Uni­
vocality, you cannot use the tools you learned in your Introduction to Logic
course to reason using sentences containing those names or ones like them, or
to evaluate other people’s reasoning when they use such sentences.
The field of free logic, traditionally understood, is a family of logics cover­

ing inferences involving ‘Zeus,’ ‘Atlantis,’ and similar names. The name ‘free
logic’ abbreviates the full description of this field, namely: ‘Logic of languages
whose terms are free of existence assumptions.’ In other words, in a free logic,
unlike classical logic, (PU­Existence) need not hold. A logic is typically called
‘free’ if it allows languages to have names that fail to refer to anything existent,
such as ‘Zeus’ and ‘Atlantis.’ Such terms are often called ‘empty names.’ As
we will see in Section 3.4.4, on one version of free logic, ‘Zeus’ and ‘Atlantis’
can satisfy a weakened version of the Principle of Univocality, obtained by
dropping the word ‘existing’ from the original formulation: If we allow names
to refer to non­existent things, then the name ‘Zeus’ can refer to exactly one of
those non­existing things. In such free logics, ‘Zeus exists’ is nonetheless false,
because the quantifiers only range over existing things, and the quantifier ∃ is
still used to express existence.
From the point of view of proof rules, the distinguishing feature of logics that

allow for empty names is that the following two classical rules do not hold:

(Classical ∀­Elimination) Everything is F, therefore b is F
(Classical ∃­Introduction) b is F, therefore something is F

where F is any predicate and b is any name. For example, suppose it is true that
everything is located somewhere in space and time. It does not follow that Zeus
is located somewhere in space and time. The proof rules of free logics, unlike
those of classical logics, capture that fact. Or consider the following informal
argument and its formal regimentation:

Everything exists ∀x∃y(x = y)
Thus, Atlantis exists ∴ ∃y(a = y) (by ∀­Elimination)

(where ‘a’ abbreviates ‘Atlantis’). This is valid in classical logic (assuming
‘Atlantis’ is a name), but it seems to be a pretty clearly invalid argument, from
an intuitive standpoint. And it is in fact invalid in free logics. The core idea of
the proof rules in free logic is to weaken the above two proof rules, by requiring
an additional premise to use each rule:
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4 Philosophy and Logic

(Free ∀­Elimination) Everything is F, b exists; therefore b is F
(Free ∃­Introduction) b is F, b exists; therefore something is F

where as before F is any predicate and b is any name.1

Logics that allow for empty names have been heavily studied and devel­
oped since the 1960s. An excellent, freely available, detailed introduction to
much of this work that can be found in Nolt (2010); another very valuable over­
view is Lambert (2001). Both of those pieces should be mostly understandable
to someone who has had a single logic course covering quantificational logic
with identity. More advanced treatments are available in Bencivenga (2002)
and Lehmann (2002). Because all these works are excellent, this text will not
attempt to re­do what these authors have already done so well. Any reader who
wants to fully understand the field of free logic as it currently stands is strongly
encouraged to consult these resources, and I draw upon them substantially in the
present work. Furthermore, these works cover certain important topics which
the present work omits.
However, far less work has been done thus far on logics that relax the

other half of the Principle of Univocality, namely the assumption that every
name refers to at most one individual. A distinguishing feature of this Elem­
ent is that it also investigates the logic of languages that fail to satisfy the
uniqueness condition on names and predicates.2 Subsequent sections exam­
ine not only languages that fail to meet (PU­Existence), but also languages
that fail to satisfy (PU­Uniqueness). In other words, the present work takes
the initial impetus of standard free logics one step further: Whereas long­
standing free logics are only free of existence assumptions, the present work
also discusses logics free of uniqueness assumptions for names and predicates.
We can call logics that relax both the existence and uniqueness assump­
tions ‘Generalized free logics.’ There are several important logical parallels
between logics that drop the existence assumption and those that drop the
uniqueness assumption, but they also diverge in important ways. A cen­
tral aim of this Element is to articulate those similarities as well as those
differences.
Who is this book for? I have tried to write this Element so that almost all

of it could be followed by someone who has taken a semester­long university

1 This assumes the language has names. Even in languages without names, the free versions of
these two rules are different from their classical versions; see p. 62 for the statement of these
rules in a language without names.

2 David Ripley (2018) explores failures of uniqueness at the level of sentences. Some failures of
uniqueness first appear at the level of sentences, such as syntactic ambiguity (‘The Japanese
history teacher is tall’).
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Free Logic 5

course in first­order logic, such as is found in Barker­Plummer, Barwise, and
Etchemendy (2011, ch. 1–13, 18) or the freely available Magnus et al. (2021,
I–VII). Models will be treated more abstractly here, but the core ideas are the
same as in the cited texts. Like those textbooks, the proofs here are presented
in Fitch­style natural deduction format, so prior familiarity with that way of
presenting formal proofs will be helpful. Parts of Section 4.3 will likely be the
most difficult to follow for people without further background in logic.
I have attempted to make this Element useful and comprehensible not just

to readers who are interested in free logic for its own sake, but also for people
interested in metaphysics, philosophy of language, and philosophy of science.
The central ideas motivating free logic, both in its standard, narrower form and
the broader version presented in this Element, are directly relevant to these
subfields of philosophy. So even if logic itself is not your primary focus, I hope
the following pages contain some useful material for your primary interests.

2 Why Free Logic?
This section presents reasons for studying and using (generalized) free logic. If
you believe there is in fact exactly one correct logic, you can take this section
as providing reasons in favor of generalized free logic holding that title (or at
least, for the characteristic features of generalized free logic being included
in whatever your final preferred logic is). However, this section need not be
understood as arguing that some version of free logic is the one correct logic.
For even if you deny that there is one correct or best logic, that is, you are
a logical pluralist like Beall and Restall (2006), you must still decide which
particular logics are worth investigating and using. For there are infinitelymany
logics that potentially could be studied, and our time is finite. So for a pluralist,
this section can be understood as arguing that generalized free logics should
be among the few logics, selected from the infinity of all logics, that people
actually devote time to investigating.

2.1 Human Languages Have Names That Are Not Univocal
The most straightforward reason to develop free logics is that the Principle
of Univocality fails sometimes, and we would like to understand what effects
such failures have on logic. We want to be able to reason logically about
sentences containing terms like ‘Atlantis’ and ‘Homer.’ Ordinary languages
contain names that apparently refer to nothing at all, such as ‘Pegasus,’ ‘Santa
Claus,’ and ‘Atlantis.’ Such non­referring names are not restricted to myths,
legends, and literary fictions. For example, in 2020, the New York Times ran
an article with the seemingly paradoxical title “The Anonymous Professor
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6 Philosophy and Logic

Who Wasn’t”, with the subheading “A professor at Arizona State University
does not exist” (Bromwich & Marcus, 2020).3 On Twitter, an account with the
pseudonymous username ‘Alepo’ claimed to be a professor at Arizona State
University. But as the New York Times article showed, Alepo never existed.
The account was created by another professor, at a different university. Another
famous example, often used in discussions of free logics, is the name ‘Vulcan.’
Several years before Einstein’s General Theory of Relativity was proposed,
astronomers noticed that their observations of Mercury’s orbit conflicted with
the predictions of Newtonian gravitation theory. To explain this discrepancy,
the astronomer Le Verrier postulated the existence of a planet betweenMercury
and the Sun. He named this hypothesized planet, which we now know does not
actually exist, ‘Vulcan.’ In short, the existence assumption of the Principle of
Univocality fails sometimes.
There are also names that violate the uniqueness assumption of the Prin­

ciple of Univocality. Joseph Camp offers a concrete example, which I shall use
throughout to help fix ideas (Camp, 2002). Camp asks us to imagine a per­
son, Fred, who goes to the pet store and purchases an ant colony in a box. The
owner of the pet store tells Fred that every ant colony comes with many small
ants and one big ant. When Fred gets home, he says “I’ll call the big ant in
this colony ‘Charley’.” Let us further suppose that Fred has not yet actually
seen any of the ants at the moment of baptism. Unbeknownst to Fred, there
was a mistake at the ant­farm factory, and there are actually two large ants in
this colony. Let us call them ‘Ant A’ and ‘Ant B.’ These are names in our
language, not in Fred’s. Unfortunately, Fred is not very attentive, and when
he opens up the ant­farm box and dumps all the ants into the farm, he fails to
notice that there are two large ants in his colony. Further suppose that Fred
never observes the two large ants simultaneously, and and as a result his lan­
guage lacks names for Ant A and Ant B. But his language does contain the
name ‘Charley,’ which can arguably be thought of as referring to both Ant A
and Ant B (see Figure 2). There are too many ants, and not enough names (in
Fred’s language) to go around. (Further assume that neither Ant A nor Ant B
is the “dominant causal source” of Fred’s uses of the word ‘Charley’ and its
associated mental representations, that is, Fred has as many interactions with
one ant as he does with the other. For if Fred only ever saw Ant A, it would
be reasonable to say that when he says ‘Charley’ that word refers to Ant A
only [Lawlor 2007, p. 162].) If we think of the name ‘Charley’ as referring to
multiple things, then we can describe ‘Charley’ as being ambiguous between

3 https://www.nytimes.com/2020/08/04/style/college­coronavirus­hoax.html
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Free Logic 7

Figure 2 ‘Charley’ visualized.
Source: Alexander Wild, www.alexanderwild.com/Professional/Public­Domain/.

Ant A and Ant B, or as conflating or confusing Ant A with Ant B.4 But Fred
does not explicitly think those thoughts – in this respect, he is even worse off
than we are with respect to names like ‘Homer’ and ‘Hippocrates,’ since we
at least know that those names do not refer to a single person. Graham Priest
(1995, p. 369) offers another example of this type. Imagine an ameoba, which
we name a. At some point after we named it, it undergoes binary fission, split­
ting into two nearly identical ‘daughter’ cells. According to Priest, the name a
now multiply refers to both of the daughter cells.
Now, others may interpret the story of Fred (and Priest’s ameoba) differently.

Specifically, some may say that ‘Charley’ does not refer to both Ant A and Ant
B, but rather refers to nothing at all: A singular term (such as a name) that does
not pick out a single individual fails to refer to anything (Recanati, 2012). This
way of thinking about ‘Charley’ is modeled logically by neutral and negative
free logics (see Sections 3.2 and 3.3, respectively).
And there are real­life, modern­day examples of such ambiguous names,

as well. For example, the figure at the center of the QAnon conspiracy the­
ory, known only by the name ‘Q,’ is most likely two different people.5

4 This is compatible with some of Fred’s uses of ‘Charley’ referring to exactly one of the two
ants. For example, if Fred is looking directly at Ant A, and says “Look! There’s Charley!,”
that particular utterance of the word ‘Charley,’ on that occasion, plausibly refers to Ant A but
not Ant B. Alternatively, we could say (following Kripke’s terminology) that the “semantic
reference” of ‘Charley,’ even in this situation, is still ambiguous between the two ants, but that
the “speaker’s reference” of that word on this occasion is Ant A only (Kripke, 1977).

5 As a recent headline puts it, “QAnon’s Mysterious Leader ‘Q’ Is Actually Multiple People”
(Gilbert, 2020). This article is based on the research in an OrphAnalytics white paper
(OrphAnalytics, 2020).
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8 Philosophy and Logic

So such ambiguous names are not merely an artificial contrivance invented by
philosophers or logicians to explore in the seminar room, but rather a naturally
occurring linguistic phenomenon.
Failures of unique reference are not restricted to names. Definite descrip­

tions, phrases of the form ‘The F,’ are another. Such phrases appear, from a
linguistic point of view, to be singular terms, despite Bertrand Russell and his
supporters’ arguments to the contrary (see p. 17). That is to say: In felicitous cir­
cumstances, such phrases pick out exactly one existing individual. For example,
‘The German Chancellor in 2015’ picks out Angela Merkel. However, some­
times circumstances are not felicitous. Russell made famous the example of
‘The current king of France.’ This definite description does not refer to any­
thing (that exists), even if you believe contra Russell that definite descriptions
are singular terms. Definite descriptions can fail in the other direction too. For
example, the phrase ‘The US senator from New York in 2023’ fails to refer
uniquely to any individual, since there are two such senators (Chuck Schumer
and Kirsten Gillibrand). Russell’s way of handling problems arising from such
cases of descriptions that fail to pick out a unique, existing individual denies
that definite descriptions are singular terms; free logic allows for accounts of
definite descriptions that make them singular terms, without requiring them to
refer to exactly one existing individual.
Failures of uniqueness are not restricted to singular terms; predicates can

be ambiguous too. For example, in chemistry, the simple term ‘acid’ has three
definitions:

1. An Arrhenius acid increases the concentration of H+ ions in water when
dissolved.

2. A Brønsted­Lowry acid is a proton donor.
3. A Lewis acid can accept two electrons to make a covalent bond.

And in biology, the old term ‘warm­blooded,’ as applied to organisms, conflates
three concepts scientists now consider distinct:

1. endothermic (primary energy source is food, not the sun)
2. tachymetabolic (faster metabolism)
3. homeothermic (roughly constant internal temperature)

Similarly, Sarah Richardson’s (2022) work provides evidence that terms for
biological sexes are potentially ambiguous: Are ‘male’ and ‘female’ about an
organism’s chromosomes, or quantities of estrogen (either currently or in the
past), or quantities of testosterone? These variables can come apart. In some
cases, scientists are clearly using a single one of these operationalizations of the
terms ‘male’ or ‘female.’ But in other cases, they are not. In all three cases of
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Free Logic 9

‘acid,’ ‘warm­blooded,’ and ‘female,’ many entities satisfy either all of the con­
ditions, or none of them. So the ambiguity will often be inferentially harmless.6

But the ambiguity is there, nonetheless.

2.2 Classical Logic Misclassifies the Logical Truths, or Restricts
Logic’s Applicability

One of the basic proof rules for classical first­order logic in a natural­deduction
system is =­Introduction: For any name b, b = b. So, for example, if the phrase
‘Angela Merkel’ is a name, then ‘Angela Merkel = Angela Merkel’ is a the­
orem, and thus because first­order logic is sound,7 it is a logical truth. A second
basic proof­rule of classical first­order logic is ∃­Introduction: From F(b), one
can infer ∃xF(x). So for example, given ‘AngelaMerkel was Chancellor of Ger­
many in 2020,’ the ∃­Introduction rule lets us derive ‘Someone (or something)
was Chancellor of Germany in 2020.’ This particular example inference seems
intuitively unobjectionable: If Merkel was chancellor, then it seems legitimate
to infer that somebody or other was chancellor. However, when we combine
these two rules, applying ∃­Introduction to ‘Angela Merkel = Angela Merkel,’
we can derive the sentence ‘∃x(x = Angela Merkel).’ This sentence ismore col­
loquially paraphrased as ‘AngelaMerkel exists.’ Now, simply from an intuitive
point of view, many people feel that this sentence, though true, is not a logical
truth. The fact that Angela Merkel exists does not intuitively seem like a matter
of pure logic alone. Similarly, for any name b, the sentence ∃x(x , b) is logi­
cally false in classical logic. But saying that this or that individual thing does
not exist does not strike most people as logically false, even when it is false.
To frame this point in terms of Ancient Greek philosophy: Standard textbook
first­order logic in effect accepts Parmenides’ claim that it is impossible to talk
or think about individuals that do not exist (Priest, 2009, p. 236). The free logi­
cian, in contrast, attempts to formulate a logic in which Parmenides’ view is
not taken for granted in the logic itself.
Now, the classical logician could object to this reasoning as follows. Note

that, at the beginning of the previous paragraph, we assumed that ‘Angela

6 Thus these are examples of what Stephen Yablo (2006) calls “non­catastrophic presupposition
failure,” the failed presupposition here being that the predicates ‘acid,’ ‘warm­blooded,’ and
‘female’ have unique extensions.

7 Recall that a proof system is called strongly sound if every proof in that system is a truth­
preserving argument in the chosen semantics. A proof system isweakly sound if every theorem
(i.e., the last line of a proof with no premises) is a logical truth. Completeness is the converse.
If a proof system is strongly complete, every truth­preserving argument has a proof using the
proof­rules of the system. A proof system is weakly complete if and only if (henceforth, ‘iff’)
every logical truth is a theorem. For each of soundness and completeness, the strong version
entails the weak version, but not conversely.
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10 Philosophy and Logic

Merkel’ is a name. Our logic textbooks state that what it is to be a name
in classical logic, from a semantic point of view, is just to be a term that
refers to exactly one individual in the domain of quantification. If the seman­
tic rules governing terms in the logic guarantee that a term t refers to exactly
one individual in the domain, then ∃x(x = t) is guaranteed to be true – and
thus should be counted as a logical truth, contra the argument in the preceding
paragraph.
This reasoning is impeccable: If b is guaranteed to refer to exactly one indi­

vidual, then ∃x(x = b) is guaranteed to be true. However, classical logicians
still face an unpalatable dilemma, when they return to the sentence ‘Angela
Merkel exists.’ Should it be considered a logical truth, or not? If the classical
logician says it is not a logical truth, then ‘Angela Merkel’ must not be a name
(in the logical sense described in the immediately preceding paragraph). But
if you accept that, then you cannot apply the logical rules involving logical
names (∀­elimination and ∃­introduction) to ordinary­language sentences and
inferences involving what we typically think of as names in ordinary language,
like ‘Angela Merkel.’ Logic becomes inapplicable to our everyday reasoning
about particular individuals, on this horn of the dilemma.8

If the defender of classical logic takes the other horn of the dilemma, then
they can say ‘Angela Merkel exists’ is a logical truth, on the grounds that this
English sentence should be formalized as ∃x(x = b), where ‘Angela Merkel’
is symbolized as a name. But as was said three paragraphs ago, this sentence
does not intuitively seem like a logical truth. And this intuitive feeling can be
justified by appealing to certain conditions commonly placed on logical truth.
Specifically, many people would like to accept the following three principles.
All logical truths are (1) necessarily true (if anything is), (2) knowable a pri­
ori (if anything is), and (3) formal. But, as the next three subsections argue,
‘∃x(x = Angela Merkel)’ is contingently true, only knowable a posteriori, and
(at least arguably) not true solely in virtue of its grammatical or syntactic form.
Summarizing the dilemma, the classical logician faces two unacceptable alter­
natives: Either ‘Angela Merkel exists’ is a logical truth, or the logical rules
involving names (∀­elimination and ∃­introduction) are not applicable to actual
claims and arguments in ordinary language and thought. Free logic avoids both
horns, by allowing names that do not refer to exactly one individual in the
domain of quantification, and changing the proof rules accordingly.

8 The end of Section 2.2.3 also argues that classical logic risks making logic inapplicable, but the
argument below proceeds from a syntactic perspective, instead of the semantic point of view
used here.

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009122764
Downloaded from https://www.cambridge.org/core. IP address: 18.188.69.183, on 30 Jan 2025 at 16:41:49, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009122764
https://www.cambridge.org/core


Free Logic 11

2.2.1 Logical Truths Are Necessary

First, ChancellorMerkel’s existence is contingent. If her parents had never met,
then she would never have existed. And it is possible that her parents might
have never met: For example, one or both of them could have died in child­
hood. No contingent truths should be logical truths, yet the classical rules for
=­Introduction and ∃­Introduction appear to make them just that, for classical
logicians who think ‘Angela Merkel’ can be logically modeled as a name.
It is worth mentioning here a further subspecies of free logic, so­called uni­

versally free logic. Standard free logic, as we have seen, allows for names that
have no referents. However, the semantics that is often presented for free logic
requires, as a matter of logic, that at least one thing exists (in the technical lan­
guage we will see in Section 3.1, the domain of quantification is not empty).
And while it is incontrovertible that something actually exists (otherwise, with
a nod to Descartes’ cogito, who or what would be doing the controverting?), it
is not obvious that it is logically necessary that something exists. In some non­
trivial sense of ‘could,’ there could have been no individual entities. At least,
it does not seem that logic alone requires that there be something rather than
nothing. An ‘inclusive’ logic, unlike classical logic, is any logic that allows as a
logical possibility the circumstance in which nothing exists. For example, con­
sider the English sentence ‘There is something that is either funny or not funny.’
In classical first­order logic, this would be formalized as ∃x(F(x)∨¬F(x)). And
this is provable in classical first­order logic. But in inclusive logics, it is not. A
logic that is both inclusive and free is called ‘universally free.’ In sum, univer­
sally free logics, unlike classical logics, avoid committing to the view that it is
necessary that there is something rather than nothing, and that Angela Merkel
exists necessarily.9

2.2.2 Logical Truths Are Knowable a Priori

Second, we cannot know a priori that Angela Merkel exists. Most philosophers
would agree that if a sentence expresses a logical truth, then that sentence can be
known to be true a priori (if anything can – some philosophers claim that there

9 Timothy Williamson (2002, 2013) argues that ‘Angela Merkel exists necessarily’ is true.
Williamson’s argument has faced substantial criticism, e.g., Rumfitt (2003). Another critic,
Joshua Spencer (2013), claims that the truth of Williamson’s conclusion is less plausible than
the falsity of at least one of his premises, so Williamson’s modus ponens should be re­cast as
a modus tollens. And Spencer argues that the premise that is most likely to be false is ‘Every
declarative sentence is true or false.’ As we will see in Sections 3.2 and 3.4.2, this rejection is
independently motivated by leading proposals for the semantics of terms that violate the Prin­
ciple of Univocality (as well as for other semantically ‘defective’ sentences, such as sentences
that presuppose something incorrect).
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12 Philosophy and Logic

is no a priori knowledge), provided one understands the language in which the
sentence is written. But classical logicians cannot accept this principle, with­
out denying that ‘Angela Merkel’ can be modeled logically as a name, thereby
preventing us from applying the logical rules involving names to sentences con­
taining ‘Angela Merkel.’ Whether Angela Merkel (or Zeus, or Homer) exists
or not is an empirical, a posteriori matter. So the classical logician who treats
‘Angela Merkel’ as a name must deny the principle that all logical truths are
a priori, on pain of holding that one can know a priori that Merkel exists and
Zeus does not.
Free logicians, in contrast, can hold that ‘Angela Merkel’ is a name, and

that logical truths are necessary and a priori. (We will turn to formality next.)
One group (‘positive’ free logicians) make every instance of s= s, including
‘Zeus = Zeus,’ a logical truth (again, where s has all the grammatical features
of a name). The rest (‘negative’ and ‘neutral’ free logicians) agree with the
classical logician that ‘Zeus = Zeus’ is not a logical truth, but they do this by
maintaining that no instances of s= s are logical truths (though the neutral camp
will say that s= s is never false, as a matter of logic).

2.2.3 Logical Truths Are Formal

In any classical first­order logic, because of the Principle of Univocality, the
string of characters ‘Zeus = Zeus’ is not a sentence (at least if ‘Zeus’ has its
usual meaning of a non­existent Ancient Greek divinity, as opposed to nam­
ing my pet dog, for example). For in classical logic, the string of four letters
‘Zeus’ is not a genuine name, because (according to PU­Existence) every name
refers to something existent, and Zeus does not exist. And since the only things
allowed to appear on either side of the identity sign ‘=’ are singular terms
or variables (and ‘Zeus’ is definitely not a variable), ‘Zeus = Zeus’ is not a
sentence in classical first­order logic. And so neither is ‘¬∃x(x = Zeus).’
This points toward a further problem for the classical logician. Namely,

classical logic appears to be inconsistent with the claim that logical truth and
theoremhood are always purely formal. Suppose s is a string of characters
with all the grammatical or syntactic markers of a name of an individual; for
example, combining s with any one­place predicate generates a grammatical
sentence, but concatenating it with another name will not generate a gram­
matical sentence. (E.g., ‘Kelly is tall’ is a sentence, but ‘Kelly Kelly’ is not.)
However, we leave it open whether s refers to exactly one individual, that is, we
leave it open whether s meets the Principle of Univocality. As we just saw in
the immediately preceding paragraph, the classical logician holds that some
strings of characters with the form s= s are not true (e.g., ‘Zeus = Zeus’),
while others are (when s is any symbol that the classical logician recognizes
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Free Logic 13

as a logical name). But this fact about classical logic conflicts with the widely
accepted principle that a logical truth is true in virtue of its logical form
(Gómez­Torrente, 2019). For example, Ludwig Wittgenstein wrote in a 1913
letter to Russell that “the propositions of logic – and only they – have the prop­
erty that their truth or falsity, as the case may be, finds its expression in the very
sign for the proposition” (von Wright, 1974, p. 42). In other words: If a string
of characters is a logical truth, then every string with the same grammatical or
syntactic form as that string is also true.
Using the completeness theorem, and substituting ‘theorem’ for ‘logical

truth,’ we can derive an even more plausible principle than Wittgenstein’s.10

(Theoremhood­Sentence Form) If a string of characters is a theorem, then
every string that has the same grammatical or syntactic form as that
string is also a theorem.

Nowwe can formulate the apparent dilemma for the classical logician. Let b be
any symbol that the classical logician considers a name. ‘b = b’ has the same
grammatical or syntactic form as ‘Zeus = Zeus’: an apparent name, followed
by the identity sign, followed by the same apparent name a second time. The
classical logician now appears to be committed to the following inconsistent
set of claims:

1. ‘b = b’ is a theorem
2. ‘Zeus = Zeus’ is not a theorem
3. ‘b = b’ has the same syntactic form as ‘Zeus = Zeus’
4. the (Theoremhood­Sentence Form) principle above

If one prefers, this dilemma could be re­framed so that every instance of the
word ‘theorem’ is replaced by ‘logical truth,’ and the Theoremhood­Sentence
Form principle is replaced by Wittgenstein’s principle. Bencivenga (2002,
p. 173)makes essentially this argument, more concisely: “A logical truth should
only depend on its (logical) form, and there seems to be no plausible (non ad
hoc) ground for distinguishing between the form of ‘Pegasus is white’ and that
of ‘Secretariat is white’.”
The classical logician can and should counter that point 3 above is false, since

‘Zeus’ does not have all the necessary syntactic features of a logical name in
classical logic. For from a formal point of view, in order for a string of char­
acters to be a classical name, that string must obey the classical proof rules
involving names, namely ∀­Elimination (‘Everything is F, therefore b is F,’ for
any name b and predicate F ) and ∃­Introduction (‘b is F, therefore something

10 It is more plausible, because logical truth is still a semantic notion, whereas theoremhood and
form are both fully syntactic.
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14 Philosophy and Logic

[exists that] is F’). If a string of characters fails to obey all instances of those
two rules, then that string is not a classical name, from the point of view of proof
rules. And all sides of this debate agree that ‘Zeus’ does not obey these classical
rules. For example, suppose that everything that exists must exist somewhere in
space and time. But Zeus does not exist anywhere in space and time. So allow­
ing the string ‘Zeus’ into the language as a name would generate instances of
the classical ∀­Elimination rule that are invalid. And therefore, this classical
logician concludes, ‘Zeus’ does not have all the grammatical characteristics of
a name, and thus ‘Zeus = Zeus’ does not have the same syntactical form as
‘Angela Merkel = Angela Merkel.’ Therefore, the inconsistency described in
claims 1–4 above disappears.11

Everything this classical logician says is correct. However, while this
response does save the classical logician from inconsistency, it risks making
classical logic nearly unusable as a tool for inferring new claims from old
ones, that is, logic could not be used in the way it is typically used. For in
order to make correct inferences using the classical rules of ∀­Elimination and
∃­Introduction, we must know whether an apparent name s is a genuine name
(like ‘Angela Merkel’) or not (like ‘Zeus’ or ‘Hippocrates’). But if the response
of the preceding paragraph is correct, then we cannot know if s is a genuine
name or not, unless we already know that every instance of ∀­Elimination and
∃­Introduction involving s is correct. Yet in general we want to use logic as a
tool to reason (non­experientially) from previously known claims to uncover
previously unknown (to us) claims. For example, a scientist uses logic to infer a
prediction from a hypothesis. That is, we want to be able to apply∀­Elimination
and ∃­Introduction to existing information to infer new (to us) information.
This would be impossible, if we have to know antecedently that every instance
of those two proof rules involving a particular apparent name is correct. Free
logic, in contrast, makes knowing whether a particular string s counts as a name
much easier: You do not have to know that s refers to exactly one individual, or
that it validates every instance of ∀­Elimination and ∃­Intro, in order to know
that s is a name.12 The free logician can know that ‘Angela Merkel’ and ‘Zeus’
can both be modeled logically as names.

11 Thanks to Daniel Lindquist for discussion of the points of this paragraph.
12 Lehmann (2002, p. 214) makes a similar point: “logical form,” including whether an apparent

name really is a genuine name, “should be reasonably accessible, and the closer it is to the sur­
face form the better, other things equal. . . . If logical forms are contingent on whether certain
expressions refer – a matter that may be very difficult to settle – then logic may not be very
useful.” Kroon (1991, p. 21) makes a stronger claim, with a similar conclusion: “[Q]uestions
of logical syntax ought not to depend on purely contingent features of the world.” This ties
together the present point with Sections 2.2.1 and 2.2.2: Whether something is a name or not
should be a matter of logical syntax, and logical syntax is not empirical or contingent.
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Free Logic 15

In short, this section has argued that either classical first­order logic’s char­
acterization of the logical truths is too broad, or it makes logic inapplicable: It
either counts certain truths, such as ‘Indonesia exists,’ as logical, which most
people would say are not logical truths. Or if the classical logician instead
claims ‘Indonesia exists’ is not a logical truth, then the applicability of logic to
actual reasoning about particular individuals is threatened.

2.3 Philosophical Applications of Free Logic
Free logic can be of interest to logicians because of its distinctive logical prop­
erties, such as the failure of the rules of ∀­Elimination and ∃­Introduction
in their classical formulations. However, philosophers who are not logicians
can also find some use for free logic, since issues about non­existence and
confusion appear independently in philosophy of language, metaphysics, and
philosophy of science. This section briefly surveys some applications.

2.3.1 Philosophy of Language and Metaphysics

Negative existential claims, definite descriptions, empty names, and pre‐
sentism. Philosophers have long been puzzled by statements about or involv­
ing non­existence. For example, the pre­Socratic Parmenides famously held
that it is impossible to think about or talk about something that does not exist.
For if you are literally thinking or talking of something that does not exist,
then you are thinking of nothing; that is, you are not thinking about any thing
at all. Classical Indian philosophers like Uddyotakara presented a very simi­
lar argument, in order to refute their Buddhist contemporaries who argued that
the self does not exist (Chakrabarti, 1997, p. 211ff.). Roughly this same argu­
ment is studied nowadays under the title ‘The problem of negative existential
statements’ (Clapp, Reimer, & Spire, 2019).
Put briefly, the problem is this. Consider the sentence ‘Atlantis does not

exist.’ Most people (who are not conspiracy theorists) would say that sen­
tence is true. But ‘Atlantis’ does not refer to anything that exists. However,
one can now ask: What exactly is that true sentence talking about? Which
entity is being discussed? If there is no entity being discussed, then it seems
that our original sentence fails to convey the specific meaning we hoped to
convey by uttering it. If we say that there is an entity being discussed, then
it seems Atlantis does exist, and the sentence we initially thought was true
has to be false instead. As we shall see in Section 3.4.4, Meinongianism is
an attempt to block that inference: The Meinongian says that we can meaning­
fully and legitimately discuss an item or thing, without committing ourselves
to that item existing in any sense. As Priest (2016, p. xxvii), who currently
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16 Philosophy and Logic

works in the Meinongian tradition, puts it: “Some things do not exist” (Priest,
2016, p. xxvii). People trained in the standard ways of regimenting English
sentences into the symbolism of quantificational logic may hear that claim as
a logical contradiction, despite it sounding like common sense to people who
have not read logic textbooks. Priest, however, distinguishes between ‘exists’
and ‘some.’ He introduces a new quantifier for ‘some’ (S), and keeps the famil­
iar existential quantifier with its usual meaning. He also introduces a predicate
E(x), which formalizes ‘x exists.’ So the English sentence ‘Some things do not
exist’ is symbolized asSx¬E(x).
Many readers will know that one response to the problem of negative existen­

tials, inaugurated by Bertrand Russell, is that there are not (or at least need not
be, in scientifically respectable language) any genuine names, that is, terms that
pick out individuals. Instead, words that have the surface appearance of names
in our everyday language (‘Angela Merkel,’ ‘Zeus’) should instead be under­
stood as having some other deep logical­grammatical nature. Russell thought
what we typically consider names should be understood as definite descriptions
(‘the Chancellor of Germany from 2005 to 2021,’ ‘the divine being who lives
atop Mount Olympus,’ ‘the author of the Iliad’), and that definite descriptions
were not singular terms. That is, they should not be understood as referring to
individuals. Instead, they are a special kind of quantifier (see three paragraphs
below).
Quine suggested that we simply take apparent names as predicates: ‘is

Angela Merkel’ would then be in the same logical category as ‘is red’ and ‘is
an apple.’ Quine suggests introducing a predicate ‘Angela­Merkelizes,’ which
is true of only Angela Merkel. This position, known as predicativism about
names, is not the currently dominant view in philosophy of language, but in
the last several years it has attracted some new defenders, after many years of
unpopularity.13

This is an enormous issue, which is at the heart of central developments in
twentieth­century Anglophone philosophy, so there is not space to deal with
it fully here.14 If all apparent names are replaced by predicates or by definite
descriptions that are not construed as singular terms, then there cannot be any
violations of the Principle of Univocality for names, and thus the philosophical/
logical problems about negative singular existence statements will disappear
(since they become no more logically puzzling than ‘There are no humans over

13 See Sawyer (2020) for an overview of the arguments for predicativism about names, and
Jeshion (2015) for arguments against it.

14 See Bencivenga (2002, §§2­3) for an overview that pays particular attention to how this
issue relates to free logics; Fitting & Mendelsohn, (1998, §8.4) also contains relevant logical
discussion. For the early history of empty names more generally, see Textor (2016).
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Free Logic 17

ten feet tall’). However, note that the uniqueness­free languages described in
this Element allow non­univocal predicates, and thus also for non­univocal def­
inite descriptions, such as ‘the current US senator from California’ (since each
US state has two senators).
Furthermore, another motivation for pursuing free logics is the desire for

alternatives to Russell’s theory of definite descriptions. As is well known, this
theory states that a sentence of the form ‘The F is G’ is true exactly when (i)
there is at least one F, (ii) there is at most one F, and (iii) that one F is G.
Formally, Russell’s theory states (where ‘ ιxF(x)’ symbolizes ‘the F’):

G( ιxF(x)) ↔ ∃x[F(x) ∧ ∀y(F(y) → y = x) ∧ G(x)] (RussellDD)

One criticism of Russell’s theory of definite descriptions is that from a lin­
guistic point of view, ‘The F’ appears very much to be a singular term,
that is, a term that picks out an individual, but Russell’s theory does not
treat it as such, contrary to the linguistic evidence. So one might want
a theory of definite descriptions that can classify them as singular terms
(Morscher & Simons, 2001, p. 20), (Lambert & van Fraassen, 1972, p. 152).
Since the core idea of free logic is to allow singular terms that fail to refer to
exactly one individual, free logic appears naturally positioned to provide an
alternative to Russell’s theory.
The problem of negative existentials is closely related to the more gen­

eral ‘Problem of Empty Names.’ In general, the truth­value of a sentence is
determined by the referents (extensions) of the phrases in it, plus the syntactic
arrangement (i.e., logical form) of those phrases. So, in a grammatical sentence
with a (purported, apparent) name, if that name does not refer, then there will
be a ‘blank’ or missing semantic component in that sentence – a missing com­
ponent that would prevent the sentence from having any truth­value. To take
a simple example, the true sentence ‘Quito is a capital’ has the grammatical
form: name + copula + one­place predicate. For this sentence to have a truth­
value at all, it seems very plausible that the namemust refer to something, since
a string of words that is just a copula and a predicate (such as ‘is a capital’),
considered by itself, cannot express a (full, whole) proposition. The Problem
of Empty Names is the set of difficulties involved in interpreting sentences that
seem to have a semantic ‘blank’ where a (single) individual should be.
The Problem of Empty Names threatens to make communication between

people who have different beliefs about what exists impossible: If failures of
univocal reference make sentences unable to (be used to) communicate full,
meaningful propositions, then ontological disagreements threaten to become
linguistically impossible. As Greg Restall (2019, p. 11) puts it, “We would very
much like to allow the use of logical techniques in a discussion where we have
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18 Philosophy and Logic

participants who disagree not only about what is the case, but also disagree
about what there is – in a shared vocabulary with an agreed upon syntactic
regimentation.” One advantage of a free logic over classical logic is that free
logics allow for such direct disagreements in a common language.
For example, consider the debate in philosophy of time between presentists

and eternalists: Do only present things exist, or do past and future things exist,
as well as present things? The presentist says that, for example, NapoleonBona­
parte does not exist (though of course he once did); the eternalist allows that
Napoleon does exist (for he is not a fictional or mythical character). Without
using a free logic as the background logic in which to frame the debate, the
presentist’s claim ‘Napoleon does not exist’ either does not express a complete
proposition (if the presentist says ‘Napoleon’ lacks a referent) or is logically
false (if ‘Napoleon’ is treated as a legitimate name).15 And even the critics of
presentism do not think that this is the right kind of reason to reject presentism:
The real debate lies elsewhere.16

Teleosemantics. Uniqueness­free logics can be used to articulate more
precisely philosophical debates that crucially involve conflation, confusion,
and certain types of indeterminacy. For example, so­called teleoseman­
tic theories of content are often thought to face indeterminacy problems
(Neander, 2017, ch. 7). Teleosemantics attempts to provide a completely nat­
uralistic theory of representation, that is, a scientifically respectable account
of under what circumstances one thing represents (i.e., is about) another; the
most commonly discussed case is how a particular mental state in a par­
ticular organism represents a particular state of affairs in the world rather
than another. There are a wide variety of teleosemantic theories of content
(Schulte & Neander, 2022, §3), but the core idea is that the content of a rep­
resentation is determined (at least in large part) by its function. And functions
are explained naturalistically, for example, by natural selection (the function of
an organ is whatever it was selected for) or learning processes. Why do some
people think this would lead to indeterminacy of content? A commonly used
example here involves the fly­catching system of the frog. “The frog’s visual
system is designed so that a fast moving dark object flying through the visual
field will trigger a certain response; it shoots out its tongue and attempts to
capture the object” (Agar, 1993, p. 2). Many people find it very likely that
there is some cognitive state in the frog that comes between the visual stimulus
and the tongue snapping. But what, exactly, does that cognitive state represent

15 Assuming names such as ‘Napoleon Bonaparte’ are not predicates.
16 For more on free logic and presentism, see Sullivan (2012) for more on the logic, and Paoletti

(2016) for a Meinongian treatment.
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(if anything)? Indeterminacy appears here, because there seem to be multiple
plausible candidate answers teleosemantics could give to this question. It could
represent a fly (of a particular species? A particular genus?), or frog­food, or a
small, fast­moving, dark object. Each of these would play a role in increasing
the frog’s fitness in typical frog environments (‘typical’ is necessary, since in
an environment with many small, fast­moving, dark objects that are poisonous
to frogs, such a representation triggering a tongue­flick would not be adap­
tive). Different versions of teleosemantics are distinguished, in part, by adding
further conditions that pick out just one of the candidates. There is a massive
amount of debate about which of these various proposals is best. But perhaps,
as Karl Bergman (2023) suggests, we should stop trying to figure out which one
of these candidate contents is correct, and instead simply think of the content of
the frog’s representation as genuinely indeterminate between the candidate con­
tents. We could use a uniqueness­free language to say, in a logically regimented
way, that the frog’s cognitive state signifies all three (and others besides). Some
philosophers may fear that representational indeterminacy threatens some sort
of conceptual incoherence or other cognitive disaster. But if we have a logic
that allows for limited indeterminacy as amatter of course, then Bergman’s pro­
posal to embrace the apparent representational indeterminacy of teleosemantics
can be considered as a genuine, conceptually coherent alternative.

Transparency of mental content and slow‐switch cases. Another area in
philosophy of language and mind in which uniqueness­free logic could be
relevant is semantic externalism, and in particular, debates about so­called
slow­switch cases. To understand slow­switch cases (and semantic external­
ism), we need the concept of Twin Earth. Twin Earth is a place where things
have the same easily observable properties as things on our Earth do, but are
chemically very different. So for example, on Twin Earth, there is a shiny yel­
low ductile metal that is often fashioned into jewelry and used for exchanging
wedding vows. However, this stuff, at the atomic level, is not what we call
‘gold,’ that is, an element with seventy­nine protons. Instead, this stuff on Twin
Earth has a different chemical formula, which we will abbreviate ABC. Con­
fusingly for us on Earth, the word for ABC on Twin Earth is also ‘gold.’ But
(at least according to the semantic externalist) the word ‘gold’ has a different
meaning for the inhabitants of Twin Earth than it does for us here on Earth, and
thoughts involving the concept GOLD are different for inhabitants of the two
planets.
The following is an example ofwhat Tyler Burge (1988) calls a ‘slow­switch’

case. Imagine a person just like you who is born on (regular) Earth, lives there
for several years, and is exposed to a normal amount of gold, and a normal
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amount of people talking about gold. Then, one night, interstellar visitors from
Twin Earth abduct this person in their sleep, taking them to Twin Earth. But
when the traveler wakes up, it appears to them that they are in their usual bed,
surrounded by the usual people, in their usual neighborhood. In other words,
from their point of view, there have been no detectable changes. This is called
a ‘slow­switch’ case, because it seems that the contents of our traveler’s words
and thoughts slowly switch from their Earth­contents to the new Twin­Earth­
contents. For example, when the traveler wakes up on their first day on Twin
Earth, before they have interacted with any ABC, or talked to anyone on Twin
Earth, they may wonder ‘Is my favorite gold necklace in the drawer?’ Many
people have the intuition that ‘gold’ here is still referring to the element with
seventy­nine protons, not ABC. But after our traveler has lived on Twin Earth
for twenty years, then their utterances of ‘gold’ will refer to ABC instead.
Now imagine our traveler, after first living on Earth for twenty years, and

then living on Twin Earth for twenty years, engages in the following simple
reasoning:

(P1) When I was a child, my mother’s favorite necklace was made of gold.
(P2) My current favorite ring is made of gold.

Thus, my current favorite ring, and my mother’s favorite necklace when
I was a child, are both made of gold.

How should we understand this reasoning? If we accept the intuitions described
in the immediately preceding paragraph, then both premises are true, but the
conclusion cannot be true. Thus, the traveler commits a fallacy of equivoca­
tion: ‘gold’ means Earth­gold in P1, but means Twin­gold in P2. Fallacies of
equivocation of course happen in everyday life. But in the slow­switch case,
unlike everyday cases, the traveler is “in principle not in a position to notice”
this equivocation (Boghossian, 1992, p. 22). And if this is correct, then accord­
ing to Boghossian, logical reasoning is no longer a priori: Whether a particular
inference is valid or invalid (because equivocal) depends on whether or not the
reasoner has been kidnapped and taken to Twin Earth without their knowledge.
Furthermore, a principle called ‘Epistemic Transparency’ about your own

concepts seems to be violated by the slow­switch case. This principle states:
“[P]rovided that you are minimally rational, you simply cannot mistake one
conceptual content for another” (Schroeter, 2007, p. 597). Here is an alternative
formulation, also drawing on Schroeter: “If it seems to you that two tokens [e.g.
‘gold’ in P1 and ‘gold’ in P2] ‘obviously and uncontrovertibly’ mean the same,
then they do mean the same and [because meaning determines reference] co­
refer (if they refer at all)” (Recanati, 2012, p. 117–118). And from the traveler’s
point of view, the concept GOLD occurring in the P1­thought is no different from
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the concept GOLD occurring in the P2­thought; they “seem to” the traveler to
“obviously and incontrovertably mean the same” – if anything does. And if
epistemic transparency fails, then you cannot tell if F(a) and F(a) are the same
belief or different beliefs. And if you can’t determine that, then you cannot
tell whether two claims contradict each other: ¬F(a)might not contradict F(a),
since you do not know if those two ‘a’s have the same meaning, or if those two
‘F’s have the same meaning.
People have proposed various ways to avoid drawing this unwelcome con­

clusion from the slow­switch cases. Recanati offers one: He proposes that
‘gold’ in the above argument fails to refer in both P1 and P2. On his view,
the traveler “is confused: he uses a single mental file [roughly, a concept
of an individual] to refer to two distinct objects. This can only generate
reference failure: the file the subject deploys in thought does not refer”
(Recanati, 2012, p. 142). As a result, both premises are neither true nor
false (Recanati, 2012, p. 131). Thus the validity of the argument is saved, so
logic can still be a priori. This also allows Recanati to save epistemic trans­
parency, by relying on a proviso in the statement of the principle. Recall one
version of the principle: “If it seems to you that two tokens ‘obviously and
uncontrovertibly’ mean the same, then they do mean the same and co­refer (if
they refer at all)” (Recanati, 2012, p. 117–118). Since Recanati holds that both
appearances of ‘gold’ in the slow­switch argument do not refer to anything,
they are not counter­examples to epistemic transparency on his view, since the
italicized condition is not met.
It is clear that Recanati assumes arguments involving confused words and

concepts follow a neutral semantics for free logic (Section 3.2). He does not
entertain the alternative options that P1 and P2 should be understood as false
(as negative free logic would have it), or that ‘gold’ in all three lines of the
argument could refer both to the element with seventy­nine protons, and to the
stuff with molecular composition ABC. By itself, this is of course not an objec­
tion to Recanati’s position. But it does open up further lines of inquiry about
slow­switch cases. Since Recanati is (implicitly) using a neutral semantics, his
view will have all the advantages and disadvantages of neutral semantics more
generally (Section 5.1). Situating his position within the discussion about the
pros and cons of various semantics for free logics immediately delivers a fuller
evaluation of his position on slow­switch cases in particular, and confusion
more generally. Additionally, if someone is broadly sympathetic to Recanati’s
overall position, but finds some of the particulars unpalatable (is the traveler
really failing to have any thought whatsoever?), then alternative understand­
ings of confusion are available, which may avoid some of the more undesirable
consequences of Recanati’s specific proposal.
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Free logic should not be expected, on its own, to solve the presentism versus
actualism debate, the problem of negative existentials, how best to formulate
a teleosemantic theory of content, or how to understand slow­switch cases.
But free logic can nonetheless be of use in these debates. It can help with
precise formulations of various positions one might take in this debate, and
perhaps more importantly with tracing out the logical consequences of the vari­
ous positions. In particular, a position that might seem fairly plausible when
initially characterized in everyday language might nonetheless logically entail
some highly unintuitive consequences, which only become apparent after the
position is stated rigorously. Put otherwise, free logic can help make explicit
the various positions in the debates over empty or ambiguous names, thereby
also making clear each position’s costs and benefits. And it can also provide
a framework that does not make opposing sides in disagreements over what
exists incomprehensible to each other.

2.3.2 Philosophy of Science

The problems of defective reference mentioned in Section 2.3.1 feed directly
into issues in philosophy of science. That may sound surprising to some, since
philosophy of science is not integrated very closely with work in the philoso­
phy of language, especially compared to the middle twentieth century. I will
briefly discuss two applications of free logic in philosophy of science: how
to understand the moral of the so­called Pessimistic Induction over the his­
tory of science, and the nature and implications of Thomas Kuhn’s notion of
incommensurability.

The Pessimistic Induction. The Pessimistic Induction over the history of
science is an argument against the view that current scientific theories are
probably approximately true. Scientific realists typically argue that current sci­
entific theories are approximately true, on the grounds that these theories make
predictions about observable things that turn out to be incredibly accurate.
However, a critic of this argument could point out that, for example, Newto­
nian mechanics and gravitation were (considered) extremely well confirmed
in 1800, because they made extremely accurate predictions about a variety
of observable events. Nonetheless, Newton’s theories have since been sup­
planted by quantum mechanics and general relativity, and the fundamental
picture of the physical world provided by those two theories is very differ­
ent from that of Newton. The Pessimistic Induction is a generalization of this
example: From the (purported) fact that most past scientific theories turned out
to be incorrect in important ways, the pessimistic inductor concludes that our
currently accepted theories will also turn out to be importantly untrue as well.
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The Pessimistic Induction has been widely discussed; a short Element on
free logic is not the place to delve into these debates. But which type of free
logic one adopts – positive, negative, or neutral – will have important conse­
quences for debates about the Pessimistic Induction. As explained briefly in
the final paragraph of Section 2.3.2, positive, negative, and neutral free log­
ics are distinguished by how they view atomic sentences containing defective
terms (like ‘Vulcan’ and ‘Charley’): Negative free logics say they are all false,
positive free logics say at least one is true, and neutral free logics say such
atomic sentences are neither true nor false. So, if one accepts neutral free logic
or one of the positive free logics that allow some sentences to be neither true
nor false, and is also committed to the anti­realist thesis that there are many
non­referring and/or ambiguous terms in the language of superseded scientific
theories (for example, ‘phlogiston,’17 ‘caloric,’18 or ‘is simultaneous with’19),
then one will believe that past theoretical claims containing such terms are
not false, but rather truth­valueless.20 Now, one might think this distinction is
unimportant: Both ways count as being incorrect, neither is true. However, this
difference matters, because the vast majority of current scientific anti­realists
would characterize themselves as epistemic anti­realists, but semantic realists.
That is, most anti­realists today wish to draw a contrast between their anti­
realism and (versions of) instrumentalism of the early twentieth century. This
instrumentalism maintains that scientific theories are merely tools for predic­
tion and control, tools which are not the kinds of things that can be true or
false: A hammer is neither true nor false, but rather more or less useful for
a particular task. That is, these earlier instrumentalists were semantic anti­
realists. But at least since van Fraassen (1980), the dominant anti­realist view
has been that theoretical claims are either true or false (semantic realism), but
that the evidence available to us does not justify our believing those theories
to be even approximately true (epistemic anti­realism).21 Many people, several

17 Phlogiston was hypothesized to explain, among other things, why some substances burned and
others did not. Highly combustible substances were believed to be rich in caloric; combustion
released phlogiston from the substance. This explains why a log is heavier than the ash it
becomes after burning: It has lost its phlogiston.

18 Caloric was posited to be the material fluid of heat. Hasok Chang (2003) argues that the case
of caloric is good evidence in favor of anti­realism.

19 In special relativity, as opposed to classical mechanics, whether two events are simultaneous
is relative to an inertial frame of reference.

20 Darrell Rowbottom (2022) argues that some strictly truth­valueless sentences can nonetheless
be approximately true. Since the scientific realism debate is about approximate truth instead of
strict truth, a realist could accept that certain scientific sentences are, strictly speaking, truth­
valueless.

21 However, Rowbottom (2011; 2019, Ch. 2) attempts to re­invigorate semantic anti­realism in
philosophy of science.
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anti­realists included, would reject a position that entails semantic anti­realism.
As the saying goes, one person’s modus tollens is another’s interesting modus
ponens, so a committed anti­realist could view this as a way to construct an
argument for semantic anti­realism.
So free logic bears on the scientific realism debates: Which version of free

logic one adopts (positive, negative, or neutral) affects whether you are a
semantic realist or not (Frost­Arnold, 2014). Finally, it should be noted that this
is not only an issue for anti­realists; scientific realists also need to have some
semantic account of apparently defective terms like ‘caloric’ and ‘phlogiston.’
Free logics, and in particular positive free logics, could be used to defend a
realist position, since positive free logics allow speakers to state truths even
when the language they are using harbors incorrect presuppositions (from their
successors’ point of view).

Semantic incommensurability. One of Thomas Kuhn’s characteristic ideas
is the claim that, after a scientific revolution occurs, the pre­revolutionary
theory and post­revolutionary theory are incommensurable. Kuhn discusses
different types of incommensurabilities, including incommensurability of
methodologies and incommensurability of weights of criteria for choosing
a theory. (For example, if simplicity is very important to me but scope of
application is not, whereas broad scope is important to you but simplicity
is not, then you and I may have an irresolvable disagreement about which
of two theories is better supported by our shared available evidence; see
Kuhn [1977].) That said, the type of incommensurability that Kuhn
increasingly stressed later in his career was semantic incommensurability
(Sankey, 1993); Paul Feyerabend (1981) also famously argued for this type
of incommensurability between earlier and later scientific theories. The core
idea is that certain terms in the language of pre­revolutionary science can­
not be expressed in the post­revolutionary language, or vice versa, and this
entails that we cannot fully compare the two theories, that is, they are incom­
mensurable. For example, there is simply no way to capture perfectly, within
a relativistic conceptual framework, the Newtonian assertion that the Sun is
at absolute rest, since neither the term ‘absolute velocity,’ nor sentences con­
taining that term, can be translated into relativistic language without changing
the meaning of the original, pre­relativistic assertion. In short, if a term (or
sentence) cannot be translated without loss from the pre­revolutionary lan­
guage into the post­revolutionary language, or conversely, then the two theories
cannot be meaningfully compared (at least on those claims only express­
ible in the contested language: There might be other parts of the languages
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where an acceptable translation is possible). There is no shared, mutually
comprehensible medium for expressing thoughts.
However, generalized free logic can arguably reduce some (though not all) of

the incommensurability that results from untranslatability. That is, the fact that
an assertion stated in pre­revolutionary vocabulary cannot be translated without
loss into an equivalent assertion in the post­revolutionary language does not
entail that the truth­value of a pre­revolutionary assertion cannot be assessed
within post­revolutionary language. Hartry Field (1973) pioneered this idea, so
we will use his central example. He noted that special relativity deploys two
concepts of mass (relativistic mass, which is the total energy divided by the
speed of light squared, and proper mass, which is the non­kinetic energy of a
body divided by the speed of light squared), where pre­relativistic physics used
just one. In other words, from a special­relativistic point of view, the single
Newtonian word ‘mass’ conflates ‘relativistic mass’ and ‘proper mass.’ Thus,
there is no way to translate claims involving the term ‘mass’ between the two
languages. However, Field proposes a way, from within the special­relativistic
language, to declare certain Newtonian sentences involving ‘mass’ to be true
or false. When a Newtonian says ‘The mass of the Earth is less than that of the
Sun,’ a relativist can declare that to be true, on the grounds that the relativistic
mass and the proper mass of the Earth are both less than those of the Sun.
And on Field’s proposal, the sentence ‘The mass of the Earth is greater than
the mass of Jupiter’ is false within the relativist framework, because both the
relativistic mass and the proper mass of the Earth is less than the relativistic
mass and proper mass of Jupiter. The only time, on Field’s proposal, a relativist
cannot assign a truth value to a Newtonian claim involving ‘mass’ is when
the Newtonian sentence is true of proper mass and false of relativistic mass,
or vice versa (for example, the Newtonian sentence ‘A body’s mass does not
change when its velocity changes,’ which is true of proper mass but false of
relativisticmass). Generalizing from this case, Field’s proposal is the following.
For a sentence containing a confused or ambiguous term, that sentence is (i)
true if and only if it is true on all disambiguations, (ii) false if and only if it
is false on all disambiguations, and (iii) truth­valueless if that sentence is true
on some disambiguations but not on others. This is called a ‘supervaluational’
semantics; if one does not want to identify ‘truth on all disambiguations’ with
‘truth’ itself, the former is labeled ‘supertruth.’ Supervaluational semantics like
Field’s are one kind of positive semantics for free logic. They will be discussed
at greater length in Section 3.4.2.
In sum, generalized free logic is interesting from a logical point of view, and

there are plausible reasons to study it for its own sake. Imposing the Principle of
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Univocality is at odds with actual human languages, unnecessarily restricts the
languages whose logical behavior we can study, and makes certain sentences
into logical truths that, at least at first glance, do not appear to be logical truths.
But there are also ‘instrumental’ or applied reasons to be interested in free log­
ics as well: Significant questions in metaphysics, philosophy of language, and
philosophy of science depend on how the details of one’s free logic are devel­
oped. And certain ontological questions cannot even be coherently, intelligibly
asked within classical logic.

3 Truth and Models
As mentioned in the previous section, there are multiple species of free logic.
Every free logic is standardly classified as exactly one of positive, negative,
or neutral. The semantic way of classifying these species of free logic is as
follows. Let us define a ‘defective’ name as a string of characters that has the
grammatical properties of a name, but violates the Principle of Univocality,
such as ‘Santa Claus’ or ‘Homer.’ In positive free logics, there is at least one
atomic sentence containing a defective name that is true (for example, ‘Santa
Claus = Santa Claus’). In negative free logics, every atomic sentence contain­
ing a defective name is false. And in neutral free logics, all atomic sentences
containing a defective name are neither true nor false. This chapter presents
model­theoretic semantics for each of these three types of free logic.
The above taxonomy has been completely standard for decades. Once we

move to the ‘generalized free logic’ proposed in this book, a further taxonomy
becomes available. When originally introduced in the 1960s, the name ‘free
logic’ abbreviated the longer phrase ‘logic free of existential assumptions.’ But
if one also wishes to eliminate uniqueness assumptions, then we can distin­
guish between three cases: (i) logics that relax the existence assumption, (ii)
logics that relax the uniqueness assumption, and (iii) logics that relax both.
Traditionally, the phrase ‘free logic’ refers to (i); here, we will call (i) ‘exis­
tentially free logic.’ We will use ‘uniqueness­free logic’ to refer to (ii); (ii) can
also be thought of as the logic of ambiguity and/or confusion. Finally (iii) will
be ‘generalized free logic,’ since it generalizes from only relaxing existence
assumptions to also include relaxing uniqueness assumptions.
At the broadest level, this section follows the standard classification system

of positive, negative, and neutral semantics. But within each of these species,
I will note logical differences between languages whose only defective names
refer to nothing, and those whose only defective names refer to more than one
individual.
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3.1 Shared Preliminaries
Generalized free logic results from making small modifications to (so­called)
classical first­order logic. Thus, before we describe the various semantics for
free logic, wemust first set out terminology and notation for classical first­order
semantics or model theory.
We begin with purely grammatical specification of a first­order language.

This should be familiar from any logic textbook, but I spell it out here to fix
notation. A language L contains:

• names of individuals: a,b,c, . . .
• individual variables: x,y, z,w, . . .
• predicates, each with a fixed number of one or more places: F(x), G(x,y),
H(x,y, z) . . .

• quantifiers: ∃ (‘there exist(s)’) and ∀ (‘every,’ ‘all’)
• sentential connectives: ∧ (‘and’), ∨ (‘or’), ¬ (‘not’),→ (‘only if’)
• opening and closing parentheses: (, )
• (optional) the identity predicate ‘=’

The definition of the language L is given by a (typically recursive) definition of
‘sentence’ for strings of the above characters. That is, the definition of L effec­
tively specifies which ordered combinations of the above characters count as
(closed) sentences, and which combinations do not. So, for typical first­order
languages, G(a,b) is sentence, whereas G(x,b) is not. And this matches ordin­
ary English: ‘Algeria is greater in size than Belgium’ is a complete sentence,
whereas ‘x is greater in size than Belgium’ is not.
The specification of L is purely grammatical or syntactic; that is, it does

not depend at all on the meanings of the characters listed above. Meanings are
introduced via a model. A classical modelM = ⟨D, f ⟩ of a language L consists
of a non­empty domain or universe of individual elements D, and an inter­
pretation function f. The interpretation function takes (combinations of) the
linguistic items listed above as inputs, and assigns them set­theoretical entities
as outputs. Specifically, the interpretation function assigns to each name of L
an individual in D, and takes each n­place predicate of L to a set of ordered n­
tuples in Dn. So for example, let D be the cities in the world with a population
over 1,000,000 at any point in 2020. Also let f (a) = Hong Kong, and f (b) =
Barcelona. Now suppose we introduce the two­place predicate P(x,y) as a for­
mal correlate of the ordinary relation of x having a larger population than y.
Then, since Hong Kong has a larger population than Barcelona, f (P(x,y)) will
include the ordered pair ⟨Hong Kong, Barcelona⟩, but not ⟨Barcelona, Hong
Kong⟩ (or ⟨Hong Kong, Hong Kong⟩ or ⟨Barcelona, Barcelona⟩ either, since
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no number can be larger than itself). The sentence ‘HongKong has a larger pop­
ulation than Barcelona’ will be true, because the ordered pair ⟨ f (a), f (b)⟩ is one
of the ordered pairs assigned to the two­place predicate P(x,y) by the interpret­
ation function f. And ‘Barcelona has a larger population than Barcelona’ will
be false, because ⟨ f (b), f (b)⟩ is not on that list of ordered pairs that f assigns to
P(x,y).
An immediate consequence of this definition is that in a classical model, f

is a total function: Every name is assigned some individual in D. However, in
(most)22 existentially free logics, f can be a partial function; that is, we allow
some names in L to be assigned to no element in D. And a so­called inclusive
logic relaxes the classical assumption that D is non­empty. A logic that relaxes
both assumptions simultaneously is called ‘universally free.’
In existentially free logics, we relax the classical assumption that the inter­

pretation function be total. In uniqueness­free logics, we relax the assumption
that the relation between linguistic items in L and (constructions in)D be a func­
tion, partial or otherwise. Instead, we model the relationship between names
and elements of D as a one­many relation.23 So, for example, using Camp’s
example of Fred’s ant colony introduced in Section 2.1, the name ‘Charley’ in
Fred’s language signifies both Ant A and Ant B. We thus say that the inter­
pretation relation (as opposed to interpretation function) for Fred’s language
holds of the ordered pairs ⟨‘Charley’, Ant A⟩ and ⟨‘Charley’, Ant B⟩. No other
x ∈ D satisfies ⟨‘Charley’, x⟩; ‘Charley’ only refers to the two large ants, not
anything else. And of course, since every function can be characterized as a
one­to­one relation, every classical interpretation function can also already be
represented as an interpretation relation; that is, the notion of an interpretation
relation generalizes that of an interpretation function.
Predicates in existentially free logics are treated exactly as they are in

classical logic. This is because classical first­order logic already allows for
predicates that are not true of any individuals, such as ‘5­sided triangle’ or
‘larger than itself.’ One reason sometimes given for the superiority of existen­
tially free logic over classical logic is that modern Fregean logic made genuine
logical progress by dropping the Aristotelian assumption that every predicate is
true of at least one thing;24 existentially free logic simply completes that same
progressive transition away from Aristotelian logic (Lambert & van Fraassen,
1972, p. 134–135), (Lambert, 2001, p. 262–263).

22 The exception is the inner­domain/outer­domain semantics, discussed in Section 3.4.4.
23 Priest (1995) also uses a one­many interpretation relation instead of an interpretation function.
24 In other words, in Aristotelian logic, ‘All Fs are G’ logically entails ‘Some Fs are G,’ but this

entailment does not hold in modern, post­Fregean logic.
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Free Logic 29

In uniqueness­free logics, on the other hand, predicates are not treated
exactly the same as in classical logics. If we allow names to be ambiguous,
then there is no good reason to not let predicates be ambiguous as well. In a
formal language where we use an interpretation relation instead of an inter­
pretation function, a one­place predicate can be assigned two or more sets of
elements from D. For example, recall the example of the ambiguous predi­
cate ‘warm­blooded’ from Section 2.1. The interpretation relation would hold
between the predicate for ‘warm­blooded’ and exactly three sets: the set of
endothermic organisms, of tachymetabolic organisms, and of homeothermic
organisms. In general, in a language that relaxes the uniqueness assumption,
an n­place predicate can signify two or more sets of ordered pairs from Dn.
Finally, as mentioned above, a logic free of both existence and uniqueness

assumptions for its terms will be called a ‘generally free logic.’ So, a model
that provides a formal semantics for such a language will be called a ‘generally
free model.’ Let us summarize the model theory more formally.

Four basic types of models

• Classical Model:M = ⟨D, fI⟩, where
– D is the domain of individuals, and
– the interpretation function fI assigns

(i) to every name in language L, exactly one element of D, and
(ii) to each n­ary predicate in L, exactly one set of ordered

n­tuples from Dn

• Existentially Free Model: ME = ⟨D, f EI ⟩, which is exactly like a
classical model, except the interpretation function f EI need not assign
every name in L an individual from D.

• Uniqueness­Free (or Multiply­Signifying) Model: MU = ⟨D,RU
I ⟩,

where
– D is the domain (exactly as above), and
– RU

I is a binary, (possibly) one­many relation between
(i) each name of L and (possibly many) elements of D, and
(ii) between each n­ary predicate and (possibly many) sets of

ordered n­tuples from Dn

• Generally Free Model: M G = ⟨D,RG
I ⟩, which is exactly like a

uniqueness­free model, except the interpretation relation RG
I need not

hold of every name in L. That is, a generally free model allows for
names c such that no x ∈ D satisfies RG

I (c,x).
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30 Philosophy and Logic

There is one more type of model that will be important in what follows: a
restricted model (MR). It is the most natural way of formally capturing the neu­
tral semantics, but it also serves as an intermediate construction for the negative
and one type of positive semantics as well. A restricted model is essentially a
model that treats all non­univocal names and predicates as if they signified
nothing, that is, as if they have no semantic contents at all. Every generally
free model has exactly one associated restricted model, but in general the same
restricted model can be generated from differing generally free models. What
I called above an ‘existentially free model’ is already a restricted model. So if
our language only has empty names, but no ambiguous terms, then the model
for that language is already a restricted model. However, if our language has
ambiguous names or predicates, so that the corresponding model uses an inter­
pretation relation instead of an interpretation function, then we do not yet have
a restricted model. We construct a restricted model from a generally free model
as follows:

Restricted model (M R)

The Restricted Model MR built from the generally free model M G(=
⟨D,RG

I ⟩) is an ordered pair ⟨D, f R⟩, where D is the same domain as in
M G, and f R is the (possibly partial) function that meets the following two
conditions:

• (MR 1) For each singular term s, if RG
I assigns s exactly one object

a ∈ D, then f R(s) = a; otherwise f R(s) is undefined.
• (MR 2) For each n­ary predicate P, if RG

I assigns P exactly one set of
ordered n­tuples T ⊆ Dn, then f R(P) = T; otherwise f R(P) is undefined.

In other words, the restricted model discards the information inM G concerning
which elements of D ambiguous names denote, and which sets of n­tuples in
Dn ambiguous predicates signify. In exchange for this loss of information, we
get a (partial) function in place of an interpretation relation.
There are two more items to add to the list of shared preliminaries. First,

many free logics add to the language L a special one­place predicate for attribut­
ing (unique) existence to an individual, most commonly symbolized as ‘E!(x)’.
‘E!(b)’ is true if ‘b’ refers to exactly one element in the domain D. If b refers
to nothing in D, then ‘E!(b)’ is false. If the language contains an interpreted
identity predicate ‘=,’ then ‘E!’ can be defined in terms of it:

E!(x) =def ∃y(x = y) (E!)
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The predicate ‘E!(x)’ cannot be defined without ‘=’ (Meyer, Bencivenga, &
Lambert, 1982).
If this book were only about existentially free logics, we would leave the

matter there. However, we are also examining logics with ambiguous names,
such as ‘Charley,’ which refers to both Ant A and Ant B. Every undergraduate
logic student is taught that the standard translation of the natural language sen­
tence ‘Cairo exists’ into first­order logic is ‘∃x(x = Cairo).’ But note that this
symbolization says, in effect, that there is at least one and at most one (thing
identical to) Cairo. That is, ‘∃x(x = Cairo)’ could perhaps be more perspicu­
ously be rendered into English as ‘Cairo exists uniquely,’ or even ‘There exists
exactly one Cairo.’
So the natural question to ask at this point is: Does Charley exist? It is clear

that ‘∃x(x = Charley)’ is false, so if we use the canonical translation into a
first­order language, then ‘Charley exists’ is false too. For some, this con­
sequence may be welcome and intuitive.25 However, for others, it will not
be. For although neither Charley nor Atlantis exist in the same way you or
I do, the case of Charley intuitively seems somewhat different from the case
of Atlantis – especially to someone sympathetic to a positive semantics. For
example, Charley (in some sense) plays a role in chains of causes and effect net­
works in the actual world, in a way that Atlantis and Santa Claus do not. And
Charley is spatiotemporal in a way that Atlantis and Santa are not (Charley
will have two spatiotemporal locations, instead of the usual single one – but
that is different from having no spatiotemporal location, like Atlantis). One
might object that Charley’s causal effects are completely reducible to the causal
effects of Ant A and Ant B; but many things we think exist in a completely
typical way are completely reducible to other, more basic things too. So a sup­
porter of a positive semantics might worry that the cases of ambiguity and
empty names were being illegitimately collapsed, if ‘Charley’ and ‘Atlantis’
were assigned identical semantic statuses.
Thus one might hold that the question ‘Does Charley exist?’ should not be

interpreted as equivalent to asking whether ‘∃x(x = Charley)’ is true, for the
latter involves a uniqueness claim that we need not think of as present in the
former. Questions of existence and of uniqueness are standardly kept separate
in mathematical proofs; perhaps they should be similarly kept apart for names
as well. This can be done by introducing a special, interpreted predicate into
our language, ‘E’ (without the ‘!’):

25 For example, in Metaphysics I, Aristotle says: “[T]o be is to be one” (1003b23).
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32 Philosophy and Logic

(E) ‘E(t)’ (‘t exists’) is true in a generally free model M G(= ⟨D,RG
I ⟩) iff there

exists at least one element a ∈ D such that RG
I (t,a) holds; ‘E(t)’ is false

otherwise.

Thus, ‘E(Charley)’ is true, while ‘E!(Charley)’ is false. But ‘E(Atlantis)’ is still
false. So this predicate ‘E(x)’ gives us a way to distinguish between the cases
of Charley and Atlantis, and thus ambiguity is kept conceptually separate from
non­existence.
The second shared preliminary concerns how to handle definite descriptions,

phrases of the form ‘The F,’ symbolized as ιxF(. . . x . . .). As mentioned above
on page 17, one motivation for free logic is that, from a linguistic point of
view, definite descriptions appear to be singular terms, but Russell’s theory
of definite descriptions denies that they are. So a free logic should allow for
definite descriptions to be singular terms that fail to uniquely refer to anything
existing. All theories of definite descriptions take into account the possibility
of the predicate F failing to be satisfied by exactly one existing thing. But in
the context of uniqueness­free logics, we also need to take into account the
possibility that the predicate F itself is ambiguous. The first two conditions
below cover the standard cases; the third is included to account for cases of
ambiguous predicates.

Definite descriptions in a restricted model

Let F(x) be a predicate with x free. Recall that f R is the interpretation
function for a restricted model (defined on p. 30).

(DDR 1) If the set f R(F(x)) contains exactly one member b ∈D, then
f R( ιxF(x)) = b.

(DDR 2) If the set f R(F(x)) contains no members, or more than one
member in D, then f R( ιxF(x)) is undefined.

(DDR 3) If the set f R(F(x)) is undefined, then f R( ιxF(x)) is also unde­
fined.

Note that (DDR 2) makes both ‘The present king of France’ and ‘The big ant in
Fred’s ant colony’ undefined. And even if there is exactly one animal currently
in my kitchen, and that animal is a cat, (DDR 3) makes ‘The warm­blooded
animal in my kitchen’ undefined as well (since ‘warm­blooded’ is ambiguous).

3.2 Neutral Semantics
The characteristic feature of a neutral semantics is that every atomic sen­
tence containing a defective singular term or predicate (i.e., a singular term or
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predicate that violates the Principle of Univocality) is neither true nor false. The
guiding idea behind the neutral semantics is ‘Garbage in, garbage out,’ or as
Lehmann (1994) puts it (specifically about existentially free logic), “No input,
no output,” where we think of the interpretation of a sentence as a function that
takes the semantic values of singular terms and predicates as inputs, and out­
puts either true or false as an output. In David Kaplan (1990, p. 109)’s words,
when someone utters a sentence with a confused term, “nothing whatsoever is
being said.” On the neutral semantics, a sentence containing a defective name
or predicate is analogous to an arithmetical expression that involves dividing by
zero: There can be no answer, only an error message stating that the quantity is
undefined. Put less metaphorically, if a component of a grammatical sentence,
such as a name or a predicate, fails to make the appropriate type of semantic
contribution to a sentence, then that whole sentence ‘inherits’ the failure of that
component, and the whole sentence can be neither true nor false.26 (True and
false are the two types of semantic value appropriate for a sentence, from the
classical point of view.)

3.2.1 Truth in Restricted Models: Anti‐satisfaction for Atomic Sentences

Let us characterize truth in a restricted model for atomic formulas. We say
that a well­formed formula (wff)27 ϕ is defined in MR iff every (individual
and predicate) constant occurring in ϕ is assigned a value by f R.28 (Variables
count as defined: They are never ambiguous or non­referring.) If ψ is an atomic
wff and defined, then the truth­value of ψ in MR is determined in exactly the
same way as classical models assign truth­values to atomic wff’s, that is, a
formula is true if every sequence of elements in the domain satisfies it, and
false if no sequence satisfies it. However, this definition of falsity only holds for
defined wff’s: If a predicate P multiply signifies, then no sequence will satisfy
an open formula P(x) (since f R does not assign anything to P). Similarly, even if
a binary predicate F does not multiply signify, the open formula F(x,c)will not
be satisfied by any sequence, if c violates the Principle of Univocality. So, if we
simply identified ‘ϕ is false’ with ‘No sequence satisfies ϕ,’ then all undefined

26 As we shall see in Section 3.2.2, there is disagreement over whether, in a compound sen­
tence with one truth­valueless component, the whole sentence is always truth­valueless, or
only sometimes. This is the difference between the so­called Weak Kleene and Strong Kleene
schemes.

27 A well­formed formula is a grammatical sentence of L, or a string of characters that would be
a grammatical sentence if constants were substituted for every free variable in that string. So
for example ‘∀xF(x, y)’ is a well­formed formula, because even though it is not a sentence, it
would become a sentence if a name were plugged in for y.

28 I will use Greek letters (ϕ, ψ, . . .) for well­formed formulas, and capital roman letters
(A, B, . . .) for sentences, i.e., well­formed formulas with no free variables.
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34 Philosophy and Logic

formulas would come out false. But in the context of free logics, we want to
distinguish between sentences that are untrue because they are semantically
defective, and sentences that are untrue because they are determinately false
and semantically impeccable.
To solve this problem, we introduce the notion of anti­satisfaction,29 in order

to allow for the possibility that some sequences neither satisfy nor anti­satisfy
a wff. Intuitively, just as a sequence satisfies a wff containing free variables if
that sequence assigns values to the variables that make the wff true, a sequence
anti­satisfies a wff if the assignment of values to variables makes the wff (deter­
minately) false. More precisely, a sequence s anti­satisfies an atomic wff ϕ iff ϕ
is defined and s does not satisfy ϕ. Finally, an atomic wff is false inMR iff every
sequence anti­satisfies it. We thereby maintain the desired distinction between
sentences that are false and sentences that are truth­valueless: If P is a multiply
signifying predicate, then the wff P(x) is not satisfied by any sequence, but it
is not anti­satisfied by any sequence either, so it cannot be true or false when
bound by a quantifier.
Stating anti­satisfaction conditions for compound expressions is straightfor­

ward; Appendix 1 spells out anti­satisfaction conditions fully. But to motivate
and explain those conditions, we should discuss the definitions of truth and fal­
sity for compound sentences, when we allow some sentences to be neither true
nor false; the next subsection addresses that issue.

3.2.2 Compound Sentences with Truth‐Valueless Components

For a semantics for free logic to qualify as neutral, it only needs to count
every atomic sentence containing a defective name or predicate as neither true
nor false. That means that a semantics merely being neutral does not fix the
truth­value of compound sentences containing a truth­valueless component.
There are different options available for how to determine the truth­value of
compound sentences that have at least one truth­valueless component. This is
relevant not just to languages that involve empty and ambiguous terms, because
there could be other reasons why a sentence might lack a truth­value, beyond
failures of the Principle of Univocality. For example, some philosophers have

29 This term was chosen in order to mimic the ‘extension/ anti­extension’ terminology used in
work on partially­defined predicates. Some philosophers model vague predicates, e.g., ‘bald,’
as having both an extension (the set of definitely, determinately bald people) and an anti­
extension (the set of people who are definitely, determinately not bald). But there could be
some individuals who are not members of either set, i.e., the people who are ‘in­between’
being bald and being non­bald. This contrasts with the semantic treatment of a predicate in
classical logic, where every individual either definitely does, or definitely does not, fall under
that predicate.
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Table 1 Comparison of weak/internal versus strong/external negation

(a) weak/internal
negation

A ¬A

T F
F T
N N

(b) strong/external
negation

A ¬A

T F
F T
N F

suggested that sentences containing vague predicates, or making claims about
future events that are not yet settled, should be thought of as neither true nor
false. There are two separate issues: first, how to deal with the word ‘not’ (¬),
and second, how to deal with ‘and’ (∧) and ‘or’ (∨). We discuss them in turn.
In classical logic, if a sentence is not true, then the negation of that sentence

is true. When we allow our language to contain truth­valueless sentences, we
can keep that principle, or discard it. If we keep it, the result is so­called exter­
nal or strong negation: The negation of a truth­valueless sentence is true.30 If,
instead, we hew more closely to the ‘No input, no output’ principle motivating
the neutral semantics, then the negation of a truth­valueless sentence will again
be truth­valueless (analogously, − 1

0 is just as ill­defined as
1
0 ). And the seman­

tics for negation for sentences that are true or false can and should stay the
same as in the classical case. These two proposals for negation are summarized
in Table 1, where ‘N’ abbreviates ‘neither true nor false.’ Here, ‘N’ does not
denote a third truth value; rather, ‘N’ signifies the absence of any truth value.31

The single difference between the two truth­tables is highlighted in boldface.
Readers interested in negation of sentences without truth­values (or negation
more generally) should consult Laurence Horn (1989).
A similar pair of proposals is available for conjunction (‘and’) and disjunc­

tion (‘or’). Once again, one option is to declare every sentence containing
a defective term truth­valueless; this is the Weak Kleene scheme. The other
option appeals to the plausible principles that (i) if at least one component of

30 Braun (1993) defends this proposal.
31 In certain circumstances, people have proposed thinking of the ‘N’ of the truth­tables in this

subsection as a third or ‘intermediate’ truth­value, in­between the truth values of T and F.
For example, Jan Łukasiewicz introduced a third truth­value between T and F to represent
the truth­value of sentences that are not determinately true or false, in particular, sentences
making claims about what happens in the future that has not yet been determined. Łukasiewicz
called these sentences ‘possible.’ If we assign truth to 1 and falsity to 0, then the possible or
indeterminate sentences have the value 1

2 (Łukasiewicz, 1970, p. 87–88).
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Table 2 Comparison of Weak and Strong Kleene schemes for ∧ and ∨

(a)Weak Kleene

A B A ∧ B A ∨ B

T T T T
T F F T
T N N N
F T F T
F F F F
F N N N
N T N N
N F N N
N N N N

(b) Strong Kleene

A B A ∧ B A ∨ B

T T T T
T F F T
T N N T
F T F T
F F F F
F N F N
N T N T
N F F N
N N N N

a disjunction is true, then the whole disjunction is true, and (ii) if at least one
component of a conjunction is false, then the whole conjunction is false. The
core idea is that both (i) and (ii) hold regardless of the other components of the
whole sentence. This generates the Strong Kleene scheme. These two proposals
are spelled out in Table 2; again, all the differences between the two proposals
are in boldface.
Combining this with our discussion of negation above, we now have four

total proposals for the semantics of the sentential connectives ‘and,’ ‘or,’ and
‘not’ (for example, internal negation + Strong Kleene is one option). And if we
make the standard identification of A → B (‘If A, then B’) with ¬A ∨ B, then
we will also have four proposals for the conditional (→) and biconditional (↔)
connectives.
We will not discuss here the advantages and disadvantages of each of these

four semantic proposals for the sentential connectives. But I do wish to point
out that there is not one obviously correct choice. If we are committed to the
general idea of ‘no input, no output,’ which originallymotivated neutral logic in
the first place, then the combination of weak negation plus Weak Kleene looks
best. However, on that proposal, there are no propositional32 logical truths, that
is, sentences that are true in every row of the associated truth­table, containing
individual or predicate constants. For example, F(a) ∨ ¬F(a) is neither true
nor false, when F(a) itself is neither true nor false.33 But many people believe

32 The ‘propositional’ qualifier is necessary, because there are still first­order logical truths in any
generalized free logic. For example, ∀x∀y(x = y → y = x) will still be a logical truth, even
under the truth­tables that allow for the most truth­valueless sentences, because there are no
names or non­logical predicates in it. Variables always obey the Principle of Univocality.

33 F(a)∨¬F(a) also fails to be a logical truth under two other proposals under discussion, namely
weak negation plus Strong Kleene, and strong negation plus Weak Kleene.
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that there are at least some logical truths. (These trade­offs will be discussed at
greater length in Section 5.1.)
We now have all the materials needed to define truth and falsity inMR, given

a particular choice of truth­tables for the connectives:

Truth in a restricted model

• If every sequence satisfies formula ϕ, then ϕ is true inMR.
• If every sequence anti­satifies ϕ, then ϕ is false inMR.
• Formula ϕ lacks a truth­value inMR otherwise.

Finally, the truth­value of a sentence on a neutral semantics is simply whatever
truth­value is assigned to that sentence byMR, given a particular specification
of truth­tables for compound sentences – with one possible exception. For rea­
sons described in Section 3.4.1, a proponent of the neutral semanticsmight want
‘∃x(x = Charley)’ and/or ‘∃x(x = Zeus)’ to be false. If that is the case, then
condition (AS= 1) described below (p. 40) should be added to the definition of
satisfaction and anti­satisfaction for a neutral semantics.

3.3 Negative Semantics
If you find the idea of declarative sentences that are neither true nor false
undesirable, but nonetheless want a logic that allows for names that violate
the Principle of Univocality, then you should consider adopting a negative
semantics. Given all the machinery we have seen earlier in this section, the
core idea of negative semantics is easily stated: Every atomic sentence that is
truth­valueless inMR is false, on a negative semantics.
The restriction to atomic sentences is needed to avoid contradiction. Suppose

atomic sentence A contains a defective name. Thus the sentence ¬A will also
contain a defective name. If someone held that every sentence containing a
defective name was false, then (by any plausible truth­table for ‘¬’) A would
have to be both true and false. (That said, as we will discuss in Section 3.4.3,
some people think that the right way to deal with ambiguity is to allow some
sentences to be both true and false.)
One distinctive feature of negative semantics is that it makes certain

instances of b = b false, such as ‘Pegasus = Pegasus,’ ‘Charley = Charley,’
and ‘The current king of France = the current king of France.’ Another trait
of negative semantics is that it makes the language bivalent: Every grammat­
ical sentence is either true or false, unlike in the neutral semantics. Thus we
can simply use the classical truth­tables for compound sentences. This fea­
ture is not unique to negative semantics; it is also shared with the positive
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38 Philosophy and Logic

inner­domain/outer­domain semantics that we will see in Section 3.4.4. Fur­
ther, the classical satisfaction conditions can be used for quantified sentences;
that is, we do not have to separate anti­satisfaction from non­satisfaction, if we
choose to use negative semantics.

3.4 Positive Semantics
Positive semantics for generalized free logics are characterized by allowing at
least some atomic sentences containing non­univocal names or predicates to be
true, for example ‘Zeus = Zeus.’ There are multiple ways to accomplish this.
Accordingly, different positive semantics will differ over which sentences con­
taining non­univocal names or predicates are true, and which are false. This
section will present three leading proposals for positive semantics for gen­
eralized free logic. But first, we must discuss how to treat atomic sentences
containing an interpreted identity predicate (‘=’).

3.4.1 Identity in Generalized Free Logic

In our above discussion of the neutral and negative semantics for atomic formu­
las (Sections 3.2 and 3.3), we did not need to introduce any special conditions
for sentences containing an interpreted identity predicate. Neutral and negative
free logics treat a sentence a= b, where at least one of a, b fails to uniquely
refer, like any other atomic sentence: such a sentence will lack any truth­value
on the neutral semantics, and will be false on the negative semantics. But under
positive semantics, we must introduce specific conditions on identity, in order
to prevent the semantics from classifying obviously false things as true, such
as ‘There is exactly one ant named “Charley” in Fred’s ant colony,’ or ‘Zeus
exists.’ We can avoid these consequences by including an additional complica­
tion in our truth­definition for atomic sentences of the form a= b inMR.
If an atomic sentence A has the form P(a1,a2, . . . an), and P or any of the ai

are undefined, then A has no truth­value in a restricted model MR. But what
about atomic formulas of the form t1 = t2, where ti is an singular term, that is,
a name or a variable (or a definite description, if the language contains them)?
This creates complications. Suppose you want to adopt a positive free logic that
classifies ‘Zeus = Zeus’ as true. However, if one also accepts as semantically
valid the classical rule of existential introduction (‘b is F, therefore something
is F’), then ‘Zeus = Zeus’ entails ‘∃x(x = Zeus),’ that is, ‘Something is iden­
tical to Zeus.’ And that final sentence seems pretty clearly false (assuming the
quantifier ∃ is existentially committing, which all free logics do). So we must
construct our positive semantics so that ‘∃x(x = Zeus)’ comes out false, while
preserving the truth of ‘Zeus = Zeus.’
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The situation with ambiguous names is similar, though this similarity is not
immediately obvious. Recall Camp’s example of the name ‘Charley’ (which I
will abbreviate as c). Does any element in D satisfy the open formula x = c?
There are strong reasons to answer no.34 If the domain of discourse is the set of
ants in Fred’s colony, then the only two plausible candidates inD are Ant A and
Ant B. But, by symmetry, there is no reason whatsoever to pick one ant over the
other. And if we say both ants satisfy x = c, then by transitivity of identity,35

we would be forced to accept that Ant A = Ant B, which is obviously untrue.36

Furthermore, we cannot say that the set {Ant A, Ant B} satisfies x = c, since
that set is not an element ofD, and thus not a permissible value for x. One could
respond: Create a new domainD′ that contains the sets of the elements inD (the
powerset of D, perhaps without ∅). The set {Ant A, Ant B} is of course then
an element of D′. However, this semantic proposal creates a further problem:
‘Charley’ is no longer an ambiguous or confused term: It univocally refers to
that set. And furthermore, if ‘Charley’ refers to that set, then certain sentences
will come out true that no defender of positive semantics thinks are true, such
as ‘Charley is a set’ and ‘Charley is not an ant.’ A similar problem would arise
if we assigned the name ‘Charley’ to the mereological sum of Ants A and B:
‘Charley’ would not be ambiguous, and ‘Charley has two heads’ would be true,
while ‘Charley has six legs’ would be false.37

The proposal to assign the name ‘Charley’ to the set {Ant A, Ant B} is very
similar to one of Frege’s suggestions for dealing with definite descriptions that
fail to refer uniquely (Pelletier & Linsky, 2009), for example, ‘the square root
of nine’. Namely, if the predicate in a definite description applies to more than
one individual, then the definite description refers to the set of all individuals
that satisfy that predicate; so the referent of ‘the square root of nine’ would
be the set {−3,3}. For another example, the definite description ‘the big ant in
Fred’s farm’ would refer to the set {Ant A, Ant B} on this proposal. But this
suffers from the same problem treating ‘Charley’ as referring to a unique set
does: Since that set is not among the individuals in the domain that satisfies the
predicate ‘is an ant’ (since sets are not ants), the sentence ‘The big ant in Fred’s
farm is an ant’ would not be true, contrary to (at least) the spirit of multiply

34 See Ripley (2018, fn. 7) for the opposite view.
35 Graham Priest’s position is that ‘=’ is not transitive, in a language with names that refer to

more than one individual (Priest, 1995). Priest’s semantics will be explained in Section 3.4.3.
36 Elmar Unnsteinsson (2022, ch. 2) argues that we (who are unconfused) should attribute to Fred

the implicit belief that Ant A = Ant B; but attributing beliefs to others for the sake of explaining
their behavior is clearly distinct from our semantics making ‘Ant A = Ant B’ true.

37 In plural logic, pluralities can be values of variables. However, in plural logics, plural variables
(which range over pluralities) are distinct from individual variables (Yi, 2005). But the variable
in, e.g., ‘x is an ant’ is of course an individual variable, not a plural one.
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signifying positive free logic. Incidentally, this is one reason why one simple,
natural proposal for a positive semantics for definite descriptions would not be
adequate; we will see more below (p. 44).
Here is a final argument against taking anything to satisfy x = c. If something

satisfies x = c, then (on any reasonable semantics) ∃x(x = c) will be true. But
‘There is exactly one (thing identical to) Charley’ is wrong; that is precisely
Fred’s mistake. The canonical, textbook formalization of that last sentence in
classical first­order logic is

∃x[(x = c) ∧ ∀y( y = c → x = y)].

But note that this is a logical consequence of ∃x(x = c). Thus (bymodus tollens)
nothing satisfies x = c.
In short, there are good reasons to hold that nothing in the domain is identical

to Charley.38 So, if a generally free language contains an interpreted identity
predicate, and we want to make both ‘∃x(x = Zeus)’ and ‘∃x(x = Charley)’
false, without also making ‘Zeus = Zeus’ and ‘Charley = Charley’ false, then
we can add the following conditions to the definition of anti­satisfaction for
atomic formulas:

(AS= 1) If ϕ has the form t1 = t2, and exactly one of t1, t2 is undefined in MR,
then every sequence s anti­satisfies ϕ inMR.

(AS= 2) If ϕ has the form t1 = t2, and both of t1, t2 are undefined in MR, then
no sequence s satisfies or anti­satisfies ϕ inMR.

As a consequence, inMR, ‘Charley = Charley’ will remain undefined.
Before spelling out the details of the various positive semantics, it is worth

mentioning how a proponent of a neutral semantics could think about these two
anti­satisfaction conditions on identity. It is possible that someone committed
to neutral semantics might say that ‘Zeus exists’ and ‘There exists exactly one
thing identical to Charley’ are false, in which case they could add these two con­
ditions to their definition of truth inMR. But it is also conceivable that a neutral
semantics proponent would prefer to adhere to the core ‘No input, no out­
put’ principle motivating neutral semantics, and hold that sentences like ‘Zeus
exists’ and ‘There exists exactly one thing identical to Charley’ are neither true
nor false.39

38 Proponents of the subvaluational logics described in Section 3.4.3 maintain these reasons are
not good enough.

39 Lehmann (2002, p. 234) considers the former view; Meyer & Lambert (1968) and Lehmann
(1994, p. 325) endorse the latter view.
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3.4.2 Supervaluational Semantics

The core idea behind the supervaluational semantics is fairly simple and
straightforward; however, various complications are needed to make every­
thing work out as desired. Because the supervaluational machinery is less
complicated for ambiguous terms than it is for empty names, we begin with
supervaluational treatments of ambiguity.

Supervaluations for ambiguous terms. Let us first consider the case of a
sentence containing an ambiguous name or predicate, that is, a name that refers
to more than one individual, or a predicate that refers to more than one set of
individuals in the domain. To oversimplify things slightly, that sentence will
be supervaluated true iff it is true on every uniform disambiguation, it will be
supervaluated false iff it is false on every uniform disambiguation, and it will
lack a truth­value if it is true on some disambiguations and false on others. (The
official definition of ‘supervaluation’ is on p. 43 below.)40 So for example, on
this semantics, ‘Charley is an ant’ will be supervaluated true (since both Ant
A and Ant B are ants), and ‘Charley is over one meter long’ will be super­
valuated false (since Ant A and Ant B are both much shorter than one meter
long). If we imagine a situation where Ant A is awake, and Ant B is asleep,
then at that moment, ‘Charley is awake’ is neither true nor false, as is ‘Charley
is asleep.’ Note that the definition of supervaluational truth above includes the
modifier ‘uniform.’ This means that, in a particular formula, if there are mul­
tiple instances of the same ambiguous term, then every instance of that term
is disambiguated in the same way. Otherwise, ‘Charley = Charley’ would not
be supervaluated as true, for we could disambiguate the first occurence of the
name ‘Charley’ in that sentence as Ant A, and the second ‘Charley’ as Ant B,
so that this mixed (i.e., non­uniform) disambiguation would be false. Allowing
mixed disambiguations would result in a semantics that assigns truth­values in
a way that is much closer to the neutral semantics, when the non­univocal terms
appear more than once in a single sentence.
This supervaluational semantics ‘saves’ all the propositional classical logical

truths. For example, every sentence of the form F(b)∨¬F(b) is true, regardless
of which element(s) in the domain b refers to, whereas in the classical con­
text b must refer to one individual for a sentence of this form to be true. It
also saves some first­order logical truths (though of course not all): ‘Charley =
Charley’ comes out true on this semantic proposal, because Ant A is identical

40 Whether we should count being supervaluated as true, i.e., being supertrue, as true simpliciter
is a matter of debate in metaphysics and philosophy of language. Nicholas J. J. Smith (2016)
argues that supertruth cannot be truth. Nothing said in this section depends on which position
is taken in this debate.
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42 Philosophy and Logic

to itself, and Ant B is identical to itself, and there are no other disambiguations
of ‘Charley’ besides those two ants.
At this point, one should object that the supervaluational semantics deliv­

ers the wrong verdicts about certain sentences. In particular, no matter whether
‘Charley’ is assigned to Ant A or Ant B, the sentence ‘There is exactly one ant
identical to Charley’ (∃x(x = c)) will be true. But as we saw in the previous sub­
section, there are good reasons to think that sentence is false: no ant is identical
to Charley. This potential problem is why so much time was spent in Section
3.4.1, discussing the special anti­satisfaction conditions that should be added
for sentences containing ‘=.’ This problem is solved by requiring that a super­
valuation must always respect the assignment of truth­values to sentences that
MR makes over the truth­values assigned in a disambiguation – and (AS= 1)
guarantees that ∃x(x = c) will be false inMR.
Let us spell this out more formally. We begin with the notion of a model

that is a ‘complete disambiguation,’ that is, a model that assigns exactly one
of the multiple extensions to each multiply signifying term. For example, if
a language has exactly three multiply signifying terms, and the first term has
two extensions, the second has five extensions, and the third has twelve, then
there will be a total of 2×5×12 = 120 complete disambiguation models for this
multiply signifying model. We can capture this basic idea model­theoretically
in the notion of a complete disambiguation of a multiply signifying model.

Complete disambiguation models

M d = ⟨D, f d⟩ is a complete disambiguationmodel of amultiply signifying
(or ‘uniqueness­free’) modelMU = ⟨D,RI⟩ iff:

(Md 1) RI(a, f d(a)), where a is any individual constant,
(Md 2) RI(P, f d(P)), where P is any n­ary predicate, and
(Md 3) f d is a total function.

To continue with our example of Fred’s ant colony, there are two complete
disambiguation models: In Md

1, ‘Charley’ refers only to Ant A, and in Md
2

‘Charley’ refers only to Ant B. Now, Field holds (in our terminology) that a
sentence containing multiply signifying terms is true inMU if it is true in each
Md constructable from thatMU.
However, this cannot be right. For ∃x(x = c) is true in every disambigu­

ation: In the first disambiguation f d1(c) = Ant A, so ∃x(x= c) is true in Md
1,

and in the second disambiguation f d2 = Ant B, so ∃x(x= c) is true in Md
2 as
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well. However, we saw earlier that this sentence should not be true when c is
multiply signifying.41

To avoid this problem, we can follow the strategy used by earlier supervalua­
tion proposals for existentially free logic. The basic idea is that the truth­values
assigned by the restricted model MR trump the truth­values assigned by any
disambiguation model Md built on top of it. We characterize notions of truth
and falsity in Md with respect to MR:

Truth in a complete disambiguation

(Md w.r.t. MR 1) If the formula ϕ has a truth­value inMR, then the truth­
value of ϕ inMd­w.r.t.­MR is the truth­value of ϕ inMR.

(Md w.r.t. MR 2) If the formula ϕ has no truth­value inMR, then the truth­
value of ϕ inMd­w.r.t.­MR is the truth­value of ϕ inMd.

Now we can finally define truth on a supervaluation (i.e., supertruth) inMU:

Supertruth in a multiply signifying model

A wff ϕ is supertrue (resp. superfalse) in MU iff ϕ is true (resp. false) in
Md­w.r.t.­MR, for everyMd of MU.

For example, ∃x(x = c) will be superfalse (in the imagined MU), because
even though that sentence is true in every complete disambiguation model, it is
false in the restricted modelMR (and the condition (Md w.r.t.MR 1) makes the
truth­value assigned byMR (false) override the fact that the sentence is true in
every disambiguation). And c = c and ‘Charley is an insect’ will be supertrue,
because they are neither true nor false in MR, but both are true in every com­
plete disambiguation. And any sentence that has no truth­value in MR, and is
true in some disambiguations and false in others, will be neither supertrue nor
superfalse.
There is one more complication concerning an interpreted identity predicate.

Many pet owners give their pets nicknames, in addition to the pets’ ‘offi­
cial’ names. We can imagine Fred, the owner of the ant colony, sometimes
refers to Charley using the name ‘Chuck,’ and other times using ‘Charles,’
as well as the original ‘Charley.’ Intuitively, it seems ‘Charley = Chuck’ and

41 An analogous issue arises in the supervaluational treatment of vagueness. A vague predicate
neither determinately applies nor determinately fails to apply to each element in the domain.
However, in every precisification, every predicate’s precisified extension either determinately
applies or fails to apply to each element.
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44 Philosophy and Logic

‘Chuck = Charles’ should be true. However, they will not be true on the above
semantics; rather, they will be truth­valueless. Anti­satisfaction condition (AS=
2) makes them truth­valueless in MR, and they will be true on some disam­
biguation models (namely, those models where ‘Charley’ and ‘Chuck’ are both
assigned to the same ant) and false on others. At first glance, there is an obvious
solution to this problem: Re­write the satisfaction conditions so that a = b is
true when a and b each multiply­refer to the same set of individuals, that is,

a = b is true inMR (based onMU) iff {x|RI(a,x)} = {x|RI(b,x)}.

This would achieve the desired effect of making ‘Chuck = Charley’ true.
However, imposing this condition has the following consequence: Every

identity statement involving two empty names would be true. For example,
‘Pegasus = Zeus = Atlantis’ would be true. Interestingly, this is a direct conse­
quence of one of the stronger theories of positive free logic used for languages
containing definite descriptions. Specifically, this logic is known as FD2, and
its distinguishing trait is the following:

(¬E!(t1) ∧ ¬E!(t2)) → t1 = t2 (FD2)

for any singular terms t1, t2 (including definite descriptions).42 It is clear that,
in a language with multiply referring singular terms, FD2 should not hold. For
presumably, if Fred confused two of the other non­large ants in his colony, and
called them by the name ‘Andrea,’ we should not say ‘Charley = Andrea’ is
true.
If we consider ‘Pegasus = Zeus’ to be a problem, then we could fix it by only

applying the above identity condition when a and b both refer to at least one
thing:

(Positive satisfaction for = inMR) a = b is true in MR (based on MU) iff
{x|RI (a,x)} = {x|RI (b,x)}, and neither set is empty.

This principle will not be assumed in what follows.
Finally, there is not yet an established supervaluational theory for definite

descriptions in languages containing ambiguous terms; this remains an open
area for research. Here is one difficulty. For example, suppose someone sympa­
thetic to a positive supervaluational semantics wanted to construct a semantics
in which ‘Charley = The big ant in Fred’s farm’ is true. If they simply followed
the satisfaction clause for ‘=’ just above, then we would get:

42 The logic FD2 results from adding the above to ‘Lambert’s Law’; see 66 below.

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009122764
Downloaded from https://www.cambridge.org/core. IP address: 18.188.69.183, on 30 Jan 2025 at 16:41:49, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009122764
https://www.cambridge.org/core


Free Logic 45

(Positive satisfaction for ιand = in MR) a = ιyP(y) is true in MR (based on
MU) iff {x|RI (a,x)} = {x|RI ( ιyP(y),x)}.

This immediately raises the question of what satisfies RI ( ιyP(y),x). Given that
we are trying to make ‘Charley = The big ant in Fred’s farm’ true, the natural
answer is: Every individual in the domain ofMU that satisfiesP. In other words,

ιyP(y) multiply refers to each of the individuals in the domain that satisfy P.
This does not require adding anything to the modelMU: We can compute what
satisfies RI ( ιyP(y),x) from RI (P,Φ), and the latter is already given as part of the
multiply signifying model. (Notice that this type of multiple signification does
not require the language to have anymultiply signifying basic components; that
is, this kind of multiple signification can appear in a classical model.) And in
our example, that would be Ant A and Ant B.
A problem arises when we combine this seemingly natural idea with

another natural, and quite weak idea: Frege’s only axiom for definite descrip­
tions (Morscher & Simons, 2001, p. 21).

c = ιx(x = c) (Frege’s ι­axiom)

for any name c. And this generates a problem, for we now have: ‘The thing iden­
tical to Charley = Charley.’ And whereas RI (on our above proposal) associates
two semantic values (Ant A and Ant B) with ‘Charley,’ it associates nothing
with ‘The individual identical to Charley’ (Section 3.4.1 gives the reason­
ing).43 In addition to this problem, things become even more complicated
when we allow for definite descriptions with multiply signifying predicates,
for the definite descriptions have to then be relativized to particular complete
disambiguation models. In Section 4.2.2, the discussion of theories of defi­
nite descriptions for positive existentially free logics will highlight some other
important differences between the existentially­free cases and the uniqueness­
free cases; theories of descriptions for uniqueness­free languages remains an
open research area.

Supervaluations for existentially free logic. One might initially think that it
would be simple to re­purpose the supervaluational machinery earlier in this
subsection to handle empty names. After all, an existentially free model is
mathematically equivalent to the restricted models we used to discuss ambi­
guity. One might then take a cue from the Science of Logic §133, where Hegel
claims that “pure nothing is . . . the same as pure being,” since being and nothing

43 Lambert (1972, p. 189–190) notes an analogous problem with Dana Scott’s theory of definite
descriptions.
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both lack any specific, distinguishing characteristics. Following this line of
thinking, we would take empty names to be maximally ambiguous, so to speak.
Instead of a name like ‘Charley,’ which refers to only two elements of the
domain of discourse, we treat ‘Zeus’ and ‘Vulcan’ as referring to every elem­
ent of the domain. As a result, ‘Vulcan = Vulcan’ would be logically supertrue,
since no matter what element of the domain we assign to the name ‘Vulcan,’
that element will be identical to itself. Similarly, ‘If Vulcan is a planet, then Vul­
can is a planet’ and ‘Vulcan is a planet, or it is not a planet’ would be supertrue
as well. And ‘Vulcan = Zeus’ would not be supertrue, since some complete dis­
ambiguation models would not assign the same element of the domain to both
‘Vulcan’ and ‘Zeus.’ This is all good news for someone who finds the idea of
a positive semantics appealing.
However, as it stands, this proposal will not work as a semantics for exis­

tentially free logic. Recall that one of the key markers distinguishing free logic
from classical logic is that the following are valid in classical logic, but not in
free logic:

(∀­Elimination) ∀xF(x), therefore F(a)
(∃­Introduction) F(a), therefore ∃xF(x)

However, on the supervaluational proposal as described thus far in the present
subsection, both of these are valid. For (∀­Elimination), if every element in the
domain is F, then whichever element the completion model assigns the empty
name a to will necessarily be F as well. And (∃­Introduction) would be valid
too, since if we have picked an arbitrary element from the domain to assign to
the empty name a, then whenever that element is F, then ∃xF(x) must be true
as well. So as it stands thus far, the supervaluational proposal described above
looks more appropriate for classical logic than for a (positive) free logic.
Free logicians who want to use a supervaluational semantics recognize that

(∀­Elimination) and (∃­Introduction) should not count as valid. So they use a
model called a ‘completion model’ (or more briefly just a ‘completion’), which
is similar but not identical to a complete disambiguation model. A completion
model starts from an existentially free model, that is, a model whose inter­
pretation function is partial over the individual constants: Not every name is
assigned an element of the domain. A completion model will ‘fill in the blanks’
of the existentially free model. Thus far, it does not differ from a complete dis­
ambiguation. The key differences are that, in a completion model, there is a
completion domain Dc that contains the original base domain D as a proper
subset, and the interpretation function for the completion model can assign
elements of Dc to empty names, and the extensions of n­ary predicates can
involve elements from Dc, whereas non­defective names must be assigned to
elements of D.
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Completion models

Mc = ⟨Dc, f c⟩ is a completion model of an existentially free model
ME = ⟨D, f E⟩ iff:

(Mc1) Dc is non­empty, and D ⊂ Dc

(Mc2) For any predicate P, f E(P) ⊂ f c(P).
(Mc3) If f E is defined at an individual constant b, then f c(b) = f E(b).

Note that (∀­Introduction) and (∃­Introduction) are still logically valid, if
we supervaluate over such completion models. Without any further seman­
tic tweaks, both entailments will be truth­preserving in every completion of
every existentially free model. There are two ways in the literature to prevent
(∀­Introduction) and (∃­Introduction) from being logically valid, in a superval­
uational setting. The first and more common way is to change the semantics for
the quantifiers: Let∀ and ∃ range overD only, not over the wholeDc. Then both
(∀­Introduction) and (∃­Introduction) will have a completionmodel where their
premise is true but their conclusion is false. To see this for (∀­Introduction), let
every element of D be in the extension of F (i.e., f c(F) = D), so that ∀xF(x) is
true, but let a be an empty name assigned to an element in Dc that is not in the
extension of F (i.e., f c(a) ∈ (Dc − D)), so that F(a) is false. For a completion
model where (∃­Introduction) is false, let f c(a) again be an element of Dc − D
and f c(a) ∈ f c(F), so that F(a) is true. Further suppose that the extension of F
contains no elements of D (i.e., f c(F) ∩ D = ∅), so that ∃xF(x) is false.
Ermanno Bencivenga proposes a slightly different strategy to prevent (∀­

Introduction) and (∃­Introduction) from being supertrue. He uses the same
definition of completion models, but he does not alter the usual semantics for
the quantifiers, that is, quantifiers still range over every element of a comple­
tionmodel (so ‘all’ really means all of the elements, and not just a proper subset
of them). Bencivenga uses a two­stage process for supervaluating a sentence,
which is similar to the notion of truth inMd­w.r.t.­MR that we saw a few pages
ago; here, it will be truth in Mc­w.r.t.­ME. First, determine all the truth­values
in the ‘base’ model ME. Each of these truth­values always trumps any truth­
values assigned via supervaluating on the completion models. For example, if
there is a sentence that is made true in the base model, but is false in some
completion models, then that sentence is simply true, not truth­valueless. So
let us apply this to (∀­Introduction) and (∃­Introduction). Suppose we have
a existentially free model ME, with at least one empty name a. Further sup­
pose that in this model, ∀xF(x) is true, that is, every member of D is in the
extension of F, but F(a) has no truth­value, since a is undefined. When we
make completion models that assign a referent to a, that referent will have
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to be in Dc − D. And in some completion models, f c(a) ∈ f c(F); in those
models, both the premise and conclusion of (∀­Introduction) are true. And in
other completion models, f c(a) < f c(F); in those models, the premise and con­
clusion of (∀­Introduction) are both false. So there is no completion model
where the premise of (∀­Introduction) is true, but its conclusion is not (this
is what distinguishes Bencivenga’s method from the one described in the pre­
vious paragraph). As a result, we cannot identify ‘supertrue’ with ‘truth in all
completion models,’ since that would make (∀­Introduction) truth­preserving,
violating the fundamental spirit of free logic. This is why the two­stage evalu­
ation process is necessary. If a sentence has a truth­value in the base model, that
truth­value always overrides anything the chorus of completion models says.
On this two­stage semantics, (∀­Introduction) is not logically valid. There are
models ME where ∀xF(x) is true because it is true in the base model ME, but
F(a) is not evaluated as true, because it is not true in all completion models.44

3.4.3 Subvaluational Semantics

This subsection presents two related positive semantics. These two semantic
proposals are only intended to apply to multiply signifying terms; they were not
designed to address languages with empty names. On both, a sentence is true iff
it is true on at least one complete disambiguation (though, as we shall see, these
disambiguations are different from the oneswe just saw for the supervaluational
semantics).

Lewis‐Priest semantics. Imagine you know that I am spending my lunch
break sitting next to the river that runs through our town. Someone then asks
you ‘Is Greg at the bank?’. You do not know if this person is asking if I am at the
strip of land bordering our local river, or instead if I am at a financial institution
where I could deposit checks and make withdrawals. So you reply ‘Well, yes
and no.’ This is a perfectly normal response in everyday conversation, though
on its face your answer appears contradictory. This response seems completely
unexceptional to a typical English speaker, because saying ‘Yes and no’ in reply
is conventionally used to signal to the question­asker that the hearer thinks the
question is ambiguous. That is, the responder is communicating that if the sen­
tence is interpreted in one way, the answer is ‘yes,’ but if it is interpreted it in
another legitimate way, the answer is ‘no.’ Now, if one thinks ‘Yes and no’ is
the best way to answer this question, then one might naturally also think that
the declarative sentence ‘Greg is at the bank’ should be both true and false.

44 For the technical details of this two­stage assignment of truth­values, see Bencivenga (1981)
and Bencivenga (2002).
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Thus, ambiguity can be used tomotivate a relativelymild version of dialethe­
ism, the view that a single sentence can be true and false. This is often called a
‘truth­value glut’ (contrasted with a ‘truth­value gap,’ when a sentence has no
truth­value). And if we keep the standard principles that the negation of a true
sentence is false, and the negation of a false sentence is true, then there can be
a sentence A where both A and its negation ¬A are true (and also both false).
Thus, dialetheism allows for true contradictions. I called this a mild or weak
form of dialetheism, because unlike standard, stronger dialetheism, one could
accept all of the above and still maintain that there are no propositions (i.e.,
the semantic contents of sentences) that are both true and false simultaneously.
On this weaker form of dialetheism, only sentences can be true contradictions;
propositions cannot. For it is reasonable to claim that a single sentence can
be ambiguous between two propositions, even if one thinks that propositions
themselves cannot be ambiguous: The sentence ‘Greg Frost­Arnold is at the
local bank’ is ambiguous between (i) the unambiguous proposition that I am
at the land bordering the river running through our town, and (ii) the unam­
biguous proposition that I am at the local financial institution. David K. Lewis
(1982) uses the fact that ambiguity is a feature of everyday life to motivate the
use of truth­value gluts, and thereby to motivate using a relevant logic. Graham
Priest (1995, 2016) does the same, but for first­order logic, whereas Lewis only
deals with the propositional case. See also Ripley (2018).
Once sentences that have more than one truth­value are allowed, we must

also revisit the sentential connectives. The standard approach, advocated by
Priest, is to keep the classical characterizations of the connectives unchanged.
Thus, for example, consider the conjunction A∧ B. Suppose A is both true and
false, while B is true only. Classically, a conjunction is true iff both conjuncts
are true. Thus, A∧B is true. But classically, a conjunction is false if at least one
of the conjuncts is false. And in the sentence under consideration, A is false (as
well as true), so A ∧ B is false too. So the conjunction A ∧ B is both true and
false, when one conjunct has both truth­values, and the other conjunct is just
true.
At this point, you might think that Lewis and Priest’s proposal can be framed

using the concept of a complete disambiguation introduced earlier, as follows.
A sentence A is true iff it is true on at least one complete disambiguation model,
and it is false iff A is false on at least one complete disambiguation model. As
it turns out, this does not accurately capture the Lewis­Priest semantics. The
reason is that they allow for “mixed disambiguations” (Lewis, 1982, p. 439),
that is, when the same expression appears more than once in a single sentence,
the different instances of that expression can be assigned different semantic
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values. Here is why they permit mixed disambiguations. Imagine a situation in
which Ant A is eating, but Ant B is not. Consider the following argument:

1. Charley is eating
2. ¬(Charley is eating)

3. Charley is eating ∧ ¬(Charley is eating) ∧ Intro: 1, 2

On the Lewis­Priest semantics, the first premise is true, since Ant A is eating,
and the second premise is also true, since Ant B is not eating. (Both premises
are also false as well.) However, there is no uniform disambiguation model in
which Ant A is both eating and not eating, and there is also no uniform dis­
ambiguation model in which Ant B is both eating and not eating. So then the
conclusion is not true in any uniform disambiguation model, in which case the
proof rule of ∧­Intro fails. Because Priest and Lewis want ∧­Intro to be a valid
rule, their response to this situation is to allowmixed disambiguations: In a sen­
tence where the same ambiguous expression appears twice, the two tokens of
the expression can be semantically assigned different disambiguations. Thus,
the conclusion in the above argument is true and false: It is true, because if we
assign Ant A to ‘Charley’ in the first conjunct, and Ant B to ‘Charley’ in the
second conjunct, then both conjuncts are true. Thus, there is amixed disambigu­
ation in which A∧¬A is true. So the ∧­intro rule is saved by allowing for mixed
disambiguations. Note that allowing for mixed disambiguations will make
‘Charley = Charley’ both true and false (likewise for ‘Charley , Charley’).

McLeish semantics. Finally, suppose you do not want to accept either the
truth­value gluts of the Lewis­Priest semantics, or the truth­value gaps of
the supervaluational semantics, but you still want some sentences containing
defective terms to be true (and others false), that is, you want a positive seman­
tics. Christina McLeish (2006) has proposed a semantics which does exactly
that. Loosely speaking, McLeish’s proposal combines Lewis and Priest’s truth­
definition with the supervaluational one. Lewis and Priest treat truth and falsity
symmetrically: To repeat what was said above, a sentence is true iff it is true in
at least one complete mixed disambiguation, and false iff it is false in at least
one complete mixed disambiguation. McLeish’s proposal, in contrast, handles
truth and falsity asymmetrically: It uses the same truth­definition that Lewis
and Priest do, but says a sentence is false iff it is false on all complete dis­
ambiguations. Thus, on McLeish’s semantics, there are no sentences that are
both true and false, distinguishing her proposal from Lewis and Priest’s. But
there are also no truth­valueless sentences created by ambiguities, thereby dis­
tinguishing it from the supervaluational semantics, which declares a sentence
neither true nor false if it is true on some disambiguations but not on others. On
first glance, McLeish’s semantics might appear to be the best of both worlds,
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especially if one is reluctant to accept non­standard truth­value assignments,
that is, one wants to avoid truth­value gaps and gluts. But as we shall see
later (in Section 4.3.3), this view has its own implausible consequences. In
particular, the logical rule of ∧­Introduction is no longer valid.

3.4.4 Inner‐Domain/Outer‐Domain Semantics

The two species of subvaluational semantics just discussed are specifically for
terms that refer to too much, not terms that refer to nothing. The inner­domain/
outer­domain semantics, the topic of this subsection, is the converse: It was
designed to handle empty names, but (as we will see) does not naturally apply
to ambiguous terms.
After looking at the outcomes of the supervaluational semantics, someone

who was drawn to positive semantics might think the supervaluational seman­
tics ‘does not go far enough,’ in the sense that there are some sentences about
things that do not actually exist that the supervaluational semantics classifies as
truth­valueless, but should nonetheless be true. For example, one might want
to say that ‘Gregor Samsa is a giant insect’ or ‘Vulcan is a planet’ are true,
even though neither Gregor Samsa or Vulcan exist (Dumitru & Kroon, 2008,
p. 106–108). Similarly, onemight think ‘Zeus is one of the Ancient Greek gods’
is true, even though ‘Zeus exists’ and ‘Ancient Greek gods exist’ are both false
(Bacon, 2013). But on the supervaluational semantics, ‘Vulcan is a planet’ and
‘Zeus is an Ancient Greek god’ will not be true (or false).
The central technical idea of inner­domain/outer­domain semantics is sim­

ple. A classical model, as we have seen, consists of a domain and a interpret­
ation function (M = ⟨D, fI⟩). The inner­domain/outer­domain semantics begins
from a classical model, and splits the domain into two mutually exclusive and
exhaustive subdomains, called the inner and the outer domains (D = (Di∪Do),
and (Di ∩ Do) = ∅). Intuitively speaking, the elements of the inner domain
are intended to represent entities that exist, whereas the elements of the outer
domain represent non­existent items like Zeus andVulcan. Inner­domain/outer­
domain model theory does not use the notion of a restricted model. This
semantics is exactly the same as the classical semantics, with only one excep­
tion: The quantifiers only range over the elements of the inner domain, not
the elements of the outer domain. And if the language contains an existence
predicate, that predicate is satisfied by all and only the elements of the inner
domain.
This modification to the classical quantifier semantics can generate the

desired truth­value assignments described in the paragraph before last. For if
fI(‘Zeus’) ∈ Do, then ∃x(x = Zeus) is false. And if every other Ancient Greek
god is also in the outer domain alongwith Zeus, then ‘Ancient Greek gods exist’
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will be false as well. However, the predicate ‘Ancient Greek god’ can still apply
to the elements in the outer domain intended to represent Zeus, Hera, and the
rest: fI(‘Zeus’), fI(‘Hera’), . . . ∈ fI(‘Ancient Greek god’). Because the only dif­
ference between the inner­domain/outer­domain semantics and classical model
theory is confined to the quantifiers, in an unquantified sentence (like ‘Hera is
an Ancient Greek god’), the extension of a predicate does not ‘care’ whether
an element is in the inner domain or the outer one. So the sentence ‘Zeus is an
Ancient Greek god who does not exist – and neither do any of the other Ancient
Greek gods’ can be true, if we use the inner­domain/outer­domain semantics,
instead of the supervaluational semantics.
Might we use an inner­domain/outer­domain semantics for ambiguous

terms, as well as empty names? The suggestion is not absurd on its face. To
use the example of Fred’s ant colony again, we can imagine that Ant A and
Ant B are both elements of the inner domain, and that there is a third elem­
ent, in the outer domain, which is supposed to represent Charley. So far, so
good. But the difficult question is: What, if anything, is the relation between
the third entity representing Charley in the outer domain, and the two elem­
ents Ant A and Ant B in the inner domain? It seems that the traits of Ants A
and B should constrain Charley’s traits in at least some ways: Charley is not
as independent from the actual world as Zeus is. For example, it seems plaus­
ible to hold that ‘Charley is an insect’ is true because Ant A and Ant B are
both insects, a fact determined by facts about the inner domain, that is, what
is actual, whereas, for example, ‘Zeus is Hera’s spouse’ is not made true by
anything actual except an admittedly fictional story. But if we go that route,
then it seems we have just re­invented the supervaluational semantics, but with
added complications (namely the outer domain). Perhaps something would be
gained over the supervaluational semantics, either philosophically or logically,
from introducing a third element into the outer domain to represent a conflated
object. But I do not see one. And other initially plausible suggestions for what
that third object would be, such as the set whose only members are Ant A and
Ant B, or the mereological fusion of them, would run into the same problems
described earlier in Section 3.4.1. But perhaps it is possible; I consider this an
open question. And Krista Lawlor considers it an important question:

In supervaluing, we give up on understanding the confused belief, [because]
Fred’s ontological commitments involve one big ant . . ., not two. Our assign­
ment of truth and falsity to Fred’s beliefs rests on our ontology, not Fred’s.
. . . In a very clear sense we give up on understanding Fred, in favor of
using him . . . as an instrument . . . for detecting the facts as we understand
them. (Lawlor, 2007, p. 153)
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Meinongianism. The inner­domain/outer­domain semantics is related to
another venerable philosophico­logical topic: Meinongianism. Graham Priest,
who has worked to revive Meinongian views based on the work of Rich­
ard Routley (1980), identifies the minimal core of this doctrine as ‘Noneism’
(Priest, 2016, xxvii):

(Noneism) Some things do not exist.

Put slightly differently: Not all properties are existence­entailing. Priest (and
others, including Berto [2013] and Nolt [2010 §5.5]) maintain that Noneism is
more commonsense and plausible than the (Parmenidean/Quinean) view that
everything exists. It should be clear why Noneism fits nicely with the inner­
domain/outer­domain semantics: The ‘things that do not exist’ in the Noneist
thesis are (represented by) the elements in an outer domain.
Of course, for the doctrine of Noneism to be coherent, we cannot (contra

introductory logic texts) read the quantifier ‘some’ in the statement of Noneism
as the standard existential quantifier ∃ of classical logic: ‘There exists some­
thing that doesn’t exist’ is plainly incoherent. So the Noneist introduces a new
quantifier for ‘some’ (S) which does not carry existential assumptions, and
ranges over the entire domain, the outer domain as as well as the inner. As a
result, ‘Some things do not exist’ is true in a model just in case there is at least
one element in the outer domain. The characteristic Noneist slogan can be pre­
cisely expressed asSx¬E!(x) in a language with a unique existence predicate,
and as Sx¬∃y(x = y) in a language with identity. There is a corresponding
universal quantifier (A) that ranges over the whole inner and outer domains as
well. The semantics for the new quantifiers are precisely the classical ones, over
the entire domainD=Di∪Do. Note that we can define the old classical quanti­
fiers in terms of their Meinongian counterparts, provided we have an existence
predicate:

• ∃xF(x) ⇔Sx(E!(x) ∧ F(x))
• ∀xF(x) ⇔ Ax(E!(x) → F(x))

So anything that can be said in a classical language can also be said in
this Meinongian language. (However, we cannot define the new, extended
quantifiers in terms of the old, standard ones.)
Now, a question any philosophically inclined person would have about

Noneism and the inner­domain/outer­domain semantics is: What exactly are
the things in the outer domain? What determines what is included in the outer
domain, and what is not? An answer to this question goes beyond the bare
statement of Noneism, but many people will not be satisfied with Noneism
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as a brute, unexplained assertion. Meinong himself, as well as many Neo­
Meinongians, generally argue for the group of non­existing items to be as large
as it can be, without creating disastrous consequences (and different people
have different views of what counts as a disaster). For one consideration moti­
vating these thinkers is that the Problem of Empty Names (Section 2.3.1) is
a real problem: If I am thinking or talking about Pegasus, then there must be
something that I am thinking or talking about. I am not thinking of nothing (as
I would be during a dreamless sleep, for example); the thing I am thinking of
just happens to lack the property of existence. And human beings are capable
of thinking about all sorts of things, existing or not. We are even arguably able
to think about things that are not just non­existent but impossible, since we
make claims like ‘Penrose’s triangle is impossible,’ which states that a particu­
lar thing cannot have the property of existence. If the justification for (Noneism)
is that humans can think about lots of non­existent things, then the set of non­
existent things, that is, the population of the outer domain, will be everything
coherently conceivable. And given any set of properties, humans can posit and
entertain some object that has those properties.45 This is called the (naive or
unrestricted) ‘characterization principle’ or ‘comprehension principle’: For any
property or set of properties P, there is an item or thing bP (possibly in the outer
domain) having those properties, that is, P(bP) (Berto, 2013, p. 86).
Unfortunately, this simple, naive characterization principle leads to conse­

quences even Meinongians find unacceptable. First, this principle guarantees
the existence of every object. Meinongians stress, contra the philosophical
orthodoxy, that existence is just one property among others: Some things have
it, others do not. But if that is true, then it can appear in instances of the
unrestricted characterization principle: The principle guarantees not only an
object that has the properties of both being golden and a mountain (which
Meinongians are happy with), but also a thing that has the three properties of
being golden, a mountain, and existent. And even Meinongians do not want
to endorse the obviously false claim that a golden mountain actually exists.
Second, the unrestricted characterization principle allows us to prove literally
anything (Priest, 2016, p. xix). Let A be an arbitrary sentence. Now consider
the (admittedly artificial) property x = x∧A. The unrestricted characteriza­
tion principle guarantees that there is an object with that property, call it c. So
c = c∧A is true, and A immediately logically follows from that sentence. Since

45 This way of phrasing the Meinongian idea is perhaps misleading, for it makes Meinongianism
sound completely dependent on the contours of human psychology. Whether our limited brains
ever happen to think of a particular item is not essential: We can think of the possible ‘objects
of thought’ as preexisting human cognition, waiting to be discovered by human minds.
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A was arbitrary, this shows that endorsing the unrestricted characterization
principle allows you to prove anything.
Philosophers working in the Meinongian tradition have offered several ways

to avoid this problem.46 One route restricts the set of properties that can occur
in the characterization principle (Parsons, 1980). In particular, the property of
existence is disallowed; this prevents the Meinongian from accepting that a
golden mountain, or greatest natural number, actually exists. The key difficulty
with this approach is providing a principled distinction between properties that
are allowed in the (restricted) characterization principle and those that are not,
that is not merely a post hoc rationalization contrived for no reason other than
saving Meinongianism from apparent counterexamples (Priest, 2016, p. 83).
A second way Meinongians have responded to the two problems described in
the previous paragraph is via what Berto calls ‘modal Meinongianism.’ This
accepts a unrestricted comprehension principle, but instead of holding that
P(bP) is true in our world, that is, in the actual world (as the original ver­
sion does), instead holds the much weaker claim that it is true at some world
(Berto, 2013, p. 141), (Priest, 2016, p. 84). So ‘The existent golden mountain
exists’ is true, just not at our world. And if your Meinongianism allows you
to think about impossible objects like the round square, your semantics will
need to include impossible worlds along with possible ones. Priest (2016) and
Berto (2013) both pursue this project in detail.
Looking over the options for a positive free semantics canvassed above, one

might like the bivalence of the inner­domain/outer­domain semantics, but feel
hesitant about allowing non­existent things into the (outer) domain; conversely,
one might like that the supervaluational semantics avoids any non­existent
things in its (base) domain, but dislike that it allows for truth­value gaps. As a
result, one might wonder whether it would be possible to have the best of both
worlds, namely, a positive semantics that is both bivalent and does not con­
tain elements meant to represent non­existent things in its technical machinery.
Aldo Antonelli (2000, 2007) has proposed just such a positive semantics. I will
not present thewhole apparatus here, but the central idea can be explained infor­
mally. Antonelli’s semantics adds information to the interpretation function for
names and predicates, so that, in effect, the interpretation function will encode
the information that makes, for example, ‘Zeus is a Greek god’ come out true,
and ‘Zeus is a horse’ come out false. For each ordered n­tuple of names, and
every n­place predicate in the language, the interpretation function determines

46 Berto (2013) provides a comprehensive survey of these various Meinongian solutions. He
includes the proposal, omitted here, of Zalta (1983), whose core idea is that the ‘is’ in ‘Atlantis
is a city’ means something different from the ‘is’ in ‘Buenos Aires is a city.’
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whether that n­tuple creates a true sentence when combined with that predi­
cate – regardless of whether all those names refer or not. Antonelli himself
calls this maneuver “somewhat artificial” (like other positive free semantics)
(Antonelli, 2007, p. 71), but it does show that it is technically possible to have
a bivalent positive free logic that does not need anything to represent non­
existent individuals. The price is dissociating true predications from the central,
intuitive idea of things having properties.

4 Proofs and Logical Consequence
Thus far, we have characterized the differences between free logics and clas­
sical logic in terms of truth and reference: What happens when we allow names
in our language that refer to nothing? Or to more than one thing? But free logics
can also be distinguished from classical logics in terms of what proof steps are
allowed in a valid argument. There are certain steps that classical logic permits
that free logics do not, namely classical ∀­elimination (also called ‘Univer­
sal Instantiation’) and ∃­introduction (also called ‘Existential Generalization’).
Free logics do not simply eliminate these two rules entirely; rather, they weaken
those two classical rules. In effect, the two free­logic versions of these rules are
just the classical rules plus the additional premise that the individual at issue
exists. Some changes to the proof rules for ‘=’ are also needed, as well as rules
involving the existence predicate ‘E!’. Section 4.1 first explains why those rules
(typically) fail in free logics, then 4.2 presents alternative proof rules for exis­
tentially free logics, followed in 4.3 by rules for uniqueness­free logics, and
how they compare to the existentially free ones.
Proof systems for free logics have been presented inmany of themajor types:

axiomatic formulations, the sequent calculus, tableaux/trees, et cetera. The dis­
cussion in this sectionwill use Fitch­style natural deduction, in part because it is
popular in introductory logic instruction (and this Element’s intended audience
includes people who have taken only a first­order logic course), and because
those other formats are widely available in other overviews of free logics. It
should be noted at the outset that there is no such thing as ‘the proof rules of
positive free logic’ or ‘the proof rules of negative free logic.’ Rather, there are
multiple, non­equivalent but similar formal proof systems.47

47 Norbert Gratzl (2010, p. 331) writes “there is no particular formal system called ‘the’ negative
free logic, but there is a whole family of such systems.” And Indrzejczak & Zawidzki (2021,
fig. 2) list five different (positive and negative) proof systems.
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4.1 Classical Proof Rules
In classical logical systems, it is legitimate to deduce ‘Pat is hungry and angry’
from the generalization ‘Everyone is hungry and angry.’ The principle under­
writing this deduction is formalized as the proof rule of ‘universal instantiation’
or ∀­elimination:

Classical ∀­elim: 1. ∀xϕ(. . . x . . .)
2. ϕ(. . . [b/x] . . .) ∀Elim: 1

where b is any name, ϕ is any well­formed formula, x is free in ϕ(. . . x . . .),
and [b/x]means that the name b has been substituted for all occurrences of the
variable x in ϕ.
In terms of proofs, the characteristic difference between classical logic and

existentially free logic is that the above principle holds unrestrictedly in the
former, but not in the latter. Matters are slightly different in uniqueness­free
logics; Section 4.3 will examine how ambiguous names relate to the classical
∀­elim rule. We saw in Section 1 that allowing empty names into a language
makes classical∀­elimination invalid on the various semantics, but let us briefly
recap how each of the various semantics allow the sentence ‘Everything is hun­
gry’ to be literally true without ‘Santa Claus is hungry’ also being true. For the
inner­domain/outer­domain semantics, there are models in which every indi­
vidual in the inner domain falls under the extension of the predicate ‘hungry,’
that is, ‘Everything is hungry’ is true, but the extension of ‘hungry’ does not
include anything in the outer domain. Similarly for a supervaluational seman­
tics: In some completion models, the referent of ‘Santa’ is neither in the domain
of the base model, nor in the extension of ‘hungry.’ So ‘Santa is hungry’ will
be neither supertrue nor superfalse, in models where ‘Everything is hungry’ is
true. If ϕ(. . . [b/x] . . .) is atomic, then in negative semantics it will always be
false, and in neutral semantics it will always be truth­valueless, even in models
where ∀x(. . . x . . .) is true.
Additionally, in classical logic, the step from ‘Pat is hungry and angry’ to

‘Someone or something is hungry and angry’ is valid, and so is every argu­
ment with the same form. This is called ‘existential generalization’ or ∃­
introduction:

Classical ∃­intro: 1. ϕ(. . . b . . .)
2. ∃xϕ(. . . [x//b] . . .) ∀Elim: 1
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58 Philosophy and Logic

where ‘[x//b]’ means that x is substituted for some or all occurrences of b in
ϕ. In most48 existentially free logics, this classical proof principle does not
hold unrestrictedly. It is easy to see why in the case of the inner­domain/ outer­
domain positive semantics. For a concrete example, let b be ‘Vulcan’ and ϕ(x)
be ‘x is a planet closer to the Sun thanMercury.’ Putting this in terms of models,
fI(b) will be an element the outer domain. Furthermore, it will also be in the
extension of fI(ϕ). Thus, the sentence ϕ(b)will be true. But because no elements
of the inner domain are in the extension of ϕ, ∃xϕ(x) is false. Furthermore, this
rule is invalid for supervaluational free semantics as well: As before, let b be
‘Vulcan.’ Now let ϕ(x) be ‘x = Vulcan.’ On the supervaluational semantics,
‘Vulcan = Vulcan’ is true, but ‘∃x(x = Vulcan)’ is false. (This example works
for the inner­domain/outer­domain semantics too.)
This classical rule of ∃­intro is also invalid in generalized negative free logic,

and in neutral free logics that use ‘external’ or ‘strong’ negation. Here is why.
Suppose the individual constant b does not uniquely refer. In negative free
logic, F(b) must be false, so ¬F(b) is true. In neutral free logic, F(b) is truth­
valueless, but applying external negation to a truth­valueless sentence results in
a true sentence (see Table 1, p. 35). So, on both semantics,¬F(b) is true. Apply­
ing the classical rule of ∃­intro to this true sentence results in ∃x¬F(x). But the
extension of the predicate F could be the entire domain D (i.e., fI(F) = D), in
which case ∃x¬F(x) would be false. (For example, let the predicate Fmean ‘is
identical to itself,’ i.e. F(b) means the same thing as b = b.) Thus, the classical
rule of ∃­intro can take us from a true claim to a false one, in positive exis­
tentially49 free logics, negative free logic, or a neutral free logic with external
negation.
What about neutral free logics with internal negation? This question is worth

asking, in part because the combination just considered of external negation and
neutral semantics is not really conceptually compelling. The main motivation
for adopting a neutral semantics (Lehmann’s ‘No input, no output’ principle)
seems like it would also push one toward internal negation and away from
external negation. To answer this question, we need a to draw a distinction
between two notions of validity that perfectly coincide in classical logic. Clas­
sically, every sentence is either true or false (and not both). When that holds,
the following two characterizations of validity are equivalent:

48 This qualification is necessary, because the classical ∃­intro rule is truth­preserving for neutral
logics, as long as (i) the semantics assigns ‘∃x(x = Atlantis)’ no truth­value, and (ii) negation
is internal, not external (for this distinction, see Table 1 on p. 35).

49 As we shall see in Section 4.3.2, the two proof rules of ∀­elim and ∃­intro also fail to hold in
some species of uniqueness­free logics, but not in all.
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(Forward­truth­preserving [FTP] validity) An argument is FTP­valid iff in
every situation where all the premises are true, the conclusion is also
true.

(Backwards­falsehood­preserving [BFP] validity) An argument is BFP­
valid iff in every situation where the conclusion is false, at least
one premise is also false. (This is equivalent to forward non­falsity
preservation.)

These two types of validity are equivalent in the classical case because there,
‘true’ is equivalent to ‘not false.’ However, if we allow sentences that are nei­
ther true nor false (like any neutral semantics, or a supervaluational positive
semantics), then these two ways of characterizing validity can come apart. For
a supervaluational example, consider again the argument we saw on p. 50:

1. Charley is eating
2. ¬(Charley is eating)

3. Charley is eating ∧ ¬(Charley is eating) ∧ Intro: 1, 2

Suppose Ant A is eating, but Ant B is not. Then this argument fails to be
backwards­(super)falsehood preserving, since the conclusion is superfalse, but
neither premise is superfalse. However, it is still forward­(super)truth preserv­
ing: no argument of the form F(a), ¬F(a), thus F(a)∧¬F(a) can have supertrue
premises (and a conclusion which is not supertrue). For another example, con­
sider the argument from F(b) to ∃xF(x), where F(b) is atomic. In a neutral free
logic, this is forward­truth preserving, but not backwards­falsehood preserv­
ing. It is forward­truth preserving because the only way F(b) can be true is
if both b and F are defined, and the referent of b falls under the extension of
F. When those two conditions are met, at least one thing in the domain is F,
thereby guaranteeing the truth of the conclusion. However, this argument form
is not backwards­falsehood preserving. Let b be an empty name, and let the
predicate F apply to no individuals. Then F(b) will be neither true nor false,
but ∃xF(x) will be false. So, returning to our original question, ‘Is classical
∃­intro valid in a neutral semantics with internal negation?’, we can see that
the answer is ‘Yes and no’: Yes, insofar as it is forward­truth preserving, but
no insofar as it is not backwards­falsehood preserving. However, note that in
a negative free logic, this example will be backwards­falsehood preserving,
since F(b) will be false, given that b is an empty name. And generally, the two
notions of validity coincide for negative free logic, and for positive free logics
using the inner­domain/outer­domain semantics, since both of these are biva­
lent. The situation is complicated for languages that allow truth­value gluts. In
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60 Philosophy and Logic

terms of the cases we have discussed, Lewis’ preferred logic (R­Mingle) is both
FTP and BFP, whereas Priest’s preferred Logic of Paradox is FTP but not BFP
(Dunn, 2000, p. 11). The situation is similar for the other classical rule that fails
in free logics, ∀­elimination. In neutral free logics, it is not forward­truth pre­
serving, but it is backwards­falsehood preserving. To show this, consider the
∀­elimination argument scheme:

∀xϕ(. . . x . . .)

ϕ(. . . [b/x] . . .)

This is not forward­truth preserving: Imagine a situation where everything in
the domain satisfies ϕ(. . . x . . .). The premise will then be true. But if b does not
denote, then the conclusion will be neither true nor false. (This is immediate
if ϕ(. . . [b/x] . . .) is atomic.) But this argument form is backwards­falsehood
preserving, even on the Strong Kleene scheme (in which some sentences con­
taining empty names can have truth values: e.g., A∧ B is false, when A is false
and B is truth­valueless). If b is defined, this is immediate: If the individual b
refers to does not satisfy ϕ(. . . x . . .), then the universal quantification of that
open formula for x will be false. What about the case where ϕ(. . . [b/x] . . .) is
false, and b is undefined? In that case, the components of ϕ(. . . [b/x] . . .) that
do not contain b already determine the truth­value of that sentence (just as, on
the Strong Kleene scheme, the falsity of A must already determine the truth­
value of A ∧ B: The conjunction will be false, regardless of whether B is true,
false, or neither). But if the truth­value of ϕ(. . . [b/x] . . .) is already determined
by the b­free components of that sentence, then changing the components that
contain b (including if we replace b with a bound variable and quantify over
it) cannot change the truth­value of the resulting sentence (because vacuous
quantification – in this case, over the b­free parts of the sentence – does not
change truth­values). So if ϕ(. . . [b/x] . . .) is false, then ∀xϕ(. . . x . . .) must be
false too, regardless of whether b is defined or not.

4.2 Existentially Free Proof Rules
Although the classical versions of∀­elimination and ∃­introduction do not hold
in all existentially free logics, restricted or weakened versions of those two rules
do hold. The classical rules are valid in classical logic because there, (i) the
quantifiers range over everything that exists, and (ii) the name at issue refers
to something that exists. Free logics keep (i) but drop (ii). What the weakened
free­logic proof rules in effect do is require (ii) to be explicitly stated as a line in
a proof, when one wants to use ∀­elimination or ∃­introduction. (As we shall
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see, for languages without an existence predicate or an identity predicate, a
workaround can be devised, using subproofs.)

4.2.1 Proof Rules Shared by All Existentially Free Logics

The existentially free ∀­elimination rule takes the original, classical rule, and
adds the requirement that the individual being instantiated exists:

Existentially Free ∀­elim: 1. ∀xϕ(. . . x . . .)
2. E!(b)
3. ϕ(. . . [b/x] . . .) ∀Elim: 1, 2

where b is any name, referring or empty, and ‘E!(x)’ formalizes ‘x exists.’ As
mentioned in our earlier discussion about existence and identity in Section 3.1,
if our language contains ‘=,’ then premise 2 above can be replaced with ∃x(x =
b). Notice that, in a sense, this rule also functions as an elimination rule for E!
(though only in a sense: The free ∃­intro rule will discharge existence­claims
as well, so there is not a single E!­elimination rule). Also, note that this rule
fulfills the basic free­logic goal of preventing arguments like ‘Everything is
hungry, therefore Santa Claus is hungry’ from counting as valid.
What about languages that do not contain a predicate for ‘E!’ or ‘=’?

Proof rules become slightly more complicated, but they are still possible.
Lambert and van Fraassen (1972, §4.5) make use of the fact that in free logics
variables only range over the elements that exist; if we are working within a
two­domain semantics, then variables can only range over the ‘inner domain’
(see also Wu [1988] and Hazen & Pelletier [2014, §2.2.5]). As first­order logic
students learn, some proofs involve reasoning about arbitrary objects (specif­
ically, the ∀­intro and ∃­elim rules require us to use arbitrary objects). These
arbitrary objects are represented as boxed letters in the rules below. So, when
reasoning about arbitrary objects within subproofs, the arbitrary object is rep­
resented by a (new) variable, to guarantee that we are talking about a unique
and existent arbitrary object. The ∀­elim rule (in its classical form) can only
be applied when working within a subproof in which the variable being instan­
tiated by the rule is one of these special variables. This way of setting up the
∀­elim rule involves allowing lines in a proof to contain free variables. How­
ever, lines with free variables are only allowed to appear within subproofs.50

Depicting this in a Fitch­style format:

50 There are other ways; for example, instead of using variables for the arbitrary existing objects,
we could introduce a new type of individual symbol that, by stipulation, can only refer to a
unique existing object in the domain, and use that as our boxed letter, instead of a variable. For
example, instead of x, y as in the main text, we could introduce boldface individual constants
a, b that are guaranteed to refer to unique existing objects (Hardegree, 2016, §VII­14).
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62 Philosophy and Logic

Existentially Free ∀­elim (no = or E!):
n. y

n + k. ∀xϕx
...

ϕ[y/x] ∀Elim: n + k

provided y is free for x in ϕ.
There is a parallel free analog for the classical rule of ∃­introduction, which

again is just like the classical rule except it adds the requirement that the
individual at issue exists:

Existentially Free ∃­intro: 1. ϕ(. . . b . . .)
2. E!(b)
3. ∃xϕ(. . . [x//b] . . .) ∃ Intro: 1, 2

where again, we can substitute ∃x(x = b) for premise 2, if the language contains
‘=.’ And as above, it is also possible to introduce such a rule in languages that
do not contain the predicates ‘=’ or ‘E!.’

Existentially Free ∃­intro (no = or E!)
n. y

n + k. ϕy
...

∃xϕ[x/y] ∃ Intro: n + k

provided y is free for x in ϕ.
In a natural deduction system of proof, we need both an introduction and

elimination rule for each logical symbol. Here are the other halves for the two
rules introduced above:

Existentially Free ∀­intro
1. E!(t)

...

n. ϕ(t)
n + 1. ∀xϕ(x/t) ∀ Intro: 1–n
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Free Logic 63

Existentially Free ∃­elim 1. ∃x ϕ(x)
2. t ϕ[t/x] ∧ E!(t)

...

n. ψ

ψ ∃Elim: 1, 2–n

where t does not appear outside the subproof.

4.2.2 Rules Distinguishing Free Logics from Each Other

This section focuses on positive and negative free logics. Neutral logics will
be mentioned in passing, but not discussed in detail. The reason for this is that
less proof theory research has been done on them. There is only one formaliza­
tion for which soundness and completeness has been proven (Lehmann, 1994).
This one is given in Jeffrey­style tree rules (unlike the rest of the discussion
here, which has been Fitch­style natural deduction rules), and its semantics
adheres strictly to the ‘No input, no output’ principle (so, e.g., ‘Zeus = Zeus’
and ‘∃x(x = Zeus)’ are both truth­valueless). There is currently no natural
deduction or sequent calculus formulation of neutral semantics that is sound
and complete;51 this is an open area for research.
The rules presented in Section 4.2.1 hold in all varieties of existentially

free logics. But of course, there are different species of free logic, and these
are distinguished from each other in terms of which arguments are valid, and
thus which proof­rules each system has. There are two related differences
between positive and negative free logics. They differ over the proof­rules for
the existence predicate and the identity predicate.
We saw on p. 58 that the classical ∃­intro rule is invalid in negative free logic.

(Brief reminder why: Negative free logic declares ‘Pegasus is identical to itself’
false, which therefore makes ‘Pegasus is not identical to itself’ true; applying
the classical existential generalization rule to that true sentence would yield the
false sentence ‘Something is not identical to itself,’ ∃x(x , x).) However, if the
classical rule is applied to an atomic sentence in negative or neutral free logic,
then the classical rule is forward­truth preserving in neutral free logic and fully
valid (i.e., both forward­truth preserving and backwards­falsehood preserving)
in negative free logic. (The example about Pegasus applied ∃­intro to a negated,
and thus non­atomic, sentence.) That is,

51 Pavlović and Gratzl (2021, p. 118) briefly discuss why there has been less proof­theoretical
research done on neutral free logic, in comparison with positive and negative variants.
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F(. . . b . . .)

∃xF(. . . [x//b] . . .)

is forward­truth­preserving in negative and neutral free logic, if F(. . . b . . .) is
atomic. This is because F(. . . b . . .) is true only when b is defined, and falls
under the extension of F(. . . x . . .). So there must be something that is F. Karel
Lambert calls this “perhaps themost important difference between negative and
positive free logics” (Lambert, 2001, p. 266). It is also backwards­falsehood
preserving in negative free logic, but not in neutral free logic (since even if there
are no F’s in the domain, F(a) will be truth­valueless in a neutral semantics if
a is an empty name).
To capture this difference, negative free logic contains the following rule,

which positive free logic lacks:

Negative E!­Intro 1. F(. . . b . . .)
2. E!(b) E! Intro: 1

where F(. . . b . . .) is atomic. (Recall that sentences of the form a= b are
atomic.) And if we apply the existentially free ∃­intro rule to lines 1 and 2
in the rule just above, we can derive ∃xF(x). That is, the classically basic ∃­
Intro rule F(. . . b . . .) ⊢ ∃xF(. . . x . . .) is a derived rule in negative free logic –
but for atomic sentences only. In positive free logic, on the other hand, there is
no E!­Introduction rule.52 And for reasons similar to the preceding paragraph,
in a neutral free logic, this rule is forward­truth preserving, but not backwards­
falsehood preserving (unless the semantics makes E!(b) truth­valueless, when
b denotes nothing).
The second difference between positive and negative proof rules for existen­

tially free logics is the rule for =­Introduction. Positive free logics simply use
the classical rule:

Positive and Classical =­Intro ...

t = t = Intro

for any term (name, variable, or definite description) t (some systems allow free
variables to occur as lines of a proof, as we saw above). Negative and neutral

52 Nils Kürbis (2021, p. 333–335) offers logical and philosophical reasons for leaving E!
undefined.
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free logics, on the other hand, weaken this rule by (once again) requiring that
the name refer to something that exists.

Negative and Neutral = ­Intro 1. E!(t)
2. t = t = Intro: 1

Finally, in another area of overlap, both positive and negative free logics use
the classical rule for =­elimination, namely:

= ­Elim 1. F(. . . b . . .)
2. b = c
3. F(. . . [c//b] . . .) =Elim: 1, 2

Thus we can prove the transitivity of identity (If a= b and b= c, then a= c) in
positive and negative free logics. In neutral free logics, this rule is forward­
truth preserving, but not backwards­falsehood preserving, unless we declare
t1 = t2 false when exactly one of the ti does not univocally refer (which would
violate the ‘No input, no output’ motivation of the neutral semantics). Let
us look at two simple examples that use these rules, to see the rules in
action. We can easily prove that c= c and E!(c) are equivalent in negative free
logic:

1. c = c

2. E!(c) E! Intro: 1

3. E!(c)

4. c = c = Intro: 3

5. E!(c) ↔ c = c ↔ Intro: 1–2, 3–4

This equivalence does not hold in positive free logics, since there ‘E!(Zeus)’
is false, but ‘Zeus = Zeus’ still counts as true. This corresponds in the proof
above to the fact that the positive proof rules cannot prove line 2 from line 1.
Here is another example. Axiomatic formulations of both positive and negative
existentially free logics typically include ∀xE!(x) as an axiom. This sentence
captures the idea that the quantifiers range over only the existing things (or as
it is often phrased, ‘The quantifiers have existential import’). This principle is
derivable from the rules we have introduced:
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1. E!(t)

2. t = t = Intro: 1 (Neg)
3. ∃y(t = y) ∃ Intro: 1, 2

4. ∀x∃y(x = y) ∀ Intro: 1–3

And given that E!(x) is defined as ∃y(x= y), the final line of this proof is equiva­
lent to ∀xE!(x). (In line 2, the justification reads ‘1 (Neg)’ because the =­Intro
rule does not require a justifying line for positive free logic, but a justification
is required in a negative free proof system.)
The final rules to present are rules for definite descriptions. All existentially

free logics that allow for definite descriptions adopt what is called ‘Lambert’s
Law,’ which we capture here in the following two symmetric rules:

ι­Elim 1. c = ιxϕ(x)
2. ∀x(ϕ(x) ↔ x = c) ιElim: 1

and its mirror image,

ι­Intro 1. ∀x(ϕ(x) ↔ x = c)
2. c = ιxϕ(x) ιIntro: 1

In an inner­domain/outer­domain semantics, we might expect a sentence like
‘Sherlock Holmes = the detective living at 221B Baker Street, London’ to be
true. However, if Lambert’s Law holds, then that sentence will not be true.
For the name ‘Sherlock’ will be assigned to an individual in the outer domain,
whereas the definite description ‘the detective living at 221B Baker Street’ will
not be assigned to anything in the inner or outer domain. For, as always in
free logics, the quantifiers ∀ and ∃ are existentially committing, so they range
over the inner domain only. And as we can see in the two immediately preced­
ing rules, Lambert’s Law is framed in terms of ∀.53 We obtain a negative free
description theory by placing Lambert’s Law in the context of the character­
istic Negative E!­Intro rule (see p. 64), applied to the special case of definite
descriptions. That is:

53 Priest (2016, §4.6) presents a theory of descriptions that uses, instead of ∃ and ∀, the quantifiers
S, A which range over both the outer and inner domains (see p. 53). Priest’s theory involves
complications that we will not delve into here.
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1. ιxϕ(x) = ιxϕ(x)
2. E!( ιxϕ(x)) E! Intro: 1

This theory generates results close to Russell’s theory in “On Denoting”
(Burge, 1974), (Morscher & Simons, 2001, p. 22). For example, the sentence
‘The present king of France = the present king of France’ is assigned the value
false.
The range of positive free description theories are myriad and complex.

Lambert (2002) presents several of them, arranging them into a two­
dimensional hierarchy of proof­theoretic strength. The two rules just above
are the weakest (along one axis), and the system FD2 discussed on page 44
is the strongest. See Kürbis (2021) for a positive free description theory in an
intuitionist logic.
Although Lambert’s Law is the weakest of the viable existentially free

description theories, it is violated in a language that contains multiply refer­
ring names and definite descriptions. For suppose, as a defender of a positive
semantics would, that ‘Charley = the big ant in Fred’s colony’ is true. If ι­Elim
were truth­preserving, then (i) every big ant would be identical to Charley, and
(ii) everything identical to Charley would be a big ant. But (i) is false, because
Ant A is not identical to Charley. ((ii) is vacuously true.) As I have mentioned
before, there is not yet a positive semantics for definite descriptions in multiply
signifying languages. This is one of the reasons: Even the weakest principle of
existentially free description theory fails in multiply signifying languages.

Metatheory. How do these proof rules relate to the semantics discussed in
the previous section? Recall that a proof system is called sound with respect to
a particular semantics if every proof is truth­preserving, and called (strongly)
complete if every truth­preserving argument has a proof in that system. We
will not prove soundness and completeness here. For the soundness and
completeness of negative free logic, see Schock (1968). For a combined treat­
ment of both negative and positive bivalent (i.e., inner­domain/outer­domain
semantics) free logic, see Pavlović & Gratzl (2021). For an intuitionistic nat­
ural deduction system, see Troelstra & van Dalen (1988). For the soundness
and completeness of a neutral free logic, see Lehmann (1994); we have not
discussed Lehmann’s proof system here, because it uses Jeffrey­style trees,
instead of Fitch­style natural deduction. There is not yet a formulation of
neutral free logic in a natural deduction format or in the sequent calculus.
Bencivenga (1981) showed that the positive proof rules are sound with
respect to supervaluational semantics. Logical consequence in supervalua­
tional (i.e., non­bivalent) positive semantics, however, is not strongly complete
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(van Fraassen, 1966b, p. 491), and cannot be finitely axiomatized in a proof
system (Woodruff, 1984); that is why the discussion in this subsection was
restricted to bivalent positive free logic. That said, the positive proof rules
are weakly complete with respect to supervaluational semantics, that is, every
logical truth (i.e., sentence supertrue in all models) is a theorem of positive free
logic (i.e., can be proved from zero premises) (van Fraassen, 1966a).

4.3 Uniqueness‐Free Logical Consequence
Let us now turn to logical consequence and possible proof rules for languages
that contain ambiguous or confused terms such as ‘Charley.’ This is far less
studied and less developed than existentially free logics. This section proceeds
via comparing uniqueness­free languages to the existentially free languages
discussed in the previous section. Specifically: Do the same classical rules fail
in the uniqueness­free case as in the existentially free case? And under the same
circumstances? And what proof rules, if any, should be used to systematize the
different uniqueness­free logics? There are interesting differences; for example,
the classical proof­rules for ∀­elimination and ∃­introduction turn out to be
valid on one plausible semantics, unless the language contains ‘=.’

4.3.1 Neutral and Negative Consequence

In Section 4.1, we saw the classical rules of ∀­elimination and ∃­introduction
are not valid in existentially free logics. Is the same true of uniqueness­free
logics? The ∀­elimination rule is also not truth­preserving for uniqueness­free
languages, when the negative or neutral semantics is adopted. For example, in
models where ‘Everything is hungry’ is true, ‘Charley is hungry’ will be false
on a negative semantics, and truth­valueless on a neutral semantics. This same
example shows that, on the negative semantics, ∀­elimination also fails to be
backwards­falsehood preserving. However, just as in the existentially free case,
on a neutral semantics ∀­elimination is backwards­falsehood preserving, even
if the name being instantiated is ambiguous (see p. 60 for the argument).
What about the ∃­introduction rule? In uniqueness­free languages with the

negative semantics, applications of this rule can take us from true premises to
a false conclusion, and for exactly the same reasons as in the existentially free
case. Suppose everything in the (non­empty) domain of quantification is an
ant. Under the negative semantics, ‘Charley is an ant’ is false, so ‘Charley is
not an ant’ is true. Applying ∃­introduction to this sentence yields ‘Something
is not an ant,’ which is (by original supposition) false. In the neutral semantics,
∃­introduction is forward truth­preserving, but it is not backwards­falsehood
preserving: In a model where ‘Something is hungry’ is false, ‘Charley is
hungry’ will still be neither true nor false.
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As mentioned at the end of Section 4.2, for negative and neutral existen­
tially free logics, there are sound and complete proof systems. Now, negative
and neutral uniqueness­free semantics are based on restricted models (MR, see
p. 30), which are almost identical to the existentially free models (ME, see
p. 29) used in semantics for neutral and negative existentially free logics. The
only difference between restricted and existentially free models is that the lat­
ter models forbid undefined predicates, whereas restricted models allow them,
since uniqueness­free languages allow predicates to be ambiguous. Thus, one
might expect that the proof systems developed for neutral and negative free
logics could carry over to the uniqueness­free cases. It turns out that this expect­
ation is not met for neutral uniqueness­free languages, but it is for the negative
uniqueness­free languages. Let us see why each of those two claims hold in
turn.
First, let us show that there are sentences that are logical truths in neutral

existentially free logic that are not logical truths in neutral uniqueness­free
semantics. (And thus, there are arguments that are truth­preserving in existen­
tially free, but not uniqueness­free, neutral logics.) The sentence ∀x(F(x) →
F(x)) demonstrates the claimed fact. For in a restricted model, though not
in an existentially free model, F can be undefined. So in a MR where F is
undefined, the open formula F(x) will not be satisfied or anti­satisfied by any
sequence. And in (satisfaction­analogues of) both the Strong and Weak Kleene
schemes, a conditional formula whose antecedent and consequent are both nei­
ther satisfied nor anti­satisfied is itself neither satisfied nor anti­satisfied. So
∀x(F(x) → F(x)) will be neither true nor false in aMR where F is undefined. In
a neutral existentially free logic, in contrast, ∀x(F(x) → F(x)) is a logical truth,
since F must be defined.
Furthermore, since neutral existentially free logic is complete, ∀x(F(x) →

F(x)) is a theorem of neutral existentially free logic. Thus, this example shows
that a proof system for neutral existentially free logic is not even weakly
sound on neutral uniqueness­free semantics. So we cannot simply borrowwith­
out alteration the existentially­free proof systems to use the uniqueness­free
proof systems. (These proof systems are complete on neutral uniqueness­
free semantics, because every neutral existentially­free model is a restricted
model.)
Now we can turn to logical consequence in negative uniqueness­free lan­

guages. Above, I asserted that an argument is valid in negative existentially
free semantics iff it is valid in negative uniqueness­free semantics. Why? First,
since every existentially free model is a restricted model, the right­to­left direc­
tion is immediate. So, we need to establish the left­to­right direction: for every
assignment of truth­values to a set of formulas in negative uniqueness­free
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semantics, there is a existentially­freemodel that assigns exactly the same set of
truth­values to that set of formulas. The basic idea is that, whenever a predicate
is undefined in a negative restricted model, it will assign truth­values exactly
as if it were a defined predicate that applies to nothing. And predicates that
apply to nothing, that is, whose extension is empty, of course already appear in
all types of models, including existentially free ones. And the negative seman­
tics for existentially and uniqueness­free logics share exactly the same clauses
for the truth of compound formulas (i.e., the same truth tables and satisfaction
clauses). So every assignment of truth­values to a set of formulas in negative
uniqueness­free semantics will be identical to an assignment of truth­values
to that same set in negative existentially free semantics. Therefore, there can­
not be an argument where (i) there is an MR that makes the premises true and
the conclusion untrue, yet (ii) in every ME either the premises are false or
the conclusion is true. In other words, we have the left­to­right direction we
needed: Every argument valid on the negative existentially free semantics is
also valid on the negative uniqueness­free semantics. With that fact in hand,
we can immediately infer that negative uniqueness­free logic has a sound and
complete proof system, since negative existentially free logic has one (as we
saw on p. 67): They share the same one.

4.3.2 Positive Consequence: Supervaluational
(and Related) Semantics

If we adopt a positive semantics for uniqueness­free languages, then, in con­
trast to existentially free languages, the ∃­introduction and ∀­elimination rules
appear sound at first glance. Why? Consider ∃­introduction first. Suppose the
domain is all the ants in the colony, and Fred says ‘Charley is eating.’ If that
sentence is true on the positive supervaluational semantics, then Ant A and Ant
B are both eating. And if Ants A and B are eating, then ‘Something is eating’ is
obviously true – so ∃­introduction appears valid. The ∀­elimination rule like­
wise looks to be valid: Imagine Fred, looking at his colony, says ‘Everyone is
eating.’ If this is true, then both Ants A and B must be eating; and if that is the
case, then on the supervaluational semantics ‘Charley is eating’ is true.
This intuitive illustration of the apparent validity of ∀­elimination and ∃­

introduction in uniqueness­free languages with a positive semantics ignores
a crucial distinction. Specifically, it ignores the difference between what the
vagueness literature calls ‘global’ and ‘local’ consequence,54 or what I will

54 Varzi (2007) provides a nice taxonomy and comparison of various species of global and local
consequence in the setting of supervaluational treatments of vagueness.
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call here ‘supervaluational’ and ‘semi­classical’ consequence.55 The core dis­
tinction is the following: Supervaluational validity forbids supertrue premises
combined with a superfalse conclusion, whereas semi­classical validity forbids
any disambiguation model that makes all the premises true (w.r.t.MR), but the
conclusion false (w.r.t.MR).

(Supervaluational validity) An argument is supervaluationally valid =def for
every MU and each of its associated Md’s, if each premise is true in
everyMd­w.r.t.­MR, then the conclusion is also true in everyMd­w.r.t.­
MR.

(Semi­classical validity) An argument is semi­classically valid =def for every
MU and each of its associatedMd’s, there is noMd­w.r.t.­MR in which
all the premises are true, but the conclusion is not.

Every semi­classically valid argument is supervaluationally valid, but not con­
versely (since ‘All Fs are Gs’ entails ‘If everything is F, then everything is G,’
but not conversely).
To illustrate these two concepts, note that ‘Charley is an ant’ entails ‘Some­

thing is an ant’ both semi­classically and supervaluationally. In each complete
disambiguation where ‘Charley’ is assigned to an element of the domain that
is an ant, ‘Something is an ant’ will be true in that disambiguation (w.r.t.MR).
That is, ‘Charley is an ant’ semi­classically entails ‘Something is an ant.’ Also,
in every multiply­signifying model in which ‘Charley is an ant’ is true on all
disambiguations w.r.t.MR, ‘Something is an ant’ will also be true on all disam­
biguations w.r.t. MR. In other words, ‘Something is an ant’ supervaluationally
follows from ‘Charley is an ant.’ To make the difference between these two
types of validity clearer, consider an example where the two concepts of con­
sequence come apart. Consider the argument ‘Charley is eating, thus every big
ant is eating.’ This is supervaluationally valid, but not semi­classically valid.
Suppose Ant A is eating, but Ant B is not. That situation describes anMd­w.r.t.­
MR in which the premise is true (assuming fI(‘Charley’) = Ant A in this model)
and the conclusion is false. But note that in that situation the premise is not
supertrue, so this case does not invalidate the argument.
As mentioned on p. 67, Bencivenga (1981) showed that positive existentially

free logic is sound with respect to supervaluational consequence. Now, positive
existentially free logic uses non­classical versions of ∀­elim and ∃­intro. But

55 Free logicians (following van Fraassen) call this distinction ‘supervaluational’ vs. ‘classical’
consequence (van Fraassen, 1966b), (Woodruff, 1984). But I find the name ‘classical con­
sequence’ potentially misleading, since free logics using this semantics make the classical
versions of ∀­elimination and ∃­introduction invalid. Thus I shall call this type of consequence
‘semi­classical.’
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in the first paragraph of this subsection, it appeared that the classical ∀­intro
and ∃­elim rules are sound w.r.t. positive semantics. As it turns out, those two
classical rules are unsound in a uniqueness­free language with an interpreted
identity predicate, but they are both sound if the language does not contain ‘=.’
In the next subsection, I will first show that the classical rules of ∀­elim and

∃­intro are unsound in a language with identity using supervaluational conse­
quence. Thus, they are unsound using semi­classical consequence as well, since
(as explained above) every semi­classically valid argument is supervaluation­
ally valid too. Then, in the following subsection, I show that classical ∀­elim
is sound in languages without an identity predicate using semi­classical conse­
quence (thereby showing that it is sound using supervaluational consequence
as well).

Languages with identity: Classical ∃‐intro and ∀‐elim fail. In uniqueness­
free languages with an interpreted identity predicate, classical ∃­introduction
and ∀­elimination both fail to be truth­preserving in the positive semantics.
That is, their appearing prima facie valid, noted at the beginning of this sub­
section, is misleading. Why is classical ∃­introduction invalid? Recall that, if
c multiply signifies, then ∃x(x= c) is evaluated false in everyMd­w.r.t.­MR (so
it is superfalse). However, t= t is always true in everyMd­w.r.t.­MR, no matter
what t is. Either both sides of the identity statement are not ambiguous terms, in
which case the formula is true before constructing complete disambiguations
(i.e., the formula is true in the restricted model MR), or both sides of the iden­
tity statement are ambiguous, in which case the formula is true in all complete
disambiguations – and this latter includes the case of ‘Charley = Charley.’ But
now we have a counterexample to ∃­introduction: c= c is true, but ∃x(x= c)
is false. Since ∃­introduction is invalid for supervaluational consequence in a
language with identity, it is also invalid for semi­classical consequence.
Why is classical ∀­introduction invalid in uniqueness­free languages con­

taining identity, on the positive semantics? Since t = t is always true in every
Md­w.r.t.­MR, it follows that t , t is always false, including the case where t
is an ambiguous name. Now, since (to repeat) nothing in the domain is iden­
tical to Charley, the open formula x , c is satisfied by every member of the
domain. Thus, ∀x(x , c) is true in MR, and therefore true in every Md­w.r.t.­
MR, while c , c is false in everyMd­w.r.t.­MR. That is, classical ∀­elimination
is not sound in a language containing ‘=’ (again, for both supervaluational and
semi­classical consequence).
What changes should wemake to the∀­elimination and ∃­introduction rules,

in order to make them valid in a multiply signifying language with identity?
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One initially plausible idea is to try the same changes that existentially free
logics make to ∀­elimination and ∃­introduction, which we saw in Section
4.2.1. As we saw there, existentially free logics introduce a monadic predicate
E!(x), whose intuitive meaning is ‘x exists,’ either as a new primitive predicate,
or (in languages with identity) by definition as ∃y(y = x). Then, they replace
classical ∀­elimination with {∀xF(x),E!(a)} ⊢ F(a), and replace classical ∃­
introduction with {F(a),E!(a)} ⊢ ∃xF(x). That is, the existentially free rules
simply add E!(a) as a premise to each of the classical rules.
These changes do not work for uniqueness­free languages with the posi­

tive semantics. Why? First, suppose E! has the meaning it does in existentially
free logics. Then we cannot prove ‘There is a big ant’ from ‘Charley is a big
ant,’ since we would lack the ‘Charley exists’ premise: ∃x(x = c) is false.
But one of the leading motivations for the supervaluational positive seman­
tics was to legitimate this inference. Alternatively, we could say ‘b exists’ is
true iff b has at least one referent (instead of exactly one referent). That is,
replace E!(a) in the above two existentially free proof rules with E(a) (see
p. 31) instead. This avoids the earlier problem: From ‘Charley is a big ant’ and
‘Charley exists,’ we could then derive ‘There is a big ant’ via the revised ∃­
introduction rule. However, this solution generates a new problem. This revised
∃­introduction rule, which replaces E!(a) with E(a), would allow us to prove
the false ‘Something is identical to Charley’ (∃x(x = c)) from the two true
claims ‘Charley=Charley’ and ‘Charley exists.’ (An analogous problemwould
affect an analogously­revised version of ∀­elimination.) We conclude this sec­
tion with an open question: In (supervaluational and/or semi­classical) positive
uniqueness­free logics with an interpreted identity predicate, are there reason­
able proof rules for identity and the quantifiers that let us prove ‘There is a big
ant’ from the conjunction of ‘Charley exists’ and ‘Charley is a big ant,’ without
also letting us prove ‘There is something identical to Charley’?

Languages without identity: Classical rules are sound. In the previous
section, all the sentences that created problems involved identity. So one
might wonder if all the problems might disappear if the language dropped ‘=.’
The answer is yes. Interestingly, the classical rules of ∀­elimination and ∃­
introduction are sound in a uniqueness­free language, using the semi­classical
or supervaluational notions of consequence, so long as the language does not
contain an interpreted identity predicate. The proof for ∀­elimination can be
found in Appendix 2.
Table 3 summarizes the last two subsections, stating the conditions under

which classical∀­elim and ∃­intro rules are sound in uniqueness­free languages
for semi­classical and supervaluational consequence.
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Table 3 Classical ∀­elim and ∃­intro in uniqueness­free logics

Positive Neutral Negative

without = FTP

∀­elim
BFP not FTP not FTP

with = not FTP BFP not BFP
not BFP

without = FTP

∃­intro
BFP FTP not FTP*

with = not FTP not BFP not BFP
not BFP

Note: FTP: forward­truth preserving; BFP: backwards­falsehood preserving.
Note: * unless the sentence in the premise is atomic.

4.3.3 Positive Consequence: Subvaluational Semantics

The other positive semantics for uniqueness­free language (considered in Sec­
tion 3.4.3) allowed a single ambiguous sentence to be both true and false at
the same time, when that sentence is true on one disambiguation and false
on another. This was called the ‘subvaluational semantics.’ Where the super­
valuational semantics assigns a truth­value gap, the subvaluational semantics
assigns a truth­value glut. (The converse does not hold: ‘Ant A = Charley’ is
both true and false in the subvaluational semantics, but false in the supervalua­
tional semantics, since it is assigned the value false (only) in the base restricted
model.)
Because this semantics allows for sentences that are both true and false, any

logical system using this semantics differs from other uniqueness­free systems.
It is naturally captured by a paraconsistent logic of some sort.56 A paraconsis­
tent logic is one in which the classical principle ‘Anything logically follows
from a contradiction’ is invalid. In classical logic (and other non­paraconsistent
logics), a contradiction A∧¬A is necessarily false. So the argument A∧¬A, thus
B qualifies as valid in most logics, since it is impossible for the premise to be
true and the conclusion untrue (since it is impossible for the premise to be true).
However, if we allow sentences to be both true and false, as the Lewis­Priest
subvaluational semantics does, then when A is both true and false, A ∧ ¬A is
also both true and false.57 But then the argument A∧¬A, thus Bwill be invalid,
since there is a case where A is true (and false), and B is false only. There

56 For an overview of paraconsistent logics, see Priest, Tanaka, & Weber (2022).
57 The negation of a true and false sentence is, so to speak, false and true; a conjunction is true

just in case both conjuncts are true, and is false iff at least one conjunct is false.
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are many species of paraconsistent logics; Lewis proposes R­Mingle to handle
ambiguity,58 and Priest suggests his Logic of Paradox (LP).
Another important difference between these paraconsistent uniqueness­free

logics and the others we have previously considered is that the =­elimination
rule (p. 65), which holds in all the other existentially and uniqueness­free logics,
does not hold in subvaluational semantics. In particular, transitivity of identity
(a = b, b = c, thus a = c) is no longer truth­preserving. For on a subvaluational
semantics, ‘Ant A = Charley’ and ‘Charley = Ant B’ will both be true (and
false), but ‘Ant A = Ant B’ will be false only.
Recall from page 50 that Christina McLeish’s semantics declares a sentence

true if it is true on at least one disambiguation (like Lewis and Priest), but unlike
Lewis and Priest, a sentence must be false on all disambiguations to count as
false. Her system does not permit mixed disambiguations. As a result, on her
semantics, ∧­intro is not sound. For example, suppose Ant A is eating, but Ant
B is not. ‘Charley is eating’ will be true in the McLeish semantics (because
of the Ant­A disambiguation), as will ‘Charley is not eating’ (because of the
Ant­B disambiguation). But ‘Charley is eating and Charley is not eating’ will
be false, since there is no disambiguation in which that conjunction is true.
For the propositional part of the language, Priest (1995, p. 365) claims that it

is a proper sublogic of his Logic of Paradox (LP), without stating an explicitly
exhaustive list of changes that need to be made to LP to arrive at a logic for
ambiguous terms. It is proper because, in addition to transitivity of identity
failing, ∃­Intro also fails, though not for the reason we have seen in the other
generally free logics: In the subvaluational semantics, ∃x(x = c) is true. But
as we saw in the preceding paragraph, the Lewis­Priest semantics allows for
mixed disambiguations, so ‘Charley , Charley’ is both true and false (since
‘Ant A , Ant B’ is true, and ‘Ant A , Ant A’ is false). But ∃x(x , x) is not
true, so ∃­Intro fails. Lewis (1982, p. 439) claims that the purely propositional
portion of a uniqueness­free language would be captured by the first­degree
fragment of the relevance logic R­Mingle (RM),59 if you wanted the proof rules
to preserve truth in all (mixed) disambiguations, as opposed to preserving truth
in at least one disambiguation.
There are other complications involved with these logical systems, just at

the propositional level. For example, if we take the conditional A → B to
be the standard material conditional ¬A ∨ B, then the rule of modus ponens
({A,A → B}, therefore B) is not valid in LP. However, other conditionals can be

58 This logic results from adding the ‘Mingle’ axiom (A → (A → A)) to the relevance logic R
(Mares, 2020). An overview of RM can be found in Dunn & Restall (2002, §3.10).

59 Dunn (2021) is a general defense of RM for people who feel the appeal of relevance logic.
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defined that validate modus ponens, though they each have their own idiosyn­
crasies (Hazen & Pelletier, 2019). Interestingly, a leading candidate for such
a conditional, if added to LP, would result in a logic perfectly translatable to
the logic RM3,60 the three­valued version of Lewis’ preferred logic R­Mingle,
which Lewis endorses as the right logic for ambiguity (Hazen& Pelletier, 2019,
propositions 4 and 5).

5 Costs and Benefits of Each System
In Sections 3–4, we saw a wide array of logical systems designed to deal with
words that are not univocal. Many people’s interests lie less in the technical
details of the logics themselves, and more in the philosophical applications of
these logics to metaphysics, philosophy of language, and other areas outside of
logic proper. Such readers might simply want to know: Which free logic is the
correct one? Or at least the best one?
Unfortunately, such readers will be disappointed. Inmy opinion, no free logic

is clearly superior to all the others. Each one has its own strengths and weak­
nesses, but I do not see a principled, party­neutral way to determine whether a
particular weakness is a deal­breaker, or instead that logic’s strengths are pow­
erful enough to overcome that weakness. For example, just how bad is it (if at
all) if a position declares ‘Zeus = Zeus’ false? I believe reasonable people can
disagree about this.
However, for readers who want to figure out which logic is best, given their

own commitments, purposes, and values, this chapter is a tool to help them
think through the main strengths and weaknesses of each logic – leaving it up to
the reader to decide how bad each of the problems are, or how good each of the
advantages are. Every position we’ve considered in this book involves picking
some (apparent) poison, i.e. biting some (apparent) bullets. This chapter is a
menu designed to help you pick your poison. Less metaphorically, you can
understand which argumentative burdens you will have to assume, if you adopt
a particular free logic.
The strengths and weaknesses are often comparative. So although the

remainder of this section is organized into sections on neutral, negative, and
positive free logics, each section mentions the other, competing types of logic.
Finally, parts of this section may feel repetitive, since summarizing the pros
and cons of each species of free logic requires us to look at the various traits of
each species – traits which were presented in earlier sections.

60 Tedder (2015) calls the resulting logic “A3”, in honor of Arnon Avron.
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5.1 Neutral Free Logics
Pros. The central strength of a neutral semantics, as Lehmann (1994)
explains, is that it honors an intuitive idea that forms the basis of much seman­
tic theorizing: The semantic value of a sentence is a function of the semantic
values of its parts. So if a string of linguistic characters needs semantic parts
X, Y, and Z to have a truth­value, and one of those three parts is missing or
otherwise defective, then the whole sentence’s truth­value will also be missing
or defective. Defective inputs lead to defective outputs. If you ask a graphing
calculator to evaluate the function f(x) = 1

x at x = 0, you get an ‘Error’ message.
And the second intuitive idea is that, for many sentences containing a name, to
determine the truth­value of that sentence, you need the individual the name
refers to as one of the inputs. From a semantic (but not grammatical) point of
view, ‘Pegasus is sleeping’ and ‘Charley is sleeping’ are equivalent to ‘
is sleeping.’ (Or the second might be ‘Ant AAnt B is sleeping,’ but that is still clearly
semantically defective: You cannot simultaneously cram two different inputs
into a single one­place function.) For anyone committed to those two ideas, a
neutral free logic is the most straightforward position.
A neutral free logic is not forced on you by those two commitments, but

keeping them both without accepting a neutral free logic requires some contor­
tions or extra burdens. For example, the second idea can be saved for empty
names by positing an ‘outer domain’ which contains individuals that can be
the referents of names like ‘Vulcan,’ but do not exist. While this is technically
possible, many people will feel that the more natural position is that, for some­
thing to be an input (to any function), it must exist. And the negative semantics
denies the first idea: On that semantics, defective inputs can lead to normal,
non­defective outputs.

Cons. One key apparent problem with neutral free logics is that the set of
logical truths shrinks significantly. How much it shrinks depends on whether
one adopts theWeak Kleene or Strong Kleene scheme for∧ and∨, and whether
one accepts internal or external negation. Combining the StrongKleene scheme
with external negation will deliver several of the classical logical truths. For
example, A ∨ ¬A will be true even when A has no truth­value, since ¬A will
be true (because negation is external), and any disjunction with at least one
true disjunct is true (because we are using the Strong Kleene disjunction). If
we use either Weak Kleene or internal negation, then A ∨ ¬A is not a logical
truth. And thus (given the standard equivalence of B → C with ¬B ∨ C),
A → A is not a logical truth either. Existentially free neutral logic at least
keeps logical truths that do not contain names, such as ∀x(F(x) → F(x)). But in
uniqueness­free logics, we even lose those too, since predicates like F can be
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undefined in uniqueness­free logics, though not in existentially free logics. But
even in uniqueness­free logics, some logical truths remain, if the logic is first­
order instead of propositional; for example, ∀x(x = x) is true in all restricted
models.
One natural reaction to this situation is to say that, in light of the consider­

ations in the immediately preceding paragraph, the proponent of neutral logic
should adopt the Strong Kleene scheme with external negation. From a tech­
nical point of view, this is certainly a possibility. However, it undermines
the original motivation driving the neutral logic in the first place. Apply­
ing the ‘Defective input, defective output’ principle to compound sentences
in propositional logic would support the Weak Kleene scheme and internal
negation (Lehmann, 1994, p. 326). (The inputs are the truth­values of the com­
ponent sentence(s), and the output is the truth­value of the resulting compound
sentence.)
Alternatively, one might attempt to lessen the sting of a neutral free logic

shrinking the number of logical truths in a couple of ways. To begin with, one
might claim that it is not very important, for two reasons. First, although these
classical logical truths are not logical truths in neutral free logic, nonetheless
they are never false. And perhaps a guarantee of non­falsity is good enough.
Lehmann (1994, p. 314) suggestively calls such sentences “weakly logically
true.” At least, this looks better than saying certain sentences of the form b = b
are false, as the negative free logician does (and the Lewis­Priest positive logic
says some sentences of the form b = b are both true and false). Second,
although neutral free logic ‘loses’ many classical logical truths, it still clas­
sifies many classically valid arguments as truth­preserving. As we just saw,
the sentence A → A is not a logical truth, but the argument A, thus A is still
truth­preserving.61 The same holds for a number of other classical logical truths
that are not logical truths in a neutral logic. For example, modus ponens is still
truth­preserving, even though its sentence analog ((A → B) ∧ A) → B is not a
logical truth. And perhaps losing the logical truths is not so bad, as long as we
can keep logically correct arguments. This line of thought leads us to a diffi­
cult question, which we will not pursue here: What is the use or value of logical
truths, over and above valid arguments? The other general way to respond to
neutral logics’ reduction in the number of logical truths is to say that this is actu­
ally a welcome conclusion, and is independently motivated for other reasons.
Many philosophers, most famously Quine, have been skeptical of the exist­
ence of analytic truths, sentences true in virtue of their meaning alone. Logical

61 Thus complete neutral logics do not obey the deduction theorem, namely: If there is a proof of
C from P1, P2, . . . Pn, then there is a proof of (P1 ∧ P2 ∧ . . . ∧ Pn) → C.
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truths are paradigm examples of analytic truths, for both the friends and foes
of analyticity. Even Quine allows that if there were any analytic truths, then
the logical truths would be the clearest examples of them (Quine, 1960, p. 65).
Thus, one straightforward way to deny the existence of analytic truths is to
deny there are any logical truths. For example, Penelope Maddy (2007) makes
the argument that naturalists skeptical of analytic truths should adopt a prop­
ositional logic based on the Weak Kleene scheme, including internal negation.
J. C. Beall (2018) makes a related argument for the superiority of the relevant
logic of First­Degree Entailment over classical logic, on the grounds that logic
should be kept separate from theories (in the sense of claims): We want logic to
leave possibilities open. So for some people, neutral free logics’ lack of logical
truths is a feature, not a bug.

5.2 Negative Free Logics
Pros. There are a number of interrelated reasons why one might want to adopt
a negative semantics for languages containing defective names.62 First, one
might hold that what it means for a linguistic expression to be false just is
to be an untrue declarative sentence. If you combine that with the view that
simple sentences with defective names or predicates cannot be true, then nega­
tive free logic results. Second, one might be committed to bivalence, perhaps
because one thinks it is simpler for every sentence to be true or false (and
never both), and simplicity is a criterion for selecting a logic. This criterion
does not distinguish negative free logic from the inner­domain/outer­domain
positive semantics, which is also bivalent, but it does distinguish it from all
the other positive and neutral options. (Also, the inner­domain/outer­domain
semantics is only available for existentially free logics, not uniqueness­free
ones; the negative semantics is the only uniqueness­free semantics on offer
that preserves bivalence.)
Third, one might be favorably disposed, for independent reasons, toward

classical logic, and thus want to retain as much of it as possible. In cer­
tain important ways, negative free logic is closer to classical logic than the
other options. For example, the negative semantics uses exactly the classical
truth­tables, taking them over without any alterations. This is a consequence
of its being bivalent; thus the inner­domain/outer­domain semantics can also

62 One relatively early defense is in Burge (1974). A more recent book­length elaboration of
the view can be found in Sainsbury (2005), which has generated a number of commentaries
and responses (see Orlando [2008] and Dumitru & Kroon [2008], among others). Also useful
and important is Braun (1993). These are primarily works in the philosophy of language, as
opposed to logic proper.
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use the classical truth tables, though the other semantics cannot. And the
inner­domain/outer­domain semantics conflicts with classical logic insofar as
the extensions of names and predicates are not confined to the domain of
quantification, unlike the negative semantics.

Cons. However, negative free logic does conflict with classical logic in cer­
tain ways. And it does so in particularly counter­intuitive places (as opposed
to, for example, rejecting the counter­intuitive classical theorem that every
sentence follows from a contradiction, as paraconsistent logics do). Specif­
ically, b = b is not a logical truth, because ‘Zeus = Zeus’ and ‘Charley =
Charley’ are both false.63 And thus, perhaps even less intuitively, ‘Zeus,Zeus’
and ‘Charley , Charley’ are both true. For many people, this consequence of
negative semantics is too high a price to pay for getting rid of truth­valueless
sentences, and serves as a reductio ad absurdum of negative free logic.
That said, the negative free logicians can present the following counter­

argument in favor of ‘Pegasus = Pegasus’ being false. Even the positive free
logicians agree that ‘∃x(x = Pegasus)’ should not come out as true. If that is
right, then there should not be any name you could plug into the open formula
‘x = Pegasus’ that would make it true.64 But the positive free logicians hold
that plugging the name ‘Pegasus’ in for x does result in a true sentence. So
in short, the positive free logicians’ own belief that ‘∃x(x = Pegasus)’ is false
should lead them to reject their belief that ‘Pegasus = Pegasus’ is true. Addition­
ally, Sainsbury (2004), a proponent of negative free logic, suggests that we can
draw a distinction between (i) ‘It is not the case that Pegasus = Pegasus,’ and
(ii) ‘Pegasus is non­identical with Pegasus.’ If we further take ‘is non­identical
with Pegasus’ as a simple predicate (despite its typical representation), then
(ii) will be false on free logic, though (i) is still true. And the falsehood of (i)
perhaps feels less objectionable than making (ii) false.65

63 Burge (1974, §IV) argues for the falsity of self­identities with empty names, like ‘Zeus = Zeus.’
Peacock and Tedder (2016) also offer an independent defense of this prima facie unintuitive
consequence: They go even further than a proponent of negative free logic, denying that ∀x(x =
x) should be a theorem. Finally, some people have suggested that dropping the law of identity
is one fruitful way to grasp some of the strange traits of quantum particles; the collection of
essays in Arenhart & Arroyo (2023) provides the state of the art in this field.

64 One might suspect this argument tacitly assumes the heterodox ‘substitutional’ (as opposed to
‘objectual’) conception of quantification, since it talks about substituting a name for a variable.
(For more on this distinction, see, e.g., MacFarlane [2021, §2.4]). However, it does not. This
argument merely requires ∃xϕ(x) be true if there is at least one name that can be plugged in
for x in ϕ(x) to generate a true sentence. But this argument does not require the other, ‘only if’
direction, which is the more contentious part of substitutional quantification.

65 Thanks to an anonymous referee for making this connection to Sainsbury’s work.
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A second problem with negative free logic stems from the fact that atomic
sentences are treated differently, logically speaking, from non­atomic sen­
tences. Recall the Negative E!­Intro rule (p. 64): one may derive E!(b) from
ϕ(b), if ϕ(b) is atomic. But if ϕ(b) is not atomic, E!(b) does not follow.66 Con­
sidered in isolation, this fact about negative free logic may appear to be a mere
technical curiosity rather than a strength or a weakness. However, it becomes a
potential problem when one recognizes that there are sets of predicates that are
logically interdefinable with one another, and thus which predicates are taken
as primitive or basic, and which predicates are taken as defined, is a completely
arbitrary choice. For example, any of the following three predicates are defin­
able in terms of the other two: (i) ‘smaller than,’ (ii) ‘same size as,’ and (iii)
‘bigger than.’ We can define (iii) in terms of (i) and (ii) as follows:

x is bigger than y =def ¬(x smaller than y) ∧ ¬(x is the same size as y)

Now consider the sentence ‘Paris is smaller than Jakarta.’ Using the E!­Intro
rule, we can derive ‘Paris exists’ and ‘Jakarta exists’ from this sentence, assum­
ing (as in the definition just above) ‘smaller than’ is a basic predicate. Note that
‘Paris is smaller than Jakarta’ is equivalent (given our definition) to ‘Jakarta is
bigger than Paris.’ Now consider the ‘defined’ version of ‘Jakarta is bigger than
Paris,’ namely:

¬ (Jakarta is smaller than Paris) ∧ ¬ (Jakarta is the same size as Paris).

We cannot derive the sentences ‘Paris exists’ and ‘Jakarta exists’ from this
sentence, despite the fact that this sentence is logically equivalent (given the
definition) to the previous sentence ‘Paris is smaller than Jakarta.’ But logically
equivalent sentences should have the same logical consequences. That seems
bad enough, but matters are even worse: If we had instead defined ‘smaller’ in
terms of ‘same size’ and ‘bigger,’ then ‘Paris is smaller than Jakarta’ – the first
sentence we considered – would not entail ‘Paris exists’ or ‘Jakarta exists.’ So
one and the same sentence can entail or not entail some conclusion, depend­
ing on the completely arbitrary and symmetric decision of which of (i)–(iii)
we decide to define in terms of the other two. For more on this argument, see
Nolt (2010, §4.1).
Here is a third and final possible problem with negative free logic. It

is provable in negative free logic that all non­existents are indiscernable
(Pavlović & Gratzl, 2021, p. 126); that is:

66 This is also a property of neutral free logics, unless that neutral logic declares E!(b) false for
non­univocal b (in which case, this E!­Intro rule is forward truth­preserving but not backwards
falsehood­preserving).
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¬E!(a) ∧ ¬E!(b) ⊢ F(. . . a . . .) → F(. . . b . . .) (IndiscNon­Ex)

Some people will reject the claim that Santa Claus shares all the same proper­
ties with Zeus. That said, proponents of negative existentially free logic would
probably not be bothered about this fact about their preferred logic. They might
even welcome it: After all, how could two non­entities differ from one another?
There are not two different nothings, with different properties; the empty set is
unique.67 However, this reply is far less convincing in the case of uniqueness­
free languages. It seems very implausible to say that Q (of QAnon) and Homer
share all their properties. So even if this reply is acceptable for an existen­
tially free logic, it seems less plausible for a uniqueness­free logic. The positive
free description theory FD2, which we saw on page 44, is characterized by a
principle that is similar to (IndiscNon­Ex), namely:

(¬E!(t1) ∧ ¬E!(t2)) → t1 = t2 (FD2)

for any two singular terms t1, t2, including definite descriptions. And FD2 is
a positive theory. So the point about Q and Homer just above applies to this
positive theory as well, since ‘Q = Homer’ should intuitively be untrue.

5.3 Positive Free Logics
This section is more complicated than the previous two, since we have
discussed multiple, fairly different positive proposals: inner­domain/outer­
domain semantics (for existentially free only), subvaluational semantics (for
uniqueness­free only), and supervaluations (for both, but there are differences
between existentially free and uniqueness­free cases). Thus, this subsection
will also discuss in­fighting among the positive free logics, for example,
whether ambiguity should be handled with supervaluations or with a subvalu­
ational semantics.

Pros. First, as has been mentioned multiple times already, all of the positive
semantics make b= b logically true, and b , b logically false, unlike nega­
tive and neutral free logics. That said, in the Lewis­Priest logics, when b is an
ambiguous name, b= b will be both true and false, as will b , b. So, unintu­
itively, b= b is ‘no more true’ than b , b, and b , b is ‘no more false’ than
b= b. Thus, although b= b is a logical truth in the Lewis­Priest semantics, it

67 This reply is why a particular old Soviet­era joke is funny. A man goes into a shop and asks,
“You don’t have any meat?” “No,” replies the sales lady, “We don’t have any fish. It’s the
store across the street that doesn’t have any meat” (CIA, 2016). If the negative free logician’s
reply were wrong, and there really were two different kinds of nothing, then the shopkeeper’s
response would be completely normal, not funny.
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is not a logical non­falsehood. And therefore it is not clear if the Lewis­Priest
semantics is better than the neutral semantics, which is the mirror­image of this
case: On the neutral semantics, b= b is not logically true, but it is also logically
not false.
Now, one might ask: Is it really that intuitive that ‘Zeus = Zeus’ and ‘Charley

= Charley’ are true? The positive logicians report that they have an intuition
that those sentences seem true to them.68 But if it is merely their intuition, then
the negative and (especially) neutral logicians can say that they have a different
intuition, and there is no compelling reason to favor one group’s intuitions over
the other groups’ intuitions.
This line of thought leads to a second consideration in favor of the positive

semantics. The positive proposals fit survey data about naive informants’ reac­
tions to sentences containing empty or ambiguous names better than the neutral
and negative semantics do. Piccinini and Scott (2010) asked study participants
to make truth­value judgments about sentences containing vacuous names. The
participants’ replies matched the truth­value assignments of positive semantics
far better than the other two semantics. For example, for the sentence ‘Santa
Claus is fat,’ about 82% of respondents said it was true, 7% said it was false, 4%
said it had no truth­value, and 7% chose ‘Don’t know / It depends.’ (Interest­
ingly, as names are further removed from ordinary, English­sounding words,
participants’ responses become closer to the truth­value assignments of neutral
free logic. For example, about 58% of respondents said the ‘sentence’ ‘sdfs­
dfsdf does not exist’ had no truth­value, whereas only 20% said that sentence
is true.) The data Piccinini and Scott collected favors the inner­domain/outer­
domain semantics over the supervaluational one, since on the supervaluational
semantics, ‘Santa Claus is fat’ is neither true nor false.
Frost­Arnold and Beebe (2020) ran a similar study for ambiguous names.

Their results were similar: Survey responses were highly correlated with the
truth­values assigned by positive semantics. And just as in the existentially­free
case, the competition between semantic proposals was not close. The sentence
‘Charley is an ant’ was considered true by about 82% of survey participants,
false by 4%, and neither true nor false by 3% (10% said ‘Both true and false,’
and 1% said ‘Don’t know’). Interestingly, for some questions the subvaluational
semantics provided better predictions than the supervaluational semantics (e.g.,
‘Charley is eating now,’ when Ant A is eating but Ant B is not), and for other
questions the situation was reversed (e.g., ‘Charley = Charley’).

68 Bacon (2013, p. 6–8) provides a wide­ranging list of types of sentences containing empty
names that intuitively seem to be true, even though the supervaluational semantics would
classify them as neither true nor false.
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The data collected in these two studies should not be taken as conclusive
evidence that (at least one of) the positive semantics are right, and negative
and neutral semantics are wrong. Naive informants’ truth­value judgments do
not definitively settle logical questions: Paradoxes demonstrate that our naive
reactions are often inconsistent when taken together. Furthermore, naive infor­
mants’ elicited responses about truth­values are often affected by pragmatic
factors instead of semantic ones alone.69 That said, a semantic theory of a
language should not float free of language­users’ truth­value judgments; the
survey responses should serve as some constraint on semantic theorizing.
Restricting attention to languages with ambiguity, there is a third reason

in favor of positive semantics: Positive uniqueness­free logics distinguish
ambiguous names from empty ones, whereas negative and neutral semantics
collapse that distinction. For although there are supervaluational semantics
available for both ambiguous and empty names, those two semantics are some­
what different from each other, as we saw in Section 3.4.2. Using a negative or
neutral semantics for ambiguous names in effect treats ‘Zeus’ and ‘Charley’ as
logically the same kind of thing. Of course, both are cases of defective refer­
ence, and they are similar in that way. But the types of defect are different:
Not enough reference is distinct from too much reference. The negative or
neutral proponent might respond, perhaps by appealing to the goal of max­
imizing theoretical simplicity, that failures of univocal reference should be
given uniform treatment. But that increased simplicity must be weighed against
the fact that the negative and neutral options for ambiguous language throw
away information contained in MU that the positive semantics preserve. Con­
sider a mathematical analogy: Both ‘ 10 ’ and ‘

√
9’ fail to refer univocally. But

it seems reasonable to say, for example, that the absolute value of
√
9 is less

than 5, and that
√
9
2
= 9. But we cannot say anything similarly specific about

the absolute value of 1
0 , or its square. On this analogy, the negative and neutral

semantics treat ‘ 10 ’ and ‘
√
9’ the same, while the positive semantics does not.

Similarly, compare the question ‘Superman, where are you now?’ to ‘Charley,

69 See von Fintel (2004). Here is an example where an informant might say that a false sentence
is true, because of pragmatic factors. Suppose our mutual friend, who is known to be overly
enthusiastic about Apple products, is coming over to visit me today. Looking out the window,
I see him walking up to my door, and say to you: ‘Steve Jobs is almost here.’ If I asked naive
informants whether this sentence is true, many would respond that it is, even though its content
is literally, i.e., semantically, false (assuming the ghost of Steve Jobs does not appear in my
home in the next few minutes). Such informants are responding to the fact that I communi­
cated something true via Gricean conversational implicature, which is part of pragmatics, not
semantics. In Kripkean terms, the “speaker’s reference” of my utterance of ‘Steve Jobs’ is our
mutual friend, while the “semantic reference” of that utterance is the cofounder of Apple who
died in 2011 (Kripke, 1977).
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where are you now?’ Onemight reasonably say that Charley is located in Fred’s
ant colony – but Superman is nowhere (actual – i.e., nowhere non­fictional).
Although the neutral and negative semantics have the advantage of being sim­
pler than the positive semantics, they suffer from the disadvantage of throwing
away information.

Cons. One aspect of positive semantics for empty names that many people
find worrying is its need for some sort of non­existent entities. Some people
consider the inner­domain/outer­domain semantics philosophically suspect, on
the grounds that the elements of the outer domain seem to be ontologically
extravagant, or otherwise metaphysically mysterious.70 Although this ‘spooky
metaphysics’ concern obviously applies to the inner­domain/outer­domain
semantics, it also applies (arguably to a lesser extent) to the supervaluational
semantics for empty names (Bacon, 2013, p. 9). Recall from Section 3.4.2, p. 46
that, to prevent ∀xF(x) ⊢ F(a) and F(a) ⊢ ∃xF(x) from being supervaluationally
valid, we had to allow completionmodels whose domains include elements that
are not in the ‘base’ model’s domain (this difference being captured formally
by D ⊂ Dc). A supervaluationist might argue that there is an important onto­
logical difference between the members of the outer domain and the members
ofDc−D,71 but they seem very similar, at least on their face. So, if you find the
prospect of semantic theorizing in terms of non­existing entities unappealing,
then positive free logic is probably not for you.72

Setting that concern aside, suppose one wanted to accept positive free logic
for empty names. Which semantics is superior? The main advantage the super­
valuationist claims over the inner­domain/outer­domain semantics is that the
supervaluationist need not be committed to the truth or falsity of claims about
entities in the outer domain that do not appear to be determinate. The sen­
tences that seem like they should be truth­valueless are truth­valueless, on a

70 For example, Restall (2006, p. 202); Bencivenga says this view is common, and adds “appar­
ently researchers held back from pursuing or publishing completeness results utilizing alter­
native approaches [including inner­domain/outer­domain semantics] because of philosophical
worries about their significance” (Bencivenga, 1990, p. 15). However, some have argued that
the outer domain is philosophically innocuous, and does not require Meinongianism (Lambert
& van Fraassen, 1972, p. 200).

71 Bencivenga (2002, p. 177) makes this argument: “[I]n outer domain semantics non­denoting
singular terms simply ‘denote’ non­existents, whereas in [Bencivenga’s preferred superval­
uational] approach these terms denote nothing, and we only take the liberty of considering
alternative situations (or ‘possible worlds’) where they denote, and of making their behav­
ior there relevant for the evaluation of sentences containing them in the situations (or worlds)
where they do not denote.”

72 Bacon (2013) offers a proposal for how to escape this apparent problem; a central move is to
use a free metatheory, thereby allowing some properties to be existence­entailing and others
not.
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supervaluationist approach. There does not appear to be anything that could
determine whether Pegasus falls under the extension of ‘weighs less than 700
kilograms’ or not. Is the number of hairs on Santa Claus’s head odd or even?
There does not seem to be anything (non­arbitrary) that could answer that
question.73 The supervaluationist points out that their position eliminates this
arbitrariness by assigning truth­values according to all possible arbitrary ways
of filling in the stories of Pegasus and Santa.
But the inner­domain/outer­domain proponent can lodge reasonable com­

plaints against the supervaluationist as well. The inner­domain/outer­domain
semantics restores bivalence to the language. Additionally, from a more tech­
nical point of view, inner­domain/outer­domain semantics is strongly complete
and can be axiomatized, unlike supervaluational consequence (p. 68). Finally,
the only way to prevent supervaluationism from violating core commitments
of free logic (e.g., ∀xF(x) → F(a) is not a logical truth) is ad hoc, since it
introduces the complication of ‘truth in Mc­w.r.t.­MR’ without any independ­
ent motivation, other than preventing the supervaluationist proposal from being
refuted. (Obviously, if you find all of the objections in the last three paragraphs
compelling, then you should adopt a neutral or negative semantics for empty
names.)
This final concern, about the ad hoc nature of how supervaluations avoid

refutation by adding complexities, applies also to using supervaluations to deal
with ambiguity. (However, there is no need for non­existent entities in the
domain, unlike supervaluations in existentially free logics.) The cumbersome
‘Mc­w.r.t.­MR’ apparatus was introduced precisely because the apparently false
‘There is exactly one Charley’ is true in every disambiguation, and that unwel­
come consequence of a simple, straightforward supervaluationism had to be
blocked somehow.
For the subvaluational positive logics of Lewis and Priest, it is perhaps

more difficult to create a list of uncontroversial prima facie potential costs.
That is because what many people will consider disadvantages of these logics
will be considered advantages (or at least neutral or conducive of advantages)
by others. Specifically, many people are hesitant to say that some sentences
can be both true and false at the same time. However, proponents of paracon­
sistent logic typically arrived at their view independently of concerns about
ambiguity. Paraconsistent logicians are often motivated first and foremost by
the desire to invalidate the (unintuitive) classical principle that anything log­
ically follows from a contradiction (A ∧ ¬A, thus B), and to do that (while
maintaining that validity is a matter of truth­preservation), there needs to

73 Berto (2013, §5.3.3) calls this the ‘Problem of Additional Properties’ for Meinongianism.
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be a true contradiction. So treating some ambiguous sentences as both true
and false actually bolsters paraconsistent logicians’ antecedently preferred,
independently motivated view.
On the other hand, if one is not already positively disposed toward paracon­

sistency, perhaps the intuitive strangeness of true contradictions can be lessened
by holding (with Lewis) that no propositions need be both true and false on the
subvaluational semantics. Instead, only sentences need be both true and false: A
sentence can be ambiguous between a true proposition and a false proposition.
For a final reason to prefer the Lewis­Priest semantics over the supervaluational
ones, Priest claims that “truth­values of sentences with multiple denotations
are, in a very clear sense, overdetermined, not underdetermined” (Priest, 1995,
p. 368). As evidence for Priest’s claim, this would explain why the everyday
answer to an ambiguous question is typically ‘Yes and no,’ not ‘Neither yes nor
no.’
Note that all the points in the previous paragraph generally favor the exist­

ence of some sentences that are both true and false. One might find that general
idea plausible, yet still disagree with some of the particular truth­value assign­
ments of the subvaluational semantics. For example, one might think that
‘Charley = Charley’ should not be classified as false (even if it is also clas­
sified as true), or that ‘There is exactly one thing identical to Charley’ should
not be classified as true (even if it is also classified as false). So while someone
who finds the independent arguments for paraconsistent logics plausible might
be inclined toward the Lewis­Priest semantics, that alone does not settle the
matter in favor of the Lewis­Priest semantics.

6 Conclusion: Revisiting the Motivations
We have now seen some of what happens logically, both from the point of
view of semantics and of proofs, when we relax the assumption that names
and predicates refer uniquely. Semantically, this results in switching from clas­
sical logic’s (total) interpretation function to an interpretation relation where
names and predicates are also allowed to be semantically related to nothing in
the domain of the model. Proof­theoretically, this results in the classical rules
for ∀­Elimination and ∃­Introduction (almost always) being weakened. The
exact form of the weakening varies from one free logic to another, with the
limiting case being uniqueness­free logics without identity on a semi­classical
conception of consequence, where those two classical rules are still valid.
This Element aims not only to describe free logics for their own sake, but

also to highlight some of their applications to other areas of philosophy. So let
us briefly return in this conclusion to the applications of free logics outlined in
Section 2, armed with more knowledge now.
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As we saw in Section 2.3.2, free logics are intertwined with the scientific
realism versus anti­realism debates. Failures of univocality are one kind of mis­
match between our language and our world. One concern was that failures of
univocality might push us into semantic anti­realism about theoretical scien­
tific discourse, the view that portions of scientific theories are neither true nor
false. But this is a view that many current philosophers, both realists and anti­
realists, want to avoid. With Sections 3–5 under our belts, we can imagine a
number of ways to avoid semantic anti­realism. First, negative free logics are
an available option, and they completely eliminate all truth­value gaps, unlike
the neutral and supervaluational semantics. Second, instead of thinking that
ambiguous terms lead to truth­value gaps, one might hold instead that they lead
to truth­value gluts. In the case of scientific vocabulary, too much reference
(ambiguity) is arguably more common than too little reference (empty names),
because much superseded scientific vocabulary should perhaps not be thought
of as referring to nothing whatsoever, but rather as having an ambiguous or
confused connection to the world. For example, when Joseph Priestley thought
of phlogiston as something like the material stuff emitted in combustion, he
was not thinking of absolutely nothing. The stuff that is emitted in combustion
(primarily CO2) is not the same as what it is in substances that makes them
flammable, even though Priestley conceived of phlogiston in both of those two
ways.
For some people, shifting from truth­value gaps to truth­value gluts is jump­

ing out of the frying pan and into the fire: This move saves us from the
letter of semantic anti­realism, but at the cost of being saddled with dialethe­
ism, which many people will consider an even worse consequence. That said,
recall that the form of dialethia proposed here is at the level of sentences,
not the more controversial level of a proposition being both true and false
simultaneously.74

Additionally, thinking of claims couched in superseded ambiguous language
as generating truth­value gluts complicates how to conceptualize the realism
debate itself, which is typically framed as the question of whether we have good
reason to think that scientific theories are true or not. It is not clear whether
going subvaluationist should count as a realist view, or an anti­realist view.
People sometimes suggest that the realism debate is something to be dissolved
instead of solved in favor of one party or the other; subvaluationism might be

74 There is already an established philosophical area studying ‘inconsistent science’ (Vickers,
2013), but that typically examines inconsistencies within a given science, or between contem­
poraneously accepted sciences, and thus inconsistency at the level of propositions. Also, this
literature is not directly relevant to the comparison between our current scientific language and
bygone, superseded scientific language.
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oneway to dissolve the question, or declare a ‘tie’ (or something like it). Finally,
admitting truth­value gluts might even provide some help for the perennially
tricky notion, central to the realism debates, of ‘approximate truth’: Perhaps
we could take an ambiguous sentence to be approximately true, if it is true on
most of its disambiguations, and approximately false if it is false on most of its
disambiguations.
What about the problem of empty names, and the other problems in language

and metaphysics described in Section 2.3.1? Supervaluational approaches were
intended to deliver us from some of the more counterintuitive consequences of
negative and neutral free logics, without falling into something like Meinon­
gianism. In my estimation, we have seen that the prospects for this are not
as good as one might have hoped, because for supervaluations to deliver the
‘right’ results (i.e., to avoid validating ∀­Elimination and ∃­Introduction), they
have to include elements in the domain of the completion models that are not
elements of the domain of the base model. And these ‘extra’ elements of the
completion models seem very similar to the elements of the outer domain. One
might have wanted to avoid positing something like a Meinongian realm, and
also maintain that b = b is a logical truth, but those two options do not allow
for that possibility. Antonelli’s semantics does allow for both of those, but as
things currently stand, the technical apparatus that accomplishes that is not very
well motivated. Perhaps his formalism can be given a plausible and motivated
interpretation in the future; that would be a welcome advance.
Can the contents of this Element shed any light on the apparent problems

raised by slow­switch thought experiments? In a slow­switch case, someone is
abducted without their knowledge from our Earth and taken to Twin Earth.
Then, after being on Twin Earth for many years, they make the following
inference:

(P1) When I was a child, my mother’s favorite necklace was made of gold.
(P2) My current favorite ring is made of gold.

Thus, my current favorite ring, and my mother’s favorite necklace when
I was a child, are both gold.

The problems arose from the natural thought that ‘gold’ in P1 means Earth­
gold, and the ‘gold’ in P2 means Twin­gold. To preserve our ability to tell
whether two of our beliefs are the same or different, and to keep logic a priori,
Recanati in effect adopts a neutral semantics for ambiguous terms. Specifically,
he holds that the inter­world traveler’s confusion entails that the word ‘gold’
fails to refer to anything, and any thoughts involving such confused words and
concepts are truth­valueless.
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How can what we have seen in previous sections help in evaluating Reca­
nati’s view? First, moving from classical logic to a neutral free logic does
save the a priori status of logic. However, as we saw in Section 5.1, a neu­
tral semantics leads to very few or no sentences being propositional logical
truths (depending on whether we adopt the Weak or Strong Kleene scheme,
and internal or external negation). So this way of saving the a priori status of
logic is arguably a Pyrrhic victory: All the logical truths are known a priori, but
this is vacuously (or almost vacuously) true, since there are no (or almost no)
logical truths. Second, Recanati’s position has been criticized on the grounds
that the traveler rehearsing P1 and P2 above seems to be having some sort of
thoughts (Coliva & Belleri, 2013, p. 112); contra Recanati, the traveler does
not seem to be thinking nothing, even if what they are thinking is not perfectly
clear and unambiguous.
We can keep Recanati’s core proposal that every instance of ‘gold’ is con­

fused, and address both of these concerns, by replacing Recanati’s neutral
semantics with a supervaluational semantics instead. The classical propos­
itional logical truths would then be restored, and the traveler’s thoughts have
some content (even though that content is not univocal: The traveler is thinking
two thoughts, instead of none). Additionally, if we recall the topic of teleose­
mantic indeterminacy, adopting a supervaluational semantics there would also
provide a regimented and precise way to talk about a cognitive state that repre­
sents multiple contents simultaneously, an idea which Bergman (2023) leaves
at an intuitive level.
Finally, there is more work left to be done on free logics, and especially

on uniqueness­free logics, which have been studied far less than existentially
free logics. In particular, definite descriptions, which have been the subject
of extensive research in existentially free logics, lack a sustained treatment in
uniqueness­free logics. And one thing that readers might have been expecting
in this Element that does not appear is a fully combined treatment of a language
containing both empty names and ambiguity. Only a relatively small amount
of that work has been presented here. The primary reason is that, as we have
seen, there is a wide variety of available logical proposals for dealing with both
types of non­univocal terms, so the number of possible combinations is quite
high. Also, since uniqueness­free languages have been far less studied than
existentially free ones, I thought it better to describe them here in isolation, to
more clearly discern their similarities and differences from traditional, existen­
tially free logics. But a very interesting area for future research involves how
best to combine the two different kinds of failures of univocality into a single,
philosophically and logically coherent account.
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Appendix 1
Anti‐satisfaction for Compound Expressions

In the classical case, a formula is true if every sequence satisfies it, and false
if no sequence satisfies it. This creates problems when we want to allow
for sentences that have an undefined truth­value: No sequence will satisfy
a formula with undefined terms or predicate letters. Therefore, if we used
the classical rules, formulas that we want to model as lacking truth­values
would all be assigned the truth­value false. That is, in classical contexts, a
sequence either satisfies a formula or it does not. However, in the cases of
interest here, we need to leave open the possibility that a sequence could do
neither. We do this by introducing ‘satisfaction’/‘anti­satisfaction’ (analogous
to ‘extension’/‘anti­extension’ for predicates).
First, we slightly modify the notion of a valuation (or evaluation). Let t be

an individual constant or a variable. Given a restricted model MR(= ⟨D, f R⟩),
let Σ be the set of all denumerable sequences of D. For each sequence s =
(s1, s2, . . .) ∈ Σ, we define a function ν∗ (often called a valuation or evaluation)
that takes terms in L to elements of D, as follows:

• If t is a variable xi, then ν∗(t) is si.
• If t is an individual constant ai, then ν∗(t) = f R(ai); if f R(ai) is undefined, so is
ν∗(t). (This final clause is the only change to the usual notion of a valuation.)

We also say that a wff ϕ is defined on a modelM iff that model’s interpretation
function assigns values to all (individual, predicate, and function) constants
in ϕ.
For atomic formulae defined on MR, the conditions for satisfaction are

just the standard ones familiar from Tarski onwards. For atomic formulas not
defined onMR, however, things are not so simple. For unlike the classical case,
there are two ways in which a sequence can fail to satisfy a formula, analo­
gous to the difference between truth­valueless sentences and false sentences:
Either the formula is not sufficiently semantically defined, or the formula is
semantically defined but the sequence does not satisfy it. We will call the latter
‘anti­satisfaction.’
A sequence s anti­satisfies an atomic formula ϕ inM if either:

• ϕ is defined on M, and s does not satisfy ϕ inM, or
• ϕ is an atomic formula of the form t1 = t2, and exactly one of ν∗(t1) and
ν∗(t2) is undefined.1

1 This modification has been used for decades in existentially free logics; see Lambert (2001,
p. 267–270).
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92 Appendix 1

As a result of this second condition, the open formulas ‘x = Charley’ and
‘x = Zeus’ are anti­satisfied by every sequence, since variables count as
defined.
For compound expressions, we cannot carry over the usual definition of sat­

isfaction for compound expressions unaltered, if the definition relies on the
notion of ‘s does not satisfy ϕ.’ For example, in the classical case, a sequence
s satisfies ¬ϕ iff s does not satisfy ϕ. But if we want our negation to follow the
truth­table for ‘weak/internal’ negation, this classical satisfaction rule deliv­
ers the wrong result, since it will declare certain sentences false that should
be truth­valueless instead. Thus, we modify the satisfaction condition for
internal/weak negation to use the notion of anti­satisfaction instead, as follows:

• s satisfies ¬ϕ iff
– s anti­satisfies ϕ. (internal/weak negation)
– s does not satisfy ϕ. (external/strong negation)

Disjunctions also require a similar alteration in the definition of satisfaction
under the Weak Kleene scheme (the Strong Kleene disjunction just uses the
classical definition).

• s satisfies ϕ ∨ ψ iff
– ϕ and ψ are defined, and s satisfies at least one of ϕ,ψ. (Weak Kleene)
– s satisfies at least one of ϕ,ψ. (Strong Kleene)

These two pairs of definitions would give us four different definitions of sat­
isfaction for conditional statements, if one accepts the equivalence of A → B
with ¬A ∨ B.
The anti­satisfaction conditions for compound expressions can be formu­

lated in a straightforward way:

• s anti­satisfies ¬ϕ iff
– ϕ is defined and s does not satisfy ϕ. (internal negation)
– s does not satisfy ϕ. (external negation)

• s anti­satisfies ϕ ∨ ψ iff s anti­satisfies ϕ and s anti­satisfies ψ.
• s anti­satisfies ϕ ∧ ψ iff
– ϕ and ψ are defined, and s anti­satisfies at least one of ϕ,ψ.

(Weak Kleene)
– s anti­satisfies at least one of ϕ,ψ. (Strong Kleene)

• s anti­satisfies ∃xiϕ iff every sequence that differs from s in at most the ith

place anti­satisfies ϕ.
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Appendix 2
Soundness of Classical ∀‐Elim for

Uniqueness‐Free Semantics without ‘=’
I claimed in Section 4.3.2 that the classical rules of ∀­elimination and
∃­introduction are sound in a uniqueness­free language, using the semi­
classical or supervaluational notions of consequence, so long as the language
does not contain an interpreted identity predicate. Let us see why, for the case of
∀­elimination. Since every semi­classically valid argument is supervaluation­
ally valid (as we saw in Section 4.3.2), we will only discuss the semi­classical
case. We need to show that if ∀xϕ(x) is true in an arbitrary Md­w.r.t.­MR, then
ϕ(b) is also true in that sameMd­w.r.t.­MR, even when ϕ and/or b are ambigu­
ous. Now, there are two ways for ∀xϕ(x) to be true inMd­w.r.t.­MR: either it is
true already in MR (in which case its truth­value in any Md is irrelevant to its
truth­value in Md­w.r.t­MR), or it is truth­valueless in MR but true in Md. Let
us consider these two cases separately.
Case 1. If ∀xϕ(x) is true in the ‘base’ model MR, then every symbol in ϕ is

defined in MR. (Note: This would not be the case if our language contained
‘=’: ∀x(x , c) is true in MR, when c is ambiguous.) If b is also defined in
MR, then of course ϕ(b) will be true in MR (and thus Md­w.r.t.­MR) too, since
everything is completely classical. So consider the case where b is ambigu­
ous. If every symbol in ϕ is defined in MR, and (as we assumed) ∀xϕ(x) is
true in MR, then it will also be true in every disambiguation model Md. So in
each disambiguation model, every individual in that model’s domain will sat­
isfy ϕ(x). Therefore, no matter which individual a particular disambiguation
model assigns to the name b, that object must also satisfy ϕ(x). So in that dis­
ambiguation model, ϕ(b) must be true. And since ϕ(b) lacked a truth value in
the ‘override’ modelMR (since b is ambiguous), ϕ(b) is true in Md­w.r.t.­MR.
Case 2. Now consider the other case in which ∀xϕ(x) is true in Md­w.r.t.­

MR: ∀xϕ(x) contains ambiguous words, and thus is not assigned a truth­value
inMR, but instead is only assigned the value true in the disambiguation model
Md. Now, every disambiguation model in isolation is a classical model, so if
∀xϕ(x) is true in a particular Md, then ϕ(b) must be true in that same Md as
well. But truth in Md is not the same as Md­w.r.t.­MR, since truth­values in
MR override truth­values in Md. However, given our assumptions, ϕ(b) must
be truth­valueless inMR, since if ∀xϕ(x) contains ambiguous words, then ϕ(b)
must contain ambiguous words as well. And if ϕ(b) contains ambiguous words,
then it is truth­valueless in MR (this step would be blocked if the language
contained ‘=’: ‘Ant A = Charley’ is false in MR). Thus, since ϕ(b) is assigned
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94 Appendix 2

no truth­value in MR, but is true in Md, ϕ(b) is true in Md­w.r.t.­MR in this
second case as well.
Therefore, since these are the only two cases, the classical rule of ∀­

elimination is sound on the semi­classical notion of logical consequence, and
thus on the supervaluational notion of consequence as well. An analogous argu­
ment could be run for classical ∃­introduction, but I will not present it here,
since it does not require any substantially different ideas.
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