FROBENIUS–SCHUR INDICATORS FOR PROJECTIVE CHARACTERS WITH APPLICATION[S](#page-0-0)

R. J. HIGG[S](https://orcid.org/0000-0002-0896-6788)

(Received 1 May 2024; accepted 17 May 2024)

Abstract

Let α be a complex valued 2-cocycle of finite order of a finite group *^G*. The *ⁿ*th Frobenius–Schur indicator of an irreducible α-character of *^G* is defined and its properties are investigated. The indicator is interpreted in general for $n = 2$ and it is shown that it can be used to determine whether an irreducible α -character is real-valued under the assumption that the order of α and its cohomology class are both 2. A formula, involving the real α-regular conjugacy classes of *^G*, is found to count the number of real-valued irreducible α-characters of *^G* under the additional assumption that these characters are class functions.

2020 *Mathematics subject classification*: primary 20C25.

Keywords and phrases: Frobenius–Schur indicators, real-valued projective characters, real α-regular conjugacy classes.

1. Introduction

Throughout this paper, *G* will denote a finite group. Also, all the representations considered will be taken to be over the field of complex numbers. The set of all ordinary irreducible characters of G is denoted as usual by $\text{Irr}(G)$, and $\text{Lin}(G)$ will denote the group of linear characters of *G*.

There are a number of results concerning Irr(*G*) and Frobenius–Schur indicators, three of which are reviewed here. For the first, see [\[3,](#page-7-0) pages 49–50].

THEOREM 1.1. *Define* θ_n : $G \to \mathbb{Z}_{\geq 0}$ *by* $\theta_n(x) = |\{g \in G : g^n = x\}|$ for $n \in \mathbb{N}$. Then

$$
\theta_n = \sum_{\chi \in \operatorname{Irr}(G)} v_n(\chi) \chi,
$$

where

$$
v_n(\chi) = \frac{1}{|G|} \sum_{x \in G} \chi(x^n)
$$

is the nth Frobenius–Schur indicator *of* χ *and* $v_n(\chi) \in \mathbb{Z}$.

The second result is a consequence of this theorem (see [\[3,](#page-7-0) Corollary 4.6]).

[©] The Author(s), 2024. Published by Cambridge University Press on behalf of Australian Mathematical Publishing Association Inc.

COROLLARY 1.2. *Let G have exactly t involutions. Then*

$$
1+t=\sum_{\chi\in{\rm Irr}(G)}\nu_2(\chi)\chi(1).
$$

An element of *G* is *real* if it is conjugate to its inverse and $\chi \in \text{Irr}(G)$ is *real* if $\chi(x) \in \mathbb{R}$ for all $x \in G$. For the third result connecting these two concepts, see [\[3,](#page-7-0) Problem 6.13].

THEOREM 1.3. *The number of real conjugacy classes of G is equal to the number of real* $\chi \in \text{Irr}(G)$.

The purpose of this paper is to find generalisations of these three results if irreducible projective characters of *G* are considered instead of ordinary ones. To generalise Theorem [1.1](#page-0-1) it will be necessary to define the *n*th Frobenius–Schur indicator of an irreducible projective character of *G*. A number of remarks and examples were made and given in [\[2,](#page-6-0) pages 27–28] to show that this and Theorem [1.3](#page-1-0) do not have a straightforward generalisation to the projective character situation, but our approach overcomes those difficulties.

In Section [2,](#page-1-1) basic facts about projective representations of G with 2-cocycle α will be stated. The *n*th Frobenius–Schur indicator of an irreducible projective character of *G* is then defined and interpreted for $n = 2$. Using this, the generalisations sought of the three results will be found in Section [3,](#page-4-0) although for the last two restricted to the case when both α and its cohomology class have order 2.

2. Frobenius–Schur indicators for projective characters

All of the standard facts and concepts relating to projective representations below may be found in [\[4,](#page-7-1) [5\]](#page-7-2), or (albeit to a lesser extent) [\[3,](#page-7-0) Ch. 11] or [\[1\]](#page-6-1).

DEFINITION 2.1. A 2*-cocycle* of *G* over $\mathbb C$ is a function $\alpha : G \times G \to \mathbb C^*$ such that $\alpha(1, 1) = 1$ and $\alpha(x, y)\alpha(xy, z) = \alpha(x, yz)\alpha(y, z)$ for all $x, y, z \in G$.

The set of all such 2-cocycles of *G* form a group $Z^2(G, \mathbb{C}^*)$ under multiplication. Let δ : $G \to \mathbb{C}^*$ be any function with $\delta(1) = 1$. Then $t(\delta)(x, y) = \delta(x)\delta(y)/\delta(xy)$ for all $x, y \in G$ is a 2-cocycle of *G*, which is called a *coboundary*. Two 2-cocycles α and β are *cohomologous* if there exists a coboundary $t(\delta)$ such that $\beta = t(\delta)\alpha$. This defines an equivalence relation on $Z^2(G, \mathbb{C}^*)$, and the *cohomology classes* [α] form a finite abelian group, called the *Schur multiplier M*(*G*).

DEFINITION 2.2. Let α be a 2-cocycle of *G*. Then $x \in G$ is α -regular if $\alpha(x, y) =$ $\alpha(y, x)$ for all $y \in C_G(x)$.

Let $\beta \in [\alpha]$. Then $x \in G$ is α -regular if and only if it is β -regular. If x is α -regular then so too are x^{-1} and any conjugate of *x*, so from the latter one may refer to the α-regular conjugacy classes of *^G*.

DEFINITION 2.3. Let α be a 2-cocycle of *G*. Then an α -representation of *G* of *dimension n* is a function $P: G \to GL(n, \mathbb{C})$ such that $P(x)P(y) = \alpha(x, y)P(xy)$ for all $x, y \in G$.

Observe that if *P* is an α -representation of *G*, then $P(g)P(x)P(g)^{-1} = f_{\alpha}(g, x)P(gxg^{-1})$

d $P(x)^m = n_{\alpha}(x, m)P(x^m)$ for all $g, x \in G$ and $m \in \mathbb{N}$, where and $P(x)^m = p_\alpha(x, m)P(x^m)$ for all $g, x \in G$ and $m \in \mathbb{N}$, where

$$
f_{\alpha}(g, x) = \frac{\alpha(g, xg^{-1})\alpha(x, g^{-1})}{\alpha(g, g^{-1})} \quad \text{and} \quad p_{\alpha}(x, m) = \prod_{i=1}^{m-1} \alpha(x, x^{i}) \quad \text{for } m > 1.
$$

An α-representation is also called a *projective* representation of *^G* with 2-cocycle α and its trace function is its α -*character*. Let $\text{Proj}(G, \alpha)$ denote the set of all irreducible α-characters of *^G*. The relationship between Proj(*G*, α) and α-representations is much the same as that between $\text{Irr}(G)$ and ordinary representations of *G* (see [\[4,](#page-7-1) page 184] for details). Next $x \in G$ is α -regular if and only if $\xi(x) \neq 0$ for some $\xi \in \text{Proj}(G, \alpha)$ and $\text{Proj}(G, \alpha)$ is the number of α -regular conjugacy classes of G $|Proj(G, \alpha)|$ is the number of α -regular conjugacy classes of *G*.

For $[\beta] \in M(G)$ there exists $\alpha \in [\beta]$ such that $o(\alpha) = o([\beta])$ and α is a *class-function* 2-cocycle, that is, the elements of Proj (G, α) are class functions. If α is a class-function 2-cocycle of *G*, then $x \in G$ is α -regular if and only if $f_{\alpha}(g, x) = 1$ for all $g \in G$.

The *n*th Frobenius–Schur indicator of $\xi \in Proj(G, \alpha)$ can now be defined and agrees with the normal definition if α is trivial.

DEFINITION 2.4. Let α be a 2-cocycle of *G* of finite order. Then the *n*th *Frobenius–Schur indicator* $v_n^{\alpha}(\xi)$ for $\xi \in \text{Proj}(G, \alpha)$ and $n \in \mathbb{N}$ is given by

$$
v_n^{\alpha}(\xi) = \begin{cases} \frac{1}{|G|} \sum_{x \in G} p_{\alpha}(x, n)\xi(x^n) & \text{if } n \equiv 0 \pmod{o(\alpha)}\\ 0 & \text{otherwise.} \end{cases}
$$

If α is a 2-cocycle of finite order of *G*, then this allows the construction of the α -covering group H of *G* (see [\[4,](#page-7-1) Ch. 4, Section [1\]](#page-0-2) or [\[1,](#page-6-1) page 191]). Let ω be a primitive $o(\alpha)$ th root of unity and let $A = \langle \omega \rangle$. The set of elements of *H* may be taken to be $\{ar(x): a \in A, x \in G\}$, and *H* is a group under the binary operation $ar(x)$ *br*(*y*) = $ab\alpha(x, y)r(xy)$ for all $a, b \in A$ and all $x, y \in G$. This is a central extension of *G*:

$$
1 \to A \to H \xrightarrow{\pi} G \to 1,
$$

with $\pi(r(x)) = x$ for all $x \in G$. It also has the following important property. Let *P* be an α^{i} -representation of *G* for $i \in \mathbb{Z}$. Then $R(ar(x)) = \lambda^{i}(a)P(x)$ for all $a \in A$ and all $x \in G$ is an ordinary representation of *H* where $\lambda \in I$ in(*A*) with $\lambda(\omega) = \omega$; moreover $x \in G$ is an ordinary representation of *H*, where $\lambda \in \text{Lin}(A)$ with $\lambda(\omega) = \omega$; moreover, *P* is irreducible if and only if *R* is. Here *R* is said to *linearise P* (or to be the *lift* of *P*). Let $\text{Irr}(H|\lambda^i) = \{\chi \in \text{Irr}(H) : \chi_A = \chi(1)\lambda^i\}$ for $i \in \mathbb{Z}$. Then the linearisation process outlined means that for each such *i* there exists a bijection from $\text{Irr}(H|\lambda^i)$ to process outlined means that for each such *i* there exists a bijection from $\text{Irr}(H|\lambda^i)$ to $\text{Proj}(G, \alpha^i)$ defined by $\chi \mapsto \xi$ where $\chi(\mathbf{r}(\mathbf{x})) = \xi(\mathbf{x})$ for all $\mathbf{x} \in G$ and it is convenient to Proj (G, α^i) defined by $\chi \mapsto \xi$, where $\chi(r(x)) = \xi(x)$ for all $x \in G$ and it is convenient to say that χ linearises ξ say that χ *linearises* ξ .

4 **R. J. Higgs** [4]

Now *x* is α -regular if and only if $\omega^i r(x)$ and $\omega^j r(x)$ are not conjugate for all *i* and *j* th $0 \le i \le i \le o(\alpha) - 1$. So for counting purposes there are exactly $o(\alpha)$ conjugacy with $0 \le i \le j \le o(\alpha) - 1$. So for counting purposes there are exactly $o(\alpha)$ conjugacy classes of *H* that map under π to the conjugacy class of an α -regular element of *G* and fewer than this for an element that is not α -regular. If $o(\alpha) = o(\alpha)$, then $A \leq H'$ and the mapping $\alpha^i \mapsto [\alpha^i] = [\alpha]^i$ for $i = 0, \dots, o(\alpha) - 1$ is a bijection.

LEMMA 2.5. Let α be a 2-cocycle of G of finite order and let H be the α -covering
group of G. If r(x) \in H is real, then so too is x. Conversely if $x \in G$ is real, then r(x) is *real if and only if there exists* $g \in G$ *<i>such that* $gxg^{-1} = x^{-1}$ *and* $f_\alpha(g, x) = \alpha(x, x^{-1})^{-1}$.

PROOF. If $r(x)$ is real with $r(g)r(x)r(g)^{-1} = r(x)^{-1}$, it follows that $f_\alpha(g, x)r(gxg^{-1}) =$
 $g(x, x^{-1})^{-1}r(x^{-1})$, so that in particular $g(x^{-1}) = x^{-1}$ and x is real. The converse is now $\alpha(x, x^{-1})^{-1}r(x^{-1})$, so that in particular $g x g^{-1} = x^{-1}$ and *x* is real. The converse is now obvious \Box obvious.

LEMMA 2.6. *Let* α *be a* ²*-cocycle of G of finite order and let H be the* α*-covering group of G*. *Let* $\xi \in \text{Proj}(G, \alpha^i)$ *for* $i \in \mathbb{Z}$ *and let* $\chi \in \text{Irr}(H|\lambda^i)$ *linearise* ξ *. Then* $v_n^{\alpha^i}(\xi) = v_n(\chi)$ *.*

PROOF. Using the notation introduced, $r(x)^n = p_\alpha(x, n)r(x^n)$ for $n \in \mathbb{N}$. So from Theorem [1.1,](#page-0-1)

$$
\begin{split} \nu_n(\chi) &= \frac{1}{|H|} \sum_{a \in A, x \in G} \chi(a^n p_\alpha(x, n) r(x^n)) \\ &= \frac{1}{|H|} \sum_{a \in A, x \in G} \lambda^i(a^n) p_{\alpha^i}(x, n) \xi(x^n) = \nu_n(\lambda^i) \nu_n^{\alpha^i}(\xi) = \nu_n^{\alpha^i}(\xi), \end{split}
$$

since $v_n(\lambda^i) = v_1(\lambda^{ni})$ from Theorem [1.1,](#page-0-1) so that $v_n(\lambda^i) = 1$ if $o(\lambda^{ni}) = 1$ and is 0 otherwise otherwise. \Box

Let α be a 2-cocycle of *G* of finite order and let *H* be the α -covering group of *G*. Consider another transversal of *A* in H , { $s(x)$: $x \in G$ } with $s(1) = 1$, where $s(x) = \delta(x)r(x)$ for $\delta(x) \in A$. This gives rise to a new 2-cocycle $\beta \in [\alpha]$ with $\beta = t(\delta)\alpha$ and for which $o(\beta)$ divides $o(\alpha)$. Let $\chi \in \text{Irr}(H|\lambda^i)$. Then χ linearises $\xi \in \text{Proj}(G, \alpha^i)$
and $\xi' \in \text{Proj}(G, \beta^i)$, where $\xi'(x) = \lambda^i(\delta(x))\xi(x)$ for all $x \in G$. Now $g(x)^n = r(x)^n$ and $\xi' \in \text{Proj}(G, \beta^i)$, where $\xi'(x) = \lambda^i(\delta(x))\xi(x)$ for all $x \in G$. Now $s(x)^n = r(x)^n$
for $n = 0$ (mod, $s(x)$) and so from the most of I summa $\partial_t s(x)^{n-1} \xi'(x)$, $s^{n-1} \xi'(x)$ for $n \equiv 0 \pmod{o(\alpha)}$ and so, from the proof of Lemma [2.6,](#page-3-0) $v_n^{\alpha^i}(\xi) = v_n^{\beta^i}(\xi')$ for $n = 0 \pmod{o(\alpha)}$. If $o(\alpha) = o(\alpha)$ then $o(\beta) = o(\alpha)$ and *H* is also the *B*-covering *n* ≡ 0 (mod *o*(α)). If *o*(α) = *o*([α]), then *o*(β) = *o*(α) and *H* is also the β -covering group of *G* group of *G*.

Using this notation, $\{s(x) : x \in G\}$ can be chosen to be *conjugacy-preserving*, that is, $s(x)$ and $s(y)$ are conjugate in *H* whenever *x* and *y* are conjugate in *G* (see [\[5,](#page-7-2) Lemma 4.1.1] or [\[1,](#page-6-1) Proposition 1.1]) and this choice makes β a class-function 2-cocycle.

The next result is an immediate corollary of Lemma [2.6](#page-3-0) from [\[3,](#page-7-0) page 58].

COROLLARY 2.7. Let α be a 2-cocycle of G with $o(\alpha) = o([\alpha]) = 2$. Let $\xi \in \text{Proj}(G, \alpha)$. *Then* $v_2^{\alpha}(\xi) = 0$ *or* ± 1 *. Moreover,* $v_2^{\alpha}(\xi) = 0$ *if and only if* ξ *is nonreal,* $v_2^{\alpha}(\xi) = 1$ *if and* only *if* ξ *is afforded* by a real α -representation, and $v^{\alpha}(\xi) = -1$ *if and only if only if* ξ *is afforded by a real* α -representation, and $v_2^{\alpha}(\xi) = -1$ *if and only if* ξ *is real*
but is not afforded by any real α -representation of G *but is not afforded by any real* α*-representation of G*.

Lemma [2.6](#page-3-0) also explains why the second Frobenius–Schur indicator is defined to be 0 when $o(\alpha) > 2$, but another rationale follows. If $\alpha(x, y) \notin \mathbb{R}$ and P is an α -representation of *G*, then at least one of the three matrices $P(x)$, $P(y)$ and $P(xy)$ must contain a nonreal entry.

EXAMPLE 2.8. Consider the elementary abelian group $G = C_p \times C_p$ for p a prime number, which has $M(G) \cong C_p$ (see [\[4,](#page-7-1) Proposition 10.7.1]). Let α be any 2-cocycle of *G* with $o([α]) = p$. Then the only *α*-regular element of *G* is the identity element and consequently the only element $\xi \in \text{Proj}(G, \alpha)$ has $\xi(1) = p$ and $\xi(x) = 0$ for $x \ne 1$
(see 15. Theorem 8.2.211). So ξ is integer-valued, but is not afforded by any real (see [\[5,](#page-7-2) Theorem 8.2.21]). So ξ is integer-valued, but is not afforded by any real α -representation for $p \geq 3$ from the remark preceding this example. If $o(\alpha) \geq 3$ and is finite, let *H* be the *α*-covering group of *G* and let $\chi \in \text{Irr}(H|\lambda)$ linearise ξ . Then χ is nonreal since λ is nonreal.

It can be concluded from Example [2.8](#page-4-1) that the results of Corollary [2.7](#page-3-1) do not hold in general for any group *G* with a 2-cocycle of finite order greater than 2 and in this case $v_2^{\alpha}(\xi) = 0$ for all $\xi \in \text{Proj}(G, \alpha)$ can only be interpreted as meaning that each ξ is
not afforded by any real α -representation of G not afforded by any real α-representation of *^G*.

It should be noted that in general the value of $v_n^{\alpha}(\xi)$ for $n \equiv 0 \pmod{o(\alpha)}$ depends
on the choice of α even if $o(\alpha) = o(\lceil \alpha \rceil) = 2$ as the next example illustrates upon the choice of α , even if $o(\alpha) = o(\alpha) = 2$, as the next example illustrates.

EXAMPLE 2.9. Let $G = C_2 \times C_2$. It is well known that *G* has two *Schur representation groups* (also known as *covering groups*) up to isomorphism, namely *D* and *Q*, the dihedral and quaternion groups of order 8, respectively. The character tables of these two groups are identical, and the irreducible characters χ and χ' of degree 2 of each linearise $\xi \in \text{Proj}(G, \alpha)$ and $\xi' \in \text{Proj}(G, \alpha')$ respectively, where α and α' are the 2-cocycles of G constructed from D and O of order 2 with $o([\alpha]) = o([\alpha']) = 2$. Now ξ 2-cocycles of *G* constructed from *D* and *Q* of order 2 with $o([\alpha]) = o([\alpha']) = 2$. Now ξ
and ξ' are identical and integer-valued from Example 2.8: however, $v^{\alpha}(\xi) = v_{\alpha}(\xi) = 1$ and ξ' are identical and integer-valued from Example [2.8;](#page-4-1) however, $v_2^{\alpha}(\xi) = v_2(\chi) = 1$,
whereas $v_2^{\alpha'}(\xi') = v_2(\chi') = -1$ whereas $v_2^{\alpha'}(\xi') = v_2(\chi') = -1$.

Using Lemma [2.6](#page-3-0) other results concerning v_n carry over to v_n^{α} , as in the next lemma.

LEMMA 2.10. Let α be a 2-cocycle of G of finite order. Let $\xi \in \text{Proj}(G, \alpha)$ and let $\mu \in \text{Lin}(G)$ *with* μ^n *trivial for* $n \in \mathbb{N}$. *Then* $v_n^{\alpha}(\xi) \in \mathbb{Z}$ *and* $v_n^{\alpha}(\mu\xi) = v_n^{\alpha}(\xi)$.

PROOF. Let *H* be the *α*-covering group of *G* and $\chi \in \text{Irr}(H|\lambda)$ linearise ξ . Then $v_n^{\alpha}(ξ) ∈ \mathbb{Z}$ from Lemma [2.6](#page-3-0) and Theorem [1.1.](#page-0-1) Now let $ν ∈ Lin(H)$ linearise μ. Then $ν_λ$
linearises με and v^n is trivial so $v^{\alpha}(μξ) = ν$ (ν) = ν (ν) = ν^α(ε) using [3 I emma 4 8] linearises $\mu \xi$ and v^n is trivial, so $v_n^{\alpha}(\mu \xi) = v_n(v\chi) = v_n(\chi) = v_n^{\alpha}(\xi)$ using [\[3,](#page-7-0) Lemma 4.8] and Lemma [2.6.](#page-3-0) \Box

3. Frobenius–Schur indicator applications

Let α be a 2-cocycle of G of finite order and define

$$
\theta_n^{\alpha} = \sum_{\xi \in \text{Proj}(G, \alpha)} v_n^{\alpha}(\xi) \xi.
$$

\blacksquare R. J. Higgs [6]

From Lemma [2.10,](#page-4-2) θ_n^{α} is an integral linear combination of α -characters of *G* and so $\theta^{\alpha}(x) = 0$ if x is not α -regular. If in addition α is a class-function 2-cocycle, then θ^{α} $\frac{\nu_n}{\text{is}}$ $\alpha_n^{\alpha}(x) = 0$ if *x* is not α -regular. If, in addition, α is a class-function 2-cocycle, then θ_n^{α} as a class function If $o(\alpha) = 1$ then $\theta_n^{\alpha} = \theta_n$ as in Theorem 11 is a class function. If $o(\alpha) = 1$, then $\theta_n^{\alpha} = \theta_n$ as in Theorem [1.1.](#page-0-1)
By analogy with the definition in Theorem 1.1, define θ^+ · 0

By analogy with the definition in Theorem [1.1,](#page-0-1) define $\theta_n^+ : G \to \mathbb{Z}_{\geq 0}$ by

$$
\theta_n^+(x) = |\{g \in G : p_\alpha(g, n) = 1 \text{ and } g^n = x\}|
$$

for $n \in \mathbb{N}$. This function is used in the generalisation of Theorem [1.1.](#page-0-1)

THEOREM 3.1. Let α be a 2-cocycle of G with $o(\alpha) = o(\lceil \alpha \rceil)$ of finite order m and let $n \in \mathbb{N}$ *with* $n \equiv 0 \pmod{m}$. *Then*

$$
\sum_{i=1}^{m-1} \theta_n^{\alpha^i} = m\theta_n^+ - \theta_n.
$$

PROOF. Let *^H* be the α-covering group of *^G*. Then, using Theorem [1.1](#page-0-1) and Lemma [2.6,](#page-3-0)

$$
\theta_n(r(x)) = m | \{ g \in G : p_{\alpha}(g, n) = 1 \text{ and } g^n = x \} |
$$

=
$$
\sum_{\chi \in \text{Irr}(H)} v_n(\chi) \chi(r(x)) = \sum_{\psi \in \text{Irr}(G)} v_n(\psi) \psi(x) + \sum_{i=1}^{m-1} \sum_{\xi \in \text{Proj}(G, \alpha^i)} v_n^{\alpha^i}(\xi) \xi(x)
$$

=
$$
\theta_n(x) + \sum_{i=1}^{m-1} \theta_n^{\alpha^i}(x)
$$

for all $x \in G$.

Continuing with the notation and hypotheses in Theorem [3.1,](#page-5-0) suppose $g \in G$ with $g^n = x$ and let $y \in C_G(x)$. Then

$$
f_{\alpha}(y, x)p_{\alpha}(g, n)r(x) = (r(y)r(g)r(y)^{-1})^n = p_{\alpha}(ygy^{-1}, n)r(x).
$$

Now if *m* is a prime number and *x* is not α -regular, then $r(x)$ is conjugate to $ar(x)$ for all $a \in A$. So if $r(y)r(x)r(y)^{-1} = ar(x)$, then the mapping $g \mapsto ygy^{-1}$ defines a bijection from ${g \in G : p_{\alpha}(g, n) = 1 \text{ and } g^{n} = x}$ to ${g \in G : p_{\alpha}(g, n) = a \text{ and } g^{n} = x}$, which explains why $m\theta_n^+(x) = \theta_n(x)$ in this scenario.
The next result is a special case of Theore

The next result is a special case of Theorem [3.1](#page-5-0) that generalises Corollary [1.2.](#page-1-2)

COROLLARY 3.2. Let α be a 2-cocycle of G with $o(\alpha) = o({\alpha}) = 2$. Let H be the α*-covering group of G and let H and G have exactly t and s involutions, respectively. Then*

$$
t - s = \sum_{\xi \in \text{Proj}(G, \alpha)} v_2^{\alpha}(\xi) \xi(1).
$$

PROOF. Using Corollary [1.2](#page-1-2) and the proof of Theorem [3.1,](#page-5-0)

$$
\sum_{\xi \in \text{Proj}(G,a)} \nu_2^{\alpha}(\xi) \xi(1) = \theta_2(r(1)) - \theta_2(1) = t - s.
$$

The final aim is to generalise Theorem [1.3,](#page-1-0) which involves an analysis of the real conjugacy classes of *G*.

LEMMA 3.3. Let α be a class-function 2-cocycle of G with $o(\alpha) = o(\lceil \alpha \rceil) = 2$. Let *H* be the α -covering group of G with its associated central subgroup $A = \langle -1 \rangle$ and *transversal* $\{r(x): x \in G\}$. Let $x \in G$ be real. Then $r(x)$ is nonreal if and only if x is α -regular and $\alpha(x, x^{-1}) = -1$.

PROOF. If *x* is α -regular, then $r(x)$ is real if and only if $\alpha(x, x^{-1}) = 1$ from Lemma [2.5.](#page-3-2) On the other hand, if *x* is not α -regular, then there exists $y \in C_G(x)$ such that $r(y)r(x^{-1})r(y)^{-1} = -r(x^{-1})$. Now if $g x g^{-1} = x^{-1}$, then either $f_\alpha(g, x)$ or $f_\alpha(yg, x)$ equals $g(x, x^{-1})^{-1}$ and so $r(x)$ is real from Lemma 2.5 $\alpha(x, x^{-1})^{-1}$ and so $r(x)$ is real from Lemma [2.5.](#page-3-2)

Let *P* be an α -representation of *G* of dimension *n*. Then for all $g, x \in G$, $P(g)P(x)P(x^{-1})P(g)^{-1}$ equals $f_{\alpha}(g, x)f_{\alpha}(g, x^{-1})\alpha(gxg^{-1}, gx^{-1}g^{-1})I_n$, but it also equals $\alpha(x, x^{-1})I$. Thus if α is a class-function 2-cocycle of G and x is α -regular, then $\alpha(x, x^{-1})I_n$. Thus if α is a class-function 2-cocycle of *G* and *x* is α -regular, then $\alpha(x, x^{-1}) = \alpha(gxg^{-1}, gx^{-1}g^{-1})$ for all $g \in G$. In the context of Lemma [3.3](#page-6-2) and using this result, let k_0, k^+ and k^- denote the number of conjugacy classes C of G that are respectively (a) real and not α -regular, (b) real and α -regular with $\alpha(x, x^{-1}) = 1$ for all $x \in C$, and (c) real and α -regular with $\alpha(x, x^{-1}) = -1$ for all $x \in C$.

THEOREM 3.4. *Let* α *be a class-function* 2*-cocycle of G with* $o(\alpha) = o([\alpha]) = 2$. *Then the number of real elements of* $\text{Proj}(G, \alpha)$ *is* $k^+ - k^-$.

PROOF. Let *H* be the α -covering group of *G*. The number of real conjugacy classes of *G* and *H* is $k_0 + k^+ + k^-$ and $k_0 + 2k^+$, respectively, from Lemma [3.3](#page-6-2) and previous remarks. Thus from Theorem [1.3](#page-1-0) the number of real elements of Proj (G, α) is the second number minus the first. second number minus the first.

If α' is a 2-cocycle of *G* with $o(\alpha') = o({\alpha' }) = 2$, then we may let *H* be the covering group of *G*. As explained after Lemma 2.6: (a) there exists a change of α' -covering group of *G*. As explained after Lemma [2.6:](#page-3-0) (a) there exists a change of transversal so that the resultant 2-cocycle α of *G* is a class-function 2-cocycle with transversal so that the resultant 2-cocycle α of *G* is a class-function 2-cocycle with $o(\alpha) = 2$ and $\alpha \in [\alpha']$; (b) the numbers of real elements of Proj(*G*, α) and Proj(*G*, α') are equal with this number given by Theorem 3.4. are equal, with this number given by Theorem [3.4.](#page-6-3)

EXAMPLE 3.5. Every element of the symmetric group S_4 is real, $M(S_4) \cong C_2$ and S_4 has two Schur representation groups up to isomorphism (see [\[6,](#page-7-3) Theorem 1]). One is the binary octahedral group, and the three elements of $\text{Proj}(S_4, \alpha)$ constructed from this group, for a class-function 2-cocycle α with $o(\alpha) = o({\alpha}) = 2$, are all real (see [\[6,](#page-7-3) page 70]), so *k*⁺ = 3 and *k*[−] = 0. The other Schur representation group is GL(2, 3), and only one element of Proj(S_4 , α') constructed from this group, for a class-function
2-cocycle α' with $\alpha(\alpha') = 2$ and $\alpha' \in [\alpha]$ is real (see [2] Remark (ii) pages 27–281 or 2-cocycle α' with $o(\alpha') = 2$ and $\alpha' \in [\alpha]$, is real (see [\[2,](#page-6-0) Remark (ii), pages 27–28] or
[6, page 56]), so here $k^+ = 2$ and $k^- = 1$ [\[6,](#page-7-3) page 56]), so here *k*⁺ = 2 and *k*[−] = 1.

References

- [1] R. J. Haggarty and J. F. Humphreys, 'Projective characters of finite groups', *Proc. Lond. Math. Soc. (3)* 36(1) (1978), 176–192.
- [2] J. F. Humphreys, 'Rational valued and real valued projective characters of finite groups', *Glasg. Math. J.* 21(1) (1980), 23–28.

8 **R. J. Higgs** [8]

- [3] I. M. Isaacs, *Character Theory of Finite Groups*, Pure and Applied Mathematics, 69 (Academic Press, New York, 1976).
- [4] G. Karpilovsky, *Group Representations. Volume 2*, North-Holland Mathematics Studies, 177 (North-Holland Publishing Co., Amsterdam, 1993).
- [5] G. Karpilovsky, *Group Representations. Volume 3*, North-Holland Mathematics Studies, 180 (North-Holland Publishing Co., Amsterdam, 1994).
- [6] A. O. Morris, 'The spin representation of the symmetric group', *Proc. Lond. Math. Soc. (3)* 12 (1962), 55–76.

R. J. HIGGS, School of Mathematics and Statistics, University College Dublin, Belfield, Dublin 4, Ireland e-mail: russell.higgs@ucd.ie