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Abstract

Let a be a complex valued 2-cocycle of finite order of a finite group G. The nth Frobenius—Schur indicator
of an irreducible a-character of G is defined and its properties are investigated. The indicator is interpreted
in general for n = 2 and it is shown that it can be used to determine whether an irreducible a-character
is real-valued under the assumption that the order of @ and its cohomology class are both 2. A formula,
involving the real @-regular conjugacy classes of G, is found to count the number of real-valued irreducible
a-characters of G under the additional assumption that these characters are class functions.
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1. Introduction

Throughout this paper, G will denote a finite group. Also, all the representations
considered will be taken to be over the field of complex numbers. The set of all
ordinary irreducible characters of G is denoted as usual by Irr(G), and Lin(G) will
denote the group of linear characters of G.

There are a number of results concerning Irr(G) and Frobenius—Schur indicators,
three of which are reviewed here. For the first, see [3, pages 49-50].

THEOREM 1.1. Define 6, : G — Zso by 6,(x) = |{g € G : g" = x}| for n € N. Then
O, = Z VaQOX;
XElrr(G)

where

1

) = = > x (")

|Gl xeG

is the nth Frobenius—Schur indicator of y and v,(y) € Z.

The second result is a consequence of this theorem (see [3, Corollary 4.6]).
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2 R. J. Higgs [2]

COROLLARY 1.2. Let G have exactly t involutions. Then

Trr= > vabox(D).

xelrr(G)

An element of G is real if it is conjugate to its inverse and y € Irr(G) is real if
x@) € R for all x € G. For the third result connecting these two concepts, see [3,
Problem 6.13].

THEOREM 1.3. The number of real conjugacy classes of G is equal to the number of
real y € Irr(G).

The purpose of this paper is to find generalisations of these three results if
irreducible projective characters of G are considered instead of ordinary ones. To
generalise Theorem 1.1 it will be necessary to define the nth Frobenius—Schur indicator
of an irreducible projective character of G. A number of remarks and examples were
made and given in [2, pages 27-28] to show that this and Theorem 1.3 do not have a
straightforward generalisation to the projective character situation, but our approach
overcomes those difficulties.

In Section 2, basic facts about projective representations of G with 2-cocycle « will
be stated. The nth Frobenius—Schur indicator of an irreducible projective character of
G is then defined and interpreted for n = 2. Using this, the generalisations sought of
the three results will be found in Section 3, although for the last two restricted to the
case when both a and its cohomology class have order 2.

2. Frobenius—-Schur indicators for projective characters

All of the standard facts and concepts relating to projective representations below
may be found in [4, 5], or (albeit to a lesser extent) [3, Ch. 11] or [1].

DEFINITION 2.1. A 2-cocycle of G over C is a function @ : G X G — C* such that
a(l,1) = 1 and a(x, y)a(xy, 2) = a(x, yz)a(y,z) for all x, y, 7 € G.

The set of all such 2-cocycles of G form a group Z*(G, C*) under multiplication.
Let 6 : G — C* be any function with (1) = 1. Then #(0)(x,y) = 6(x)d(y)/d(xy) for all
x,y € G is a 2-cocycle of G, which is called a coboundary. Two 2-cocycles @ and 8
are cohomologous if there exists a coboundary #(d) such that 8 = #(6)a. This defines
an equivalence relation on 7Z%(G,C*), and the cohomology classes [a] form a finite
abelian group, called the Schur multiplier M(G).

DEFINITION 2.2. Let a be a 2-cocycle of G. Then x € G is a-regular if a(x,y) =
a(y,x) for all y € Cg(x).

Let 8 € [@]. Then x € G is a-regular if and only if it is S-regular. If x is @-regular
then so too are x~! and any conjugate of x, so from the latter one may refer to the
a-regular conjugacy classes of G.
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DEFINITION 2.3. Let @ be a 2-cocycle of G. Then an a-representation of G of
dimension n is a function P : G — GL(n, C) such that P(x)P(y) = a(x, y)P(xy) for all
x,y€G.

Observe that if P is an a-representation of G, then P(g)P(x)P(g)! = f.,(g, x)P(gxg™")
and P(x)" = po(x,m)P(x™) for all g, x € G and m € N, where

-1 . m—1
Jo(g,x) = (8. 18 )a(lx,g ) and  po(x,m) = 1—[ a(x,x') form> 1.
a(g,87") i

An a-representation is also called a projective representation of G with 2-cocycle a
and its trace function is its @-character. Let Proj(G, a) denote the set of all irreducible
a-characters of G. The relationship between Proj(G, @) and a-representations is much
the same as that between Irr(G) and ordinary representations of G (see [4, page 184]
for details). Next x € G is a-regular if and only if £(x) # O for some ¢ € Proj(G, @) and
|Proj(G, @)| is the number of @-regular conjugacy classes of G.

For [B] € M(G) there exists @ € [$] such that o(@) = o([#]) and « is a class-function
2-cocycle, that is, the elements of Proj(G, ) are class functions. If « is a class-function
2-cocycle of G, then x € G is a-regular if and only if f,(g,x) = 1forall g € G.

The nth Frobenius—Schur indicator of ¢ € Proj(G, @) can now be defined and agrees
with the normal definition if « is trivial.

DEFINITION 2.4. Let @ be a 2-cocycle of G of finite order. Then the nth
Frobenius—Schur indicator vﬁ(f) for ¢ € Proj(G, @) and n € N is given by

N Pa(x, W)EX")  if n = 0 (mod o(a))
V() = IGl zé

otherwise.

If @ is a 2-cocycle of finite order of G, then this allows the construction of the
a-covering group H of G (see [4, Ch. 4, Section 1] or [1, page 191]). Let w be a
primitive o(a)th root of unity and let A = (w). The set of elements of H may be taken
to be {ar(x) : a € A,x € G}, and H is a group under the binary operation ar(x)br(y) =
aba(x, y)r(xy) for all a,b € A and all x,y € G. This is a central extension of G:

1 5A>HSG -1,

with m(r(x)) = x for all x € G. It also has the following important property. Let P be
an «'-representation of G for i € Z. Then R(ar(x)) = A(a)P(x) for all a € A and all
x € G is an ordinary representation of H, where A € Lin(A) with A(w) = w; moreover,
P is irreducible if and only if R is. Here R is said to linearise P (or to be the
lift of P). Let Irr(H|A") = {y € Irr(H) : y4 = x(1)A’} for i € Z. Then the linearisation
process outlined means that for each such i there exists a bijection from Irr(H|A%) to
Proj(G, @) defined by y — &, where y(r(x)) = £(x) for all x € G and it is convenient to
say that y linearises €.
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Now x is a-regular if and only if w'r(x) and «/r(x) are not conjugate for all i and j
with 0 <i <j < o(@) — 1. So for counting purposes there are exactly o(e) conjugacy
classes of H that map under 7 to the conjugacy class of an a-regular element of G and
fewer than this for an element that is not a-regular. If o(a) = o([a]), then A < H’ and
the mapping o’ + [a'] = [a] fori = 0,...,0(a) — 1 is a bijection.

LEMMA 2.5. Let a be a 2-cocycle of G of finite order and let H be the a-covering
group of G. If r(x) € H is real, then so too is x. Conversely if x € G is real, then r(x) is
real if and only if there exists g € G such that gxg~' = x™" and f,(g,x) = a(x,x )7\

PROOF. If r(x) is real with r(g)r(x)r(g)~" = r(x)~!, it follows that f,(g,x)r(gxg™") =
a(x,x~ )~ 'r(x71), so that in particular gxg~' = x~! and x is real. The converse is now
obvious. o

LEMMA 2.6. Let a be a 2-cocycle of G of finite order and let H be the a-covering group
of G. Let & € Proj(G,a') for i € Z and let y € Trr(H|X') linearise &. Then v¥' (€) = v, (x).

PROOF. Using the notation introduced, r(x)" = p,(x,n)r(x") for n € N. So from

Theorem 1.1,

1

V00 = T D X paln ™)
I |aeA,x€G
1 : i i
= i D A @) mER = va(A)y () = Vi (),
acA xeG

since v, (1) = v;(%) from Theorem 1.1, so that v,(1) =1 if o(X) =1 and is 0
otherwise. O

Let @ be a 2-cocycle of G of finite order and let H be the @-covering group
of G. Consider another transversal of A in H,{s(x) : x € G} with s(1) = 1, where
s(x) = 6(x)r(x) for 6(x) € A. This gives rise to a new 2-cocycle 8 € [a] with 8 = t(6)a
and for which o(B) divides o(a). Let y € Irr(H|A)). Then y linearises & € Proj(G, o)
and & € Proj(G,B'), where &(x) = A'(6(x))é(x) for all xe G. Now s(x)" = r(x)"
for n=0 (mod o(a)) and so, from the proof of Lemma 2.6, v¥(£) = v/,f‘(f/) for
n =0 (mod o(a)). If o(a) = o([@]), then o(B) = o(a) and H is also the B-covering
group of G.

Using this notation, {s(x) : x € G} can be chosen to be conjugacy-preserving, that
is, s(x) and s(y) are conjugate in H whenever x and y are conjugate in G (see
[5, Lemma 4.1.1] or [1, Proposition 1.1]) and this choice makes g a class-function
2-cocycle.

The next result is an immediate corollary of Lemma 2.6 from [3, page 58].

COROLLARY 2.7. Let & be a 2-cocycle of G with o(@) = o([a]) = 2. Let ¢ € Proj(G, a).
Then v5(§) = 0 or £1. Moreover, v5(&) = 0 if and only if £ is nonreal, v5(£) = 1 if and
only if & is afforded by a real a-representation, and v5(§) = —1 if and only if £ is real
but is not afforded by any real a-representation of G.
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Lemma 2.6 also explains why the second Frobenius—Schur indicator is defined
to be 0 when o(a) > 2, but another rationale follows. If a(x,y) ¢ R and P is an
a-representation of G, then at least one of the three matrices P(x), P(y) and P(xy) must
contain a nonreal entry.

EXAMPLE 2.8. Consider the elementary abelian group G = C, X C, for p a prime
number, which has M(G) = C, (see [4, Proposition 10.7.1]). Let a be any 2-cocycle
of G with o([a@]) = p. Then the only a-regular element of G is the identity element
and consequently the only element & € Proj(G, @) has £(1) = p and &é(x) =0 for x # 1
(see [5, Theorem 8.2.21]). So ¢ is integer-valued, but is not afforded by any real
a-representation for p > 3 from the remark preceding this example. If o(a) > 3 and is
finite, let H be the a-covering group of G and let y € Irr(H|A) linearise £. Then y is
nonreal since A is nonreal.

It can be concluded from Example 2.8 that the results of Corollary 2.7 do not hold
in general for any group G with a 2-cocycle of finite order greater than 2 and in this
case v5(§) = 0 for all £ € Proj(G, @) can only be interpreted as meaning that each & is
not afforded by any real a-representation of G.

It should be noted that in general the value of v (¢) for n = 0 (mod o(a)) depends
upon the choice of «, even if o(a) = o([a]) = 2, as the next example illustrates.

EXAMPLE 2.9. Let G = C; X (5. Itis well known that G has two Schur representation
groups (also known as covering groups) up to isomorphism, namely D and Q, the
dihedral and quaternion groups of order 8, respectively. The character tables of these
two groups are identical, and the irreducible characters y and y’ of degree 2 of
each linearise ¢ € Proj(G, @) and & € Proj(G, o) respectively, where @ and o’ are the
2-cocycles of G constructed from D and Q of order 2 with o([a]) = o([@’]) = 2. Now &
and ¢’ are identical and integer-valued from Example 2.8; however, v§(§) = va(x) = 1,
whereas v (&) = »a(y) = —1.

Using Lemma 2.6 other results concerning v, carry over to v, as in the next lemma.

LEMMA 2.10. Let @ be a 2-cocycle of G of finite order. Let ¢ € Proj(G, @) and let
u € Lin(G) with u" trivial for n € N. Then vii(€) € Z and vi,(u€) = v (&).

PROOF. Let H be the a-covering group of G and y € Irr(H|A) linearise &. Then
Vi (€) € Z from Lemma 2.6 and Theorem 1.1. Now let v € Lin(#) linearise u. Then vy
linearises & and v" is trivial, so v (ué) = v,(vy) = vy (x) = v§ (&) using [3, Lemma 4.8]
and Lemma 2.6. o

3. Frobenius—Schur indicator applications

Let a be a 2-cocycle of G of finite order and define

=), WO

£€Proj(G,a)
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From Lemma 2.10, 69 is an integral linear combination of a-characters of G and so
87 (x) = 0 if x is not a-regular. If, in addition, « is a class-function 2-cocycle, then 6%
is a class function. If o(a) = 1, then 6 = 6, as in Theorem 1.1.

By analogy with the definition in Theorem 1.1, define 8, : G — Zo by

0,(x) =1{g € G : pa(g,n) = 1 and g" = x}|
for n € N. This function is used in the generalisation of Theorem 1.1.

THEOREM 3.1. Let & be a 2-cocycle of G with o(a) = o([«]) of finite order m and let
n € N with n = 0 (mod m). Then

m—1 )

' _ +

0% = mgt - 6,.
i=1

PROOF. Let H be the a-covering group of G. Then, using Theorem 1.1 and Lemma 2.6,
On(r(x)) = ml{g € G : po(g,n) = 1 and g" = x}|

m—1
= DL G = D @@+ Y, Y @)
x€Elrr(H) yelrr(G) i=1 ¢£eProj(G,a))

m—1

= 0,00 + ) 67 ()
i=1

for all x € G. |

Continuing with the notation and hypotheses in Theorem 3.1, suppose g € G with
g" =xandlety € Cg(x). Then

fa0,0pa(g, mr(x) = rMr@re) ™)' = palygy™, myr(x).
Now if m is a prime number and x is not a-regular, then r(x) is conjugate to ar(x) for
all a € A. So if r(y)r(x)r(y)~! = ar(x), then the mapping g +— ygy~' defines a bijection
from {g€ G: py(g,n) =1 and g" =x} to {g € G: po(g,n) =a and g" = x}, which
explains why m#; (x) = 6,(x) in this scenario.
The next result is a special case of Theorem 3.1 that generalises Corollary 1.2.

COROLLARY 3.2. Let @ be a 2-cocycle of G with o(a) = o([a]) = 2. Let H be the
a-covering group of G and let H and G have exactly t and s involutions, respectively.
Then

t—s= > @,
£eProj(G,a)
PROOF. Using Corollary 1.2 and the proof of Theorem 3.1,
Z VI(©ED) = 02(r(1)) — 6(1) = 1 — 5. O
£€Proj(G,a)
The final aim is to generalise Theorem 1.3, which involves an analysis of the real
conjugacy classes of G.
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LEMMA 3.3. Let a be a class-function 2-cocycle of G with o(@) = o([a]) = 2. Let
H be the a-covering group of G with its associated central subgroup A = (—1) and
transversal {r(x) : x € G}. Let x € G be real. Then r(x) is nonreal if and only if x is
a-regular and a(x,x ') = —1.

PROOF. If x is a-regular, then r(x) is real if and only if a/(x,x!) = 1 from Lemma 2.5.
On the other hand, if x is not a-regular, then there exists y € Cg(x) such that
rNr(x " Hr(y)! = =r(x™1). Now if gxg~' = x7!, then either f,(g, x) or f,(yg,x) equals
a(x,x 7! and so r(x) is real from Lemma 2.5. O

Let P be an a-representation of G of dimension n. Then for all g,x € G,
P(2)P(x)P(x M)P(g)~" equals f,(g,x)fo(g, x Da(gxg™", gx~'g~ DI, but it also equals
a(x,x I,. Thus if @ is a class-function 2-cocycle of G and x is a-regular, then
a(x,x ") = a(gxg™!,gx'g™") for all g € G. In the context of Lemma 3.3 and using
this result, let ko, k* and kK~ denote the number of conjugacy classes C of G that are
respectively (a) real and not a-regular, (b) real and a-regular with a(x,x™!) = 1 for all
x € C, and (c) real and a-regular with a(x,x!) = —1 for all x € C.

THEOREM 3.4. Let a be a class-function 2-cocycle of G with o(a) = o([a]) = 2. Then
the number of real elements of Proj(G, «) is k* — k™.

PROOF. Let H be the @-covering group of G. The number of real conjugacy classes
of G and H is ko + k™ + k= and ko + 2k*, respectively, from Lemma 3.3 and previous
remarks. Thus from Theorem 1.3 the number of real elements of Proj(G, @) is the
second number minus the first. ]

If o/ is a 2-cocycle of G with o(a’) = o([@’]) = 2, then we may let H be the
a’-covering group of G. As explained after Lemma 2.6: (a) there exists a change of
transversal so that the resultant 2-cocycle @ of G is a class-function 2-cocycle with
o(a) =2 and «@ € [@']; (b) the numbers of real elements of Proj(G, @) and Proj(G, )
are equal, with this number given by Theorem 3.4.

EXAMPLE 3.5. Every element of the symmetric group Sy is real, M(S4) = C, and Sy
has two Schur representation groups up to isomorphism (see [0, Theorem 1]). One is
the binary octahedral group, and the three elements of Proj(S4, @) constructed from
this group, for a class-function 2-cocycle a with o(@) = o([a]) = 2, are all real (see
[6, page 70]), so k* = 3 and k= = 0. The other Schur representation group is GL(2, 3),
and only one element of Proj(Ss, a”) constructed from this group, for a class-function
2-cocycle @’ with o(@’) = 2 and @’ € [a], is real (see [2, Remark (ii), pages 27-28] or
[6, page 56]), so here k* =2 and k™ = 1.
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