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Abstract

Let α be a complex valued 2-cocycle of finite order of a finite group G. The nth Frobenius–Schur indicator
of an irreducible α-character of G is defined and its properties are investigated. The indicator is interpreted
in general for n = 2 and it is shown that it can be used to determine whether an irreducible α-character
is real-valued under the assumption that the order of α and its cohomology class are both 2. A formula,
involving the real α-regular conjugacy classes of G, is found to count the number of real-valued irreducible
α-characters of G under the additional assumption that these characters are class functions.
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1. Introduction

Throughout this paper, G will denote a finite group. Also, all the representations
considered will be taken to be over the field of complex numbers. The set of all
ordinary irreducible characters of G is denoted as usual by Irr(G), and Lin(G) will
denote the group of linear characters of G.

There are a number of results concerning Irr(G) and Frobenius–Schur indicators,
three of which are reviewed here. For the first, see [3, pages 49–50].

THEOREM 1.1. Define θn : G→ Z≥0 by θn(x) = |{g ∈ G : gn = x}| for n ∈ N. Then

θn =
∑

χ∈Irr(G)

vn(χ)χ,

where

vn(χ) =
1
|G|
∑

x∈G
χ(xn)

is the nth Frobenius–Schur indicator of χ and vn(χ) ∈ Z.

The second result is a consequence of this theorem (see [3, Corollary 4.6]).
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2 R. J. Higgs [2]

COROLLARY 1.2. Let G have exactly t involutions. Then

1 + t =
∑

χ∈Irr(G)

v2(χ)χ(1).

An element of G is real if it is conjugate to its inverse and χ ∈ Irr(G) is real if
χ(x) ∈ R for all x ∈ G. For the third result connecting these two concepts, see [3,
Problem 6.13].

THEOREM 1.3. The number of real conjugacy classes of G is equal to the number of
real χ ∈ Irr(G).

The purpose of this paper is to find generalisations of these three results if
irreducible projective characters of G are considered instead of ordinary ones. To
generalise Theorem 1.1 it will be necessary to define the nth Frobenius–Schur indicator
of an irreducible projective character of G. A number of remarks and examples were
made and given in [2, pages 27–28] to show that this and Theorem 1.3 do not have a
straightforward generalisation to the projective character situation, but our approach
overcomes those difficulties.

In Section 2, basic facts about projective representations of G with 2-cocycle α will
be stated. The nth Frobenius–Schur indicator of an irreducible projective character of
G is then defined and interpreted for n = 2. Using this, the generalisations sought of
the three results will be found in Section 3, although for the last two restricted to the
case when both α and its cohomology class have order 2.

2. Frobenius–Schur indicators for projective characters

All of the standard facts and concepts relating to projective representations below
may be found in [4, 5], or (albeit to a lesser extent) [3, Ch. 11] or [1].

DEFINITION 2.1. A 2-cocycle of G over C is a function α : G × G→ C∗ such that
α(1, 1) = 1 and α(x, y)α(xy, z) = α(x, yz)α(y, z) for all x, y, z ∈ G.

The set of all such 2-cocycles of G form a group Z2(G,C∗) under multiplication.
Let δ : G→ C∗ be any function with δ(1) = 1. Then t(δ)(x, y) = δ(x)δ(y)/δ(xy) for all
x, y ∈ G is a 2-cocycle of G, which is called a coboundary. Two 2-cocycles α and β
are cohomologous if there exists a coboundary t(δ) such that β = t(δ)α. This defines
an equivalence relation on Z2(G,C∗), and the cohomology classes [α] form a finite
abelian group, called the Schur multiplier M(G).

DEFINITION 2.2. Let α be a 2-cocycle of G. Then x ∈ G is α-regular if α(x, y) =
α(y, x) for all y ∈ CG(x).

Let β ∈ [α]. Then x ∈ G is α-regular if and only if it is β-regular. If x is α-regular
then so too are x−1 and any conjugate of x, so from the latter one may refer to the
α-regular conjugacy classes of G.
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DEFINITION 2.3. Let α be a 2-cocycle of G. Then an α-representation of G of
dimension n is a function P : G→ GL(n,C) such that P(x)P(y) = α(x, y)P(xy) for all
x, y ∈ G.

Observe that if P is an α-representation of G, then P(g)P(x)P(g)−1= fα(g, x)P(gxg−1)
and P(x)m = pα(x, m)P(xm) for all g, x ∈ G and m ∈ N, where

fα(g, x) =
α(g, xg−1)α(x, g−1)

α(g, g−1)
and pα(x, m) =

m−1∏

i=1

α(x, xi) for m > 1.

An α-representation is also called a projective representation of G with 2-cocycle α
and its trace function is its α-character. Let Proj(G,α) denote the set of all irreducible
α-characters of G. The relationship between Proj(G,α) and α-representations is much
the same as that between Irr(G) and ordinary representations of G (see [4, page 184]
for details). Next x ∈ G is α-regular if and only if ξ(x) � 0 for some ξ ∈ Proj(G,α) and
|Proj(G,α)| is the number of α-regular conjugacy classes of G.

For [β] ∈ M(G) there exists α ∈ [β] such that o(α) = o([β]) and α is a class-function
2-cocycle, that is, the elements of Proj(G,α) are class functions. If α is a class-function
2-cocycle of G, then x ∈ G is α-regular if and only if fα(g, x) = 1 for all g ∈ G.

The nth Frobenius–Schur indicator of ξ ∈ Proj(G,α) can now be defined and agrees
with the normal definition if α is trivial.

DEFINITION 2.4. Let α be a 2-cocycle of G of finite order. Then the nth
Frobenius–Schur indicator vαn (ξ) for ξ ∈ Proj(G,α) and n ∈ N is given by

vαn (ξ) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1
|G|
∑

x∈G
pα(x, n)ξ(xn) if n ≡ 0 (mod o(α))

0 otherwise.

If α is a 2-cocycle of finite order of G, then this allows the construction of the
α-covering group H of G (see [4, Ch. 4, Section 1] or [1, page 191]). Let ω be a
primitive o(α)th root of unity and let A = 〈ω〉. The set of elements of H may be taken
to be {ar(x) : a ∈ A, x ∈ G}, and H is a group under the binary operation ar(x)br(y) =
abα(x, y)r(xy) for all a, b ∈ A and all x, y ∈ G. This is a central extension of G:

1→ A→ H
π−→ G→ 1,

with π(r(x)) = x for all x ∈ G. It also has the following important property. Let P be
an αi-representation of G for i ∈ Z. Then R(ar(x)) = λi(a)P(x) for all a ∈ A and all
x ∈ G is an ordinary representation of H, where λ ∈ Lin(A) with λ(ω) = ω; moreover,
P is irreducible if and only if R is. Here R is said to linearise P (or to be the
lift of P). Let Irr(H|λi) = {χ ∈ Irr(H) : χA = χ(1)λi} for i ∈ Z. Then the linearisation
process outlined means that for each such i there exists a bijection from Irr(H|λi) to
Proj(G,αi) defined by χ 	→ ξ, where χ(r(x)) = ξ(x) for all x ∈ G and it is convenient to
say that χ linearises ξ.
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Now x is α-regular if and only if ωir(x) and ωjr(x) are not conjugate for all i and j
with 0 ≤ i < j ≤ o(α) − 1. So for counting purposes there are exactly o(α) conjugacy
classes of H that map under π to the conjugacy class of an α-regular element of G and
fewer than this for an element that is not α-regular. If o(α) = o([α]), then A ≤ H′ and
the mapping αi 	→ [αi] = [α]i for i = 0, . . . , o(α) − 1 is a bijection.

LEMMA 2.5. Let α be a 2-cocycle of G of finite order and let H be the α-covering
group of G. If r(x) ∈ H is real, then so too is x. Conversely if x ∈ G is real, then r(x) is
real if and only if there exists g ∈ G such that gxg−1 = x−1 and fα(g, x) = α(x, x−1)−1.

PROOF. If r(x) is real with r(g)r(x)r(g)−1 = r(x)−1, it follows that fα(g, x)r(gxg−1) =
α(x, x−1)−1r(x−1), so that in particular gxg−1 = x−1 and x is real. The converse is now
obvious. �

LEMMA 2.6. Let α be a 2-cocycle of G of finite order and let H be the α-covering group
of G. Let ξ ∈ Proj(G,αi) for i ∈ Z and let χ ∈ Irr(H|λi) linearise ξ. Then vα

i

n (ξ) = vn(χ).

PROOF. Using the notation introduced, r(x)n = pα(x, n)r(xn) for n ∈ N. So from
Theorem 1.1,

vn(χ) =
1
|H|

∑

a∈A,x∈G
χ(an pα(x, n)r(xn))

=
1
|H|

∑

a∈A,x∈G
λi(an)pαi (x, n)ξ(xn) = vn(λi)vα

i

n (ξ) = vα
i

n (ξ),

since vn(λi) = v1(λni) from Theorem 1.1, so that vn(λi) = 1 if o(λni) = 1 and is 0
otherwise. �

Let α be a 2-cocycle of G of finite order and let H be the α-covering group
of G. Consider another transversal of A in H, {s(x) : x ∈ G} with s(1) = 1, where
s(x) = δ(x)r(x) for δ(x) ∈ A. This gives rise to a new 2-cocycle β ∈ [α] with β = t(δ)α
and for which o(β) divides o(α). Let χ ∈ Irr(H|λi). Then χ linearises ξ ∈ Proj(G,αi)
and ξ′ ∈ Proj(G, βi), where ξ′(x) = λi(δ(x))ξ(x) for all x ∈ G. Now s(x)n = r(x)n

for n ≡ 0 (mod o(α)) and so, from the proof of Lemma 2.6, vα
i

n (ξ) = vβ
i

n (ξ′) for
n ≡ 0 (mod o(α)). If o(α) = o([α]), then o(β) = o(α) and H is also the β-covering
group of G.

Using this notation, {s(x) : x ∈ G} can be chosen to be conjugacy-preserving, that
is, s(x) and s(y) are conjugate in H whenever x and y are conjugate in G (see
[5, Lemma 4.1.1] or [1, Proposition 1.1]) and this choice makes β a class-function
2-cocycle.

The next result is an immediate corollary of Lemma 2.6 from [3, page 58].

COROLLARY 2.7. Let α be a 2-cocycle of G with o(α) = o([α]) = 2. Let ξ ∈ Proj(G,α).
Then vα2 (ξ) = 0 or ±1. Moreover, vα2 (ξ) = 0 if and only if ξ is nonreal, vα2 (ξ) = 1 if and
only if ξ is afforded by a real α-representation, and vα2 (ξ) = −1 if and only if ξ is real
but is not afforded by any real α-representation of G.
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Lemma 2.6 also explains why the second Frobenius–Schur indicator is defined
to be 0 when o(α) > 2, but another rationale follows. If α(x, y) � R and P is an
α-representation of G, then at least one of the three matrices P(x), P(y) and P(xy) must
contain a nonreal entry.

EXAMPLE 2.8. Consider the elementary abelian group G = Cp × Cp for p a prime
number, which has M(G) � Cp (see [4, Proposition 10.7.1]). Let α be any 2-cocycle
of G with o([α]) = p. Then the only α-regular element of G is the identity element
and consequently the only element ξ ∈ Proj(G,α) has ξ(1) = p and ξ(x) = 0 for x � 1
(see [5, Theorem 8.2.21]). So ξ is integer-valued, but is not afforded by any real
α-representation for p ≥ 3 from the remark preceding this example. If o(α) ≥ 3 and is
finite, let H be the α-covering group of G and let χ ∈ Irr(H|λ) linearise ξ. Then χ is
nonreal since λ is nonreal.

It can be concluded from Example 2.8 that the results of Corollary 2.7 do not hold
in general for any group G with a 2-cocycle of finite order greater than 2 and in this
case vα2 (ξ) = 0 for all ξ ∈ Proj(G,α) can only be interpreted as meaning that each ξ is
not afforded by any real α-representation of G.

It should be noted that in general the value of vαn (ξ) for n ≡ 0 (mod o(α)) depends
upon the choice of α, even if o(α) = o([α]) = 2, as the next example illustrates.

EXAMPLE 2.9. Let G = C2 × C2. It is well known that G has two Schur representation
groups (also known as covering groups) up to isomorphism, namely D and Q, the
dihedral and quaternion groups of order 8, respectively. The character tables of these
two groups are identical, and the irreducible characters χ and χ′ of degree 2 of
each linearise ξ ∈ Proj(G,α) and ξ′ ∈ Proj(G,α′) respectively, where α and α′ are the
2-cocycles of G constructed from D and Q of order 2 with o([α]) = o([α′]) = 2. Now ξ
and ξ′ are identical and integer-valued from Example 2.8; however, vα2 (ξ) = v2(χ) = 1,
whereas vα

′

2 (ξ′) = v2(χ′) = −1.

Using Lemma 2.6 other results concerning vn carry over to vαn , as in the next lemma.

LEMMA 2.10. Let α be a 2-cocycle of G of finite order. Let ξ ∈ Proj(G,α) and let
μ ∈ Lin(G) with μn trivial for n ∈ N. Then vαn (ξ) ∈ Z and vαn (μξ) = vαn (ξ).

PROOF. Let H be the α-covering group of G and χ ∈ Irr(H|λ) linearise ξ. Then
vαn (ξ) ∈ Z from Lemma 2.6 and Theorem 1.1. Now let ν ∈ Lin(H) linearise μ. Then νχ
linearises μξ and νn is trivial, so vαn (μξ) = vn(νχ) = vn(χ) = vαn (ξ) using [3, Lemma 4.8]
and Lemma 2.6. �

3. Frobenius–Schur indicator applications

Let α be a 2-cocycle of G of finite order and define

θαn =
∑

ξ∈Proj(G,α)

vαn (ξ)ξ.
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From Lemma 2.10, θαn is an integral linear combination of α-characters of G and so
θαn (x) = 0 if x is not α-regular. If, in addition, α is a class-function 2-cocycle, then θαn
is a class function. If o(α) = 1, then θαn = θn as in Theorem 1.1.

By analogy with the definition in Theorem 1.1, define θ+n : G→ Z≥0 by

θ+n (x) = |{g ∈ G : pα(g, n) = 1 and gn = x}|
for n ∈ N. This function is used in the generalisation of Theorem 1.1.

THEOREM 3.1. Let α be a 2-cocycle of G with o(α) = o([α]) of finite order m and let
n ∈ N with n ≡ 0 (mod m). Then

m−1∑

i=1

θα
i

n = mθ+n − θn.

PROOF. Let H be the α-covering group of G. Then, using Theorem 1.1 and Lemma 2.6,

θn(r(x)) = m|{g ∈ G : pα(g, n) = 1 and gn = x}|

=
∑

χ∈Irr(H)

vn(χ)χ(r(x)) =
∑

ψ∈Irr(G)

vn(ψ)ψ(x) +
m−1∑

i=1

∑

ξ∈Proj(G,αi)

vα
i

n (ξ)ξ(x)

= θn(x) +
m−1∑

i=1

θα
i

n (x)

for all x ∈ G. �

Continuing with the notation and hypotheses in Theorem 3.1, suppose g ∈ G with
gn = x and let y ∈ CG(x). Then

fα(y, x)pα(g, n)r(x) = (r(y)r(g)r(y)−1)n = pα(ygy−1, n)r(x).

Now if m is a prime number and x is not α-regular, then r(x) is conjugate to ar(x) for
all a ∈ A. So if r(y)r(x)r(y)−1 = ar(x), then the mapping g 	→ ygy−1 defines a bijection
from {g ∈ G : pα(g, n) = 1 and gn = x} to {g ∈ G : pα(g, n) = a and gn = x}, which
explains why mθ+n (x) = θn(x) in this scenario.

The next result is a special case of Theorem 3.1 that generalises Corollary 1.2.

COROLLARY 3.2. Let α be a 2-cocycle of G with o(α) = o([α]) = 2. Let H be the
α-covering group of G and let H and G have exactly t and s involutions, respectively.
Then

t − s =
∑

ξ∈Proj(G,α)

vα2 (ξ)ξ(1).

PROOF. Using Corollary 1.2 and the proof of Theorem 3.1,
∑

ξ∈Proj(G,α)

vα2 (ξ)ξ(1) = θ2(r(1)) − θ2(1) = t − s. �

The final aim is to generalise Theorem 1.3, which involves an analysis of the real
conjugacy classes of G.
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LEMMA 3.3. Let α be a class-function 2-cocycle of G with o(α) = o([α]) = 2. Let
H be the α-covering group of G with its associated central subgroup A = 〈−1〉 and
transversal {r(x) : x ∈ G}. Let x ∈ G be real. Then r(x) is nonreal if and only if x is
α-regular and α(x, x−1) = −1.

PROOF. If x is α-regular, then r(x) is real if and only if α(x, x−1) = 1 from Lemma 2.5.
On the other hand, if x is not α-regular, then there exists y ∈ CG(x) such that
r(y)r(x−1)r(y)−1 = −r(x−1). Now if gxg−1 = x−1, then either fα(g, x) or fα(yg, x) equals
α(x, x−1)−1 and so r(x) is real from Lemma 2.5. �

Let P be an α-representation of G of dimension n. Then for all g, x ∈ G,
P(g)P(x)P(x−1)P(g)−1 equals fα(g, x) fα(g, x−1)α(gxg−1, gx−1g−1)In, but it also equals
α(x, x−1)In. Thus if α is a class-function 2-cocycle of G and x is α-regular, then
α(x, x−1) = α(gxg−1, gx−1g−1) for all g ∈ G. In the context of Lemma 3.3 and using
this result, let k0, k+ and k− denote the number of conjugacy classes C of G that are
respectively (a) real and not α-regular, (b) real and α-regular with α(x, x−1) = 1 for all
x ∈ C, and (c) real and α-regular with α(x, x−1) = −1 for all x ∈ C.

THEOREM 3.4. Let α be a class-function 2-cocycle of G with o(α) = o([α]) = 2. Then
the number of real elements of Proj(G,α) is k+ − k−.

PROOF. Let H be the α-covering group of G. The number of real conjugacy classes
of G and H is k0 + k+ + k− and k0 + 2k+, respectively, from Lemma 3.3 and previous
remarks. Thus from Theorem 1.3 the number of real elements of Proj(G,α) is the
second number minus the first. �

If α′ is a 2-cocycle of G with o(α′) = o([α′]) = 2, then we may let H be the
α′-covering group of G. As explained after Lemma 2.6: (a) there exists a change of
transversal so that the resultant 2-cocycle α of G is a class-function 2-cocycle with
o(α) = 2 and α ∈ [α′]; (b) the numbers of real elements of Proj(G,α) and Proj(G,α′)
are equal, with this number given by Theorem 3.4.

EXAMPLE 3.5. Every element of the symmetric group S4 is real, M(S4) � C2 and S4
has two Schur representation groups up to isomorphism (see [6, Theorem 1]). One is
the binary octahedral group, and the three elements of Proj(S4,α) constructed from
this group, for a class-function 2-cocycle α with o(α) = o([α]) = 2, are all real (see
[6, page 70]), so k+ = 3 and k− = 0. The other Schur representation group is GL(2, 3),
and only one element of Proj(S4,α′) constructed from this group, for a class-function
2-cocycle α′ with o(α′) = 2 and α′ ∈ [α], is real (see [2, Remark (ii), pages 27–28] or
[6, page 56]), so here k+ = 2 and k− = 1.
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