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THE NUMBER OF CLOSED SUBSETS OF
A TOPOLOGICAL SPACE

R. E. HODEL

Dedicated to L. Carlitz on his seventieth birthday

1. Introduction. Let X be an infinite topological space, let 1 be an infinite
cardinal number with 1 £ |X|. The basic problem in this paper is to find the
number of closed sets in X of cardinality 1. A complete answer to this question
for the class of metrizable spaces has been given by A. H. Stone in [31], where
he proves the following result. Let X be an infinite metrizable space of weight m,
let 1 < |X|. Then the number of closed sets in X of cardinality nvs (1) | X[ if
n<m, (2) 2™ n=|X|, (3)00r2™if m < n < |X|. The main result of this
paper (see §3) is the extension of Stone’s theorem to the class of regular
o-spaces satisfying property wD. (Although o-spaces have many properties in
common with metrizable spaces, they need not be paracompact nor first
countable.) In §§ 4 and 5 we consider two special cases of the basic problem,
namely the number of denumerable closed sets in X and the number of closed
sets in X of cardinality |X|. In § 6 we consider the basic problem under the
assumption of the generalized continuum hypothesis (hereafter abbreviated
GCH). In § 7 we obtain upper bounds on 0(X), the number of open sets in X,
in terms of other cardinal invariants of X.

2. Definitions, conventions, and known results. Unless otherwise
stated, no separation axioms are assumed; however, regular, normal, and
paracompact spaces are always Hausdorff. The set of positive integers is
denoted by N, and k and » denote elements of N.

Let X be a topological space. A net for X is a collection A of subsets of X
such that if Visopen and x € V, then there issome N € A such thatx ¢ N C
V. A space with a ¢-locally finite net is called a o-space [25). Nagata and
Siwiec [23] have proved that a regular, o-space has a o-discrete net consisting
of closed sets. Every regular o-space is perfect (= every closed set is a G;).
The space X is f-refinable if for every open cover % of X there is a sequence
{9, n ¢ N} of open refinements of % such that, for each p € X, there is
some 7 € N such that {G: G € ¥,, p € G} is finite. The space X is irreducible
if every open cover has a minimal open refinement; i.e., an open refinement &
such that no proper subcollection of & covers X. The following implications
hold: regular o-space = f-refinable = irreducible. Also, every subset of a
perfect, 8-refinable space is f-refinable. (See [2; 3; 29; 30; 35].)
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A subset 4 of a topological space X is discrete if each x € A has an open
neighborhood V such that VN A4 = {x}. A T\ space X has property wD if
given any sequence (x,) in X with no cluster points, there is a subsequence
(%) Oof {x,)and a discrete open collection {V;: & € N} such that x,, € V; for
all # € N. (Note: The collection {V,: %k € N} is closure-preserving and
VeV, = ¢ whenever k # n.) Property wD was introduced by Vaughan [34]
as a generalization of property D of R. L. Moore [22]. (Also, see [6].) Every
normal space and every regular, countably paracompact space has property
wD), and it is easy to check that property wD is hereditary with respect to
closed sets. See [34] for an example of a regular ¢-space which does not have
property wD and an example of a regular o-space with property wD which
does not have property D.

We adopt the following set-theoretic notation: mt, 1, and p are cardinal
numbers; «, § and y are ordinal numbers; |E| is the cardinality of the set E.
The cofinality of m is denoted by ¢f(m), and an infinite cardinal m is said to be
sequential if ¢f(m) = No; i.e., if m is the sum of a countable number of smaller
cardinals. If E is a set and?” is a collection of sets, then Zm(E) = {4: A C E,
|[4] £ m} and (# )m = {G: G is the union of £ m elements of ¥"}.

We use w, L, d, ¢, and ¢ to denote the following standard cardinal functions:
weight, Lindelof degree, density, cellularity, and pseudo-character. (For defi-
nitions, see Juhdsz [17].) Thus, if X is 7, then ¢(X) = Ry (X has countable
pseudo-character) if and only if every point in X is a G;. Also, if ¢(X) = N,
we say that X satisfies the countable chain condition (= CCC).

If ¢ is a cardinal function, then k¢ denotes the hereditary version of ¢; i.e.,
h¢(X) = sup {¢(¥): ¥ C X}. (This notation is due to Engelking [7].) For
example, a space X hereditarily satisfies the CCC if and only if kc(X) = No.
It is easy to check that hc(X) = Ro- {sup |4]: 4 is a discrete subset of X}.
(Thus, hc(X) = s(X), where s(X) is the spread of X.) Hajnal and Juhasz [11]
have proved that [X| £ 2" for X a T-space. This fundamental in-
equality is used on several occasions in this paper. Hajnal and Juhész [12] have
also proved that if X is an infinite Hausdorff space and |X| is a singular strong
limit cardinal, then X has a discrete subset of cardinality | X|.

Let X be a topological space. The tightness of X, denoted ¢(X), is the smallest
infinite cardinal m such that for each x € X, if x € H, then there is some K C
H with |[K| £ mandx € K (see[1]). If #(X) = R, we say that X has countable
tightness. It is clear that if ¥ C X, then £{(Y) = t(X). The w-character of X,
denoted 7y (X), is the smallest infinite cardinal m such that for each x € X,
there is a collection’?” of open sets (not necessarily containing x) with |7 | <
m such that if R is any open neighborhood of x, then V' € R for some V' € v
Sapirovskii [28] has proved that w(X) £ mx(X)*® whenever X is regular.
The net weight of X, denoted nw (X)), is the smallest infinite cardinal m such that
X has a net of cardinality £ m. For a 7', space X, let yC(X) = N, m, where
m is the smallest cardinal such that every closed subset of X is the intersection
of £ m open sets. Note that yC(X) = N, if and only if X is perfect, and
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Y(X) = ¢C(X) for every T space X. The number of open sets in X is denoted
by 0(X). Juhész [18] has proved that o(X) < [X|"® the inequality o(X) <
w (X )" appears in [13], and it is clear that o(X) £ 2%,

An important example should be mentioned to help keep the basic problem
in perspective. The Stone-Cech compactification of N is a compact, Hausdorff,
separable space such that every infinite closed set has cardinality 2. (See
[24].) Thus BN has no denumerable closed sets and no closed sets of cardi-
nality 2%, :

3. Closed sets in regular s-spaces satisfying property wD. In this
section we extend Stone’s theorem [31] from metrizable spaces to the class of
regular o-spaces satisfying property wD. Although the generalization (Theorem
3.2) is stated in terms of the net weight rather than the weight, these two
cardinal functions agree for metrizable spaces. Two key ideas due to Stone are
used in the proof. One is easily described as follows: to prove that a space has
m" closed sets of cardinality n(n =< m), obtain a discrete subset of cardinality
m which has at most one limit point; this immediately yields m" closed sets of
cardinality n. Propositions 7 and 8 in this section are concerned with finding
such sets; the difficult case is when m is sequential. The other key idea of
Stone’s is a consideration of the two cases (a) and (b) which appear in the
proof of 3.8.

The approach we take is to isolate four properties of a topological space X
which are sufficient to determine, for each infinite cardinal n <|X|, the number
of closed sets in X of cardinality n. We then show that every regular o-space
with property wD satisfies these four properties.

L | X] = nw(X)¥e
II. If Y is an infinite subset of X, then Y has a discrete subset of cardinality
nw(Y).
II1. If Y is a closed subset of X, and Y has « discrete subset of cardinality m
No, then V has at least 2™ closed subsets of cardinality | V.
IV. If Yis an open subset of X, and Y has a discrete subset of cardinality m =
No, then there is a discrete subset B of YV of cardinality m which has at most one

limat pointin V.

%

THEOREM 3.1. Let X be an infinite topological space satisfying I-1V, and let
nw(X) = m. (1) The total number of closed sets in X 1s 2™, and there are 2™ closed
sets of cardinality | X|. (2) If Ro = n = m, the number of closed sets of cardinality
ns [ X|"(=m"). 3) If m < n < |X|, the number of closed sets of cardinality n
15 0 or 2™,

Proof. Since 0(X) = 2™, the total number of closed sets in X is < 2™,
By II and IIT (with ¥ = X), X has 2™ closed sets of cardinality |X|. This
completes the proof of (1). To prove (2), let n be an infinite cardinal with
1 = m. Clearly it suffices to construct |X|[* closed sets of cardinality n. By I,
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1X| < m¥, s0 | X" = m By Il and IV (with ¥ = X), there is a subset B of
X of cardinality m with at most one limit point. Hence there are m" (= [X|")
closed sets in X of cardinality 1.

To prove (3), assume that X has a closed subset L of cardinality 1, where
m < n < |X|. Note that nw (L) = mornw(X — L) = m. If nw(L) = m, then
IT and I1I applied to L immediately yields a collection of 2™ closed sets in X,
each of cardinality n. Suppose that #nw(X — L) = m. Then by II and IV
applied to (X — L), there is a discrete subset B of (X — L) of cardinality m
which has at most one limit point in (X — L). Hence (LU E: E C B} is a
collection of 2™ closed sets in X, each of cardinality n.

We now show that every regular s-space with property wD satisfies [-IV.
Property I follows from 3.4, II from 3.5, I1I from 3.6, and IV from 3.7(2) and
3.8. This yields the following generalization of Stone’s theorem.

THEOREM 3.2. Let X be an infinite, regular o-space satisfying property wD,
let nw(X) = m. (1) The total number of closed sets in X 1s 2™, and there are 2™
closed sets of cardinality |X|. (2) If X¢ £ 1 £ m, the number of closed sets of
cardinality wis | X|* (= m"); in particular, the number of closed sets of cardinality
mis 2™ (3) If m < n < |X|, the number of closed sets of cardinality n is 0 or 2™,

Remark 3.3. Regarding part (3) of Theorem 3.2, if GCH holds, then there is
no cardinal 1 such that m < 1 < |X|. On the other hand, as proved by Stone
in [31], if X is a complete metric space and 1 is a cardinal such that w(X) <
n < |X|, then X has no closed subset of cardinality 1.

ProrosiTION 3.4. If X is T, then |X| < nw(X ¥,

Proof. We may assume that X is infinite. Let ¢ (X) = u, let.4" be a net for X
of cardinality nw(X), and for each p € X let {V(a, p): 0 < a < 1} be a col-
lection of open neighborhoods of p such that M 1 (a, p) = {p}. For each @ and
p, choose N(a, p) € A such that p € N(a, p) € V(a, p). Define f: X —
Pu N )by f(p) = {N(a,p):0 < a < n}. Then fis one-one, so | X| = nw(X)"

ProposITION 3.5. If X is a regular o-spuce, then nw(X) = he(X). Moreover,
if X 1s infinite, then X has a discrete subset of cardinality nw(X).

Proof. First we show that hc(X) = nw(X). Since hc(X) = nw(X) always,
it suffices to show that nw(X) < he(X). Let #F = Up &, be a o-discrete
closed net for X. For each #n € N, [#,| < hc(X), and so |# | < he(X). Since
F is a net for X, nw(X) < he(X).

Now assume that X is infinite and nw(X) = m. First suppose that m is not
sequential. If |%,| < m for all #, then |# | < m, a contradiction of nw(X) =
m. Thus for somen € N, ]37,,| = m, from which it follows that X has a (closed)
discrete subset of cardinality m. If m is sequential, the existence of a discrete
subset of cardinality m follows from kc(X) = m. (See [14]).
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ProrositioN 3.6. Let X be a regular, perfect space satisfying property wD,
let A be a discrete subset of X of cardinality m = Ro. Then there are at least 2™
closed sets in X of cardinality | X|.

Proof. Let | X| = p. Clearly we may assume that m < p. First suppose that
pis not sequential. Let A = 4, \U A,, where [4:] = [4.] = mand 4, N 4, =
¢. For each x € A; let V, be an open neighborhood of x such that IV, 4 =
{x}, and foreach B C A, let V(B) = U,ep Vo Ifforall B € 4,4, |V(B)] <,
then {X — V(B): B C 4.} is a collection of 2™ closed sets in X, each of
cardinality p. Suppose, then, that for some B C 4,, |V(B)| = p. Since X is
perfect and ) is not sequential, there is a closed set ¥ C V(B) with |F| = .
Then {F\U E: E C 4,} is a collection of 2™ closed sets in X, each of cardi-
nality p.

Now suppose thatp is sequential, sayp = 2 51 Pz, wherem < p; < pp < ...
< p. We consider two cases.

(@) There is a cardinal nw < p such that for each x € A, there is an open neigh-
borhood of x of cardinality < n. For eachx € A4 let I/, be an open neighborhood
of x of cardinality =< nsuch that V,MN A = {x}. Foreach B C A let V(B) =
Uzes Voo Now |V(B)| = m-n <p,s0{X — V(B): B C A} is a collection of
2™ closed sets in X, each of cardinality p.

(b) There is a sequence {x,) 1n A such that if V is any open neighborhood of xy,
then |V| > p,. Let E = A — {x,: n € N}, and note that |E| = m. (It may be
necessary to take a subsequence of (x,) if m = X,.) First suppose that (x,)
has no cluster points. Since X has property wD), there is a subsequence (x,, ) of
(x,) and a discrete open collection { V;: £ € N} such thatwx,, € Vi forallk € N.
For each k let W, be an open neighborhood of x,, such that W, C 1, and
W, N\ E = ¢. Note that |W,| > p,. Foreach B C Elet L(B) = (U5, W) U
B. Then {L(B): B C E} is a collection of 2™ closed sets in X, each of cardi-
nality p. Next suppose that (x,) has a cluster point p. Let {V;: & € N} be a
decreasing sequence of open neighborhoods of p such that N, 7, = {p}. Let
(x,,) be a subsequence of (x,) such that x,, € V, for all & € N. Let IV, be an
open neighborhood of x,, such that W, € V, and W, N\ E = ¢. Recall that
Wi > m. For each B C E let L(B) = [(U%=i W)U {p}]1U B. Then
{L(B): B C E} is a collection of 2™ closed sets in X, each of cardinality p.

ProrositioN 3.7. Let X be a Ty, perfect space and let A be a discrete subset of X .
(1) If |A] > m, then there is a subset B of A such that |B| > m and B has no
limit points. (2) If |A| = m, and m is not sequential, then there is a subset B of A
of cardinality m with no limit points.

Proof. We may assume that m is infinite. For each x € A4 let V, be an open
neighborhood of x such that V, M A4 = {x}. Now V = U4 V, is open, so
V = U F,, where each F, is closed. For n € N let H, = F, M 4. Then H,
has no limit points, and 4 = g, H,. If |4| > m, then |H,| > m for some
n € N. If |A] = m, and m is not sequential, then |H,| = m for some n € N.
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ProPOSITION 3.8. Let m be a sequential cardinal, let X be a regular, perfect,
0-refinable space having property wD), let Y be an open subset of X, and let A be
a discrete subset of Y of cardinality m. Then there is « discrete subset B of ¥V of
cardinality m such that B has at most one limit point in Y.

Proof. Let m = > %1 b, where p; < po < ... < m. We consider two cases.

(@) There is a cardinal p < m such that for each x € Y, there is an open neigh-
borhood V, of x such that |V, M A| £ p. We may assume that V, C Y for all
x € Y. Since every subspace of a perfect, f-refinable space is 6-refinable, it
follows that ¥ is irreducible. Let ¥ = {G,: t € T} be a minimal open refine-
mentof {V,:x € Y}.Since A € Uer (G,MNA),|G,NA| Spforalltc T,
and |4| = m, itfollows that |T| = m. Foreacht € T,letx, € (G, — U Gy),
and let B = {x,;: t € T}. Then B C ¥, and B is a discrete subset of X of
cardinality = m which has no limit points in V.

(b) There is a sequence {x,) in ¥V such that if V is any open neighborhood of x,,
then |V M 4] > p,. First suppose that (x,) has no cluster points. Since X has
property wD), there is a subsequence (x,,) of (x,) and a discrete open collection
{ Vi k € N} such that x,, € V; for all & € N. Now |[V; N Al > p,, =, so
by 3.7(1) there is a subset B; of VM 4 such that |B;| > », and B; has no
limit points. Let B = U%., B;. Then B C Y and B is a discrete subset of X of
cardinality m with no limit points. Next suppose that (x,) has a cluster point p.
Let {V,: E € N} be a decreasing collection of open neighborhoods of p such that
Nt Vi = {p}. Let {(x,,) be a subsequence of (x,) such that x,, € V; for all
k¢ N. Now [V, M A| > p,, = v, so by 3.7(1) there is a subset B, of V, M A
such that |B,| > p, and B, has no limit points. Let B = %, B;. Then B C 7,
and B is a discrete subset of X of cardinality m with at most one limit point,
namely p.

4. Denumerable closed sets. In this section we want to find the number of
denumerable closed sets in an infinite [lausdorff space X. The number of such
sets may be 0 (take X = gN), and the maximum number is | X |®o. In Theorem
4.1 below we show that this maximum number is achieved under fairly weak
conditions on X. We then give several examples; of special interest is 4.5, an
example of a compact, Hausdorff space X in which the number of denumerable
closed sets is neither 0 nor |X|Xo,

THEOREM 4.1. Let X be an infinite, regular space with countable psendo-
character. Then the number of denumerable closed sets in X is | X |Ro.

Proof. Let & be a collection of denumerable subsets of X such that |&| =
|X[®o and the intersection of any two distinct elements of ¢ is finite. (See
[33].) For each E ¢ &, construct a denumerable closed set E* as follows.
(1) If E has no limit points, let E* = E. (2) If E has a limit point p, let
{V.: n € N} be a decreasing collection of open neighborhoods of p such that
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N V. = {p}, let {x,: n € N} be a denumerable subset cf E such that x, € V,
for all n, and let E* = {x,: n € N} U {p}.

Now let D and E be distinct elements of &”. Since D N E is finite, it easily
follows that D* M E* is also finite, and hence D* = E* Thus {E*: E ¢ &'} is
a collection of |X|Xo denumerable closed sets in X.

Remark 4.2. The above result cannot be extended to higher cardinals;
Y(BN) < 2% but BN has no closed sets of cardinality 2%, However, the
following question is suggested. If X is a regular space with countable pseudo-
character, and |X| > 2®¢, does X have a closed subset of cardinality 2Xo?

Example 4.3. Assuming the axiom of comstructibility, there is a compact,
Hausdorff, hereditarily separable, hereditarily normal space such that every infinite
closed set has cardinality 2. Such a space has been constructed by Fedorcuk

(8].

Example 4.4. There is o compact, Hausdorff space X with |X| = m, m 4s
sequential, X has a discrete subset of cardinality m, and every infinite closed subset
of X has cardinality = 2. The basic idea in constructing X is to replace each
positive integer k& in BN with a suitable compact space. We recall some facts
about Stone-Cech compactifications. (1) 8N is the set of all ultrafilters on N,
and a base for the topology on 8N is { U’: U C N}, where U’ = {q €8N: U € ¢}.
(2) If D is a discrete space of cardinality p = R, then |8D]| = 2%°, 8D has a
discrete subset of cardinality p, and every infinite closed subset of 8D has
cardinality = 27%. (See [9; 26].) Notation: for a cardinal p, exp;(p) = 2° and
expes1(p) = 2%,

For each positive integer k let D, be a discrete space of cardinality exp; (Xo).
Then |8D;| = expr+2(Xo), 8D, has a discrete subset of cardinality exp,(Xo), and
every infinite closed subset of 8D, has cardinality = 2. Let m= "%, exp; (No),
and note that m is sequential. Let N* = {g: ¢ is a free ultrafilter on N}, and
let X = N*U (U1 6D;). (We assume that N* M\ gD, = ¢ for all £ and
BD: N\ BD, = ¢ for n # k) For UCN, let U’ ={¢g€cN* UcgqlU
(Urer BDy),andlet & = {U: Uisopen in 8D, for some k} \J { U"": U an infinite
subset of N}. Then & is a base for a compact, Hausdorff topology on X. (The
proof is similar to the corresponding result for BN ; see [26].) Note that | X| = m
and X has a discrete subset of cardinality m.

Now let F be an infinite closed set in X, and let us show that |F| = 22,
We may assume that F /M 8D, is finite for all # € N. Let W = {k: k € N,
F M BD, # ¢}. First suppose that W is infinite. Then W is an infinite subset
of BN, and so there are 22% points in N* which are limit points of W for the
space BN. One can easily check that each of these points is also a limit point of
F for the space X. Next suppose that W is finite. Since F (M 8Dy is finite for
all k&, F M N* is infinite. Again, there exist 228 points in N*, each of which is
a limit point of F M N* for the space SN. Each of these points is also a limit
point of F for the space X.
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Example 4.5. There is a compact, Hausdorff space X such that | X| = m >
22x°, m 1s sequential, X has a discrete subset of cardinality m, and the number of
denumerable closed sets in X 1s neither 0 nor | X X0, Let ¥ be constructed as in
44,letX = YV @ [0,1). Then |X| = m < m®, and the number of denumerable
closed sets in X is m. (The number of closed sets in X of cardinality 2R¢ is
also nt.)

Example 4.6. For every infinite cardinal m such that m®° = m, there is o
countably compact regular space X such that |X| = m, X has a discrete subset of
cardinality m, and X has no denumerable closed sets. (I am grateful to K. Kunen
for the suggestion that a regular space of cardinality 2% with no denumerable
closed subsets can be constructed in 8N). Let D be a discrete space of cardi-
nality m; recall that every infinite closed set in 8D has cardinality = 2%,
Construct a sequence {H,: 0 < a < X;} of subsets of 8D such that (1) |Ho| =
m and H, is a discrete subset of 8D; (2) |H,] £ m, 0 £ a < NX;; 3) for 0 <
a < Ny, if £ is a denumerable subset of \U<s<a Hg, then |E M H,| = Xi. Then
X = Uisga<tty He is the desired space.

Example 4.7. Assume GCH. Then for every cardinal m > Yo there is « count-
ably compact regular space X such that |X| = m, X has a discrete subset of
cardinality m, and X has no denumerable closed sets. First suppose that m is not
sequential. By GCH, m®® = m, so the existence of such a space follows from
4.6. Now assume that m is sequential. Under GCH the construction in 4.4
can be carried out for m.

5. Closed sets in X of cardinality |X|. Let X be an infinite Hausdorff
space. In this section we want to find the number of closed sets in X of cardi-
nality |X|. We show that the number of such sets is at least |X|, and under
GCH the number of such sets is 0(X). (Thus, under GCH), there are at least
as many closed sets in X of cardinality |X| as there are closed sets of any
other cardinality.)

THEOREM 5.1. Let X be an infinite Hausdorff space. Then there are at least | X|
closed sets in X of cardinality | X|.

Proof. Let |X| = m. It suffices to show that if n is a regular cardinal and
n = m, then X has at least n closed sets of cardinality m. In proving this, we
make the following assumption: if F is a closed subset of X, and W is an open
subset of F with |W| =2 n, then |F — W| < nt. (Indeed, if |FF — W| = m,
then {(F — W) \U {p}: p € W} is a collection of at least 1 closed sets in X,
each of cardinality m.) Under this assumption, we construct a sequence
{Fa: 0 = @ < 1} of closed sets in X such that (1) for0 £ 8 <a <, F, C
Fgand F, ## Fg; (2) | X — F] <1,0 £a <n Let Fy = X. Now let a be
fixed, 0 < @ < n, and assume that {Fs: 0 < 8 < a} have already been con-
structed so that (1) and (2) hold. We consider two cases.

https://doi.org/10.4153/CJM-1978-027-7 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1978-027-7

CLOSED SUBSETS 309

(@) ats a limit ordinal. Let Fy = Mg<o Fs. Clearly F,is closed and (1) holds.
Since X — Fy = Uosgpca (X — Fg), and n is regular, |X — F,] < n. Hence
(2) holds.

(b) as a successor ordinal, say « = v + 1. In this case F, is a closed set and
|X — F,| <mn,|F,] = m Let Uand V be disjoint, non-empty open sets in F,.
If |U| < n, then F, = F, — U is the desired closed set. Suppose that |[U| = n.
Then we may assume that |/, — U] < m, and so |U| = m. It follows that
|Vl <n, and so F, = F, — V is the desired closed set. (If |I"| = n, then
|F, — V| < m, contradicting U C F, — V and |U| = m.)

THEOREM 5.2. Assume GCH, let X be an infinite Hausdorff space. Then X has
0(X) closed sets of cardinality | X|.

Proof. Let |X| = m. By GCH, o(X) = m or o(X) = 2™ We assume that
0(X) = 2™ (If o(X) = m, we are finished by 5.1.) First suppose that m is
regular. Then for n < m, there are at most m" = m closed sets in X of cardi-
nality 1; thus there must be 2™ closed sets in X of cardinality m. Next suppose
that m is singular. Then there is a discrete subset of X of cardinality m (see
[12]), and hence there are 2™ closed sets in X, each of cardinality n.

6. The basic problem assuming GCH. If X is a Hausdorff space and 1 is
an infinite cardinal with n < |X]|, then the maximum number of closed sets in
X of cardinality nis | X|" In this section we assume GCH and show that, under
fairly general topological conditions on X, this maximum number is achieved
for all n < |X/|. In proving the main result (Theorem 6.7), we consider two
cases, namely 1 not sequential (Theorem 6.4) and n sequential (Theorem 6.6).

PropositioN 6.1. Assume GCH, let X be a Hausdorff space, and let n be an
infinite cardinal such that n < |X|.

(1) If | X| is regular, then the number of closed sets in X of cardinality n is 0
or |X[* (= |X]).

(2) If | X| is singular, and 1 < ¢f (| X|) or 27950 < 1 < |X|, then the number
of closed sets in X of cardinality nis 0 or | X |™

Proof. The following observation is easy to prove using GCH: for n < |X]|,
the number of closed sets in X of cardinality nis 0, | X|, or [X|". Note that (1)
and (2) for the case n < ¢f (|X]) follow from this observation and the fact that,
under GCH, |X|* = |X| whenever n < ¢f(|X]|). It remains to consider the
case in which |X| is singular and 2¢/0¥D < n < |X|. Suppose that X has a
closed set L of cardinality 1, and let us construct |X|* (= 2I%1) closed sets,
each of cardinality 1. Let 4 be a discrete subset of X of cardinality |X| (see
(12]), and assume that 4 "L = ¢. If B € 4, and |B| = ¢f(|X]), then
|B| = 227U*1_ (See [10].) Hence {L\J B: B C 4, |B| = ¢f(|X])} is a collec-
tion of 2!¥! closed sets in X, each of cardinality n.
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LEMMA 6.2, Let X be a regular space, let y(X) = n, and let A be an infinite
subset of X such that X = U{B: B C A4, |B| £ n}. Then |X| £ |4

Proof. For each p € X, let B, be a subset of 4 of cardinality = n such that
p € B,, and let {V(a, p): 0 < a < n} be a collection of open neighborhoods
of p such that Nacn Via, p) = {p}. Let f1 X — Pn(Pn(4)) be defined by

f(p) = { Vi, p) N B,: 0 £ a < n}. Then f is one-one, so |X| < [4"

ProrositioN 6.3. Let X be a regular space. Then |X| < d(X WY and
|X| £ d(X)#Om,

Proof. We may assume that X is infinite. Let ¢(X) - {(X) = n, let 4 be a
dense subset of X of cardinality d(X). Since {(X) € n, X = U {B: B C 4,
|B| < n}. Hence |X| £ d(X)" by 6.2. The proof for ¢(X)  mx(X) = n is
similar.

Turorem 6.4. Assume GCH. Let X be a regular space with countable pseudo-
character and countable tightness, and let 1 be an infinite cardinal with n < |X|.
If n = Ny, or 1 is not sequential, then the number of closed sets in X of cardinality
nis | X"

Proof. For 1 = R, the result follows from 4.1. Assume, then, that n > 2o
and 1 is not sequential. First we show that X has one closed set of cardinality .
Let H C X, |H| = n. By 6.3, |[H| < n¥, and since n is not sequential and
GCH is assumed, n¥¢ = n, Thus H is a closed set of cardinality n. Let |X| =
. By 6.1, we need only consider the case in which m is singular and n = ¢f(m)
orn = 29 By GCH, m" = 2™, and so we must construct 2™ closed sets in X,
each of cardinality 1. Let 4 be a discrete subset of X of cardinality m (see [12]),
let L be a closed subset of X of cardinality 1, and assume that 4 M L = ¢.
If B C 4 and|B| = ¢f(m), then |B| < ¢f(m)X by 6.3. Now ¢f(m) is a regular
cardinal, so ¢f(m)® = ¢f(m) or ¢f(m)¥e = 2%, according as ¢f(m) > N, or
cf (m) = Ny. In either case, since n = 2%, it follows that ¢f(m)® < n. Hence
{BU L: B C A4, |B| =cf(m)} is a collection of 2™ closed sets in X, each of
cardinality n.

Example 6.5. Assuming the axiom of constructibility, there is « regular, first
countadle, countably compact space X such that |X| = hc(X) = 2% and X has
no closed subsets of cardinality R,. (Thus the hypothesis in 6.4 that ¢f (n) > R
is not superfluous.) The example is due to Eric van Douwen (personal com-
munication), and is based on results of Juhasz, Nagy, and Weiss. Call a space
good if it is regular, countably compact, and locally countable (i.e., every point
has a countable open neighborhood). The following two results about good
spaces are proved in [19]. (1) If X is an uncountable good space, then ¢f(|X|)
> No. (2) If the axiom of constructibility holds, and ¢f(m) > X, then there
is a good space of cardinality m. Now let X be a good space with [X| = 2,
By (1), X does not have a closed subset of cardinality RX,. The fact that ke (X)
= |X]| follows from the lemma on p. 40 of [17].
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THEOREM 6.6. Assume GCH. Let X be a regular, irreducible space with count-
able pseudo-character and property wD, and let 1 be a sequential cardinal with
n < |X|. Then the number of closed sets in X of cardinality wis | X|".

Proof. By 4.1, we may assume that Xy < n. By 6.1, it suffices to show that
X has a closed set of cardinality n. Let 1 = ) i1 b, whered; < p, < ... <1
Note that 22 < nfor all 2. We consider two cases.

(a) Thereis a cardinaly < nsuch that for alix € X, there is an open neighbor-
hood V., of x such that |V,| < p.Asin (a) of 3.8 (with ¥ = X), there is a subset
of X of cardinality = n with no limit points.

(b) There is a sequence (x,)in X such that if V is any open neighborhood of x,,,
then | V| > p,. The proof is similar to (b) in 3.8, with these modifications. Let
(x,,)and {V;: k € N} be as in (b). For each 2 € N let L, be a subset of 17, of
cardinality p;, and note that |L,| < 22*. (See [10].) Let H = \UZ., L;. Then H
(or H\U {p}) is a closed set of cardinality n.

TaeEOREM 6.7. Assume GCH. Let X be a regular, trreducible space with
countable pseudo-character, countable tightness, and property wD, and let n be
an infinite cardinal with 1 < |X|. Then the number of closed sets in X of cardi-
nality n is | X|n.

CoROLLARY 6.8. Assume GCH, let X be « paracompact, first countable space,
and let 1 be an infinite cardinal with n < |X|. Then the number of closed sets in X
of cardinality n is | X|"

Remark 6.9. In 6.6 and 6.7, “‘irreducible’’ can be replaced by ‘““meta-Lindel6f.”
(Recall that a space is meta-Lindeldf if every open cover has a point-countable
open refinement.) The necessary modifications in the proof of 6.6 are as follows.
Assume that 1 > Yo, and consider case (a). Let ¥ be a point-countable open
refinement of {V,: x € X}, and let 4 be a subset of X which is maximal with
respect to the property that if x and vy are distinct elements of 4, then y ¢
st (x, ). Note that 4 has no limit points. Moreover, by maximality of 4,
the collection ¥, = {G ¢ F: G M A # ¢} covers X. Suppose |4| < 1. Then
|%,| £ ]4]-Ro < n, and since |G| < pforall G € %, it follows that |X| < n,
a contradiction. Hence |4| = n, and so X has a closed subset of cardinality 1.

7. Upper bounds on o(X). In this section we obtain upper bounds on o(X)
in terms of other cardinal invariants of X. Recall that an infinite, Hausdorff
space has at least 2X0 open sets.

TurorREM 7.1. If X is T4, then o(X) < 2"V [n pariicular, if X is an
wnfinite, Hausdorff, hereditarily separable sbare with countable pseudo-character,
theno(X) = 2Ro,

Proof. This result follows immediately from the two inequalities |X| <
2N gnd o(X) = | XM,
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LEMMA 7.2 ( éapirovskiY [27)). Let & be an open cover of a topological space X,
let he(X) < m. Then there is some G in (Z)m and some A in Pwm(X) such that
X =GUA.

THEOREM 7.3. If X is regular, then o(X) £ wx (X)"O¥CE  In particular,
if X is an infinite, regular, hereditarily CCC, perfect space with w-character
< 2R0 theno(X) = 2o,

Proof. Let he(X) - ¢yC(X) = m, let 7x(X) = n. Then |[X| £ 2" <
2™ and w(X) £ wx(X)® < 1™ (see [28]). Let Z be a base for X of cardi-
nality £ n™, andlet?” = {GUA:G € (B)m A € Pu(X)}. Now |(¥ )m| <
n™, and so it suffices to show that each open set in X belongs to (¥7)™. If IV is
open, then W = Uacm Fa, where each F, is closed. Fixa < m. For each p € Fa,
choose B, € & such that B, C W. Apply 7.2 to { B,: p € F,} and F, to obtain
Ao and E,, each a subset of F, of cardinality < m, such that Fo € [(Uper, By)
U 4,] = Va Note that Vo, € ¥ and Vo € W. Since W = Uaem Va and
(Uacm Vo) € (7 )m, the proof is complete.

THEOREM 7.4. If X 1s normal, then o(X) < 24X Iy particular, if X s
an infinile, separable, perfectly normal space, then o(X) = 2o,

Proof. Let d(X) - yC(X) = m, let 4 be a dense subset of X of cardinality
s=m Let# = {H: H C A4}, and let ¥ = {L: L is the intersection of < m
elements of #7}. Then |.¢'| < 2™, and so it suffices to show that every closed set
in X belongs to.%. If Fisclosed, then F = Maem Va, where each 1V, is an open
set. For each a < m let W, be an open set such that ¥ € W, € W, C V,, and
let Hy = A N\ W,. Then F = MNaem Hays0 F € L.

TaEOREM 7.5. If X 1s normal, then 0(X) = ax (X)X In particular,

of X s an nfinite, perfectly normal, CCC space with w-character < 2R, then
0(X) = 2%,

Proof. Let ¢(X) - ¢C(X) = m, let 7x(X) = 1. Now w(X) £ ax(X)«¥ <
n™, so X has a base Z with |#Z| < w". Let ¥ = {G: G is the union of < m
elements of #}, and let# = {H: H is the intersection of < m elementsof ¥}.
Now || <u™, and so it suffices to show that every closed set in X belongs to
#. Let F be a closed set, and let F = (MNacm Va, where each 17, is an open set.
Fix @ < m. Let W, be an open set such that # C W, € W, C V., and let Z,
be a maximal, disjoint subcollection of {B: B ¢ &, B C W.,}. Since ¢(X) =<
m, |Za < m Let G, = U ., and note that /' € G, € W, and G, € ¥.
Since F = MNa<m Gay F € H# and the proof is complete.

Lxample 7.6. Assuming V = L, there is a compact, Hausdorff, hereditarily

separable, completely normal space in which the number of open sets is 2*%. Such
a space has been constructed by Fedorcuk [8].

Example 7.7. It 1s consistent that there exists a regular, hereditarily Lindelof
space in which the number of open sets is 220, Such a space has been constructed
by Hajnal and Juhész [16].
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Example 7.8. There is a separable, perfect, first countable, regular space in which
the number of open sets is 2% The tangent disc space (see p. 36 of [36]) has
the required properties.

Example 7.9. There ts a compact, Hausdorff, separable, first countable space in
which the number of open sets is 22%0. Let I* be the top and bottom line of the
lexicographically ordered square with the order topology. Then the space
X = I* X I* has the required properties. (See [4; 17].)

Question 7.10. It follows {from the inequalities |X| < 2" (X Hausdorff)
and 0(X) = w(X)"L that a hereditarily Lindeldf, first countable, Hausdorff
space has = 2%o closed sets. As a consequence of 7.1, a hereditarily separable,
first countable Hausdorff space has < 2X¢ closed sets. Does a regular, hered-
itarily CCC, first countable space have = 2¥¢ closed sets?
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