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Abstract

We provide two methods to characterise the connectedness of all d-dimensional gener-
alised Sierpiński sponges whose corresponding iterated function systems (IFSs) are allowed
to have rotational and reflectional components. Our approach is to reduce it to an inter-
section problem between the coordinates of graph-directed attractors. More precisely, let
(K1, . . . , Kn) be a Cantor-type graph-directed attractor in R

d. By creating an auxiliary
graph, we provide an effective criterion for whether Ki ∩ Kj is empty for every pair of
1 ≤ i, j ≤ n. Moreover, the emptiness can be checked by examining only a finite number of
geometric approximations of the attractor. The approach is also applicable to more general
graph-directed systems.
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1. Introduction

Connectedness is a fundamental aspect of the topology of fractal sets. However, to tell
whether a given fractal is connected or not is usually a nontrivial question. Existing results
focus on special classes of self-similar or self-affine sets, see [4, 6, 22–24]. In a classical
paper [14], Hata elegantly transformed the connectedness problem of attractors of IFSs into
a connectedness problem of graphs.

THEOREM 1·1 (Hata [14]). Let�= {ϕi}n
i=1 be an IFS on R

d and let K be its attractor. Then
K is connected if and only if the associated Hata graph is connected, where the Hata graph
is defined as follows:

(i) the vertex set is the index set {1, . . . , n};
(ii) there is an edge joining distinct 1 ≤ i, j ≤ n if and only if ϕi(K) ∩ ϕj(K) �=∅.

As simple as it seems, the examination of whether ϕi(K) ∩ ϕj(K) �=∅ is a hard task in
many circumstances, even when K is self-similar. Since all the ingredients in hand are the
IFSs, we usually have to choose a suitable compact invariant set (with respect to the IFS),
iterate it several times, and hope to obtain useful information on the connectedness of the
limit set. In this paper, we shall focus on “sponge-like” self-similar sets defined as follows.
Denote Od to be the group of symmetries of the d-cube [0, 1]d. That is to say, Od consists of
all isometries that map [0, 1]d onto itself, including both orientation preserving and orienta-
tion reversing ones. Let N ≥ 2 be an integer and let I⊂ {0, 1, . . . , N − 1}d be a non-empty
set with 1< |I|<Nd, where |I| denotes the cardinality of I. Suppose for each i ∈I there
corresponds a contracting map

ϕi(x) = 1

N
(Oi(x) + i), x ∈R

d,

where Oi ∈Od. A classical result of Hutchinson [15] states that there is a unique non-empty
compact set F = F(d, N,I) such that F = ⋃

i∈I ϕi(F). When Oi = id for all i ∈I, the attrac-
tor F is usually called a Sierpiński sponge when d ≥ 3 and a generalised Sierpiński carpet or
a fractal square when d = 2. For convenience, we shall name the attractor F (in our setting) a
sponge-like set throughout this paper. These sets can be obtained by the following geometric
iteration process: Writing F0 := [0, 1]d and recursively defining

Fk :=
⋃
i∈I
ϕi(Fk−1), k ≥ 1, (1)

then F = ⋂∞
k=0 Fk. Note that Fk is a finite union of closed cubes of side length N−k.

Example 1·2. Let d = 2, N = 2 and let I= {(0, 0), (1, 0), (0, 1)}. In Figure 1, we show
attractors associated with the following three IFSs from left to right:

(1) Oi ≡ id for i ∈I;

(2) O(0,0) = id, while O(0,1), O(1,0) are rotations of 90◦ and 270◦ (clockwise), respectively;

(3) O(0,1) is the rotation of 90◦ (counterclockwise), while O(0,0), O(1,0) are flips along the
lines x = 1/2 and y = 1/2, respectively.

Interested readers can find an illustration of all possible attractors in the case when d = 2,
N = 2 and |I| = 3 in the book [20, section 5·3].

https://doi.org/10.1017/S0305004125000015 Published online by Cambridge University Press

https://doi.org/10.1017/S0305004125000015
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Fig. 1. Three sponge-like sets in R
2.

Over the last decade, sponge-like sets have been studied intensively, especially in cases
where all of the contracting maps in the IFS are orientation preserving. Unfortunately, even
for this specific class of self-similar sets, many basic topological properties are still far from
clear to us. Criteria for generalised Sierpiński carpets that are totally disconnected or have
only finitely many connected components are given in [16, 29], respectively. Partial results
on the quasisymmetric and Lipschitz classification of Sierpiński sponges can be found in
[2, 3, 21, 28] and references therein. In a recent paper [4] joint with Dai, Luo and Wang, the
authors provided characterisations of connected Sierpiński carpets with local cut points.

For general cases allowing rotations and reflections, the topology becomes involved and
there are few existing studies. For example, it is simple to observe that there are |Od||I|
different IFSs provided I is fixed, but the enumeration of distinct attractors is difficult since
many of them coincide. This problem was solved in [10] by Falconer and O’Conner using
group theory. In the case when d = 2, Fraser [12] investigated the self-affine generalisation
of our sponge-like sets and calculated their packing and box dimensions under some open
set type conditions.

In this paper, we are able to determine the connectedness of any given sponge-like set F.
By Hata’s criterion, it suffices to check whether ϕi(F) ∩ ϕj(F) =∅ for all i, j ∈I. Note that
ϕi(F) (resp. ϕj(F)) is just a scaled copy of Oi(F) (resp. Oj(F)). Our key idea is to regard
(O(F))O∈O(d) as the attractor of some special graph-directed system (see Lemma 4·1) and to
determine whether its coordinates intersect with each other. Let us pause here to give a brief
introduction to graph-directed sets and related work.

Graph-directed sets can be regarded as a generalisation of self-similar sets, and the stan-
dard process of generating them is as follows. Let G = G(V, E) be a directed graph where
V= {1, 2, . . . , n} is the vertex set and E is the edge set. Assume further that for each vertex
inV, there is at least one edge starting from it. A graph-directed IFS in R

d is a finite family
�= {ϕe : e ∈ E} consisting of contracting similarities from R

d to R
d indexed by edges in E.

It is well known (see [9] or [17]) that there is a unique n-tuple of non-empty compact sets
(K1, . . . , Kn) such that

Ki =
n⋃

j=1

⋃
e∈Ei,j

ϕe(Kj),

where Ei,j denotes the collection of edges in E from i to j. Such a tuple is usually called
the graph-directed attractor associated with the graph-directed system (G,�), and the
corresponding graph-directed set often refers to the union

⋃n
i=1 Ki.
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In [17], Mauldin and Williams calculated the Hausdorff dimension of graph-directed sets
under an open set type condition. It is also shown that the corresponding Hausdorff measure
of the set is positive and σ -finite. Later, Das and Ngai [5] developed algorithms to com-
pute the dimension under some weak separation condition (called the finite type condition).
Xiong and Xi [27] studied the Lipschitz classification of dust-like graph-directed sets. For
further work, see [7, 8, 11, 18, 19, 25, 26] and references therein.

We may always assume safely that for each Ei,j, ϕe �= ϕe′ whenever e, e′ ∈ Ei,j are distinct.
We also remark that for every vertex v of every graph that appears in this paper, one is able
to travel from v directly to itself if and only if there is a loop at v.

Let (K1, . . . , Kn) be a graph-directed attractor. Our task is to determine whether Ki

intersects Kj for all 1 ≤ i, j ≤ n. In this paper, we solve this intersection problem for a
special class of graph-directed sets, which is enough to settle the connectedness of the
aforementioned sponge-like sets. Although our approach remains valid in a more general
setting (see Section 4 for details), the treatment of the following class, namely Cantor-type
graph-directed attractors, would be adequate to demonstrate the idea.

Definition 1·3. Let (K1, . . . , Kn) be a graph-directed attractor in R
d associated with

G = G(V, E) and �= {ϕe : e ∈ E}. We say that the attractor (K1, . . . , Kn) or the IFS �

is of Cantor-type if for each e ∈ E, ϕe is a contracting similarity on R
d of the form

ϕe(x) = N−1(x + te), where N ≥ 2 is an integer and te ∈ {0, 1, . . . , N − 1}d.

Let (K1, . . . , Kn) be a Cantor-type graph-directed attractor in R
d. The following geometric

iteration process to obtain the attractor is standard, and we present here a sketch of proof just
for completeness.

LEMMA 1·4. Let Qi,0 := [0, 1]d for 1 ≤ i ≤ n and recursively define

Qi,k :=
n⋃

j=1

⋃
e∈Ei,j

ϕe(Qj,k−1), k ≥ 1, 1 ≤ i ≤ n.

Then for each i, {Qi,k}∞k=1 forms a decreasing sequence of compact sets and Ki = ⋂∞
k=1 Qi,k.

We name Qi,k the level-k approximation of Ki.

Proof. It is easy to see that

ϕe(Qi,0) = ϕe([0, 1]d) ⊂ [0, 1]d = Qi,0, ∀e ∈ E, 1 ≤ i ≤ n,

from which one can show by induction that {Qi,k}∞k=1 is decreasing. Note that Qi,k is a finite
union of closed cubes and hence is compact. Finally, it follows from

∞⋂
k=1

Qi,k =
∞⋂

k=1

( n⋃
j=1

⋃
e∈Ei,j

ϕe(Qj,k−1)
)

=
n⋃

j=1

⋃
e∈Ei,j

ϕe

( ∞⋂
k=1

Qj,k−1

)
and the uniqueness of the graph-directed attractor that Ki = ⋂∞

k=1 Qi,k. Note that the last
equality above follows from the monotonicity of {Qi,k}k.

For convenience and clarity, we will write Vn := {1, . . . , n} throughout this paper. The
desired solution to the aforementioned problem is achieved utilising a readily created graph
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called the intersection graph. This graph has a vertex set consisting of pairs (i, j) which are
joined (by edges or dashed edges) roughly according to whether the images of the unit cube
have common faces, see Definition 2·10.

Our criterion is:

THEOREM 1·5. Let (K1, . . . , Kn) be a Cantor-type graph-directed attractor in R
d. For every

pair of distinct i, j ∈Vn, Ki ∩ Kj �=∅ if and only if there exists, in the associated intersection
graph, either a terminated finite walk or an infinite solid walk that starts from (i, j).

We remark that throughout this paper, a walk always allows repeated vertices and edges.
It is also worthwhile considering the intersection problem from a different perspective: Is
there a constant C such that for every pair of i �= j, Ki ∩ Kj �=∅ whenever Qi,C ∩ Qj,C �=∅?
The answer is actually affirmative. Write

c(n, d) := (d − 1)n2 + n2 + n

2
+ d − 1, d ≥ 1. (2)

By analysing walks in the associated intersection graph, we have the following result.

THEOREM 1·6. Let (K1, . . . , Kn) be a Cantor-type graph-directed attractor in R
d. Assume

that i, j ∈Vn are distinct. Then Ki ∩ Kj �=∅ if and only if Qi,c(n,d) ∩ Qj,c(n,d) �=∅.

With the aid of Theorem 1·5, we can draw the Hata graph associated with any given
sponge-like set and thus determine whether it is connected; see Section 3 for details. As
a corollary of Theorem 1·6, we also show that it suffices to check only a finite number
(independent of N) of its geometric approximations.

THEOREM 1·7. Let F = F(d, N,I) be a sponge-like set in R
d. Then F is connected if and

only if FC(d) is connected, where C(d) := c(d!2d + 2, d) and c(·, ·) is as in (2).

The paper is organised as follows. In Section 2, we construct the intersection graph and
prove Theorem 1·5. In Section 3, we prove Theorem 1·6 and discuss the sharpness of the
constant c(n,d). In Section 4, we present the method of plotting Hata graphs associated with
sponge-like sets and prove Theorem 1·7. Section 3·2 is devoted to discussions on possible
improvements of the constant C(d) in Theorem 1·7 under suitable conditions. Finally, we
discuss general settings under which our approach remains applicable in the last section.

2. The intersection problem I: Creating auxiliary graphs

Throughout this section, (K1, . . . , Kn) is presumed to be a fixed graph-directed attractor
in R

d which is of Cantor-type, and the notations G = G(Vn, E), Ei,j, ϕe, te, Qi,k, etc. are as
in Section 1. Here is a concrete example.

Example 2·1. Let G be the directed graph as in Figure 2. Set d = 1, N = 4 and

ϕe1 (x) = ϕe3 (x) = x

4
, ϕe2 (x) = x

4
+ 1

4
, ϕe4 (x) = x

4
+ 3

4
.

So te1 = te3 = 0, te2 = 1 and te4 = 3. Clearly, {ϕei :1 ≤ i ≤ 4} is of Cantor-type.
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Fig. 2. Directed graph in Example 2·1.

For k ≥ 1 and i ∈Vn, denote Ek
i to be the collection of walks in the directed graph G

which starts from i and has length k. For e = (e1, . . . , ek) ∈ Ek
i , denote by ter(e) the terminal

vertex of e and write ϕe := ϕe1 ◦ · · · ◦ ϕek .

LEMMA 2·2. Let k ≥ 1 and let i ∈Vn. Then for each t ≥ 0,

Qi,k+t =
⋃

e∈Ek
i

ϕe(Qter(e),t).

As a result, Ki = ⋃
e∈Ek

i
ϕe(Kter(e)).

Proof. The proof is straightforward: Just note that

Qi,k+t =
n⋃

j1=1

⋃
e1∈Ei,j1

ϕe1 (Qj1,k+t−1)

=
n⋃

j1=1

⋃
e1∈Ei,j1

ϕe1

( n⋃
j2=1

⋃
e2∈Ej1,j2

ϕe2 (Qj2,k+t−2)
)

= · · · =
⋃

e∈Ek
i

ϕe(Qter(e),t).

Since {Qj,k}k is decreasing for all j,

Ki =
∞⋂

t=0

Qi,k+t =
∞⋂

t=0

⋃
e∈Ek

i

ϕe(Qter(e),t) =
⋃

e∈Ek
i

ϕe

( ∞⋂
t=0

Qter(e),t

)
=

⋃
e∈Ek

i

ϕe(Kter(e)).

In particular, Qi,k = ⋃
e∈Ek

i
ϕe([0, 1]d). For narrative convenience, we shall call any cube in⋃n

i=1{ϕe([0, 1]d) : e ∈ Ek
i } a level-k cube. Note that every Qi,k is the union of a finite number

of level-k cubes.
Recall that for any given polytope P ⊂R

d, a face of P is any non-empty set of the form
P ∩ {x ∈R

d : a · x = b}, where a ∈R
d, b ∈R and the inequality a · x ≤ b is valid for all x ∈ P

(see [30]). Moreover, the dimension of a face is just the dimension of its affine hull. For
example, faces of the unit cube [0, 1]d of dimensions 0 and 1 are vertices and edges of
[0, 1]d, respectively. Since the graph-directed attractor is of Cantor-type, it is not hard to see
that every level-k cube can be written as[ p1

Nk
,

p1 + 1

Nk

]
×

[ p2

Nk
,

p2 + 1

Nk

]
× · · · ×

[ pd

Nk
,

pd + 1

Nk

]
for some integers 0 ≤ p1, . . . , pd ≤ Nk − 1. Consequently, the intersection of any pair of
level-k cubes is just the largest common face they share.
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2.1. Examination of faces of the unit cube

As above, if two level-k cubes intersect then they have a common face. So a preliminary
question to the intersection problem is: Given any face P of [0, 1]d with 0 ≤ dim P ≤ d − 1,
which of K1, . . . , Kn intersects it? The following lemma and its corollaries help to determine
which parts of Ki touch P.

LEMMA 2·3. Let P be a face of [0, 1]d with 0 ≤ dim P ≤ d and let ϕ(x) = N−1(x + t) where
t = (t1, . . . , td) ∈ {0, 1, . . . , N − 1}d. We have for all E ⊂ [0, 1]d that P ∩ ϕ(E) ⊂ ϕ(P ∩ E).
Furthermore, if P ∩ ϕ(E) is non-empty then it equals ϕ(P ∩ E).

Proof. If dim P = d then P is the unit cube itself and there is nothing to prove. So it
suffices to consider cases when dim P ≤ d − 1. Letting s := d − dim P, we can find a 0-1
vector α = (a1, . . . , as) and a sequence 1 ≤ m1 <m2 < · · ·<ms ≤ d such that

P = {(x1, . . . , xd) ∈ [0, 1]d : xmk = ak, 1 ≤ k ≤ s}. (3)

If P ∩ ϕ(E) =∅ then the inclusion clearly holds, so we may assume that P ∩ ϕ(E) �=∅.
Choosing any y ∈ P ∩ ϕ(E), there is some (x1, . . . , xd) ∈ E such that y = ϕ(x1, . . . , xd) =
N−1(x1 + t1, . . . , xd + td). Since y ∈ P, N−1(xmk + tmk ) = ak for 1 ≤ k ≤ s. If ak = 0 then
xmk + tmk = 0. So xmk = tmk = 0 = ak. If ak = 1 then xmk + tmk = N. Since tmk ≤ N − 1,
we have xmk = 1 = ak and tmk = N − 1. We conclude that xmk = ak for 1 ≤ k ≤ s so
(x1, . . . , xd) ∈ P. Thus y = ϕ(x1, . . . , xd) ∈ ϕ(P ∩ E). Since y is arbitrarily chosen, P ∩
ϕ(E) ⊂ ϕ(P ∩ E).

On the other hand, let z = (z1, . . . , zd) ∈ P ∩ E. It follows from the definition of P that
zmk = ak for 1 ≤ k ≤ s. Since P ∩ ϕ(E) �=∅, from the above argument, tmk = ak if ak = 0 and
tmk = N − 1 if ak = 1. Thus zmk + tmk = Nak for 1 ≤ k ≤ s so that

N−1(zmk + tmk ) = ak.

This implies that ϕ(z) ∈ P and hence ϕ(P ∩ E) ⊂ P ∩ ϕ(E). So ϕ(P ∩ E) = P ∩ ϕ(E).

COROLLARY 2·4. Let α be a vertex of [0, 1]d and let e ∈ E. If α ∈ ϕe([0, 1]d) then α = ϕe(α).
Moreover, ϕe(x) �= α whenever x �= α.

Proof. Since α is a 0-dimensional face of [0, 1]d, Lemma 2·3 implies that

{α} = {α} ∩ ϕe([0, 1]d) = {ϕe(α)}
and hence α = ϕe(α). The second statement clearly holds since ϕe is injective.

The following corollary will be used later.

COROLLARY 2·5. Let ϕ1(x) = N−1(x + t1), . . . , ϕm(x) = N−1(x + tm) be contracting simi-
larities with t1, . . . , tm ∈ {0, 1, . . . , N − 1}d. Let P be a face of [0, 1]d with 1 ≤ dim P ≤ d. If
ϕi([0, 1]d) ∩ P �=∅ for all 1 ≤ i ≤ m then(

ϕ1 ◦ · · · ◦ ϕm([0, 1]d)
) ∩ P = (

ϕ1 ◦ · · · ◦ ϕm(P)
) ∩ P.

Proof. We will prove this by induction on m. When m = 1, this follows directly from
Lemma 2·3. Suppose the result holds for 1 ≤ m ≤ k. Then
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(a) (b)

Fig. 3. Auxiliary graphs in Example 2·1.

(
ϕ1 ◦ · · · ◦ ϕk+1([0, 1]d)

) ∩ P = (
ϕ1 ◦ · · · ◦ ϕk+1([0, 1]d)

) ∩ (
ϕ1 ◦ · · · ◦ ϕk([0, 1]d)

) ∩ P

= (
ϕ1 ◦ · · · ◦ ϕk+1([0, 1]d)

) ∩ (
ϕ1 ◦ · · · ◦ ϕk(P)

) ∩ P

= (
ϕ1 ◦ · · · ◦ ϕk(ϕk+1([0, 1]d) ∩ P)

) ∩ P

= (
ϕ1 ◦ · · · ◦ ϕk ◦ ϕk+1(P)

) ∩ P,

as desired.

Let P be a face of [0, 1]d with 0 ≤ dim P ≤ d − 1. To determine which of K1, . . . , Kn

intersects P, we will draw an auxiliary directed graph GP as follows.

Definition 2·6 (Auxiliary graph). The vertex set of GP is the index setVn = {1, 2, . . . , n}.
For i, j ∈Vn, we add an edge from i to j whenever P ∩ ⋃

e∈Ei,j
ϕe([0, 1]d) �=∅.

Figure 3 depicts the graphs G{0} and G{1} associated with the attractor in Example 2·1
(where the subscripts 0, 1 stand for the endpoints of [0, 1]).

The information provided by the graph GP is revealed in the next two lemmas.

LEMMA 2·7. Let P be a face of [0, 1]d with 0 ≤ dim P ≤ d − 1 and let i ∈Vn. For k ≥ 1, if
there is a walk of length k in the graph GP which starts from i, then P ∩ Qi,k �=∅.

Proof. This can be proved by induction on k. Suppose k = 1 and there is an edge from i
to some j in GP. Then there is some e ∈ Ei,j such that P ∩ ϕe([0, 1]d) �=∅. By Lemma 2·3,

ϕe(P) = P ∩ ϕe([0, 1]d) = P ∩ ϕe(Qj,0) ⊂ P ∩
n⋃

t=1

⋃
e∈Ei,t

ϕe(Qt,0) = P ∩ Qi,1.

Suppose the lemma holds for 1 ≤ k ≤ m and let i → i1 → · · · → im → im+1 be a walk in
GP of length m + 1. Then i1 → i2 → · · · → im+1 is a walk of length m, so we have by the
induction hypothesis that P ∩ Qi1,m �=∅. Since there is an edge from i to i1, we can find
some e1 ∈ Ei,i1 such that P ∩ ϕe1([0, 1]d) �=∅. It then follows from Lemma 2·3 that

P ∩ Qi,m+1 = P ∩
n⋃

t=1

⋃
e∈Ei,t

(Qt,m)

⊃ P ∩ ϕe1 (Qi1,m)

= (P ∩ ϕe1 ([0, 1]d)) ∩ ϕe1 (Qi1,m)

= ϕe1(P) ∩ ϕe1 (Qi1,m) = ϕe1 (P ∩ Qi1,m) �=∅.

This completes the induction.
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LEMMA 2·8. Let P be a face of [0, 1]d with 0 ≤ dim P ≤ d − 1 and let i ∈Vn. For k ≥ 1, if
P ∩ Qi,k �=∅ then we can find a walk of length k in GP which starts from i.

Proof. Since

∅ �= P ∩ Qi,k = P ∩
n⋃

j=1

⋃
e∈Ei,j

ϕe(Qj,k−1),

there is some j1 and e1 ∈ Ei,j1 such that P ∩ ϕe1 (Qj1,k−1) �=∅. Since Qj1,k−1 ⊂ [0, 1]d,
P ∩ ϕe1 ([0, 1]d) �=∅. By definition, there is an edge from i to j1 in the graph GP.
Moreover, we see by Lemma 2·3 that P ∩ ϕe1 (Qj1,k−1) = ϕe1 (P ∩ Qj1,k−1), so P ∩ Qj1,k−1 �=
∅. Analogously, there is an edge in GP from j1 to some j2 with P ∩ Qj2,k−2 �=∅. Continuing
in this manner, we obtain a walk i → j1 → j2 → · · · → jk.

From these facts, it is easy to check from the graph GP whether Ki ∩ P is empty for all i.

COROLLARY 2·9. Let P be a face of [0, 1]d with 0 ≤ dim P ≤ d − 1. For i ∈Vn, P ∩ Ki �=∅

if and only if there are arbitrarily long walks in the graph GP which start from i.

Proof. By Lemma 1·4, P ∩ Ki �=∅ if and only if P ∩ Qi,k �=∅ for all k ≥ 1. Then the
result is an immediate consequence of Lemmas 2·7 and 2·8.

In particular, for the graph-directed attractor (K1, K2) in Example 2·1, we have 0 ∈ K1,
0 ∈ K2 while 1 /∈ K1 and 1 /∈ K2.

2.2. The intersection problem

Now we turn to the intersection problem of (K1, . . . , Kn). We will prove that to check
whether Ki ∩ Kj is empty, it suffices to examine two types of walks in the directed graph
defined as follows.

Definition 2·10 (Intersection graph). The vertex set is {(i, j) : i, j ∈Vn}. The edge set is
defined as follows. For any vertex (i, j) with i �= j:

(1) there is a solid edge from (i, j) to some (i′, j′) if we can find e ∈ Ei,i′ and e′ ∈ Ej,j′ such
that ϕe = ϕe′ ;

(2) there is a dashed edge from (i, j) to some (i′, j′) if we can find e ∈ Ei,i′ and e′ ∈ Ej,j′
such that ϕe([0, 1]d) ∩ ϕe′([0, 1]d) is a common s-dimensional face of these two cubes
with 0 ≤ s ≤ d − 1.

It is also easy to observe a symmetric property of the intersection graph: If there is an
edge from (i, j) to (i′, j′) then there is an edge from (j, i) to (j′, i′) of the same type (i.e.,
solid or dashed). We remark that there can be multiple edges from one vertex to another, but
at most one edge of each type. See Figure 4 for the intersection graph associated with the
graph-directed system in Example 2·1.

LEMMA 2·11 If there is a solid edge from (i, j) to (i′, j′), then Ki ∩ Kj contains a scaled copy
of Ki′ ∩ Kj′ .
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Fig. 4. Intersection graph in Example 2·1.

Proof. The assumption gives us e ∈ Ei,i′ and e′ ∈ Ej,j′ such that ϕe = ϕe′ . Thus

Ki ∩ Kj =
( n⋃

t=1

⋃
w∈Ei,t

ϕw(Kt)
)

∩
( n⋃

t=1

⋃
w∈Ej,t

ϕw(Kt)
)

⊃ ϕe(Ki′) ∩ ϕe′(Kj′) = ϕe(Ki′ ∩ Kj′).

Since ϕe is a contracting similarity, this completes the proof.

PROPOSITION 2·12 Let i, j ∈Vn be distinct. If there exists an infinite solid walk in the
intersection graph that starts from (i, j), then Ki ∩ Kj �=∅.

By a solid walk we mean a walk in which all of the edges are solid.

Proof. Let (i, j) → (i1, j1) → (i2, j2) → · · · be such an infinite walk. Since all edges are
solid, we can find for all k ≥ 1 that ek ∈ Eik ,ik+1 , e′

k ∈ Ejk ,jk+1 with ϕek = ϕe′
k
. Note that for all

m ≥ 1, i1
e1−→ i2

e2−→ · · · em−→ im+1 is a walk in G of length m. By Lemma 2·2,

ϕe1 ◦ · · · ◦ ϕem([0, 1]d) = ϕe1 ◦ · · · ◦ ϕem(Qm+1,0) ⊂ Qi1,m.

Similarly, ϕe′
1
◦ · · · ◦ ϕe′

m
([0, 1]d) ⊂ Qj1,m. Since ϕek = ϕe′

k
for all k, we see that

ϕe1 ◦ · · · ◦ ϕem([0, 1]d) ⊂ Qi1,m ∩ Qj1,m, m ≥ 1.

As a result,

Ki1 ∩ Kj1 =
( ∞⋂

m=1

Qi1,m

)
∩

( ∞⋂
m=1

Qj1,m

)
=

∞⋂
m=1

Qi1,m ∩ Qj1,m ⊃
∞⋂

m=1

ϕe1 ◦ · · · ◦ ϕem([0, 1]d),

which is a singleton since {ϕe1 ◦ · · · ◦ ϕem([0, 1]d)}∞m=1 is a nested sequence. In particular,
Ki1 ∩ Kj1 �=∅ and we immediately have by Lemma 2·11 that Ki ∩ Kj �=∅.

Our solution to the intersection problem is based on the detection of infinite solid walks
and terminated finite walks in the intersection graph. The latter are defined as follows.

Definition 2·13 Let (i, j), (i′, j′) be two vertices in the intersection graph. For an edge from
(i, j) to (i′, j′), we call it terminated if one of the following happens:
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(1) the edge is solid and i′ = j′;
(2) the edge is dashed and there are e ∈ Ei,i′ , e′ ∈ Ej,j′ such that ϕe([0, 1]d) ∩ ϕe′([0, 1]d) is

a common lower dimensional face of these two cubes and ϕe(Ki′) ∩ ϕe′(Kj′) �=∅.

Generally, a finite walk of length m ≥ 2 is called terminated if the first (m − 1) edges are
all solid while the last one is terminated.

Readers might have noticed that, unlike drawing the intersection graph, determining ter-
minated edges is usually a non-trivial task. While terminated solid edges are easy to check,
determining whether a given dashed edge is terminated requires much more information
(especially when the dimension d is large). In fact, the latter relies on our solution of the
intersection problem of attractors in the lower dimensional spaces R, R2, . . . , Rd−1. See
Section 2·3 for a detailed explanation of this induction method.

PROPOSITION 2·14 Let i, j ∈Vn be distinct. If there exists a terminated finite walk in the
associated intersection graph that starts from (i, j), then Ki ∩ Kj �=∅.

Proof. Let (i, j) → (i1, j1) → · · · → (im, jm) be a terminated finite walk. When m = 1, the
walk is just a terminated edge. If the edge is solid then i1 = j1. By Lemma 2·11, Ki ∩ Kj

contains a scaled copy of Ki1 ∩ Kj1 = Ki1 and hence is non-empty. If the edge is dashed then
there are e ∈ Ei,i1 , e′ ∈ Ej,j1 such that ϕe(Ki1 ) ∩ ϕe′(Kj1) �=∅. Then

Ki ∩ Kj =
( n⋃

t=1

⋃
w∈Ei,t

ϕw(Kt)
)

∩
( n⋃

t=1

⋃
w∈Ej,t

ϕw(Kt)
)

⊃ ϕe(Ki1) ∩ ϕe′(Kj1) �=∅.

When m ≥ 2, (im−1, jm−1) → (im, jm) is a terminated edge and we have seen that Kim−1 ∩
Kjm−1 �=∅. Applying Lemma 2·11 repeatedly, Ki ∩ Kj contains a scaled copy of Kim−1 ∩
Kjm−1 and hence is also non-empty.

The proof of Theorem 1·5 requires another two elementary observations.

LEMMA 2·15 Let i, j ∈Vn be distinct and such that Ki ∩ Kj �=∅ but there are no termi-
nated finite walks in the intersection graph starting from (i, j). Then for all m ≥ 1, we can
find at least one solid walk which starts from (i, j) and has length m.

Proof. We shall proceed by induction. Fix any pair of such i, j. For e, e′ ∈ E, we temporar-
ily say that they are compatible if the two cubes ϕe([0, 1]d) and ϕe′([0, 1]d) have a non-empty
intersection. Note that

Ki ∩ Kj =
( n⋃

p=1

⋃
e∈Ei,p

ϕe(Kp)
)

∩
( n⋃

p=1

⋃
e∈Ej,p

ϕe(Kp)
)

=
⋃

{ϕe(Kp) ∩ ϕe′(Kp′) : 1 ≤ p, p′ ≤ n, e ∈ Ei,p and e′ ∈ Ej,p′ are compatible}. (4)

If e ∈ Ei,p, e′ ∈ Ej,p′ are such that ϕe([0, 1]d) and ϕe′([0, 1]d) share a common non-empty
lower dimensional face then we must have ϕe(Kp) ∩ ϕe′(Kp′) =∅, since otherwise there is a
terminated dashed edge from (i, j) to (p, p′). As a result, we have by (4) that

Ki ∩ Kj =
⋃

{ϕe(Kp) ∩ ϕe′(Kp′) : 1 ≤ p, p′ ≤ n, e ∈ Ei,p, e′ ∈ Ej,p′ , ϕe = ϕe′ }. (5)
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In particular, if Ki ∩ Kj �=∅ then there are p, p′ ∈ {1, 2, . . . , n}, e ∈ Ei,p, e′ ∈ Ej,p′ such that
ϕe = ϕe′ . By definition, there is a solid edge from (i, j) to (p, p′). So we establish the lemma
in the case when m = 1.

Suppose the lemma holds for 1 ≤ m ≤ k. We will abuse notation slightly by fixing any
i �= j again. If Ki ∩ Kj �=∅ then by (5), there are p, p′ ∈ {1, 2, . . . , n}, e ∈ Ei,p, e′ ∈ Ej,p′ such
that ϕe = ϕe′ and ϕe(Kp) ∩ ϕe′(Kp′) �=∅. This means that there is a solid edge from (i, j) to
(p, p′) and Kp ∩ Kp′ �=∅ (since ϕe = ϕe′). Moreover, there are no terminated walks starting
from (p, p′). By the induction hypothesis, we can find a solid walk in the intersection graph
which starts from (p, p′) and has length k. Splicing the previous solid edge from (i, j) to (p,
p′), we obtain a solid walk that starts from (i, j) and has length k + 1. This completes the
induction.

LEMMA 2·16 Let (i0, j0) → (i1, j1) → · · · → (im, jm) be a solid walk of length m in the
intersection graph.

(i) If m ≥ n2−n
2 then Ki0 ∩ Kj0 �=∅.

(ii) If m ≥ (n2 − n)/2 + 1 then there is an infinite solid walk in the intersection graph
which starts from (i0, j0).

Proof. Suppose m ≥ (n2 − n)/2. Note that there is no edge in the intersection graph which
has one of (1, 1), . . . , (n, n) as its initial vertex. So ik �= jk for 1 ≤ k ≤ m − 1. By Lemma 2·11,
Ki0 ∩ Kj0 contains a scaled copy of Kim ∩ Kjm . In particular, if im = jm then Ki0 ∩ Kj0 �=∅.
If im �= jm then, since |{{i, j} : i �= j}| = (n2 − n)/2 ≤ m<m + 1, we can find 0 ≤ p< q ≤ m
with {ip, jp} = {iq, jq}.

If (iq, jq) = (ip, jp) then (ip, jp) → (ip+1, jp+1) → · · · → (iq, jq) is a solid walk from
(ip, jp) to itself. If (iq, jq) = (jp, ip) then we have by the “symmetric property” of the
intersection graph (recall the remark after Definition 2·10) that

(iq, jq) = (jp, ip) → (jp+1, ip+1) → · · · → (jq−1, iq−1) → (jq, iq) = (ip, jp)

is a solid walk. Therefore,

(ip, jp) → · · · → (iq, jq) → (jp+1, ip+1) → · · · → (jq−1, iq−1) → (jq, iq)

is a solid walk from (ip, jp) to itself. So in both cases, we can easily obtain an infinite
solid walk that starts from (ip, jp) and hence another one from (i0, j0). By Proposition 2·12,
Ki0 ∩ Kj0 �=∅.

Suppose m ≥ (n2 − n)/2 + 1. Then m − 1 ≥ (n2 − n)/2 and im−1 �= jm−1. Thus one can
deduce by the same argument as above that there is an infinite solid walk from (i0, j0).

Proof of Theorem 1·5. The sufficiency follows directly from Propositions 2·14 and 2·12.
Now we prove the necessity. Suppose Ki ∩ Kj �=∅ but in the intersection graph, there are
no terminated finite walks starting at (i, j). By Lemma 2·15, there exists a solid walk which
starts from (i, j) and has length (n2 − n)/2 + 1. Then Lemma 2·16 immediately gives us an
infinite solid walk starting from (i, j).
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2.3. An induction process to determine terminated edges

Recall our previous remark that the drawing of the intersection graph for attractors in R
d

depends on the solution of the problem in lower dimensional spaces R, . . . , Rd−1. Toward
this end, we need the following observation.

For any face P of [0, 1]d with 1 ≤ dim P ≤ d − 1, there is a 0-1 vector α = (a1, . . . , as)
and a sequence 1 ≤ m1 < · · ·<ms ≤ d such that (3) holds, where s = d − dim P. We denote
by hP the natural projection from R

d to R
dim P given by

hP(x1, . . . , xd) = (x1, . . . , xm1−1, xm1+1, . . . , xms−1, xms+1, . . . , xd).

LEMMA 2·17. Let P be a face of [0, 1]d with 1 ≤ dim P ≤ d − 1 and P ∩ ⋃n
i=1 Ki �=∅. Let

�P := {i ∈Vn : Ki ∩ P �=∅}. Then the tuple (hP(Ki ∩ P))i∈�P can be regarded as a Cantor-
type graph-directed attractor in R

dim P.

Proof. Note that for every e ∈ E and (x1, . . . , xd) ∈R
d,

hP ◦ ϕe(x1, . . . , xd) = hP

( (x1, . . . , xd) + te
N

)
= hP((x1, . . . , xd)) + hP(te)

N
=ψe(hP(x1, . . . , xd)),

where ψe : y �→ N−1(y + hP(te)). Thus hP ◦ ϕe =ψe ◦ hP and clearly hP(te) ∈ {0, 1, . . . , N −
1}dim P. So {ψe : e ∈ E} is of Cantor-type. Writing EP

i,j := {e ∈ Ei,j : ϕe(Kj) ∩ P �=∅} and
KP

i := hP(Ki ∩ P), we have for all i ∈�P that

KP
i = hP(Ki ∩ P) = hP

( n⋃
j=1

⋃
e∈Ei,j

ϕe(Kj) ∩ P
)

= hP

( n⋃
j=1

⋃
e∈EP

i,j

ϕe(Kj) ∩ P
)

. (6)

Note that EP
i,j �=∅ implies that j ∈�P: If there is e ∈ EP

i,j then we have by Lemma 2·3 that

ϕe(Kj ∩ P) = ϕe(Kj) ∩ P �=∅=⇒ Kj ∩ P �=∅.

Combining this with Lemma 2·3 and (6),

KP
i = hP

( ⋃
j∈�P

⋃
e∈EP

i,j

ϕe(Kj) ∩ P
)

= hP

( ⋃
j∈�P

⋃
e∈EP

i,j

ϕe(Kj ∩ P)
)

=
⋃

j∈�P

⋃
e∈EP

i,j

hP ◦ ϕe(Kj ∩ P)

=
⋃

j∈�P

⋃
e∈EP

i,j

ψe ◦ hP(Kj ∩ P) =
⋃

j∈�P

⋃
e∈EP

i,j

ψe(KP
j ).

Thus the tuple (KP
i )i∈�P can be regarded as a Cantor-type attractor in R

dim P of which the
associated graph-directed system is as follows:

https://doi.org/10.1017/S0305004125000015 Published online by Cambridge University Press

https://doi.org/10.1017/S0305004125000015


146 HUO-JUN RUAN AND JIAN-CI XIAO

(1) The vertex set of the directed graph is �P;

(2) The edge set is
⋃

i,j∈�P
EP

i,j and the IFS is {ψe:e ∈ ⋃
i,j∈�P

EP
i,j}.

COROLLARY 2·18. Let P1, . . . , Pm be faces of [0, 1]d with 1 ≤ dim P1 = · · · = dim Pm ≤
d − 1, and let �Pk := {1 ≤ i ≤ n:Ki ∩ Pk �=∅} for 1 ≤ k ≤ m. Then the tuple (hPk (Kt ∩
Pk))1≤k≤m,t∈�Pk

can be regarded as a Cantor-type graph-directed attractor in R
dim P1 .

Now we are able to determine dashed terminated edges in the intersection graph. Recall
that a dashed terminated edge from (i, j) (where i �= j) to some (i′, j′) implies that there
are e ∈ Ei,i′ , e′ ∈ Ej,j′ such that ϕe([0, 1]d) ∩ ϕe′([0, 1]d) is a common s-dimensional face of
these two cubes with 0 ≤ s ≤ d − 1 and ϕe(Ki′) ∩ ϕe′(Kj′) �=∅. The last condition ϕe(Ki′) ∩
ϕe′(Kj′) �=∅ can be checked by an induction process as follows.

When d = 1, s must be zero and ϕe([0, 1]) ∩ ϕe′([0, 1]) is just the common endpoint of
these two intervals. So to determine whether ϕe(Ki′) ∩ ϕe′(Kj′) �=∅, it suffices to figure out
whether endpoints of [0, 1] are elements of Ki′ and Kj′ . This task has already been done by
Corollary 2·9. So we know exactly which dashed edges are terminated and thus how to draw
the intersection graph for attractors in R. Combining this with Theorem 1·5, we solve the
intersection problem of Cantor-type attractors in R.

When d = 2, s can take values 0 or 1. If s = 0 then ϕe([0, 1]2) ∩ ϕe′([0, 1]2) is just the
common vertex of these two squares. So to determine whether ϕe(Ki′) ∩ ϕe′(Kj′) �=∅, it
suffices to find out whether vertices of [0, 1]2 are elements of Ki′ and Kj′ . Again, this can be
checked by Corollary 2·9. If s = 1, ϕe(Ki′) ∩ ϕe′(Kj′) lives on a common 1-dimensional face
of ϕe([0, 1]2) and ϕe′([0, 1]2). Thus there are 1-dimensional faces P,Q of [0, 1]2 such that
ϕe(Ki′) ∩ ϕe′(Kj′) = ϕe(Ki′ ∩ P) ∩ ϕe′(Kj′ ∩ Q). Note that Q is a translation of P and

ϕe(Ki′ ∩ P) ∩ ϕe′(Kj′ ∩ Q) �=∅⇐⇒ hP(Ki′ ∩ P) ∩ hQ(Kj′ ∩ Q) �=∅.

If Ki′ ∩ P =∅ or Kj′ ∩ Q =∅ (which can be checked by Corollary 2·9) then we are done.
When both of these intersections are non-empty, it follows from Corollary 2·18 that the prob-
lem is reduced to the intersection problem of the Cantor-type attractor (hP(Ki ∩ P), hQ(Kj ∩
Q))i∈�P,j∈�Q , where�P := {i : Ki ∩ P �=∅} and�Q := {i : Ki ∩ Q �=∅}. This is an attractor
in R because dim P = dim Q = 1. Note that in the last paragraph, we have solved the inter-
section problem in R. In particular, we can determine whether hP(Ki′ ∩ P) ∩ hQ(Kj′ ∩ Q) �=
∅ and thus whether ϕe(Ki′) ∩ ϕe′(Kj′) �=∅. Now we know which dashed edges are termi-
nated and how to build the intersection graph for attractors in R

2. Again, combining this
with Theorem 1·5, we solve the intersection problem of Cantor-type attractors in R

2.
Continuing in this manner, the intersection problem of Cantor-type attractors in R

d for all
dimensions d ≥ 1 is settled.

3. The intersection problem II: The finite-iteration approach

This section is devoted mainly to the proof of Theorem 1·6. The method used in the
following result is similar to Lemma 2·16.

LEMMA 3·1. Let α be a vertex of [0, 1]d and let i ∈Vn. If there is a walk in the graph G{α}
which starts from i and has length n, then α ∈ Ki.
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Proof. Let i → i1 → · · · → in be such a walk. For simplicity, set i0 = i. Since there are
only n vertices in G{α}, we can find 0 ≤ p< q ≤ n such that ip = iq. So there is a cycle at ip
and hence an infinite walk starting from i. By Lemma 2·7, α ∈ Qi,k for all k and thus α ∈ Ki.

COROLLARY 3·2. Let α be a vertex of [0, 1]d. For i ∈Vn, α ∈ Ki if and only if α ∈ Qi,n.

Proof. Since Ki ⊂ Qi,n, it suffices to show the sufficiency. Assume that α ∈ Qi,n. Then it
follows from Lemma 2·8 that there exists a walk in the graph G{α} which starts from i and
has length n. Combining this with Lemma 3·1, we see that α ∈ Ki.

The following are direct results of Lemma 2·2.

COROLLARY 3·3. If i
e1−→ i1

e2−→ i2 → · · · is an infinite walk in G then

∞⋂
m=1

ϕe1 ◦ · · · ◦ ϕem([0, 1]d) ⊂ Ki.

Proof. For m ≥ 1, i
e1−→ i1

e2−→ · · · em−→ im is a walk of length m starting from i. It then
follows from Lemma 2·2 that ϕe1 ◦ · · · ◦ ϕem([0, 1]d) ⊂ Qi,m. It is not hard to see that
{ϕe1 ◦ · · · ◦ ϕem([0, 1]d)}∞m=1 is a nested sequence and hence

∞⋂
m=1

ϕe1 ◦ · · · ◦ ϕem([0, 1]d) ⊂
∞⋂

m=1

Qi,m = Ki.

COROLLARY 3·4. Let m ≥ 1. For every pair of distinct i, j ∈Vn, if there is a level-m cube
I ⊂ Qi,m ∩ Qj,m, then we can find a solid walk in the intersection graph which starts from (i,
j) and has length m.

Proof. We shall prove this by induction. When m = 1, let w ∈ E1
i , w′ ∈ E1

j be such that

ϕw([0, 1]d) = ϕw′([0, 1]d). So ϕw = ϕw′ and hence there is a solid edge in the intersection
graph which starts from (i, j).

Suppose the statement holds for 1 ≤ m ≤ k. When m = k + 1, let i
e1−→ i1

e2−→ i2 → · · · →
ik+1 ∈ Ek+1

i and j
e′

1−→ j1
e′

2−→ j2 → · · · → jk+1 ∈ Ek+1
j be such that

I = ϕe1 ◦ · · · ◦ ϕek+1([0, 1]d) = ϕe′
1
◦ · · · ◦ ϕe′

k+1
([0, 1]d).

This implies that ϕe1 = ϕe′
1
, so there is a solid edge from (i, j) to (i1, j1). Moreover,

ϕ−1
e1

(I) = ϕe2 ◦ · · · ◦ ϕek+1([0, 1]d) = ϕe′
2
◦ · · · ◦ ϕe′

k+1
([0, 1]d)

is a level-k cube contained in Qi1,k ∩ Qj1,k. As a consequence, we can find by the induction
hypothesis a solid walk in the intersection graph which starts from (i1, j1) and has length k.
Splicing the previous solid edge from (i, j) to (i1, j1), we obtain a solid walk which starts
from (i, j) and has length k + 1. This completes the induction.

We need another fact for technical reasons.

LEMMA 3·5. Let ϕ(x) = N−a(x + t), ϕ∗(x) = N−a(x + t∗), f (x) = N−b(x + w), f∗(x) =
N−b(x + w∗) be contracting maps on R

d such that a, b ∈Z
+, t, t∗, w, w∗ ∈R

d and all of
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the four mappings send [0, 1]d into itself. If P,Q are nonempty subsets of [0, 1]d such that
ϕ(P) = ϕ∗(Q) and ϕ ◦ f (P) = ϕ∗ ◦ f∗(Q), then

ϕ ◦ f m(P) = ϕ∗ ◦ f m∗ (Q), m ≥ 1.

Proof. Note that ϕ(P) = ϕ∗(Q) implies P = Q + t∗ − t and ϕ ◦ f (P) = ϕ∗ ◦ f∗(Q) implies
P = Q + w∗ + Nbt∗ − w − Nbt. In particular, we have t∗ − t = w∗ + Nbt∗ − w − Nbt so

(Nb − 1)(t − t∗) = w∗ − w. (7)

Since P = Q + t∗ − t, we have for all m ≥ 1 that

Naϕ ◦ f m(P) = 1

Nmb
P +

m∑
k=1

1

Nkb
w + t

= 1

Nmb
(Q + t∗ − t) +

m∑
k=1

1

Nkb
w + t

=
( 1

Nmb
Q +

m∑
k=1

1

Nkb
w∗ + t∗

)
+

(
1 − 1

Nmb

)
(t − t∗) +

m∑
k=1

1

Nkb
(w − w∗).

The term in the first bracket equals Naϕ∗ ◦ f m∗ (Q), so it suffices to show that the sum of the
last two terms vanishes. But this is straightforward: by (7),(

1 − 1

Nmb

)
(t − t∗) +

m∑
k=1

1

Nkb
(w − w∗)

=
(

1 − 1

Nmb

)
(t − t∗) − N−b(1 − N−mb)

1 − N−b
(Nb − 1)(t − t∗) = 0.

Now we have all the ingredients needed to establish Theorem 1·6.

Proof of Theorem 1·6. Again, we only need to show the sufficiency. Suppose Qi,c(n,d) ∩
Qj,c(n,d) �=∅ and arbitrarily pick a point x in this intersection. By Lemma 2·2, we can find

i
e1−→ i1

e2−→ i2 → · · · → ic(n,d) ∈ Ec(n,d)
i , j

e′
1−→ j1

e′
2−→ j2 → · · · → jc(n,d) ∈ Ec(n,d)

j

such that

x ∈ ϕe1 ◦ · · · ◦ ϕec(n,d) ([0, 1]d) ∩ ϕe′
1
◦ · · · ◦ ϕe′

c(n,d)
([0, 1]d) ⊂ Qi,c(n,d) ∩ Qj,c(n,d).

Moreover, we have for 1 ≤ k ≤ c(n, d) that

ϕe1 ◦ · · · ◦ ϕek ([0, 1]d) ⊂ Qi,k, ϕe′
1
◦ · · · ◦ ϕe′

k
([0, 1]d) ⊂ Qj,k,

and x is a common point of the above two level-k cubes. Define

sk := dim
(
ϕe1 ◦ · · · ◦ ϕek ([0, 1]d) ∩ ϕe′

1
◦ · · · ◦ ϕe′

k
([0, 1]d)

)
, 1 ≤ k ≤ c(n, d).

Clearly, s1 ≥ s2 ≥ · · · ≥ sc(n,d) ≥ 0. We will discuss the following three cases separately.

Case I: |{k:sk = 0}| ≥ n + 1. So sc(n,d)−n = · · · = sc(n,d) = 0. This implies that

{x} = ϕe1 ◦ · · · ◦ ϕek ([0, 1]d) ∩ ϕe′
1
◦ · · · ◦ ϕe′

k
([0, 1]d), c(n, d) − n ≤ k ≤ c(n, d),

https://doi.org/10.1017/S0305004125000015 Published online by Cambridge University Press

https://doi.org/10.1017/S0305004125000015
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i.e., x is the common vertex of these cubes. In particular, there are vertices α, β of [0, 1]d

such that

x = ϕe1 ◦ · · · ◦ ϕec(n,d)−n(α) = ϕe′
1
◦ · · · ◦ ϕe′

c(n,d)−n
(β).

By Lemma 2·2,

ϕec(n,d)−n+1 ◦ · · · ◦ ϕec(n,d) ([0, 1]d) ⊂ Qic(n,d)−n,n,

implying that

ϕe1 ◦ · · · ◦ ϕec(n,d)−n(α) = x ∈ ϕe1 ◦ · · · ◦ ϕec(n,d)−n(Qic(n,d)−n,n).

Thus α ∈ Qic(n,d)−n,n since ϕe1 ◦ · · · ◦ ϕec(n,d)−n is injective. Similarly, β ∈ Qjc(n,d)−n,n. By
Corollary 3·2, we have α ∈ Kic(n,d)−n and β ∈ Kjc(n,d)−n . This further implies that

{x} = {ϕe1 ◦ · · · ◦ ϕec(n,d)−n(α)} ∩ {ϕe′
1
◦ · · · ◦ ϕe′

c(n,d)−n
(β)}

⊂ ϕe1 ◦ · · · ◦ ϕec(n,d)−n(Kic(n,d)−n) ∩ ϕe′
1
◦ · · · ◦ ϕe′

c(n,d)−n
(Kjc(n,d)−n)

⊂ Ki ∩ Kj,

where the last step follows again from Lemma 2·2. In particular, Ki ∩ Kj �=∅.

Case II: |{k:sk = d}| ≥ (n2 − n)/2. So s1 = s2 = · · · = s(n2−n)/2 = d. In this case, we have

ϕe1 ◦ · · · ◦ ϕe(n2−n)/2
([0, 1]d) = ϕe′

1
◦ · · · ◦ ϕe′

(n2−n)/2
([0, 1]d),

which is a level-((n2 − n)/2) cube contained in Qi,(n2−n)/2 ∩ Qj,(n2−n)/2. By Corollary 3·4,
there is a solid walk in the intersection graph which starts from (i, j) and has length (n2 −
n)/2. It then follows from Lemma 2·16 that Ki ∩ Kj �=∅.

Case III: d − 1 ≥ s(n2−n)/2 ≥ · · · ≥ sc(n,d)−n ≥ 1. For simplicity, we temporarily write
cn := (n2 − n)/2. Since

c(n, d) − n − cn + 1 = (d − 1)n2 + d,

there is some 1 ≤ s ≤ d − 1 such that |{cn ≤ k ≤ c(n, d) − n:sk = s}| ≥ n2 + 2. Without loss
of generality, assume that scn = · · · = scn+n2+1 = s. Since |{(a, b):a, b ∈Vn}| = n2, there are
cn + 1 ≤ p< q ≤ cn + n2 + 1 such that (ip, jp) = (iq, jq). Then

i
e1−→ · · · ep−→ ip

ep+1−−→ · · · eq−→ iq = ip
ep+1−−→ · · · eq−→ iq → · · · , and

j
e′

1−→ · · · e′
p−→ jp

e′
p+1−−→ · · · e′

q−→ jq = jp
e′

p+1−−→ · · · e′
q−→ jq → · · ·

are infinite walks in G. Denotingψ := ϕep+1 ◦ · · · ◦ ϕeq andψ∗ := ϕe′
p+1

◦ · · · ◦ ϕe′
q
, we have

by Corollary 3·3 that

∞⋂
m=1

ϕe1 ◦ · · · ◦ ϕep ◦ψm([0, 1]d) ⊂ Ki,
∞⋂

m=1

ϕe′
1
◦ · · · ◦ ϕe′

p
◦ψm∗ ([0, 1]d) ⊂ Kj. (8)
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Recall that

dim
(
ϕe1 ◦ · · · ◦ ϕep([0, 1]d) ∩ ϕe′

1
◦ · · · ◦ ϕe′

p
([0, 1]d)

)
= s = dim

(
ϕe1 ◦ · · · ◦ ϕep ◦ψ([0, 1]d) ∩ ϕe′

1
◦ · · · ◦ ϕe′

p
◦ψ∗([0, 1]d)

)
.

Let R = ϕe1 ◦ · · · ◦ ϕep([0, 1]d) ∩ ϕe′
1
◦ · · · ◦ ϕe′

p
([0, 1]d), and define

P = (
ϕe1 ◦ · · · ◦ ϕep

)−1(R), Q = (
ϕe′

1
◦ · · · ◦ ϕe′

p

)−1(R).

Then it is straightforward to see that P and Q are s-dimensional faces of [0, 1]d. Combining
with the monotonicity, we have{

ϕe1 ◦ · · · ◦ ϕep(P) = ϕe′
1
◦ · · · ◦ ϕe′

p
(Q),

ϕe1 ◦ · · · ◦ ϕep ◦ψ(P) = ϕe′
1
◦ · · · ◦ ϕe′

p
◦ψ∗(Q).

From Lemma 3·5,

∞⋂
m=1

ϕe1 ◦ · · · ◦ ϕep ◦ψm(P) =
∞⋂

m=1

ϕe′
1
◦ · · · ◦ ϕe′

p
◦ψm∗ (Q),

which is a singleton contained in Ki ∩ Kj (recall (8)). In particular, Ki ∩ Kj �=∅.

Remark 3·6. The constant c(n,d) in Theorem 1·6 may not be optimal in general. In fact,
we would not be too surprised if one could show that c(n,d) can be taken not greater than
d · ((n2 − n)/2) + (d − 1) + n, which seems to require careful analysis of the structure of the
graph-directed system. When n = 1 (which is just the self-similar case), this is essentially
proved in [4] in a slightly different language.

4. Connectedness of sponge-like sets

Let F = F(d, N,I) be any fixed sponge-like set in R
d. By Hata’s criterion, to determine

whether F is connected, it suffices to draw the associated Hata graph. This requires our
knowledge of the emptiness of ϕi(F) ∩ ϕj(F) for every pair of i, j ∈I. Recall that Od denotes
the group of symmetries of the unit d-cube [0, 1]d.

LEMMA 4·1. The tuple (O(F))O∈Od forms a Cantor-type graph-directed attractor in R
d.

Proof. It is well known that the group of symmetries of [−1/2, 1/2]d is the collection
Md of d × d matrices with entries only 0, ±1 and with exactly one non-zero entry in each
row and column. Furthermore, |Md| = d!2d (so |Od| = d!2d). Writing ad to be the d-tuple
(1/2, . . . , 1/2), each O ∈Od corresponds to a matrix AO ∈Md such that

O(x) = AO(x − ad) + ad. (9)

This is just setting up a conjugacy between mappings with the origin shifted to the center of
[0, 1]d, which brings us technical convenience when referring to symmetries of [0, 1]d.

Since F = ⋃
i∈I ϕi(F), where ϕi(x) = N−1(Oi(x) + i), we have for each O ∈Od that

O(F) = O
( ⋃

i∈I
ϕi(F)

)
= O

( ⋃
i∈I

Oi(F) + i

N

)
.
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It then follows from (9) that

O(F) =
⋃
i∈I

O
(AOi(F − ad) + ad + i

N

)
=

⋃
i∈I

AO

(AOi(F − ad) + ad + i

N
− ad

)
+ ad.

Rewriting this gives us

O(F) =
⋃
i∈I

AOAOi(F − ad) + ad

N
+ AO

(ad + i

N
− ad

)
+ N − 1

N
ad

=
⋃
i∈I

O ◦ Oi(F)

N
+ 1

N
AO

(
i − (N − 1)ad

)
+ N − 1

N
ad.

Since entries of i only take value in {0, 1, . . . , N − 1}, entries of the second term above
only take value in N−1{−(N − 1)/2, −(N − 1)/2 + 1, . . . , (N − 1)/2}. So the sum of the
last two terms only takes value in {0, 1/N, . . . , (N − 1)/N}d. Combining with the fact that
O ◦ Oi ∈Od, we see that (O(F))O∈Od forms a Cantor-type graph-directed attractor.

More precisely, enumerating Od = {Õ1, . . . , Õd!2d}, we have

Õk(F) =
⋃
i∈I

Õk ◦ Oi(F) + tk,i

N
=

⋃
i∈I

Õ	(k,i)(F) + tk,i

N
, 1 ≤ k ≤ d!2d, (10)

where 	(k, i) is such that Õ	(k,i) = Õk ◦ Oi and

tk,i := AÕk

(
i − (N − 1)ad

)
+ (N − 1)ad.

So the graph-directed structure associated with (Õ1(F), . . . , Õd!2d (F)) is as follows.

(1) The vertex set can be labelled as {1, 2, . . . , d!2d}.
(2) For every 1 ≤ k ≤ d!2d and every i ∈I, we add an edge from k to 	(k, i) and assign

the homothety corresponding to this edge to be x �→ N−1(x + tk,i).

For convenience, we keep enumerating Od as {Õ1, Õ2, . . . , Õd!2d} in the rest of this
section. It is noteworthy that in the above proof, we actually show that

Õk ◦ ϕi(x) = Õ	(k,i)(x) + tk,i

N
, i ∈I, x ∈R

d. (11)

This formula will be used later. It turns out that {Õk(Ft)}∞t=0 is just the sequence of geometric
approximations of Õk(F), where Ft is as in (1).

LEMMA 4·2 Let 1 ≤ k ≤ d!2d and let t ≥ 0. Then Õk(Ft) is the level-t approximation of
Õk(F).

Proof. By (11), we have for all t ≥ 0

Õk(Ft+1) = Õk

( ⋃
i∈I
ϕi(Ft)

)
=

⋃
i∈I

Õk ◦ ϕi(Ft) =
⋃
i∈I

Õ	(k,i)(Ft) + tk,i

N
.
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This implies that {Õk(Ft)}∞t=0 satisfies the same recursive relation as does the level-t
approximations of Õk(F) (see (10)). Since Õk(F0) = Õk([0, 1]d) = [0, 1]d is just the level-0
approximation of Õk(F), these two sequences must be identical.

4.1 Hata graphs and the proof of Theorem 1·7
For distinct i, j ∈I, a direct observation is that ϕi(F) ∩ ϕj(F) =∅ whenever ϕi([0, 1]d) and

ϕj([0, 1]d) are not adjacent. So it suffices to consider cases when these two cubes intersect
with each other (equivalently, i − j is a 0- ± 1 vector). Note that

ϕi(F) ∩ ϕj(F) = Oi(F) + i

N
∩ Oj(F) + j

N
= Oj(F) ∩ (Oi(F) + i − j)

N
+ j

N
. (12)

So ϕi(F) ∩ ϕj(F) �=∅ if and only if Oj(F) ∩ (Oi(F) + i − j) �=∅.

Case I: i − j ∈ {(a1, . . . , ad):|at| = 1 for all 1 ≤ t ≤ d}. In this case,

Oj([0, 1]d) ∩ (Oi([0, 1]d) + i − j) = [0, 1]d ∩ ([0, 1]d + i − j)

is a vertex, say α, of the unit cube. So to see whether ϕi(F) ∩ ϕi′(F) is empty, it suffices to
check whether α is a common point of Oj(F) and Oi(F) + i − j. Equivalently, it suffices to
check whether α ∈ Oj(F) and whether α + j − i ∈ Oi(F). Note that α + j − i is also a vertex
of [0, 1]d. Since (O(F))O∈Od forms a graph-directed attractor of Cantor-type (Lemma 4·1),
this can be achieved by drawing the corresponding graphs introduced in Section 2·1.

Case II: i − j ∈ {(a1, . . . , ad):|at| ≤ 1 for 1 ≤ t ≤ d with 0<
t|at|< d}. In this case,

Oj([0, 1]d) ∩ (Oi([0, 1]d) + i − j) = [0, 1]d ∩ ([0, 1]d + i − j)

is a lower dimensional face P of the unit cube. So to see whether ϕi(F) ∩ ϕj(F) is empty, it
suffices to check that whether

(Oj(F) ∩ P) ∩ ((Oi(F) + i − j) ∩ P) =∅.

Since P and P + j − i (which is also a face of [0, 1]d) are parallel, this is equivalent to
verifying whether

hP
(
Oj(F) ∩ P

) ∩ hP
(
(Oi(F) + i − j) ∩ P

)
= hP

(
Oj(F) ∩ P

) ∩ hP+j−i
(
Oi(F) ∩ (P + j − i)

) =∅.

Corollary 2·18 (and Corollary 2·9 if necessary) implies that this can be reduced to the
intersection problem in R

dim P and we can solve this using Theorems 1·5 or 1·6.

Similar to the graph-directed setting, we can determine the connectedness of F within
finitely many iterations.

PROPOSITION 4·3. Let 1 ≤ i, j ≤ d!2d and let α �= 0 be any 0-±1 vector. If Õi(FC(d)−1) ∩
(Õj(FC(d)−1) + α) �=∅ then Õi(F) ∩ (Õj(F) + α) �=∅, where C(d) is as in Theorem 1·7.

Proof. Without loss of generality, assume that α is a 0-1 vector (other cases can
be similarly discussed). By Lemma 4·1, the tuple (Õk(F))d!2d

k=1 is a Cantor-type graph-
directed attractor in R

d. Let us add two more vertices into the associated graph-directed
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Connectedness of Sierpiński sponges and graph-directed systems 153

system, namely v1 and v2. We add an edge from v1 to i with the corresponding simi-
larity x �→ N−1x, and another edge from v2 to j with the corresponding similarity x �→
N−1(x + α). Letting K1 := N−1Õi(F) and K2 := N−1(Õj(F) + α), it is not hard to see that
(Õ1(F), . . . , Õd!2d (F), K1, K2) is the attractor associated with the new graph-directed system.

Lemma 4·2 tells us that N−1Õi(FC(d)−1) and N−1(Õj(FC(d)−1) + α) are the level-(C(d))
approximations of K1 and K2, respectively. So by the assumption of this proposition, they
have a non-empty intersection. It then follows immediately from the definition of C(d) and
Theorem 1·6 that K1 ∩ K2 �=∅. Equivalently, Õi(F) ∩ (Õj(F) + α) �=∅.

Proof of Theorem 1·7. Since Fn ⊃ F for every n ≥ 1, it suffices to show the sufficiency.
Note that FC(d) = ⋃

i∈I ϕi(FC(d)−1) is a finite union of compact sets. Then it follows from
the connectedness of FC(d) that for each pair of i, j ∈I, there exist i1, . . . , im ∈ I such that
i1 = i, im = j, and ϕik (FC(d)−1) ∩ ϕik+1(FC(d)−1) �=∅ for 1 ≤ k ≤ m − 1.

Since Fn ⊂ [0, 1]d for all n, every coordinate of ik − ik+1 has absolute value not greater
than 1 (so it is a 0-±1 vector). With F replaced by FC(d)−1 in (12), we see that ϕik (FC(d)−1) ∩
ϕik+1(FC(d)−1) �=∅ is a scaled copy of Oik+1(FC(d)−1) ∩ (Oik (FC(d)−1) + ik − ik+1). It follows
immediately from Proposition 4·3 that

Oik+1(F) ∩ (Oik (F) + ik − ik+1) �=∅,

which in turn implies that ϕik (F) ∩ ϕik+1(F) �=∅. Since this holds for all k, we see by Hata’s
criterion that F is connected.

4.2. Improvements on the constant C(d)

In some circumstances, it is possible to determine the connectedness of F more quickly
than applying Theorem 1·7. For example, the following result indicates that when Oi ≡ id
for all i ∈I, it suffices to iterate d + 1 times.

PROPOSITION 4·4 ([4]). Let F be a Sierpiński sponge in R
d. Then F is connected if and

only if Fd+1 is connected.

This result can be further extended as follows.

PROPOSITION 4·5. Assume that there is some O ∈Od such that Oi = O for all i ∈I. Denote
m to be the order of O (i.e., the smallest integer m ∈Z

+ such that Om = id). Then F is
connected if and only if F(d+1)m is connected.

Proof. For k ≥ 1, define θk to be the map on {0, 1, . . . , N − 1}d given by

θk:i �→ AOk (i − (N − 1)ad) + (N − 1)ad,

where AOk and ad are as in the proof of Lemma 4·1. It then follows from (11) that

Ok(F) =
⋃
i∈I

Ok ◦ ϕi(F) =
⋃
i∈I

Ok+1(F) + θk(i)

N
, k ≥ 1.
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Applying this repeatedly, we see that

F =
⋃
i1∈I

O(F) + i1
N

=
⋃
i1∈I

· · ·
⋃

im∈I

Om(F) + θm−1(im) + Nθm−2(im−1) + · · · + Nm−1i1
Nm

=
⋃
j∈J

F + j

Nm
,

whereJ := θm−1(I) + Nθm−2(I) + · · · + Nm−1I. This means that F is a Sierpiński sponge
associated with the IFS {N−m(x + j):j ∈J}. Note that (similarly as above)

Fm =
⋃
i1∈I

O(Fm−1) + i1
N

= · · · =
⋃
j∈J

F0 + j

N
=

⋃
j∈J

[0, 1]d + j

Nm
.

Then the desired equivalence follows directly from Proposition 4·4.

PROPOSITION 4·6. Assume that {0, N − 1}d ⊂I. Then F is connected if and only if F1 is
connected.

Proof. The “=⇒” part is immediate. For the “⇐=” part, we will first show that every
vertex of [0, 1]d is an element of F.

To this end, constructing the graphs introduced in Section 2·1 of course works, but we
will use a simpler method here. We will show by induction that every vertex of [0, 1]d is
an element of Fn for all n ≥ 0 and hence belongs to F. When n = 0, F0 = [0, 1]d so there
is nothing to prove. Suppose that Fn contains all vertices of [0, 1]d for 0 ≤ n ≤ m. Fix any
vertex α = (a1, . . . , ad) of [0, 1]d. Note that

α = α + (N − 1)α

N
= ϕ(N−1)α(O−1

(N−1)αα),

and by inductive assumption, O−1
(N−1)αα ∈ Fm. Thus

α = ϕ(N−1)α(O−1
(N−1)αα) ∈ ϕ(N−1)α(Fm) ⊂

⋃
i∈I
ϕi(Fm) = Fm+1,

which completes the induction (note that α might not be the fixed point of ϕ(N−1)α).
Since F1 = ⋃

i∈I ϕi([0, 1]d) is connected, for any given pair of digits i, j ∈I, there is a
sequence {ik}m

k=1 ⊂I such that i1 = i, im = j and

ϕik ([0, 1]d) ∩ ϕik+1([0, 1]d) �=∅, 1 ≤ k ≤ m − 1.

This means that ϕik ([0, 1]d) and ϕik+1([0, 1]d) are adjacent cubes. Combining this with the
fact that F contains every vertex of [0, 1]d, ϕik (F) ∩ ϕik+1(F) �=∅ for 1 ≤ k ≤ m − 1. So F is
connected (again by Hata’s criterion).

5. Further remarks

There are also general settings in which the previous approach to the intersection problem
works. The key requirement is that given any k, the intersection of any pair of level-k cubes
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must be their largest common face. Our strategy remains applicable as long as this holds.
For example, the assumption that all similarities in the IFS have the same contraction ratio
N−1 can be relaxed.

Example 5·1. Let (K1, . . . , Kn) be a graph-directed attractor in R associated with G =
G(V, E) and �= {ϕe : e ∈ E}, where:

(1) for each e ∈ E, ϕe is a contracting map on R of the form ϕe(x) = rex + te, where 0<
re < 1 and 0 ≤ te ≤ 1 − re;

(2) for every pair of e, e′ ∈ E, the two intervals ϕe([0, 1]) and ϕe′([0, 1]) are either the
same or adjacent.

In this setting, if some pair of level-k intervals are not disjoint then they are either the
same or adjacent. So one can follow the arguments in this paper to see whether Ki ∩ Kj �=∅

for 1 ≤ i, j ≤ n.
Putting some restrictions on the symmetries, we are also able to determine the connected-

ness of self-affine sponge-like sets.

Example 5·2. Let n, m ≥ 2 be integers and let 0< a1, . . . , an < 1, 0< b1, . . . , bm < 1 be
such that

∑n
p=1 ap = ∑m

q=1 bq = 1. LetD⊂ {0, 1, . . . , n − 1} × {0, 1, . . . , m − 1} be a non-
empty digit set. For each (i, j) ∈D, set

ψ(i,j):
( x

y

)
�→ O(i,j)

(ai+1 0
0 bj+1

)( x
y

)
+

(∑i
p=1 ap∑j
q=1 bq

)
,

where O(i,j) is an element of the collection of rotations of 0◦, 180◦ around the point (1/2, 1/2)
and flips along the lines x = 1/2 or y = 1/2. When O(i,j) = id for all (i, j) ∈D, the attractor
associated with the IFS {ψ(i,j):(i, j) ∈D} is called a Barański carpet (see [1]); if we further
have ap ≡ n−1 and bq ≡ m−1 then the attractor is called a Bedford–McMullen carpet (see
[13]). In this case, it is easy to see that the intersection of every pair of level-k rectangles is
their largest common face and our arguments work in this setting.
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