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Noncommutative rational Clark measures

Michael T. Jury, Robert T. W. Martin, and Eli Shamovich

Abstract. We characterize the noncommutative Aleksandrov–Clark measures and the minimal

realization formulas of contractive and, in particular, isometric noncommutative rationalmultipliers

of the Fock space. Here, the full Fock space over C
d is defined as the Hilbert space of square-

summable power series in several noncommuting (NC) formal variables, and we interpret this

space as the noncommutative and multivariable analogue of the Hardy space of square-summable

Taylor series in the complex unit disk. We further obtain analogues of several classical results in

Aleksandrov–Clark measure theory for noncommutative and contractive rational multipliers.

Noncommutative measures are defined as positive linear functionals on a certain self-adjoint

subspace of the Cuntz–Toeplitz algebra, the unital C∗-algebra generated by the le� creation

operators on the full Fock space. Our results demonstrate that there is a fundamental relationship

between NC Hardy space theory, representation theory of the Cuntz–Toeplitz and Cuntz algebras,

and the emerging field of noncommutative rational functions.

1 Introduction

�e full Fock space over C
d , H2

d , can be defined as the Hilbert space of square-
summable power series in several noncommuting (NC) formal variables, z ∶=
(z1 , . . . , zd). As such, the Fock space is an obviousNCandmultivariable generalization
of the Hardy space H2 of square-summable Taylor series in the complex unit disk, D.
Namely, any h ∈ H2

d is a power series of the form

h(z) ∶= ∑
ω∈Fd

ĥωz
ω , ĥω ∈ C,

where F
d is the free monoid, the set of all words in the d letters {1, 2, . . . , d}, and

if ω = i1 ⋅ ⋅ ⋅ in ∈ Fd , 1 ≤ ik ≤ d, the free monomials are defined in the obvious way as
zω ∶= zi1 ⋅ ⋅ ⋅ zid . (�is is a monoid with product given by concatenation of words, and
the unit is the empty word,∅, containing no letters.)�e Fock space is a Hilbert space
when equipped with the ℓ2-inner product of its power series coefficients. Remarkably,
elements of H2

d are bona fide functions in the NC unit row-ball of all strict row
contractions acting on a separable Hilbert space. �at is, a d-tuple of n × n complex
matrices, Z ∶= (Z1 , . . . , Zd), can be viewed as a linear map Z ∶ Cn ⊗C

d → C
n from d

copies ofCn into one copy. If this linearmap is a (strict) contraction, thenZ is said to be
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a (strict) row contraction. �e formal power series of any h ∈ H2
d converges absolutely

in operator norm when evaluated at any such Z, and also uniformly on compacta in a
suitable sense. Moreover, such NC functions are free noncommutative functions in the
NC unit row-ball, Bd

N
, in the sense of NC Function�eory:�ey are graded, preserve

direct sums, and preserve the joint similarities which respect their NC domain, Bd
N
.

Here, we write Bd
N
= ⊔∞n=1 Bd

n , where B
d
n is the set of all strict row contractions on C

n .
�eHardy algebra,H∞, of all uniformly bounded analytic functions in the complex

unit disk is the multiplier algebra of H2. �at is, if g ∈ H∞ and h ∈ H2, the linear
map h ↦ g ⋅ h defines a bounded linear multiplication operator and H∞ ⊂ H2. �e
Hardy algebra contains many rational functions; any rational function in C with
poles in C/D automatically belongs to H∞ and is, in fact, analytic in a disk of radius
greater than one. �is is similarly the case for the Fock space, or NC Hardy space,
H

2
d , by [44, �eorem A]. We define the NC Hardy algebra, H∞d , as the unital algebra

of all uniformly bounded free NC functions in the unit row-ball, and this can be
identified with the (le�) multiplier algebra of the NC Hardy space. Rational functions
can also be defined in several NC variables, and this yields a rich subdiscipline of NC
function theory which has deep and novel connections to several branches of algebra
and analysis including NC Algebra, Free Probability �eory, Multivariable Operator
�eory, Control �eory, and Free Algebraic Geometry [7, 9, 29–34, 46–48, 54, 60,
65–69, 71].

A complexNC rational expression is any valid linear combination ofNCpolynomi-
als, inverses, and products.�e domain, Domr, of such an expression is the collection
of all d-tuples of matrices of all sizes, X = (X1 , . . . , Xd) ∈ Cn×n ⊗C

1×d , n ∈ N, for
which r(X) ∈ Cn×n is defined. An NC rational function, r, is an equivalence class of
NC rational expressions with respect to the relation r1 ≡ r2, if r1 and r2 agree on the
intersection of their domains. �e domain of the equivalence class, r, is the union
of the domains of every r ∈ r and we write r(X) ∶= r(X) if r ∈ r and X ∈ Domr. We
say that r is regular at 0 if 0 = (0, . . . , 0) ∈ C1×d belongs to Dom r. Any NC rational
function in d-variables, r, which is regular at 0 has a finite-dimensional realization:
�ere is a triple (A, b, c) with A ∈ Cd

n ∶= Cn×n ⊗C
1×d and b, c ∈ Cn , so that for any

X ∈ Cd
m ,

r(X) = b∗LA(X)−1c; LA(X) ∶= In ⊗ Im −∑A j ⊗ X j .

Here, LA(⋅) is called a (monic, affine) linear pencil. Realizations of NC rational
functions have been studied extensively and have numerous applications.

In this paper, we seekNCmultivariable analogues of classical results for contractive
rational multipliers of the Hardy space. Any contractive multiplier, b ∈ [H∞]1, of H2

corresponds, essentially uniquely, to a positive, finite, and regular Borel measure, µb ,
on the complex unit circle, ∂D. Here, we use the notations [X]1 and (X)1 to denote the
closed and open unit balls, respectively, of a Banach space, X. �is measure is called
the Aleksandrov–Clark or Clark measure of b [1, 2, 15]. Fatou’s theorem implies that
any contractive analytic function in the disk, b, is inner, i.e., isometric as a multiplier,
if and only if its Clark measure is singular with respect to Lebesgue measure [27,
36]. If b = b is a contractive rational multiplier, then µb is either a singular, finite,
and positive sum of weighted point masses on the circle, in which case b is an
inner, finite Blaschke product, or, µb has a nonzero absolutely continuous part with
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Noncommutative rational Clark measures 1395

respect to Lebesgue measure with log-integrable Radon–Nikodym derivative and this
implies that b is not an extreme point of [H∞]1. One can define a one-parameter
family of Clark measures, µξ , associated with b ∈ [H∞]1 as the Clark measures of

ξb for any ξ on the unit circle, ∂D. Defining H2(µ) as the closure of the analytic
polynomials in L2(µ), for any ξ ∈ ∂D, there is a natural, unitary “weighted Cauchy
transform” fromH2(µ

ξb
) onto the de Branges–Rovnyak space,H (b), of b. �is space

is a Hilbert space of analytic functions which is contractively contained in H2, and in
the case where b is inner, this is simplyH (b) = (bH2)⊥, the orthogonal complement
of the range of b as an isometric multiplier. In this inner case, H2(µ

ξb
) = L2(µ

ξb
),

so that multiplication by the independent variable, M
(ξ)
ζ
∶ H2(µ

ξb
)→ H2(µ

ξb
), is

unitary. As discovered by Clark [15], the images of the adjoints of this one-parameter

family of unitary operators, M
(ξ)
ζ

, under weighted Cauchy transform are a family

of rank-one unitary perturbations of the restricted backward shi�, S∗∣(bH2)⊥ . Here,
recall that the shi�, S ∶= Mz , is the isometry of multiplication by the independent
variable in H2. Analysis of the shi� plays a central role in Hardy space theory, and
in operator theory in general [53, 64]. A fundamental result, due to Aronszajn and
Donoghue, in the theory of Aleksandrov–Clark measures is that the singular parts of
the family µα = µbα , α ∈ ∂D, are mutually singular [4, 24]. Moreover, point masses of
µαb on the unit circle correspond to points where b has a finite Carathéodory angular
derivative [12, 52]. We will obtain natural and convincing analogues of these results in
the noncommutative setting for NC rational multipliers of the Fock space.

1.1 Reader’s Guide

�e subsequent section will provide some basic background on the Fock space and
NC rational functions. In Section 3, we study the NC Clark measures of contractive
NC rational multipliers. Classically, positive measures on the circle can be identified
with positive linear functionals via the Riesz–Markov theorem, and the appropriate
NC analogue of a positive measure on the circle is then a positive linear functional
on a certain operator system, the free disk system. �eorem 3.2 identifies the NC
Clarkmeasures of contractiveNC rationalmultipliers as the finitely correlated positive
linear functionals on the free disk system. Finitely correlated Cuntz states were
originally introduced by Bratteli and Jørgensen in their studies of representations
of the celebrated Cuntz algebra [11], the universal C∗-algebra of a surjective row
isometry [17]. Here, a row isometry is an isometry from several copies of a Hilbert
space into one copy. We further prove that an NC rational multiplier is inner,
i.e., isometric, if and only if its NC Clark measure is singular with respect to NC
Lebesgue measure in the sense of the NC Lebesgue decomposition of [40, 41] (see
Corollary 3.15). �is is the analogue of a classical corollary to Fatou’s theorem in the
special case of rational multipliers: A contractive multiplier of H2 is inner if and only
if its Clark measure is singular. �eorem 3.14 provides a detailed characterization of
the finitely correlated positive NCmeasures, including a concrete formula for the NC
Radon–Nikodym derivative of any finitely correlated NC measure with respect to a
canonical NC Lebesgue measure. �eorem 4.1 provides a complete description of the
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minimal realization of any contractive NC rational multiplier and, in particular, any
inner (isometric) NC rational multiplier.

Proposition 5.6 shows that if b ∈ [H∞d ]1 is NC rational and inner, then there are
certain finite row co-isometries, Aζ , on the boundary of the unit row-ball, ∂Bd

N
, so

that b(At
ζ) has ζ ∈ ∂D as an eigenvalue, where t denotes matrix transpose of each

component. If v is the eigenvector of b(At
ζ)∗ to eigenvalue ζ , �eorem 5.8 shows that

v∗b(Z) has a “Carathéodory angular derivative” at At
ζ , and that the point evaluation

h ↦ y∗h(At
ζ)v is a bounded linear functional on the de Branges–Rovnyak space

of b, for any vector y of the appropriate size. �eorem 5.11 then partially extends
the Aronszajn–Donoghue theorem to NC rational multipliers of Fock space: Under
certain assumptions, we show that the singular parts of the family of NC Clark
measures of an inner rational multiplier of Fock space are mutually singular and we
provide a finite upper bound on the number of distinct NC Clark measures which are
notmutually singular. Here, a Gelfand–Naimark–Segal (GNS) construction applied to
any positive NCmeasure produces a GNSHilbert space, and a row isometry acting on
this space. (�is space and this row isometry are themultivariable analogues ofH2(µ)
and Mζ ∣H2

µ
in the case where µ is a positive measure on the circle.) Two NC Clark

measures µb , µb′ are then said to be mutually singular if their GNS row isometries are
mutually singular in the sense that they have no unitarily equivalent direct summands.

Any row isometry uniquely determines and is uniquely determined by a
∗-representation of the Cuntz–Toeplitz algebra, C∗{I, L1 , . . . , Ld} [17]. Here,
L ∶= (L1 , . . . , Ld) is the le� free shi�, the row isometry of le� multiplications by the d
independent NC variables, Lk ∶= ML

zk
, on the Fock space, and this plays the role of the

shi� operator, S = Mz ∶ H2 → H2, in this multivariable NC Hardy space theory. �is
reveals a fundamental connection between the representation theory of the Cuntz
and Cuntz–Toeplitz C∗-algebras and the study of positive NC measures. In fact, any
cyclic row isometry (or ∗-representation) can be obtained, up to unitary equivalence,
as the GNS row isometry of a positive NC measure [45, Lemma 2.2]. �e Cuntz and
Cuntz–Toeplitz C∗-algebras are important objects in C∗-algebra theory, and they
also play a universal role in the dilation theory of row contractions [55].

2 Background

2.1 Multipliers of Fock space

Le� multiplications by the d independent NC variables z = (z1 , . . . , zd) define isome-
tries on the Fock space with pairwise orthogonal ranges,

Lk ∶= ML
zk
, L∗j Lk = δ j,k I.

It follows that the row d-tuple L ∶= (L1 , . . . , Ld) ∶ H2
d ⊗C

d → H
2
d is an isometry from

several copies ofH2
d into itself. Such an isometry is called a row isometry, and we call

this row isometry of le� multiplications on the Fock space the le� free shi� and its
components the le� free shi�s. Similarly, one can define the right free shi�s,Rk ∶= MR

zk
,

as right multiplication by the independent NC variables as well as the row isometric
right free shi�, R = (R1 , . . . , Rd). �e letter reversal map t ∶ Fd → F

d , which reverses
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the order of letters in any word ω ∈ Fd , defines an involution on the free monoid,

ω = i1 ⋅ ⋅ ⋅ in ↦ ωt ∶= in ⋅ ⋅ ⋅ i1 .
Given a word, ω = i1 ⋅ ⋅ ⋅ in ∈ Fd , the length of ω is ∣ω∣ = n and ∣∅∣ ∶= 0.�e free mono-
mials {eω ∶= zω ∣ ω ∈ Fd} define a standard orthonormal basis of H2

d ≃ ℓ2(Fd), and
the letter reversal map gives rise to a unitary involution of the Fock space,Ut, defined

by Utz
ω = zωt

. Here, e∅ = z∅ =∶ 1 is called the vacuum vector of the Fock space. It is
straightforward to verify thatUtLkUt = Rk , so that the le� shi�s are isomorphic to the
right shi�s.

�eNCHardy algebra,H∞d , of uniformly boundedNC functions can be identified,
completely isometrically, with the unital Banach algebra of le� multipliers of the NC
Hardy space, H2

d [62, �eorem 3.1]. �at is, given any NC function, F ∈ H∞d , and h ∈
H

2
d , the le� multiplication operator ML

F ∶ H2
d → H

2
d , defined by

h(Z)↦ F(Z) ⋅ h(Z),
is bounded and ∥ML

F∥ = ∥F∥∞, where ∥ ⋅ ∥∞ denotes the supremumnormoverBd
N
. For

any free polynomial p ∈ C{z} ∶= C{z1 , . . . , zd}, one can check that p(L) = ML
p , and

so we employ the notation F(L) ∶= ML
F . Similarly, if p ∈ C{z}, then, MR

p = pt(R) =
Utp(L)Ut, acts as right multiplication by p, where if h is a formal power series, h(z) =
∑ ĥωz

ω ,

ht(z) ∶= ∑ ĥωz
ωt = ∑ ĥωtzω .

In particular, if h ∈ H2
d , h

t = Uth. �e le� and right multiplier algebras of H2
d are

unitarily equivalent via the unitary letter reversal involution Ut and can be identified
with the le� and right analytic Toeplitz algebras, L

∞
d ∶= Alg{I, L1 , . . . , Ld}−WOT

and R
∞
d = {I, R1 , . . . , Rd}−WOT = UtL

∞
d Ut, whereWOT denotes the weak operator

topology. Since p(R) = MR
pt for any p ∈ C{z}, we will write G(R) = MR

G t for any

G ∈ H∞d . Namely,G ∈ H∞d if and only ifGt ∈ H∞;t
d ∶= t ○H∞d .Wewill use the following

terminology: A le� or right multiplier is inner if it is isometric and outer if it has dense
range.

2.2 Noncommutative reproducing kernel Hilbert spaces

In syzygy with classical Hardy space theory, the Fock space is a (noncommutative)
reproducing kernel Hilbert space, in the sense that for any Z ∈ Bd

n and vectors
y, v ∈ Cn , thematrix-entry point evaluation, ℓZ ,y ,v ∶ H2

d → C,

h ↦ y∗h(Z)v ,
is a bounded linear functional. Equivalently the linear map h ↦ h(Z) is bounded as a
map fromH

2
d into the Hilbert space,C

n×n , equipped with the Hilbert–Schmidt inner
product. By the Riesz lemma, ℓZ ,y ,v is implemented by inner products against vectors
K{Z , y, v} ∈ H2

d , which we call NC Szegö kernel vectors.
In greater generality, let Cd

N
∶= ⊔∞n=1Cd

n denote the d-dimensional complex NC
universe. Here, recall that we define Cd

n ∶= Cn×n ⊗C
1×d . A subset Ω ⊆ Cd

N
is an NC

set if it is closed under direct sums, and we write Ω = ⊔Ωn where Ωn ∶= Ω⋂C
d
n .
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A Hilbert space, H, of free noncommutative functions on Ω is a noncommutative
reproducing kernel Hilbert space (NC-RKHS), if for any n ∈ N, Z ∈ Ωn and y, v ∈ Cn ,
the linear point evaluation functional

h ↦ y∗h(Z)v
is bounded on H [8]. As before, the Riesz lemma implies that these functionals are
implemented by taking inner products against point evaluation or NC kernel vectors
k{Z , y, v} ∈H. Given any such NC-RKHS, Z ∈ Ωn , and W ∈ Ωm , one can define
a completely bounded map on n ×m complex matrices by: k(Z ,W)[⋅] ∶ Cn×m →
C

n×m ,

y∗k(Z ,W)[vu∗]x ∶= ⟨k{Z , y, v}, k{W , x , u}⟩H ,

and this map is completely positive if Z =W [8]. Here and throughout, all inner
products are conjugate-linear in their first argument. Following [8], we call k(Z ,W)[⋅]
the completely positive noncommutative (CPNC) reproducing kernel ofH, and we write
H =Hnc(k). One can check that adjoints of le� and rightmultipliers of anNC-RKHS
have a familiar action on NC kernel vectors:

(ML
F)∗k{Z , y, v} = k{Z , F(Z)∗y, v} and (MR

G)∗k{Z , y, v} = k{Z , y,G(Z)v}.
All NC-RKHS in this paper will be Hilbert spaces of free NC functions in the unit

row-ball Bd
N
,

B
d
N =

∞
⊔
n=1

B
d
n , B

d
n ∶= {Z ∈ Cn×n ⊗C

1×d ∣ ZZ∗ = Z1Z
∗
1 + ⋅ ⋅ ⋅ + ZdZ

∗
d < In} .

In the case of the Fock space, H2
d =Hnc(K), where K is the NC Szegö kernel: Given

Z ∈ Bd
n ,W ∈ Bd

m , and P ∈ Cn×m ,

K(Z ,W) ∶= (idn ,m[⋅] −AdZ ,W∗[⋅])−1 ○ P = ∑
ω∈Fd

ZωPW∗ω ,

AdZ ,W∗[P] ∶= Z1PW
∗
1 + ⋅ ⋅ ⋅ + ZdPW

∗
d .

2.3 NC rational functions

Asdescribed in the introduction, a complexNC rational expression is any syntactically
consistent combination of the several NC variables z1 , . . . , zd , the complex scalars, C,
the operations +, ⋅,−1, and parentheses (, ) with domain Domr = ⊔∞n=1Domn r, where

Domn r ∶=
∞
⊔
n=1
{X = (X1 , . . . , Xd) ∈ Cn×n ⊗C

1×d ∣ r(X) is defined} .
We will use the notation C

d
n ∶= Cn×n ⊗C

1×d for a row d-tuple of complex n × n
matrices. An NC rational expression is valid, if its domain is nonempty. An NC
rational function, r, is then an equivalence class of valid NC rational expressions with
respect to the relation r1 ≡ r2 if r1(X) = r2(X) for all X ∈ Domr1⋂Domr2. (By [47,
Footnote, p. 52], given any two valid NC rational expressions, rk , their domains at
level n, Domn rk = Domrk ∩Cd

n , have nontrivial intersection for sufficiently large n.)
�e set of all NC rational functions in d variables with coefficients in C is a division
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ring or skew field, and is, in fact, the universal skew field of fractions for the ring
C{z} = C{z1 , . . . , zd} of complex NC polynomials [3, 14], [47, Proposition 2.2].

AnyNC rational function in d-variables, r, which is regular at 0, has a unique (up to
joint similarity)minimal descriptor realization. Namely, there is a triple (A, b, c) with
A ∈ Cd

n and b, c ∈ Cn , so that for any X ∈ Cd
m ,

r(X) = (b∗ ⊗ Im) LA(X)−1 (c ⊗ Im) , LA(X) ∶= In ⊗ Im −∑A j ⊗ X j ,

and this realization is minimal in the sense that n is as small as possible. Here, LA(⋅)
is called a (monic, affine) linear pencil, and we will employ the simplified notations

ZA = Z ⊗ A ∶=
d

∑
j=1

Z j ⊗ A j ,

for any Z ,A ∈ Cd
N
. Minimality implies that the realization is both observable,

⋁A∗ωb = Cn ,

and controllable

⋁Aωc = Cn

(see, e.g., [31, Section 3.1.2]). Minimal realizations are unique up to joint similarity
[10, �eorem 2.4]. �e domains of NC rational functions which are regular at 0 have
a convenient description:

�eorem [46,�eorem 3.1], [68,�eorem 3.10] If r is an NC rational function which
is regular at 0 with minimal realization (A, b, c), then

Dom r = ⊔
n∈N
{X ∈ Cd

n∣ det LA(X) ≠ 0} .
Any NC rational r ∈ H2

d is necessarily defined on B
d
N
and hence is regular at 0. As

proved in [44], an NC rational function belongs to the Fock space if and only if it is
regular at 0 and hasminimal realization (A, b, c) so that the joint spectral radius of the
d-tuple A is less than 1 [44, �eorem A]. Here, if A ∶= (A1 , . . . ,Ad) ∶ Cn ⊗C

d → C
n

is any row d-tuple of n × n matrices, we define the completely positive map AdA,A∗ ∶
C

n×n → C
n×n by

AdA,A∗(P) ∶= A1PA
∗
1 + ⋅ ⋅ ⋅ + AdPA

∗
d .

�e joint spectral radius, spr(A), of A is then defined by the Beurling formula:

spr(A) ∶= lim
k

2k√∥Ad(k)A,A∗(In)∥.
By the multivariable Rota–Strang theorem, A is jointly similar to a strict row con-
traction if and only if spr(A) < 1 [58, �eorem 3.8] (see also [62, Proposition 2.3

and Remark 2.6]). In particular, A is said to be pure if Ad
(k)
A,A∗(In)→ 0, and a finite-

dimensional row d-tuple, A ∈ Cd
n , is pure if and only if spr(A) < 1 [62, Lemma 2.5].

If r ∈ H2
d has minimal descriptor realization (A, b, c), then A is jointly similar to a

finite strict row contraction Z ∈ Bd
n , where Z denotes entrywise complex conjugation,
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and one can verify that r = K{Z , y, v} is an NC Szegö kernel vector in the Fock space,

where y, v are the image of b, c under the (conjugate of the) similarity and its inverse
that intertwine A and Z [44, Proposition 3.2].�at is,

⟨r, h⟩H2 = y∗h(Z)v
and

K{Z , y, v}(W) = ∑
ω∈Fd

y∗ZωvWω , W ∈ Bd
N .

In [44,�eoremA], we established (a more general version of) the following theorem
which characterizes when an NC rational function belongs toH2

d .

�eorem A Let r be an NC rational function in d variables. �e following are
equivalent:

(i) r ∈ H2
d .

(ii) r ∈ H∞d .
(iii) r ⋅Bd

N
⊆ Dom r for some r > 1.

(iv) r = K{Z , y, v} for some Z ∈ Bd
n and y, v ∈ Cn .

(iv) r is regular at 0 and if (A, b, c) is a minimal realization of r, then spr(A) < 1.
Given A ∈ Cd

m and Z ∈ Cd
n , consider the linear pencil

LA(Z) = In ⊗ Im − Z ⊗ A = In ⊗ Im −
d

∑
j=1

Z j ⊗ A j .

Observe that

∥Z ⊗ A∥ ≤ ∥Z∥row∥A∥col ∶= ∥(Z1 , . . . , Zd)∥L (Cn⊗Cd ,Cn) ∥( A1

⋮
Ad

)∥
L (Cm ,Cm⊗Cd)

.

Given A ∈ Cd
m , we will also write

col(A) ∶= ( A1

⋮
Ad

) ∈ Cm×m ⊗C
d , so that ∥A∥col = ∥col(A)∥L (Cm ,Cm⊗Cd) .

It follows that Z ⊗ A will be similar to a contraction if Z is jointly similar to a row
contraction and A is jointly similar to a column contraction, and Z ⊗ A will further
be similar to a strict contraction if, in addition, at least one of Z ,A is jointly similar
to a strict row or column contraction, respectively. If Z ⊗ A is similar to a strict
contraction, then LA(Z)−1 can be expanded as a convergent geometric sum. A row
d-tuple, Z ∈ Cd

n , is said to be irreducible, if it has no nontrivial jointly invariant
subspace, i.e., there is no nontrivial subspace which is invariant for every Zk , 1 ≤ k ≤ d.
�e following lemma will be useful in the sequel.

Lemma 2.1 If Z = (Z1 , . . . , Zd) ∈ Cd
n , then the column, col(Z), is jointly similar to

a column d-tuple, col(W), with column norm at most ∥W∥col ≤ ∥Z∥row + ε, for any
ε > 0. Conversely, for any ε > 0, Z is jointly similar to a row d-tuple W ′ ∈ Cd

n with∥W ′∥row ≤ ∥Z∥col + ε. If Z is irreducible, then one can take ε = 0. In particular, any strict
row contraction is jointly similar to a strict column contraction and vice versa.
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Proof �e joint spectral radius of Z obeys spr(Z) ≤ ∥Z∥row. Consider the row
d-tuple Z∗ = row(Z∗) ∶= (Z∗1 , . . . , Z∗d).�en,

spr(Z∗) = lim
k↑∞
∥Ad(k)Z∗ ,Z(In)∥ 1

2k

≤ lim
2k√
trAd

(k)
Z∗ ,Z(In)

= lim 2k

√
∑
∣ω∣=k

tr Z∗ωZω

= lim 2k

√
∑
∣ω∣=k

tr ZωZ∗ω

= lim
2k√
trAd

(k)
Z ,Z∗(In)

≤ lim
2k√
n ⋅ ∥Z∥2krow

= ∥Z∥row .
By [62, Lemma 2.4], the closure of the joint similarity orbit of the row d-tuple,
row(Z∗), contains a d-tuple, W ′, with norm at most ∥W ′∥row = spr(Z∗) ≤ ∥Z∥row,
and if Z is irreducible, then its joint similarity orbit is closed so that W ′ is in the
joint similarity orbit of Z∗. In particular, given any ε > 0, Z∗ is jointly similar to some
W ∈ Cd

n with ∥W∥row ≤ ∥Z∥row + ε. Viewing W ∶ Cn ⊗C
d → C

n as a linear map, its
Hilbert space adjoint is col(W∗) ∶ Cn → C

n ⊗C
d with norm

∥W∗∥2col = ∥W∥2row ≤ (∥Z∥row + ε)2 .
Since row(Z∗) is jointly similar to row(W), it follows that col(Z) is jointly similar
to col(W∗) where ∥W∗∥col ≤ ∥Z∥row + ε. Proof of the other half of the claim is
analogous. ∎
Lemma 2.2 If r ∈ H2

d , then rt ∶= Utr is also an NC rational function in H
2
d . In

particular, the transpose of any NC Szegö kernel is an NC Szegö kernel.

Proof If r ∈ H2
d , then by [44, �eorem A], r = K{Z , y, v} for some Z ∈ Bd

n and
y, v ∈ Cn . Let C denote the conjugation (antilinear isometric involution) with respect
to the standard basis {ek}nk=1 defined by Cy = y, the entrywise (with respect to the

standard basis) complex conjugation of y. Given A ∈ Cd
n , let A

t ∶= (At
1 , . . . ,A

t
d), where

At
j denotes matrix transpose, and let A = CAC denote complex conjugation applied

entrywise to A in the standard basis. As described in [44], since r = K{Z , y, v} for
some Z ∈ Bd

N
, if we defineA ∶= Z, b = y, and c = v, then (A, b, c) is a finite-dimensional

realization of r. Recall that

⟨Lω1,K{Z , y, v}⟩H2 = y∗Zωv

= b∗Aωc,
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and calculate

⟨Lω1,UtK{Z , y, v}⟩H2 = ⟨Lωt

1,K{Z , y, v}⟩H2

= (b,Aωt

c)
Cn

= (b, ((At)ω)tc)
Cn

= (Atω
b, c)

Cn

= (Cc,CAtω
b)

Cn

= (c,Atωb)
Cn .

By the previous lemma, the d-tuple At ∈ Cd
n is pure, spr(At) < 1, and At is jointly simi-

lar to a strict column contraction. It follows that rt has a finite-dimensional realization(At , c, b), where At = (At
1 , . . . ,A

t
d), and hence rt ∈ H2

d is also NC rational. ∎
Remark 2.3 �e domain of any NC rational function, r, which is regular at 0, is open
with respect to the uniform topology on C

d
N
. Namely, given any X ∈ Cd

n and Y ∈ Cd
m ,

we define the row pseudometric

drow(X ,Y)2 ∶= ∥X ⊗ Im − In ⊗ Y∥2row = ∥(X ⊗ Im − In ⊗ Y)(X ⊗ Im − In ⊗ Y)∗∥
= ∥ d

∑
k=1
(Xk ⊗ Im − In ⊗ Yk)(X∗k ⊗ Im − In ⊗ Y∗k )∥ .

Since multiplication, summation, and inversion are all jointly continuous in operator
norm, and any NC rational function can be constructed by applying finitely many
arithmetic operations to free polynomials, it follows that Dom r is a uniformly open
NC set, and hence contains some row-ball, tBd

N
, of nonzero radius t > 0. Hence, by

rescaling the argument, rt(Z) ∶= r(tZ), we obtain an NC rational function rr with

Bd
N
⊆ Dom rr so that rt ∈ H∞d by [44,�eoremA]. It follows that given anyNC rational

function r, which is regular at 0, there is essentially no loss in generality in assuming
that r ∈ H∞d , or even r ∈ [H∞d ]1. Alternatively, if r has minimal realization (A, b, c),
then the joint spectral radius of the d-tuple, A ∈ Cd

n , is bounded above by the row
norm of A. Hence, A′ ∶= t ⋅ A, t−1 ∶= (1 + ε)∥A∥ has spr(A′) < 1, and if r′ has minimal
realization (A′ , b, c), then r′(Z) = r (t ⋅ Z) is a rescaling of r so that r′ ∈ H∞d .

2.4 Minimal realizations of r ∈ H∞d
�e minimal realization of any r ∈ H2

d is easily constructed as follows. Let c = r, set
M ∶= ⋁R∗ωr, Ak ∶= R∗k ∣M ,

and b ∶= PM 1. Since r = K{Z , y, v} is an NC Szegö kernel vector at a finite point
Z ∈ Bd

n ,

M = ⋁K{Z , y, Zωv}
is finite-dimensional. It is easily checked that the triple (A, b, c) is a realization of r.�e
realization (A, b, c) is controllable by construction, and it is also straightforward to
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check that it is observable. Alternatively, a minimal realization of r can be constructed
by applying backward le� shi�s to rt.

It will be convenient to also consider Fornasini–Marchesini (FM) realizations of
r ∈ H2

d . Here, an FM realization of r ∈ H2
d is a quadruple (A, B,C ,D), where A ∈ Cd

n ,
B ∈ Cn ⊗C

d , C ∈ C1×n , and D ∈ C, so that for any Z ∈ Dom r ⊇ Bd
N
,

r(Z) = D + C(I − ZA)−1B.
�e NC rational function, r, is called the transfer function of the FM colligation:

Ur ∶= (A B
C D

) ∶ (Cm

C
)→ (Cm ⊗C

d

C
).

As before, such a realization is called controllable if

C
m = ⋁

ω∈Fd

1≤ j≤d

AωB j ,

observable if

C
m = ⋁A∗ωC∗ ,

and minimal if N is as small as possible. Again, an FM realization is minimal if
and only if it is both observable and controllable, and minimal FM realizations are
unique up to joint similarity [7, �eorem 2.1]. It is straightforward to pass back and
forth between minimal descriptor and FM realizations. For example, beginning with
a minimal descriptor realization (A, b, c), setM0 ∶= ⋁ω≠∅ A

ωc, with projector P0 and
A(0) ∶= A∣M0

. If we define Bk = Akc, C ∶= (P0b)∗, and D ∶= r(0), then (A(0) , B,C ,D)
is a minimal FM realization of r.

Any b ∈ [H∞d ]1 has a (generally not finite-dimensional) de Branges–Rovnyak real-
ization [6].�is is a FM-type realization constructed using free de Branges–Rovnyak
spaces. Here, given b ∈ [H∞d ]1, the right free de Branges–Rovnyak space, H

t(b),
is the operator-range space of the operator

√
I − b(R)b(R)∗. �at is, H

t(b) =
Ran
√
I − b(R)b(R)∗ as a vector space, and the norm on H

t(b) is defined so that√
I − b(R)b(R)∗ is a co-isometry onto its range. Equivalently, H

t(b) is the NC-

RKHSHnc(Kb) with CPNC kernel

Kb(Z ,W)[⋅] ∶= K(Z ,W)[⋅] − K(Z ,W)[bt(Z)(⋅)bt(W)∗],
and NC kernel vectors

Kb{Z , y, v} ∶= (I − b(R)b(R)∗)K{Z , y, v} = K{Z , y, v} − b(R)K{Z , y, bt(Z)v},
where K(Z ,W) is the CPNC Szegö kernel of the free Hardy space and K{Z , y, v} is
an NC Szegö kernel vector. Any right free de Branges–Rovnyak space is contractively
contained inH

2
d , and it is always co-invariant for the le� free shi�s. While bt = b(R)1

does not belong to H
t(b) in general, L∗kb

t always belongs to H
t(b) [6, Proposition

4.2]. One then defines the co-isometric de Branges–Rovnyak colligation

U b ∶= (A B

C D
) ∶ (H t(b)

C
)→ (H t(b)⊗C

d

C
),
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where

A ∶= L∗∣H t(b) , B ∶= L∗bt , C ∶= (Kb
0)∗ , and D ∶= b(0).

One can then check that b is realized as the transfer function of this colligation.
In particular, if b = b ∈ [H∞d ]1 is an NC rational multiplier, one can cut down this
realization to obtain a finite-dimensional and minimal de Branges–Rovnyak FM
realization by setting

M0(b) ∶= ⋁
ω≠∅

L∗ωbt ,

with projector P0 and then

Ub ∶= Ub(P0 0
0 1

) = (A B

C D
) ∶ (M0(b)

C
)→ (M0(b)⊗C

d

C
),

where

A ∶= A∣M0(b) , B ∶= B, C ∶= CP0 , and D ∶= D = b(0).
Here, note that if b = K{Z , y, v} ∈ H2

d is NC rational, then bt is also an NC Szegö
kernel at some finite point W ∈ Bd

n by Lemma 2.2 and �eorem A. It immediately
follows that M0(b) is finite-dimensional.

Lemma 2.4 �efinite de Branges–Rovnyak FM realization (A,B,C,D) of b ∈ [H∞d ]1
obtained above is minimal.

�e proof is routine and omitted. As before, one can alternatively construct a de
Branges–Rovnyak realization of any b ∈ [H∞d ]1 (or minimal de Branges–Rovnyak FM
realization of an NC rational b ∈ [H∞d ]1) by considering the le� free de Branges–

Rovnyak space H (b), the operator-range space of
√
I − b(L)b(L)∗. �is space is

right shi� co-invariant and R∗ωb ∈H (b) for any ω ≠ ∅.
2.5 Clark measures

In classical Hardy space theory, there are (essentially) bijections between contractive
analytic functions in the disk, Herglotz functions, i.e., analytic functions in D with
positive harmonic real part and positive, finite, and regular Borel measures on the
unit circle. Namely, beginning with a positive measure on the circle, µ, one can define
its Herglotz–Riesz integral transform:

Hµ(z) ∶= ∫
∂D

1 + zζ
1 − zζ µ(dζ), z ∈ D,

and this produces a Herglotz function in the disk. Note that ReHµ(0) = µ(∂D) > 0.
Since ReHµ(z) ≥ 0, applying the so-called Cayley Transform, a fractional linear
transformation, which takes the complex right half-plane onto the unit disk, yields
a contractive analytic function:

bµ(z) = Hµ(z) − 1
Hµ(z) + 1 .
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Each of these steps is essentially reversible. Beginning with a contractive analytic
function b ∈ [H∞]1, its inverse Cayley transform,

Hb(z) ∶= 1 + b(z)
1 − b(z) ,

is a Herglotz function (provided b is not identically equal to 1). Moreover, given any
Herglotz function, H, in the disk, the Herglotz representation theorem implies that
there is a unique positive measure, µ, so that

H(z) = iImH(0) +Hµ(z) = iImH(0) +∫
∂D

1 + zζ
1 − zζ µ(dζ)

[35]. �at is, the Herglotz function corresponding to a positive measure is unique
modulo imaginary constants. If H = Hb , this concomitant measure is called the
Aleksandrov–Clarkmeasure orClarkmeasure of b [1, 2, 15]. Hence, any two contractive
multipliers b1 , b2 ∈ [H∞d ]1 whoseHerglotz functionsHk ∶= Hbk

differ by an imaginary
constant have the sameClarkmeasure. In this case, ifH2 = H1 + it for some t ∈ R, then
one can check that

b2 = z(t)
z(t) ⋅ µz(t) ○ b1

is, up to the unimodular constant,
z(t)
z(t) , a Möbius transformation of b1 corresponding

to the point

z(t) ∶= t

2i + t ∈ D,
so that the contractive analytic functions corresponding to a given positive measure
are unique up to such transformations.

By the Riesz–Markov theorem, any positive, finite, and regular Borel measure on
∂D can be viewed as a positive linear functional on theC∗-algebra of continuous func-
tions on the unit circle,C (∂D). Recall that the disk algebra, A(D), is the unital Banach
algebra of analytic functions in the disk which extend continuously to the boundary
and that this algebra is isomorphic to the operator algebra Alg{I, S}−∥⋅∥, where
S = Mz ∶ H2 → H2 is the shi�. By the Weierstrass approximation theorem, C (∂D) is
the supremum norm-closed linear span of the disk algebra and its conjugates.�at is,

C (∂D) = (A(D) + A(D)∗)−∥⋅∥. In the NC multivariable setting of Fock space, the
immediate analogue of a positive measure is then any positive linear functional on
the norm-closed operator system of the free disk algebra,Ad ∶= Alg{I, L1 , . . . , Ld}−∥⋅∥.
We will use the notation

Ad ∶= (Ad +A∗d)−∥⋅∥
for the free disk system, and (Ad)†+ will denote the set of positiveNCmeasures, i.e., the
set of all positive linear functionals on the free disk system.

As in the single-variable setting, one can define a free Herglotz–Riesz transform of

any positive NCmeasure µ ∈ (Ad)†+ and this produces an NC Herglotz function, Hµ ,

which has positive semidefinite real part in the NC unit row-ball, Bd
N
. Namely, given
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µ ∈ (Ad)†+ and Z ∈ Bd
n , the Herglotz–Riesz transform of µ is

Hµ(Z) ∶= idn ⊗ µ ((I + ZL∗)(I − ZL∗)−1) , ZL∗ ∶= Z1 ⊗ L∗1 + ⋅ ⋅ ⋅ + Zd ⊗ L∗d .

As before, the Cayley transform of any such Hµ defines a bijection between NC Her-
glotz functions and contractive le� multipliers, bµ , of the Fock space. Furthermore, as
before, the correspondence µ↔ Hµ is bijective modulo imaginary constants, and if
a positive NC measure, µ, corresponds to a contractive le� multiplier b ∈ [H∞d ]1, we
write µ = µb , and we call µ the NC Clark measure of b [38, 39].

3 NC rational Clark measures

One can apply a GNS construction to any µ ∈ (Ad)†+ to obtain a GNS Hilbert space,
H

2
d(µ), the completion of the free polynomials,C{z} = C{z1 , . . . , zd}, modulo vectors

of zero length, with respect to the GNS pre-inner product:

⟨p, q⟩µ ∶= µ(p(L)∗q(L)).
Equivalence classes, p + Nµ ∈ H2

d(µ), where p ∈ C{z} is a free polynomial and Nµ

denotes the le� ideal of zero-length vectors with respect to the µ-pre-inner product,
are dense in H

2
d(µ). �is construction also comes equipped with a le� regular

representation of the free disk algebra,

πµ(Lk)p + Nµ ∶= zk p + Nµ .

�is representation is unital, completely isometric, and extends to a ∗-representation
of the Cuntz–Toeplitz algebra so that Πµ = (Πµ;1 , . . . , Πµ;d) ∶= πµ(L) is a GNS row

isometry acting on H
2
d(µ). For details, see [38–41]. Any cyclic ∗-representation of

the Cuntz–Toeplitz algebra can be obtained, up to unitary equivalence, as the GNS
representation of a positive NC measure [45, Lemma 2.2].

Definition 3.1 A positive NC measure, µ ∈ (Ad)†+, is a finitely correlated
Cuntz–Toeplitz functional if the subspace,

Hµ ∶= ⋁
ω∈Fd

Π∗ωµ (1 + Nµ) ,
is finite-dimensional. If Πµ is also a Cuntz row isometry, i.e., a surjective row isometry,
we say that µ is a finitely correlated Cuntz functional.

Remark 3.1 In [11], finitely correlatedCuntz states were defined as unital and positive
linear functionals on the Cuntz algebra with the above property. However, if µ ∈(Ad)†+ is a finitely correlated Cuntz state according to our definition, i.e., if µ is a
unital, finitely correlated Cuntz functional on the free disk system, then Πµ is Cuntz,
and in this case, µ has a unique positive extension to the Cuntz–Toeplitz algebra
[45, Proposition 5.11]. Moreover, since Πµ is Cuntz, this defines a unique finitely
correlated Cuntz state in the sense of Bratteli and Jørgensen [11].

�eorem 3.2 An NC measure, µ ∈ (Ad)†+, is the NC Clark measure of a contractive
NC rational multiplier of Fock space, b ∈ [H∞d ]1, if and only if it is a finitely correlated
Cuntz–Toeplitz functional.
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It will be convenient to recall the construction of the free Cauchy transform of
elements of the GNS spaceH2

d(µ) [38–41]. Given any p ∈ C{z}, p + Nµ ∈ H2
d(µ), and

Z ∈ Bd
n , the right free Cauchy transform of p + Nµ is the holomorphic NC function

Cµ p ∈ O(Bd
N
),
(Cµ p)(Z) ∶= t ○ idn ⊗ µ ((In ⊗ I − Z ⊗ L∗)−1p(L))

= ∑
ω

Zωt

µ (L∗ω p(L))
= ∑Zω⟨zω + Nµ , p + Nµ⟩µ ,

and this final formula extends to any x ∈ H2
d(µ). Equipping this vector space of free

Cauchy transforms with the inner product that makes Cµ an onto isometry produces

an NC-RKHS in B
d
N
, H +(Hµ), the right NC Herglotz space of µ, with CPNC kernel

Kµ : For any Z ∈ Bd
n andW ∈ Bd

m ,

Kµ(Z ,W)[⋅] = K(Z ,W) [ 1
2
Ht

µ(Z)(⋅) + 1

2
(⋅)Ht

µ(W)∗] ,
where K denotes the CPNC Szegö kernel of the Fock space, and Hµ(Z) is the (le�)
NC Herglotz–Riesz transform of µ: For any Z ∈ Bd

n ,

Hµ(Z) ∶= idn ⊗ µ ((In ⊗ I + ZL∗)(In ⊗ I − ZL∗)−1)
= 2(Cµ 1 + Nµ)(Z) − µ(I)In .

Any such Hµ is an NC Herglotz function in B
d
N
as described in Section 2.5. �at is,

ReHµ(Z) ≥ 0.
�e image of the GNS row isometry, Πµ , under right free Cauchy transform is a

row isometry, Vµ , acting on H
+(Hµ):

Vµ = CµΠµC
∗

µ ∶= Cµ (Πµ;1 , . . . , Πµ;d)C ∗µ ⊗ Id ∶H +(Hµ)⊗C
d →H

+(Hµ),(3.1)

where Πµ;k = πµ(Lk).�e range of the row isometry Vµ is

RanVµ = ⋁
(Z ,y ,v)∈

B
d
n×C

n
×C

n ; n∈N

(Kµ{Z , y, v} − Kµ{0n , y, v}) ,(3.2)

and for any Z ∈ Bd
n , y, v ∈ Cn ,

V
∗
µ (Kµ{Z , y, v} − Kµ{0n , y, v}) = Kµ{Z , Z∗y, v} ∶= ( Kµ{Z ,Z∗

1
y ,v}

⋮
Kµ{Z ,Z∗d y ,v}

) ∈H
+(Hµ) ⊗C

d
.

(3.3)

�e linear span of all such vectors is dense inH
+(Hµ)⊗C

d sinceV∗µ is a co-isometry.
See [39, Section 4.4] for details.

Lemma 3.3 Each V∗µ;k acts as a backward le� shi� on H
+(Hµ). �at is, if

h ∈H
+(Hµ) has Taylor–Taylor series at 0 ∈ Bd

1 ,

h(Z) = ∑
ω

ĥωZ
ω , ĥω ∈ C, then (V∗k h)(Z) = ∑

ω

ĥkwZ
ω .
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Here, note that if h(Z) = ∑ ĥωZ
ω and h ∈ H2

d , then (L∗kh)(Z) = ∑ω ĥkωZ
ω . �is

motivates the terminology “backward le� shi�.”

Proof �e right free Cauchy transform of any x ∈ H2
d(µ) is h ∶= Cµx,

h(Z) = ∑
ω

Zω ⟨zω + Nµ , x⟩µ´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=∶ĥω

,

so that

(V∗µ; jh)(Z) = ∑
ω

Zω⟨zω + Nµ , Π
∗

µ; jx⟩µ
= ∑Zω⟨z jzω + Nµ , x⟩µ = ∑

ω

ĥ jωZ
ω . ∎

Proof (of�eorem 3.2) First, assume that µ ∈ (Ad)†+ is a finitely correlated Cuntz–
Toeplitz functional. Set T∗µ = Π∗µ ∣Hµ

. Let Hµ(Z) be the (le�) NC Herglotz–Riesz

transform of µ [39,�eorem 3.4]: For any Z ∈ Bd
n ,

Hµ(Z) = idn ⊗ µ ((I + ZL∗)(I − ZL∗)−1)
= 2 idn ⊗ µ ((I ⊗ I − Z ⊗ L∗)−1) − µ(I)In
= 2 ∑

ω∈Fd

Zω⟨1 + Nµ , Π
∗ω
µ 1 + Nµ⟩µ − µ(I)In

= 2 ∑
ω∈Fd

Zω⟨1 + Nµ , T
∗ω
µ 1 + Nµ⟩µ − µ(I)In

=∶ 2Gµ(Z) −Gµ(0n)In ,
where Gµ(Z) ∶= (Cµ 1 + Nµ)(Z). Hence, (A, b, c) ∶= (T∗µ , 1 + Nµ , 1 + Nµ) is a
finite-dimensional realization of Gµ(Z). Moreover, clearly 1 + Nµ is cyclic for T∗µ
by definition of Hµ , so that this realization is controllable. Similarly, it is observable
since 1 + Nµ is cyclic for Πµ . Indeed, since

H
2
d(µ) = ⋁Πω

µ (1 + Nµ) ,
it follows that if Pµ is the orthogonal projection ontoHµ , then

Hµ = PµH2
d(µ) = ⋁Tω

µ (1 + Nµ) ,
and (A, b, c) is the minimal realization of Gµ . Since Gµ has a finite descriptor

realization, it is an NC rational function with DomGµ ⊇ Bd
N
, and so Hµ is also an

NC rational function in B
d
N
. Applying the Cayley transform,

bµ(Z) ∶= (Hµ(Z) − In)(Hµ(Z) + In)−1 ∈ [H∞d ]1 ,
is a contractive, NC rational le� multiplier of Fock space with NC Clark measure µ.

Conversely, if b ∈ [H∞d ]1 is NC rational, then we can reverse the above argument to
see thatGµ isNC rational.Moreover, by Lemma 3.3, we have that for every j = 1, . . . , d,

(V∗µ , jGµ)(Z) = ∑
ω

Zω⟨z jω + Nµ , 1 + Nµ⟩µ .
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If (A, b, c) is a minimal realization ofGµ(Z) = ∑ω Ĝµ;ωZ
ω , then for every word ω,

Ĝµ;ω = ⟨zω + Nµ , 1 + Nµ⟩ = b∗Aωc,

and it follows that the minimal realization of V∗µ; jGµ is (A,A∗j b, c). Such “backward
le� shi�s” of NC rational functions were studied in [46, Section 2]. To show that µ
is finitely correlated, we need to show thatHµ is finite-dimensional. Equivalently, we
can show that

Mµ ∶= ⋁V∗ωµ Gµ , Mµ = CµHµ

is a finite-dimensional subspace of the NC Herglotz space H
+(Hµ) of

µ-Cauchy transforms. It follows that Mµ is finite-dimensional since ⋁A∗ωb is
finite-dimensional, by assumption. ∎
Remark 3.4 Wehave also established that (T∗µ , 1 + Nµ , 1 + Nµ) is a minimal descrip-
tor realization ofGµ , the free Cauchy transform of 1 + Nµ .

3.1 Row isometric dilations of finite row contractions

Let µ ∈ (Ad)†+ be a finitely correlated Cuntz–Toeplitz functional, and set Π = Πµ .
�en 1 + Nµ is Π-cyclic so that by Popescu’s NC Wold decomposition, Π = ΠL ⊕
ΠCuntz where ΠL is unitarily equivalent to L, and ΠCuntz is a cyclic and Cuntz
(surjective) row isometry [55,�eorem 1.3]. If we define the finite-dimensional space,

Hµ ∶= ⋁Π∗µ(1 + Nµ),
with projection Pµ , then Πµ is the minimal row isometric dilation of the finite row
contraction

Tµ ∶= PµΠµ ∣Hµ⊗C
d .

In particular, Πµ will be Cuntz if and only if Tµ is a row co-isometry by

[55, Proposition 2.5]. Let A ∶= (A1 , . . . ,Ad) ∶H ⊗C
d →H be any row contraction

on a finite-dimensional Hilbert space H ≃ Cn . Let V = (V1 , . . . ,Vd) ∶ K⊗C
d →K

be the minimal row isometric dilation of A onK ⫌H. Such row isometries, V, as well
as the structure of the unital, WOT-closed algebras they generate, were completely
characterized and classified up to unitary equivalence byDavidson, Kribs, and Shpigel
in [20]. We will have occasion to apply several results of [20] and so we will record
some of the main results of this paper here for future reference.

Given A,V ,H, and K as above, let V = Vp ⊕ V ′ be the Wold decomposition
of V corresponding to K =Kp ⊕K′, where Vp ≃ L ⊗ IJ is pure and V ′ is a Cuntz

row isometry on K′. Furthermore, let H̃ be the span of all minimal A-co-invariant
subspaces J̃ ofH so that B̃ ∶= (A∗∣

J̃
)∗ is a row co-isometry.�en, H̃ =⊕ H̃k , where{H̃k}Nk=1 is a maximal family of mutually orthogonal and minimal A∗-invariant

subspaces so that (A∗∣
H̃k
)∗ is a row co-isometry. Note that if J̃ is minimal, then B̃

is necessarily an irreducible row co-isometry. �e following theorem is part of the
statement of [20,�eorem 6.5].
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�eorem B (Davidson–Kribs–Shpigel) Let A be a finite-dimensional row contraction
on H with minimal row isometric dilation V = Vp ⊕ V ′ on K =Kp ⊕K′ ⊋H, with
notations as above. �en Vp is unitarily equivalent to L ⊗ IJ where dimJ = rank I −
AA∗ and V ′ is the minimal row isometric dilation of the row co-isometry Ã ∶= (A∗∣

H̃
)∗.

Moreover, V ′ =⊕N
k=1 V

′

k , where each V
′

k is an irreducible Cuntz row isometry and V ′k is

the minimal row isometric dilation of the irreducible row co-isometry Ã(k) ∶= (A∗∣
H̃k
)∗.

In the above statement, recall that a finite row contraction, A, on H is said to be
irreducible, if it has no nontrivial jointly invariant subspace. �is is equivalent to
Alg{I,A1 , . . . ,Ad} =L (H). If A is irreducible, then A cannot have any nontrivial
jointly co-invariant subspace either, so that also Alg{I,A∗1 , . . . ,A∗d} =L (H). In this
case, any vector x ∈H is cyclic for both A and A∗. On the other hand, we say that
a row isometry, V = (V1 , . . . ,Vd), is irreducible if and only if the Vk , 1 ≤ k ≤ d, have
no nontrivial jointly reducing subspace, i.e., a subspace which is both invariant and
co-invariant for each Vk .

�e following theorem characterizes when the minimal row isometric dilations of
two finite-dimensional row contractions are unitarily equivalent.

�eorem C [20,�eorem 6.8] Let A ∶= (A1 , . . . ,Ad) and B ∶= (B1 , . . . , Bd) be finite-
dimensional row contractions acting on finite-dimensional Hilbert spaces HA and HB ,
respectively. LetΠA andΠB be theirminimal row isometric dilations acting onKA ⊇HA

and KB ⊇HB . Let H̃A ⊆HA be the subspace spanned by all minimal A-co-invariant
subspaces, H, of HA on which A∗∣H is a column isometry and similarly define H̃B .
�en ΠA and ΠB are unitarily equivalent if and only if:

(1) rank (I − AA∗) = rank (I − BB∗), and
(2) A∗∣

H̃A
is jointly unitarily equivalent to B∗∣

H̃B
.

We will apply these results to study and characterize the GNS row isometry, Πµ ,
arising from a finitely correlated positive NC measure, µ.

Lemma 3.5 Let µ ∈ (Ad)†+ be a finitely correlated Cuntz–Toeplitz functional.�en the
Πµ−cyclic vector 1 + Nµ is cyclic for both Tµ and T∗µ .

Proof By definition, the finite-dimensional subspace

Hµ =⋁Π∗ωµ (1 + Nµ) =⋁T∗ωµ (1 + Nµ)
is T∗µ -cyclic. Moreover, by the GNS construction of H2

d(µ), 1 + Nµ is Πµ-cyclic.
However, since 1 + Nµ ∈Hµ is Πµ-cyclic, given any h ∈Hµ , there is a sequence of
polynomials pn ∈ C{z} so that pn(Πµ)1 + Nµ → h. Hence,

h = PHµ
h

= PHµ
lim pn(Πµ)1 + Nµ

= lim pn(PHµ
ΠµPHµ

)1 + Nµ

= lim pn(Tµ)1 + Nµ ,

sinceHµ is Πµ-co-invariant. It follows that 1 + Nµ is also cyclic for Tµ . ∎
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Let T ∶= (T1 , . . . , Td) ∶H⊗C
d →H be any row contraction on a finite-

dimensional Hilbert space,H. Given any x ∈H, define

H
′ ∶=⋁T∗ωx ⊆H and T ′ ∶= (T∗∣H′)∗ ,

with projector P′. Finally, define

Ȟ ∶=⋁T
′ωx ⊆H′ ,

with projector P̌ and Ť ∶= T ′∣
Ȟ⊗Cd . Observe that Ȟ is T ′-invariant and T-

semi-invariant, i.e., it is the direct difference of the nested, T-co-invariant subspaces

H
′ and H

′ ⊖ Ȟ.

Let K ∶= ⋁VωH be the Hilbert space of the minimal row isometric dilation, V,
of T; set

Kx ∶=⋁Vωx ,

with projection, Px ; and let Vx ∶= V ∣Kx
.

Proposition 3.6 Given T , x as above, the linear functional, µ ∶= µT ,x ∈ (Ad)†+,
defined by

µT ,x(Lω) ∶= ⟨x , Tωx⟩H = ⟨x , Ťωx⟩
Ȟ
,

is a finitely correlated positive NC measure. �e vector x is both Ť and Ť∗-cyclic. �e
map

Πω
µ (1 + Nµ) Ux↦ Vωx

is an isometry ofH2
d(µ) ontoKx , andUx p(Tµ)∗ (1 + Nµ) = Px p(T)∗x. If x is V-cyclic,

then V ≃ Πµ and Ť ≃ Tµ are unitarily equivalent.

Proof By [56,�eorem 2.1], the map Lω ↦ Tω is completely contractive and unital,
and hence extends to a completely positive and unital map of the free disk system into

L (H). In particular, µ = µT ,x ∈ (Ad)†+. �e vector x is, by definition, T
′
∗-cyclic, so

that

⋁ Ť∗ωx = P̌⋁T
′
∗ωx = P̌H′ = Ȟ.

�is proves that x is Ť∗-cyclic. Since Ȟ isT-semi-invariant, it follows that P̌Tω P̌ = Ťω .
Hence,

Ȟ =⋁T
′ωx = P′⋁Tωx

= P̌⋁Tω P̌x =⋁ Ťωx ,

so that x is also Ť-cyclic. Semi-invariance further implies that µ = µT ,x = µŤ ,x .
To see that zω + Nµ ↦ Vωx is an isometry, note that for any free polynomial p ∈

C{z}, we can write

p(L)∗p(L) = 2Re q(L) = q(L) + q(L)∗ ,
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for some q ∈ C{z}, and then p(Π)∗p(Π) = 2Re q(Π) for any row isometry Π. Hence,

∥p + Nµ∥2µ = 2Re ⟨1 + Nµ , q + Nµ⟩µ
= 2Re ⟨x , q(V)x⟩K = 2Re ⟨x , q(T)x⟩H
= ∥p(V)x∥2K = ∥Ux (p + Nµ) ∥2 .

Given any p(Tµ)∗ (1 + Nµ) ∈Hµ , consider

⟨zω + Nµ , p(Tµ)∗ (1 + Nµ)⟩µ = ⟨pzω + Nµ , 1 + Nµ⟩µ
= ⟨p(V)Vωx , x⟩K
= ⟨Vωx , Px p(T)∗x⟩K
= ⟨zω + Nµ ,U

∗

x Px p(T)∗x⟩µ .
It follows that

Ux p(Tµ)∗ (1 + Nµ) = Px p(T)∗x .(3.4)

Finally, if x is V-cyclic, then Kx =K and UxΠ
ω
µ = VωUx , so that Ux is an onto

isometry, and Πµ and V are unitarily equivalent. Hence,

UxHµ = Ux⋁Π∗ωµ (1 + Nµ) =⋁V∗ωx =⋁T∗ωx =H′ .
Moreover, since x is V-cyclic, given any h ∈H′, there is a sequence of polynomials
pn ∈ C{z} so that pn(V)x → h, and then

h = lim pn(V)x = P′h = lim P′pn(V)x = lim pn(T ′)x ,
so that x is also T ′-cyclic, Ȟ =H′, and Ť = T ′. It further follows that T ′ = Ť and Tµ

are unitarily equivalent via Ux . Indeed, if Kx =K so that Px = I, then equation (3.4)
becomes

Ux p(Tµ)∗(1 + Nµ) = p(T)∗x .
In particular, sinceUx restricts to a unitary map fromHµ ontoH

′, we obtain that for
any yµ ∶= q(Tµ)∗(1 + Nµ) ∈Hµ , q ∈ C{z} and 1 ≤ k ≤ d,

UxT
∗

µ;k yµ = T∗k q(T)∗x = T∗k Ux yµ .

�is proves that Tµ is unitarily equivalent to T ′. ∎
Remark 3.7 By the previous proposition, all examples of finitely correlated
Cuntz–Toeplitz functionals can be constructed from finite row contractions.

Lemma 3.8 Let T be a finite and irreducible row co-isometry on H, and let V be its
minimal (Cuntz) row isometric dilation onK ⊇H. �en any nonzero x ∈H is V-cyclic
and V is irreducible.

By [55, Proposition 2.5], a row contraction is a row co-isometry if and only if its
minimal row isometric dilation is a Cuntz row isometry. If V ∶= (V1 , . . . ,Vd) is a row
isometry on a separable Hilbert space, K, recall thatV ∶= Alg{I,V1 , . . . ,Vd}−WOT is
called the free semigroup algebra of V [19].
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Proof If T is an irreducible row co-isometry, then H is the unique, minimal
T-co-invariant subspace ofH so that V is irreducible by [20, Lemma 5.8]. Moreover,
by [20, �eorem 5.2], since T is irreducible, the WOT-closed unital algebra of V
contains PH, the projection onto H. Again, since T is irreducible, given any fixed
nonzero x ∈H, any h ∈H can be written as h = p(T)x for some p ∈ C{z}, so that

h = p(T)x
= PHp(V)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¶

∈V

x .

Hence, any h ∈H belongs to the weak and hence Hilbert space norm closure of Vx,
so that

⋁Vx =⋁VH =K,

since V is the minimal row isometric dilation of T. ∎
Lemma 3.9 Let T be a finite-dimensional row co-isometry on H with minimal row
isometric dilation V onK. Any vector h ∈H is T-cyclic if and only if it is V-cyclic.

Proof If h is V-cyclic, then it is clearly also T-cyclic. Conversely, if h is T-cyclic,
consider the space

K(h) ∶=⋁Vωh ⊆K.

If h is not V-cyclic, then K(h) ⫋K, and there is a nonzero x ∈K(h)⊥ and K(h)⊥ is
V-co-invariant. By [20, Corollary 4.2], there is a nonzero g ∈H⋂⋁V∗ωx ⊆K(h)⊥.
Hence, V∗ω g = T∗ω g ⊥K(h) for any ω ∈ Fd . However, by assumption, h is T-cyclic
so that g = p(T)h for some p ∈ C{z} and

∥g∥2 = ⟨p(T)h, g⟩ = ⟨h, p(T)∗g⟩ = 0,
contradicting that g ≠ 0. ∎
Remark 3.10 If T is an irreducible row co-isometry, then any x ∈H will be T∗ , T ,
andV-cyclic by the previous lemma. Proposition 3.6 then implies that if µ = µT ,x , that
T ≃ Tµ and V ≃ Πµ .

In [50], Kennedy refined the Wold decomposition of any row isometry by further
decomposing any Cuntz row isometry into the direct sum of three types: Cuntz type-L
(or absolutely continuous Cuntz [ACC]), von Neumann type, and dilation type.

Definition 3.2 A row isometry Π ∶H⊗C
d →H on a separable Hilbert space,H, is

type-L or pure if Π is unitarily equivalent to L ⊗ IJ for some separable Hilbert space J.
A Cuntz row isometry Π onH is:

(1) Cuntz type-L, or ACC, if the free semigroup algebra, S(Π), of Π, is completely
isometrically isomorphic and weak-∗ homeomorphic to the unitalWOT-closed
algebra of L, L∞

d ≃ H∞d .
(2) von Neumann type ifS(Π) is self-adjoint, i.e., a von Neumann algebra.
(3) dilation-type if Π has no direct summand of the previous two types.
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Remark 3.11 Any dilation-type row isometry, Π, has an upper triangular decompo-
sition of the form

Π ≃ (L ⊗ I ∗
T
),

so that Π has a restriction to an invariant subspace which is unitarily equivalent to a
pure row isometry and Π is the minimal row isometric dilation of its compression, T,
to the orthogonal complement of this invariant space [50, Proposition 6.2]. Since Π is
of Cuntz type, T is necessarily a row co-isometry [55, Proposition 2.5].

Recall that a vector, h ∈H, is said to be a wandering vector for a row isometry
V ∶H⊗C

d →H, if

⟨V αh,Vωh⟩H = δα ,ω∥h∥2H ,

and that the closed linear span of all wandering vectors for V is RanV⊥. If x is a unit
wandering vector for V, then

Hx ∶= ⋁
ω∈Fd

Vωx

isV-invariant and the linearmap,Ux ∶Hx → H
2
d , defined byUxV

ωx ∶= Lω1 is an onto
isometry intertwining V and L, UxV

ω = LωUx [55].

Lemma 3.12 Let T be a finite-dimensional row contraction on H with minimal row
isometric dilation V on K ⫌H. Any V-reducing subspace K′ ⊆K contains wandering
vectors for V.

Proof By [20, Corollary 4.2],H′ ∶=K′⋂H ≠ {0}. Define the subspace
W
′ ∶= ⎛⎝H′ +

d⋁
j=1

VjH
′
⎞⎠⊖H

′ .

By [20, Lemma 3.1], this is a nontrivial wandering subspace for V. ∎
�eorem 3.13 Let V ∶K⊗C

d →K be the minimal row isometric dilation of a finite
row contraction T ∶H⊗C

d →H,H ≃ Cn . �en V contains no ACC or von Neumann-
type direct summand so that V = VL ⊕ Vd i l is the direct sum of a pure type-L and a
dilation-type row isometry.

Proof Lemma 3.12 implies that any direct summand ofV has wandering vectors. It is
then an immediate consequence of [49, Corollary 4.13] thatV has no direct summand
of von Neumann type.

Suppose that V had a nontrivial ACC direct summand, Vac , acting on the
V-reducing subspace Kac . �en, by [20, Corollary 4.2], Hac ∶=Kac ⋂H ≠ {0}, and
Hac isVac-co-invariant. Let Tac ∶= (V∗ac ∣Hac

)∗, thenVac is the minimal row isometric
dilation of Tac . Indeed,

K̃ac ∶=⋁
ω
Vω
acHac
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is Vac-reducing, so that Kac ⊖ K̃ac =∶K′ac is also Vac-reducing. �en, by [20,
Corollary 4.2],K′ac ⋂H =H′ac ⊆Hac is nontrivial.�is contradicts thatK′ac ⊥ K̃ac ,
and we conclude that K̃ac =Kac .

Let {Hac ;k} be a maximal family of minimal, pairwise orthogonal, and Vac-co-
invariant subspaces ofHac . Fix some k and choose any nonzero h ∈Hac ;k .�en, since
Vac is absolutely continuous, every y ∈Kac is an absolutely continuous vector for Vac

in the sense of [21, Definition 2.4]. In particular, by [21,�eorem 2.7], h ∈Hac ;k ⊊Kac

is in the range of a bounded intertwiner, X ∶ H2
d →Kac . �at is, XLk = Vac ;kX, and

there is a g ∈ H2
d so that Xg = h. Note that X∗must be bounded below onHac ;k . First,

Ker X∗ is Vac-co-invariant since X
∗x = 0 implies that

X∗V∗ωac x = L∗ωX∗x = 0.
�e subspaceHac ;k is finite-dimensional, so that if X∗ is not bounded below on this
space, then it has nontrivial kernel. However, if

ker X∗⋂Hac ;k ≠ {0},
then this is a proper, nontrivial Vac-co-invariant subspace ofHac ;k , contradicting the
minimality of Hac ;k . Hence, X

∗ is bounded below by say ε > 0 on Hac ;k . Also recall
that since Vac is Cuntz, Tac is a row co-isometry.�en, for any n ∈ N,

∥h∥2 = ∑
∣ω∣=n
∥T∗ωac h∥2

≤ ε−2 ∑
∣ω∣=n
∥X∗T∗ωac h∥2

= ε−2 ∑
∣ω∣=n
∥X∗V∗ωac h∥2

= ε−2 ∑
∣ω∣=n
∥L∗ωX∗h∥2

→ 0,

since L is pure.�is contradiction proves the claim.
Alternatively, if Vac is an ACC direct summand of V acting on Kac , then Hac ∶=

H ∩Kac is nontrivial andVac-co-invariant by [20, Corollary 4.2]. IfH
′

ac ⊆Hac is any
minimalVac-co-invariant subspace, thenK

′

ac ∶= ⋁Vω
acH

′

ac isVac-reducing andwe set
V ′ac ∶= Vac ∣K′ac . By [20, Lemma 5.4], sinceH′ac is a minimalV ′ac-co-invariant subspace

that is cyclic for V ′ac , the free semigroup algebra,V′ac = Alg{I,V ′ac ;1 , . . . ,V ′ac ;d}−WOT ,
contains the projection, P′ac onto H′ac . However, Vac and hence V ′ac are absolutely
continuous, so that V′ac is completely isometrically isomorphic and weak-∗ homeo-
morphic to L

∞

d , the le� analytic Toeplitz algebra. �is produces a contradiction as
L
∞

d contains no nontrivial projections by [23, Corollary 1.5].
Any row isometry,V, has the Kennedy–Lebesgue–vonNeumann–Wold decompo-

sition V = VL ⊕ VACC ⊕ Vd i l ⊕ VvN , and we have shown that if V is the minimal row
isometric dilation of a finite row contraction, then the ACC and von Neumann-type
direct summands are absent. ∎
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�e analogue of normalized Lebesgue measure in this setting is NC Lebesgue
measure,m(Lω) ∶= ⟨1, Lω1⟩H2 , the so-called vacuum state of the Fock space. (�is NC
measure is the NC Clark measure of the identically 0 multiplier, just as normalized
Lebesguemeasure on the circle is the Clarkmeasure of the identically 0 function in the
disk.) In [40, 41], the first two authors have constructed the Lebesgue decomposition

of any positive NC measure µ ∈ (Ad)†+ with respect to NC Lebesgue measure, m. In
particular, µ is singular with respect to NC Lebesguemeasure in the sense of [40, 41] if
and only if its GNS row isometry is the direct sum of dilation-type and vonNeumann-

type row isometries [41, Corollary 8.13]. We say a positive NC measure µ ∈ (Ad)†+ is
of a given type if its GNS row isometry is of that corresponding type.�e GNS space
of µ decomposes as the direct sum,

H
2
d(µ) = H2

d(µac)⊕H
2
d(µs),

and Πµ = Πµac
⊕Πµs

with respect to this direct sum. Here,

Πµac
= Πµ;L ⊕Πµ;ACC and Πµs

= Πµ;d i l ⊕Πµ;vN

(see [41, Section 8]).
A bounded operator, T ∈L (H2

d), is called le� Toeplitz if L∗j TLk = δ j,k I. Such
operators are called multi-Toeplitz in [57]. Here, recall that a bounded operator,
T, on the Hardy space, H2(D), is called Toeplitz if T = Tf = PH2M f ∣H2 for some
f ∈L

∞(∂D). A result of Brown and Halmos identifies the bounded Toeplitz oper-
ators as the set of all bounded operators T ∈L (H2) with the Toeplitz property:

S∗TS = T ,
where S = Mz is the shi� on H2 [28, �eorem 6]. If b ∈ [H∞]1, then T ∶= I −
b(S)∗b(S) ≥ 0 is a positive semidefinite Toeplitz operator, and b is not an extreme
point of the closed convex set [H∞]1 if and only if there is a unique, outer a ∈ [H∞]1,
the Sarason function of b, so that a(0) > 0 and the column c ∶= ( ba ) is inner. A
contractive le�multiplier of Fock space, b ∈ [H∞d ]1, is said to be column-extreme (CE),

if contractivity of the column le� multiplier, c ∶= ( ba ), for a ∈ H∞d implies a ≡ 0 [39].
In [39], we observed that any CE b is necessarily an extreme point, and that if b is non-
CE, then one can define a unique Sarason outer function, a ∈ [H∞d ]1, so that a(0) > 0
and c ∶= ( ba )is CE. In [42], we proved that a is outer, and that if b = b is NC rational
and non-CE, then a = a is NC rational and the column c ∶= ( ba ) is inner.
�eorem 3.14 Let µ ∈ (Ad)†+ be a finitely correlated Cuntz–Toeplitz functional
with NC Lebesgue decomposition µ = µac + µs . �e absolutely continuous part of
µ, µac = µL , is purely of type-L andΠµL

≃ L. If b ∈ [H∞d ]1 is the contractive NC rational
le� multiplier so that µ = µb is the NC Clark measure of b, then

µac(Lω) = ⟨1, (I − b(R)∗)−1a(R)∗a(R)(I − b(R))−1Lω1⟩H2 ,

where a ∈ [H∞d ]1 is the contractive outer NC rational Sarason function of b,

T ∶= (I − b(R)∗)−1a(R)∗a(R)(I − b(R))−1
is a bounded le� Toeplitz operator, and a(1 − b)−1 ∈ H∞d .
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�e singular part, µs , is purely of dilation-type andΠµ;s = Πµ;d i l =⊕N
j=1 Π

( j) acting

on H
2
d(µd i l) =⊕N

j=1K j is the direct sum of at most finitely many irreducible Cuntz

row isometries of dilation-type. If T( j)∗ ∶= Π( j)∗∣Hµ∩K j
, then each T( j) is a finite and

irreducible row co-isometry with irreducible and minimal row isometric dilation Π( j).

Of course, it may be that either µac = 0 or µs = 0.
Proof If Π = Πµ is theGNS row isometry of a finitely correlatedNCmeasure, µ, then
Πµ is theminimal row isometric dilation of the finite row contraction,Tµ = (Π∗µ ∣Hµ

)∗,
and 1 + Nµ is cyclic for Πµ . By�eorem 3.13, Π = ΠL ⊕Πd i l is the direct sumof a pure
row isometry and a Cuntz row isometry of dilation type. By [41, Section 8, Corollaries
8.12 and 8.13], ΠL = Πac and Πd i l = Πs are the GNS row isometries of the absolutely
continuous and singular parts of µ, respectively.�e fact that Πµ is cyclic implies that
the wandering space of its pure part is atmost one-dimensional, so that Πµ ≃ L ⊕Πd i l

where either direct summand may be absent and Πd i l is cyclic.
�e Radon–Nikodym formula for the absolutely continuous (and pure) part of

µ = µb in the theorem statement is established in [42, �eorem 6], and is a conse-
quence of an NC rational Fejér–Riesz theorem [42, �eorem 5] and the NC Fatou
theorem of [40]. It further follows from [20, �eorem 6.5] (see �eorem B) that

Πd i l = ⊕N
k=1Π

(k)
d i l is the direct sum of finitely many irreducible Cuntz row isometries

of dilation-type.�e remaining claim follows from�eorem B. ∎
Corollary 3.15 Let µ ∈ (Ad)†+ be a finitely correlated Cuntz–Toeplitz functional. �e
following are equivalent:

(1) �e NC rational multiplier, b ∈ [H∞d ]1, so that µ = µb is inner.
(2) Πµ is purely of dilation-type.
(3) Πµ is purely Cuntz.
(4) Tµ is a finite row co-isometry.
(5) µ is a singular NC measure.

Remark 3.16 Classically, a contractive multiplier of Hardy space is inner if and only
if its Clarkmeasure is singular. In the NC setting, we were able to prove one half of this

fact in [40, Corollary 3]. Namely, if b ∈ [H∞d ]1 is inner, then µb ∈ (Ad)†+ is singular. By
Corollary 3.15, we see that if b ∈ [H∞d ]1 is such that µb is a singular finitely correlated
Cuntz–Toeplitz functional, then it is Cuntz (and of dilation-type) and b is an NC
rational inner. Hence, the NC analogue of this classical corollary to Fatou’s theorem
holds, at least for NC rational multipliers.

Proof By [42, �eorem 4], a contractive NC rational multiplier of Fock space is
inner if and only if it is CE. By [39, �eorem 6.4], Πµ is Cuntz if and only if bµ
is CE. By [55, Proposition 2.5], we know that a finitely correlated Cuntz–Toeplitz
functional µ = µb is such that Πµ is Cuntz if and only if Tµ is a finite row co-isometry.
By�eorem 3.13, Πµ is Cuntz if and only if it is a cyclic row isometry purely of dilation-
type. By [41, Corollary 8.13], this happens if and only if µ is a singularNCmeasure. ∎
Remark 3.17 If µ ∈ (Ad)†+ is any positive NC measure, we can define a posi-
tive extension of µ from the free disk system to the Cuntz–Toeplitz C∗-algebra,
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1418 M. T. Jury, R. T. W. Martin, and E. Shamovich

Ed = C∗{I, L1 , . . . , Ld}, by
µ̂(a1(L)a2(L)∗) ∶= ⟨1 + Nµ , πµ(a1)πµ(a2)∗ (1 + Nµ)⟩µ ,

where πµ ∶ Ed →L (H2
d(µ)) is the GNS ∗-representation obtained from µ. By well-

known results in C∗-algebra theory, assuming that µ is unital, i.e., a state, µ̂ will be an
extreme point in the state space of Ed , i.e., a pure state, if and only if πµ is irreducible
[18, �eorem I.9.8]. Equivalently, Hµ will be an extreme point in the set of all NC
Herglotz functions obeying H(0) = 1.
Remark 3.18 Let b be NC rational inner. �at µb ∈ (Ad)†+ is a finitely correlated
Cuntz functional is an analogue of classical theory. Indeed, any rational inner b ∈ H2

is a finite Blaschke product,

b(z) = ζ N∏
k=1

z −wk

1 −wkz
, wk ∈ D, ζ ∈ ∂D.

In this case, the Clark measure, µb, is a finite positive linear combination of exactly
N Dirac point masses. �is singular measure, µb, is supported on the set of points,
ζ ∈ ∂D, at which b(ζ) = 1, so that the point masses are located at the N roots of the
degree N polynomial,

N∏
k=1
(z −wk) − N∏

k=1
(1 −wkz).

A singular finitely correlated functional can then be thought of as an analogue of a
positive linear combination of finitely many point masses. If the GNS representation
of the functional is irreducible, this can be interpreted as the analogue of a single atom.
In this case, where d = 1, if µ is such a finite linear combination of point masses, then
H2(µ) = L2(µ) so that Πµ ∶= Mζ ∣H2(µ) is unitary, and

Hµ ∶= ⋁
k≥0

M∗kζ 1 = H2(µ).
In this case, Hµ = H2(µ) is finite-dimensional (of dimension = N if µ is a linear
combination ofN point masses) and Πµ is a finite-dimensional unitary. Indeed, since
Tµ is then a finite co-isometry, it must be unitary, so that Tµ = Πµ in this single-
variable case. In this regard, the theory becomesmore complicatedwhen d > 1 as there
are no finite-dimensional row isometries.

Finally, suppose that a contractive rational multiplier b ∈ [H∞]1 is not an extreme
point. �en 1 − ∣b(ζ)∣2 = ∣a(ζ)∣2, a.e . ∂D, where a is the rational Sarason function
of b, and it follows that Mζ ∣H2(µb;ac) is a pure cyclic isometry unitarily equivalent
to the shi�. In particular, H2(µb) is infinite-dimensional. Recall that there is onto
isometry, the weighted Cauchy transform, Fb ∶ H2(µb)→H (b) of H2(µb) onto the
de Branges–Rovnyak space of b, and that the image of Π∗b, where Πb ∶= Mζ ∣H2(µb),
under the weighted Cauchy transform is a rank-one perturbation of the restricted
backward shi�,

X(1) ∶= S∗∣H (b)´¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¶
=∶X

+ 1

1 − b(0)⟨Kb
0 , ⋅⟩H (b)S

∗b,
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X(1) =FbΠ
∗

bF
∗

b [15]. In this case, since b is rational, we obtain that

Hµ ∶=⋁Π∗kb 1 ≃⋁X(1)kKb
0 =∶M (b) ⫋H (b)

is a finite-dimensional subspace of H (b). Hence, in this case, if P is the projection
onto M (b), then

T(1) ∶= (X(1)∣M(b))∗
is a finite-dimensional contraction, and X(1)∗ ≃ Πb = Mζ ∣H2(µb) is its minimal iso-
metric dilation. �is again shows that our results are natural extensions of classical
theory.

Remark 3.19 Let µ ∈ (Ad)†+ be a state, i.e., a positive NCmeasure such that µ(I) = 1.
Let b be the associated contractive NC function so that Hµ = Hb . Let bn ∈ C{z} be
the nth Cesàro sum of b. By [22, Lemma 1.1], ∥bn(L)∥ ≤ ∥b(L)∥ ≤ 1 and, moreover,

bn(L) SOT−∗Ð→ b(L). SinceH2
d is an NC-RKHS, we obtain that bn converges uniformly

to b on subballs.�is implies that the inverse Cayley transforms of bn , Hbn , converge
uniformly on subballs to the NC Herglotz function Hµ . Since the Taylor–Taylor
coefficients of Hµ are essentially the moments of µ, the states µn ∶= µbn converge
weak-∗ to µ. (�ese are states since Hµ(0) = 1 and thus b(0) = 0 = bn(0) and
conversely.) In other words, the finitely correlated Cuntz–Toeplitz functionals are

weak-∗ dense in (Ad)†+.�is is consistent with our interpretation of finitely correlated
NC measures as NC analogues of finite positive sums of point masses.

4 Minimal realizations of rational multipliers

�e results of the previous section show that any NC rational multiplier of Fock space
is determined by a positive and finitely correlated NC Clark measure. Moreover, any
such NC rational Clark measure can be constructed from a finite-dimensional row
contraction, T onH, and a vector x ∈H which is T∗-cyclic and V-cyclic, where V is
the minimal row isometric dilation of T. Namely, if µ = µb is the finitelycorrelated NC
Clarkmeasure of amultiplier b ∈ [H∞d ]1, then µ(Lω) = µT ,x(Lω) = ⟨x , Tωx⟩H, where
the pair (T , x) has the above properties. Given such a finite row contraction T and
vector x so that µ = µb = µT ,x , our goal now is to express the minimal FM realization
of b solely in terms ofT and x.Wewill accomplish this by determining the relationship
between T , x and the minimal de Branges–Rovnyak FM realization of b as described
in Section 2.4.

Assume that T is a finite row contraction on H, V is its minimal row-isometric
dilation on K ⫌H, and x ∈H is cyclic for T∗, V, and hence T. As in the previous
section, we define the positive NC measure µ ∶= µT ,x , µT ,x(Lω) = ⟨x , Tωx⟩H. By
Proposition 3.6, T ≃ Tµ and V ≃ Πµ via the unitary Ux (zω + Nµ) = Vωx. Recall that

the right free Cauchy transform is an isometric map from H
2
d(µ) onto the right free

Herglotz space H
+(Hµ), where Hµ is the NC rational Herglotz–Riesz transform of

the finitely correlated NC measure, µ. If µ = µb is the NC Clark measure of an NC
rational b ∈ [H∞d ]1, Hb(Z) = Hµ(Z) + itIn where t ∶= ImHb(0) ∈ R, and Hb(Z) =(In + b(Z))(In − b(Z))−1. Observe that the CPNC kernel for the Herglotz space
H
+(Hµ) is
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Kµ(Z ,W)[⋅] = 1

2
K(Z ,W)[Ht

µ(Z)(⋅)] + 1

2
K(Z ,W)[(⋅)Ht

µ(W)∗]
= 1

2
K(Z ,W)[(Ht

µ(Z) + itIn)(⋅)] + 1

2
K(Z ,W)[(⋅)(Ht

µ(W)∗ − itIm)]
= 1

2
K(Z ,W)[Ht

b(Z)(⋅)] + 1

2
K(Z ,W)[(⋅)Ht

b(W)∗].
�at is, the Herglotz space of any two NC Herglotz functions, which differ by an
imaginary constant, is the same. Hence, if we define

bµ(Z) ∶= (Hµ(Z) − In)(Hµ(Z) + In)−1 ,
then as described in the background section, b = z(t)

z(t) ⋅ λz(t) ○ bµ , where λz(t) is the

Möbius transformation

λz(t) = z − z(t)
1 − z(t)z and z(t) = t

2i + t ∈ D.

Moreover, if we write for an operator T, R(T) = (I − T)−1, then we have that

Kµ(Z ,W)[P] = K(Z ,W) [R(btµ(Z)) (P − btµ(Z)Pbtµ(W)∗)R(btµ(W)∗)]
= K(Z ,W) [R(bt(Z)) (P − bt(Z)Pbt(W)∗)R(bt(W)∗)]

for any Z ∈ Bd
n , W ∈ Bd

m , and P ∈ Cn×m . �is identity shows that MR
(I−bt

µ)
is an

isometric right multiplier of H
+(Hµ) =H

+(Hb) onto the right free de Branges–
Rovnyak spaceH

t(bµ) and thatMR
(I−bt) is an isometric right multiplier ofH +(Hµ)

onto H
t(b). �e weighted free Cauchy transform, Fb ∶= MR

In−bt(Z) ○Cµ ∶ H2
d(µ) →

H
t(b) is then an onto isometry [38, 39], andUx ∶=Fb ○U∗x ∶ K→H

t(b)will be an
onto isometry. Furthermore, recall from [38, 39] that the weighted Cauchy transform
intertwines the adjoint of the GNS row isometry, Πµ , with a rank-one (co-isometric)
Clark perturbation, X(1), of the restricted backward shi� X ∶= L∗∣H t(b):

X(1)k ∶= Xk¯
=L∗

k
∣
H t(b)

+ 1

1 − b(0)L∗kbt⟨Kb
0 , ⋅⟩b , 1 ≤ k ≤ d .

Hence,UxV
∗

k = X(1)kUx . In the above,K
b
0 = Kb{0, 1, 1} is the point evaluation vector

at the point 0 ∈ Bd
1 for H

t(b). Observe that
X(1)kKb

0 = −L∗kbtb(0) + L∗kbt 1 − ∣b(0)∣
2

1 − b(0)
= L∗kbt −b(0) + ∣b(0)∣

2 + 1 − ∣b(0)∣2
1 − b(0)

= 1 − b(0)
1 − b(0) L∗kbt .(4.1)

https://doi.org/10.4153/S0008414X22000384 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X22000384


Noncommutative rational Clark measures 1421

�at is, we can write

Xk = L∗k ∣H t(b) = X(1)k (I − 1

1 − b(0)K
b
0 ⟨Kb

0 , ⋅⟩) .(4.2)

Here, note that

b(0) = Hb(0) − 1
Hb(0) + 1 =

∥x∥2 + it − 1
∥x∥2 + it + 1 ∈ D.

If we define

M0(b) ∶= ⋁
ω≠∅

L∗ωbt and M (b) ∶=⋁Kb
0 +M0(b),

then by equation (4.1),

M (b) =⋁X(1)ωKb
0

is both X- and X(1)-invariant. Let T(1)∗ ∶= X(1)∣M(b) and T(0)∗ ∶= X∣M(b).
Observe that the image of x ∈H under Ux is

Uxx = (MR
(I−bt(Z))−1)∗Cµ1 + Nµ

= (MR
(I−bt(Z))−1)∗ Kµ

0

= 1

1 − b(0)K
b
0 .(4.3)

It follows that M (b) = UxH and that T(1)∗ is unitarily equivalent via Ux to
T∗ = V∗∣H. It then follows from equations (4.2) and (4.3) that T(0)∗k is unitarily
equivalent to

T∗k (I − (1 − b(0))x⟨x , ⋅⟩H) .(4.4)

Observe that M0(b), as defined above and in Section 2.4, is both T(0)∗- and T(1)∗-
invariant. Letting Q0 denote the projection onto M0(b), the minimal de Branges–
Rovnyak FM realization is given by (A, B,C ,D), where

A = L∗∣M0(b) = T(0)∗∣M0(b) , B = L∗bt = 1 − b(0)
1 − b(0)T(1)

∗Kb
0 ,

C = ⟨Q0K
b
0 , ⋅⟩b , and D = b(0).

It follows that M0(b) = UxH0, where

H0 ∶= ⋁
ω≠∅

T∗ωx ,

with projector P0. A minimal FM realization of b, where µb = µT ,x , is then(Â, B̂, Ĉ , D̂), where
Â ∶= T∗ (I − (1 − b(0))x⟨x , ⋅⟩H) ∣

H0

,

B̂k ∶= (1 − b(0))T∗k x , Ĉ ∶= (1 − b(0))⟨P0x , ⋅⟩H0
,

https://doi.org/10.4153/S0008414X22000384 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X22000384


1422 M. T. Jury, R. T. W. Martin, and E. Shamovich

and

D̂ = b(0) = ∥x∥2 + it − 1∥x∥2 + it + 1 .
In summary, we have proved the following theorem.

�eorem 4.1 An NC rational function, b, with 0 ∈ Domb, belongs to [H∞d ]1 if and
only if it is realized as the transfer function of the minimal and finite-dimensional FM
colligation:

UT ,x ∶= ( T∗0 (1 − b(0))T∗x(1 − b(0))⟨PH0
x , ⋅⟩H0

b(0) ), ∥x∥2 = Re 1 + b(0)
1 − b(0) ,

where T is a finite-dimensional row contraction on H, x ∈H is cyclic for both T∗ and
the minimal row isometric dilation, V, of T,

T∗0 ∶= T∗ (I − (1 − b(0))⟨x , ⋅⟩x) ∣
H0

, and H0 = ⋁
ω≠∅

T∗ωx .

Moreover, b is inner if and only if T is also a row co-isometry.

If T is an irreducible finite row co-isometry on H, Lemma 3.8 implies that given
any x ∈H, the pair T , x satisfies the conditions of �eorem 4.1 and hence generates
an NC rational inner. Furthermore, recall that Lemma 3.9 implies that if T is a finite
row co-isometry, then x ∈H is T-cyclic if and only if it is V-cyclic.

Remark 4.2 Observe that b(0) = 0 if and only ifHb = Hµb and µ(I) = ∥x∥2 = 1. Also
note that

∥x∥2 + iImHb(0) = Hb(0) = 1 + b(0)
1 − b(0) .

Example 4.3 Let q ∶ Cn×n → C
n×n be a completely positive and completely contrac-

tive linear map. By Choi’s theorem [13], q has Kraus operators or quantum effects,
Qk ∈ Cn×n , 1 ≤ k ≤ d, for some d ∈ N, so that

q(A) ∶= d∑
j=1

Q jAQ
∗

j , A ∈ Cn×n .

Since q is completely contractive, the d-tuple Q ∶= (Q1 , . . . ,Qd) is a row contraction,
and Q will be a row co-isometry if and only if q is unital. Provided there is a vector
x ∈ Cn which is cyclic for both Q∗ and the minimal row isometric dilation of Q, we
can associate a unique contractive NC rational multiplier, q, to the CP map q.

Example 4.4 Consider the row co-isometry T ∶ C2 ⊗C
2 → C

2 defined by

T1 ∶= (0 1
0 0
), and T2 ∶= (0 0

1 0
).

It is not difficult to check that this is irreducible. Hence, we can choose any nonzero
x ∈ C2, and apply�eorem 4.1 to construct an NC rational inner function.
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First, consider x = ( 10 ). Since ∥x∥ = 1, we will have r(0) = 0.�en,

I2 − xx∗ = (0 0
0 1
), so that

T∗0;1 = (0 0
1 0
)(0 0

0 1
) = 02 and T∗0;2 = (0 1

0 0
)(0 0

0 1
) = (0 1

0 0
).

�en,

I − Z ⊗ T∗0 = (I −Z2

0 I
), (I − Z ⊗ T∗0 )−1 = (I Z2

0 I
),

and Z ⊗ T∗I ⊗ x = ( 0
Z1
),

so that bT ,x(Z) = (I, 0)(I Z2

0 I
)( 0

Z1
)

= Z2Z1 .

�is is clearly inner. Note that T is an irreducible row co-isometry, and yet b(Z) =
Z1Z2 is reducible as an inner le� multiplier of the Fock space.�at is, b is the product
of two NC rational inner le� multipliers. For this b,

T∗0;1 = 02 and T∗0;2 = (0 1
0 0
),

so that T∗0 is a reducible 2-tuple.
Similarly, taking x = ( 01 ) gives

T∗0;1 = (0 0
1 0
), T∗0;2 = 02 ,

(I − Z ⊗ T∗0 )−1 = ( I 0
Z1 I

),
and

Z ⊗ T∗(In ⊗ x) = (Z2

0n
).

Putting this together gives, for Z ∈ B2
n ,

b(Z) = b(0)±
≡0

In + In ⊗ x∗ (I − Z ⊗ T∗0 )−1 Z ⊗ T∗In ⊗ x

= (0n , In)(In 0n
Z1 In

)(Z2

0n
)

= Z1Z2 .
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Again, this is inner. To obtain a less trivial example, take x = 1√
2
( 11 ). In this case,

I2 − xx∗ = 1

2
( 1 −1
−1 1

),
T∗0;1 = 1

2
(0 0
1 0
)( 1 −1
−1 1

) = 1

2
(0 0
1 −1),

and

T∗0;2 = 1

2
(−1 1
0 0

).
�en,

I − Z ⊗ T∗0 = 1

2
(2I + Z2 −Z2

−Z1 2I + Z1
).

�e inverse can be computed using Schur complements. If

S ∶= I + Z2

2
− 1

4
Z2 (I + Z1

2
)−1 Z1

is the Schur complement of the upper le� block, then

(I − Z ⊗ T∗0 )−1 = ⎛⎝
S−1 S−1 Z2

2
(I + Z1

2
)−1

(I + Z1

2
)−1 Z1

2
S−1 (I + Z1

2
)−1 + 1

4
(I + Z1

2
)−1 Z1S

−1Z2 (I + Z1

2
)−1
⎞
⎠.

Finally,

Z ⊗ T∗x = 1√
2
(Z2

Z1
).

Hence,

bT ,x(Z) = 1

2
(I, I) (I − Z ⊗ T∗0 )−1 (Z2

Z1
)

= 1

2
S−1Z2 + (I + Z1

2
)−1 Z1

4
S−1Z2 + S−1 Z2

4
(I + Z1

2
)−1 Z1 + 1

2
(I + Z1

2
)−1 Z1

+ 1

8
(I + Z1

2
)−1 Z1S

−1Z2 (I + Z1

2
)−1 Z1 .

�is must be an NC rational inner.

Example 4.5 Consider an irreducible point arising from anticommuting unitaries

T = 1√
2
((1 0

0 −1) , (0 −1
1 0

)) .
Let x = ( αβ ), and assume that ∣α∣2 + ∣β∣2 = 1.�en,

I2 − xx∗ = ( ∣β∣2 −αβ̄
−ᾱβ ∣α∣2 ) .
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�erefore,

I − Z ⊗ T∗0 = I − 1√
2
(β(β̄Z1 + ᾱZ2) −α(β̄Z1 + ᾱZ2)
β(ᾱZ1 + β̄Z2) −α(ᾱZ1 + β̄Z2)) .

If we set α = β = 1√
2
, we obtain

I − Z ⊗ T∗0 = I − 1

2
√
2
(Z1 + Z2)⊗ (1 −11 −1) .

Hence,

bT ,x(Z)∗ = 1

2
√
2
(I I)(I + 1

2
√
2
(Z1 + Z2)⊗ (1 −11 −1))((Z1 − Z2)⊗ ( 1−1))

= 1

2
(Z1 + Z2)(Z1 − Z2),

which is obviously inner. On the other hand, if we set α = 0 and β = 1, then

bT ,x(Z) = 1√
2
(0 I)⎛⎜⎝

(I − 1√
2
Z1)−1 0

1√
2
Z2 (I − 1√

2
Z1)−1 I

⎞⎟⎠(
−Z2−Z1
) = − 1

2
Z2 (I − 1√

2
Z1)

−1

Z2 − 1√
2
Z1 .

One can verify directly that this bT ,x(Z) is also inner:
bT ,x(L)∗bT ,x(L) = 1

2
I + 1

4
L∗2

∞∑
j,k=0

1√
2
k+ j

L
∗ j
1 L∗2L2L

k
1 L2

= 1

2
I + I 1

4

∞∑
j=0

1

2 j
= I.

5 Rank-one Clark–Cuntz perturbations

Let b ∈ [H∞d ]1 be a contractive NC rational multiplier, and choose any ζ ∈ ∂D.
Consider the one-parameter family of NC Clark measures µζ ∶= µbζ indexed by the

unit circle. Every µζ is a finitely correlated Cuntz–Toeplitz functional, so that if
Π(ζ) ∶= Πµζ

, then

Π(ζ) = Nζ⊕
n=1

Π
(n)
ζ

is a direct sum of finitely many irreducible representations by�eorem 3.14. Let Fζ ∶
H

2
d(µζ)→H

t(b) be the onto, isometric, NC weighted Cauchy transform onto the
right free de Branges–Rovnyak space of b [38, 39]. Here, given any positive NC Clark

measure µ = µb ∈ (Ad)†+ for b ∈ [H∞d ]1, the weighted (right) free Cauchy transform
Fµ ∶ H2

d(µ)→H
t(b) is the onto isometry defined as

Fµ ∶= MR
1−bt ○Cµ ,

where Cµ ∶ H2
d(µ)→H

+(Hµ) is the free Cauchy transform as described following
the statement of �eorem 3.2. Recall that the image of Π(ζ)∗ under this unitary
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transformation is the rank-one co-isometric Clark perturbation of X ∶= L∗∣H t(b),

X(ζ) = X + ζ

1 − b(0)ζ ⟨Kb
0 , ⋅⟩b b⃗,(5.1)

where b⃗ ∶= L∗bt and ⟨⋅, ⋅⟩b ∶= ⟨⋅, ⋅⟩H t(b) (see [38,�eorem 6.3] and [39, Section 6.17]).
More generally, we will also consider the Clark perturbations X(ζ) for any ζ ∈ C
defined by the above formula. In particular, X = X(0).
Proposition 5.1 Either everyΠµ

ζb
=∶ Π(ζ) = Π(ζ)L ⊕Π(ζ)d i l , ζ ∈ ∂D, has a nonzero

direct summand of type-L or every Π(ζ) has no type-L direct summand.

Proof If Π(ζ) = Π(ζ)L ⊕Π(ζ)d i l has a nonzero pure type-L direct summand, then
since Π(ζ) has a cyclic vector, Π(ζ)L ≃ L is unitarily equivalent to exactly one copy
of L. If Π(ζ) has a nonzero type-L direct summand and Π(ξ) does not, for some
ξ ≠ ζ , ξ, ζ ∈ ∂D, then Π(ξ) is a Cuntz row isometry purely of dilation-type. However,

by [39, �eorem 6.4], this would imply that ξbt ∉H
t(b). Since Π(ζ) has a nonzero

type-L summand, the same result would imply that ζbt ∈H
t(b).�is contradiction

shows that either all Clark perturbations have nonzero pure type-L direct summands
of multiplicity one or none do. ∎

Given any NC rational b ∈ [H∞d ]1, recall that we can define the finite-dimensional
subspaces

M0(b) = ⋁
ω≠∅

L∗ωbt and M (b) =M0(b) +⋁{Kb
0 } ⊆H

t(b).(5.2)

Lemma 5.2 For any ζ ∈ C, M (b) and M0(b) are X(ζ)-invariant.
Proof �is follows immediately from the formulas (5.1) and (5.2). ∎

For any ζ ∈ C, let
T(ζ)∗ ∶= X(ζ)∣M(b) .(5.3)

It follows that for any ζ ∈ ∂D, X(ζ)∗ is the minimal row isometric dilation of T(ζ)
and X(ζ)∗ is a cyclic Cuntz row isometry if and only if T(ζ) is a row co-isometry.

It will be convenient to assume that b(0) = 0. �ere is no loss in generality in
making this assumption, as if w ∶= b(0) ≠ 0, we can apply the Möbius transformation

λw(z) = z −w
1 −wz ,

to b to obtain a new contractive NC rational multiplier, b0, so that b0(0) = 0.
Moreover, the composition of an isometry with a Möbius transformation is again
an isometry, so that b is inner if and only if b0 is. As in [43, Proposition 6.6], right
multiplication by

Ct
w(Z) ∶=√1 − ∣w∣2(I +wbt0(Z))−1 =√1 − ∣w∣2−1(I −wbt(Z)), w = b(0),
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is an isometric right multiplier from H
t(b0) onto H

t(b). We will denote this right
multiplier by Cw = MR

C t
w
, and this is the NC analogue of a Crofoot transformation [16].

As in the commutative setting of [51,�eorem 5.7 and Proposition 5.8], one can verify
that

1√
1 − ∣w∣2 C∗w ⊗ Id b⃗ = b⃗0 ,(5.4)

where b⃗ ∶= L∗bt ∈H
t(b)⊗C

d and that if X ∶= L∗∣H t(b), X
(0) ∶= L∗∣H t(b0), then

Cw ⊗ IdX
(0)C∗w = X + w

1 − ∣w∣2 b⃗⟨Kb
0 , ⋅⟩b .(5.5)

Proposition 5.3 Any Clark–Cuntz perturbation, X(ζ), ζ ∈ ∂D, of b is unitarily equiv-
alent to the corresponding Clark–Cuntz perturbation, X(0)(ζ), of b0 via the NC Crofoot
transformation.

Proof Given ζ ∈ ∂D and w = b(0), we apply equations (5.4) and (5.5) to obtain

Cw ⊗ IdX
(0)(ζ)C∗w = Cw ⊗ IdX

(0)C∗w + ζCw ⊗ Id b⃗0⟨Cw1, ⋅⟩b
= X + w

1 − ∣w∣2 b⃗⟨Kb
0 , ⋅⟩b + ζ√1 − ∣w∣2b⃗C−1(0)⟨Kb

0 , ⋅⟩b
= X + w + ζ

1 − ∣w∣2 b⃗⟨Kb
0 , ⋅⟩b

= X + ζ

1 − ζw b⃗⟨Kb
0 , ⋅⟩b = X(ζ). ∎

By the above proposition, we can and will assume, without loss of generality,
that b(0) = 0 for the remainder of this section. Note that if b(0) = 0, then Kb

0 =
1 − btb(0) = 1, and our formulas for the finite-dimensional Clark perturbations T(ζ)∗
simplify

T(ζ)∗ = T(0)∗ + ζL∗bt⟨1, ⋅⟩b∣
M(b)

, ζ ∈ C.(5.6)

5.1 Boundary values

Let b ∈ [H∞d ]1 be NC rational. We further assume, without loss of generality, that
b(0) = 0.
Lemma 5.4 For any ζ ∈ ∂D, the d-tuple T(ζ)t has joint spectral radius sprT(ζ)t ≤ 1.

In the above statement, T(ζ)t = (T(ζ)t1 , . . . , T(ζ)td), where t denotesmatrix trans-
pose of each component of T(ζ) with respect to a choice of orthonormal basis of
M (b).
Proof Without any loss of generality, assume that ζ = 1. �e d-tuple, T ∶= T(1), is
a finite-dimensional row contraction. If we identify T with a row contraction acting
on C

m ⊗C
d , let T = (T 1 , . . . , Td) denote the entrywise complex conjugation of the
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matrix of each Tj with respect to the standard orthonormal basis, so that Tk = (T t
k)∗.

Since T is a row contraction, TT∗ ≤ I. Taking conjugates shows that TT t ≤ I, so that
T is also a row contraction, ∥T∥row ≤ 1 and so ∥T t∥col ≤ 1. By Lemma 2.1, we have that
for any ε > 0, T t is jointly similar to a row d-tuple,W ∈ Cd

m , with ∥W∥ ≤ ∥T t∥col + ε =
1 + ε. Hence, spr(T t) ≤ 1 + ε for any ε > 0 and the claim follows. ∎

Since T(ζ) is a row contraction for ζ ∈ ∂D, T(ζ)t = T(ζ)∗ is a column contraction.
Hence, for any Z ∈ Bd

n and ζ ∈ ∂D,
In ⊗ I − Z ⊗ T(ζ)t

is invertible. Sincewe are assuming thatb(0) = 0, a finite FM transfer function formula

for ζ ⋅ b is
ζb(Z) = In ⊗ 1∗ (In ⊗ I − Z ⊗ T(0)∗)−1 In ⊗ T(ζ)∗1, Z ∈ Bd

n .(5.7)

By the previous lemma and [62, Lemma 2.4], the closure of the joint similarity orbit of
T(ζ)t contains a row contraction. Moreover, since the minimal de Branges–Rovnyak
FM realization (A, B,C ,D) of b is such thatA = T(0)∗∣M0(b),�eoremA implies that
A and hence T(0) is a pure and finite-dimensional row contraction. Hence, T(0) is
jointly similar to a strict row contraction by Lemma 2.1, T(0)∗ is jointly similar to a
strict column contraction, and

In ⊗ I − T(ζ)t ⊗ T(0)∗
is invertible for any ζ ∈ ∂D. We conclude that b(T(ζ)t) is well defined for any ζ ∈ ∂D.
Alternatively, since T(ζ) is a row contraction, spr(T(ζ)) ≤ 1 and Lemma 2.1 implies
that the closure of the joint similarity orbit of T(ζ)t contains a row contraction. Since
b ∈ H∞d is NC rational, �eorem A implies that r ⋅Bd

N
⊆ Domb for some r > 1 and it

follows that T(ζ)t ∈ Domb.
Recall the concept of vectorization of matrices and completely bounded maps on

matrices. If A ∈ Cm×m and B ∈ Cn×n , then A⊗ B is an mn ×mn matrix, and it can
also be identified with a completely bounded linear map on C

m×n . To describe this

correspondence: given Z ∈ Cn×m , let
Ð⃗
Z denote the columnvector of sizem ⋅ n obtained

by stacking the columns of Z one on top of the other (in order from le� to right).�at
is, dividing Z ∈ Cn×m intom columns, zk ∈ Cn (see, for example, [37, Section 4.2]),

Z = (z1∣ ⋅ ⋅ ⋅ ∣zm) ↦ Ð⃗
Z =
⎛⎜⎝
z1

⋮
zm

⎞⎟⎠ ∈ Cmn .

By [37, Lemma 4.3.1],

(A⊗ B) Ð⃗Z = ÐÐÐÐÐÐ⃗BZAT .

�is vectorization map, vec ∶ Cm×n → C
mn , vec(A) ∶= Ð⃗A, is linear and invertible, and

for any linear map ℓ ∈L (Cm×n), we define thematrization of ℓ, ℓ⃗ ∈ Cmn×mn by

ℓ⃗
Ð⃗
Z ∶= ÐÐÐÐÐ⃗ℓ(Z), i.e., ℓ⃗ = vec ○ ℓ ○ vec−1 .
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In particular, if ℓ is any completely bounded linear map on the operator space Cm×n ,

ℓ(X) = d∑
j=1

A jXB j , A j ∈ Cm×m , B j ∈ Cn×n , X ∈ Cm×n ,(5.8)

then

ℓ⃗ =∑Bt
j ⊗ A j .

Proposition 5.5 Let r be an NC rational function with 0 ∈ Dom r and finite FM real-
ization (A, B,C ,D).�en, for any λ ∈ C/{0} and Z ∈ Cd

n so that LA(Z) is invertible,
λndet LA(λ)(Z) = det LA(Z) ⋅ det ((λ + r(0))In − r(Z)) ,

A
(λ)
k = Ak + λ−1BkC .

In particular, if the monic linear pencil, LA(Z) = In ⊗ I − Z ⊗ A, is invertible, then
λ + r(0) belongs to the spectrum of r(Z) if and only if LA(λ)(Z) is singular. If(A, B,C ,D) is a minimal realization, then this formula holds for all Z ∈ Dom r and
the characteristic polynomial of r(Z) is

pr(Z)(λ + r(0)) = λn det LA(λ)(Z)
det LA(Z) .

Proof If Z ∈ Cd
n is such that LA(Z) is invertible, then by the generalized matrix

determinant lemma,

det (I − Z ⊗ A− λ−1Z ⊗ BC) = det (I − Z ⊗ A) ⋅ det (In − λ−1In ⊗ C(I − Z ⊗ A)−1Z ⊗ B)
= λ−ndet (In ⊗ I − Z ⊗ A) ⋅ det (λIn − (r(Z) − r(0))In)) ,

and the first claim follows.
If (A′ , b, c) is a minimal descriptor realization of r, with Ak ∈L (H), H ≃ Cm ,

then Z ∈ Dom r if and only if I − Z ⊗ A is invertible by [68,�eorem 3.10]. A minimal
FM realization (A, B,C ,D) of r can be constructed from (A, b, c) by setting H0 ∶=⋁ω≠∅ A

′ωc with projector Q0 and

A ∶= A′∣H0
, B ∶= Ac, C ∶= (Q0b)∗ , and D ∶= r(0)

(see, for example, [42, Lemma 6]). Observe that H0 ⊆H is A′-invariant and that if
H0 ≠H, thenH0 has co-dimension one. Hence, ifH0 ⊊H, A′ and LA′(Z) have block
upper-triangular decompositions with respect toH =H0 ⊕ (H ⊖H0),

LA′(Z) = (LA(Z) ∗
0 La(Z)),

where a = (a1 , . . . , ad), ak ∈ C. In particular, if Z ∈ Dom r, Z ∈ Cd
n , then by [68,

�eorem 3.10],

0 ≠ det LA′(Z) = det(LA(Z)) ⋅ det(La(Z)),
so that det LA(Z) ≠ 0 and the second claim follows as well. ∎
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Proposition 5.6 Given ζ ∈ ∂D, let A∗ζ be a column-isometric restriction of T(ζ)∗ to an
invariant subspace.�en ζ is an eigenvalue of b(At

ζ).
Proof As discussed above, b(At

ζ) is well defined. To simplify notations, we drop the

subscript ζ . Identify M (b) ≃ Cm , and suppose that K ⊆M (b) is T(ζ)∗-invariant
and A∗ ∶= T(ζ)∗∣K,K ≃ Ck , k ≤ m.�en,

T(ζ)∗ = (A∗ B∗

C∗
).

Note that since T(ζ) is a row contraction and A is a row co-isometry,

Im ≥ T(ζ)T(ζ)∗ = (A 0
B C

)(A∗ B∗

0 C∗
)

= (AA∗ AB∗

BA∗ BB∗ + CC∗) = ( I AB∗

BA∗ BB∗ + CC∗),
so that

( 0 −AB∗
−BA∗ I − BB∗ − CC∗) ≥ 0.

In the above, we view A ∈ Cd
n as a row d-tuple, A = (A1 , . . . ,Ad) ∶ Cn ⊗C

d → C
n , and

A∗ , B∗ as column d-tuples so that, for example,

AB∗ = A1B
∗

1 + ⋅ ⋅ ⋅ + AdB
∗

d .

It follows, by Schur complement theory, that AB∗ = 0 and that BB∗ + CC∗ ≤ I.
Observe that

Im ⊗ Im − ( At 0
0 0
)⊗ T(ζ)∗ ≃ I ⊗ I − T(ζ)∗ ⊗ ( At 0

0 0
) ,

and the second formula is the matrization of

idm − ( A 0
0 0 ) (⋅) ( A∗ B∗

0 C∗
) .

�en,

idm ○ (Ik 0
0 0

) − (A 0
0 0

)(Ik 0
0 0

)(A∗ B∗

0 C∗
)

= (Ik 0
0 0

) − (AA∗ AB∗

0 0
) = (Ik 0

0 0
) − (Ik 0

0 0
) ≡ 02 ,

and it follows that
ÐÐÐÐÐÐ⃗( Ik 0

0 0
) is an eigenvector of T(ζ)∗ ⊗ ( At 0

0 0
) to eigenvalue 1, and

the image of this eigenvector under the tensor swap unitary is then an eigenvector of( At 0
0 0
)⊗ T(ζ)∗to eigenvalue 1. Proposition 5.5 then implies that ζ is an eigenvalue of

b(At 0
0 0

) = (b(At) 0
0 0

),
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so that ζ is an eigenvalue of b(At). Namely, for any Z ∈ Domn b,

LT(ζ)∗(Z) = In ⊗ Im − Z ⊗ A− ζZ ⊗ BC ,

where

A = T(0)∗ , B ∶= T(1)∗1, C ∶= ⟨1, ⋅⟩, and D ∶= b(0) = 0,
gives the finite FM realization formula for b from equation (5.7). ∎
Proposition 5.7 Let K ∶=⊕N

k=1Kk ⊆M (b) be the direct sum of minimal and mutu-
ally orthogonal T(ζ)-co-invariant subspaces of M (b) so that each T(ζ)∗∣Kk

is a
column isometry.�en ζ is an eigenvalue of b(T t

ζ) of geometric multiplicity at least N.

Proof To simplify notations, assume without loss of generality that ζ = 1 and that
N = 2. We will also write T ∶= T(1).�en,

T∗ =
⎛⎜⎝

A∗1
A∗2

B∗

0 C∗

⎞⎟⎠,
where A∗k ∶= T∗∣Kk

are (irreducible) row co-isometries. Hence,

b(T t) = ⎛⎜⎝
b(At

1)
b(At

2) ∗
0 b(Ct)

⎞⎟⎠.
For any x = ( x1

x2
x3
),

b(T t)x = ⎛⎜⎝
b(At

1)x1 + ∗x3
b(At

2)x2 + ∗x3
b(Ct)x3

⎞⎟⎠.
By the previous proposition, both b(At

1) and b(At
2) have eigenvectors, y1 and y2 to

eigenvalue 1. It follows that

( y1
0
0
) and ( 0

y2
0
)

are two linearly independent eigenvectors of b(T t) to eigenvalue 1. ∎
�eorem 5.8 Let A(ζ)∗ ∶= T(ζ)∗∣Kζ

be a column-isometric restriction of T(ζ)∗ to an
invariant subspaceKζ ⊆M (b). Suppose that dimKζ = n, identifyKζ withC

n , and let
v be a unit eigenvector of b(A(ζ)t)t corresponding to the eigenvalue ζ.�en, for any y ∈
C

n , the limit Kb{A(ζ), y, v} ∶= limr↑1 K
b{rA(ζ), y, v} exists, and for any h ∈H

t(b),
the limit

y∗h(A(ζ))v ∶= lim
r↑1

y∗h(rA(ζ))v = ⟨Kb{A(ζ), y, v}, h⟩H t(b) exists.

Proof To simplify notations, we simply write A in place of A(ζ). For any 0 < r < 1,
the NC de Branges–Rovnyak kernel vector Kb{rA(ζ), y, v} is well defined since rA
is a strict row contraction. Observe that the net Kb{rA, y, v} converges pointwise in
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B
d
N
. Indeed, given anyW ∈ Bd

m and x , u ∈ Cm ,

x∗Kb{rA, y, v}(W)u = x∗Kb(W , rA)[vu∗]y
= x∗K(W , rA)[vu∗]y − x∗K(W , rA)[bt(Z)vu∗bt(rA)∗]y.

Since R ⋅Bd
N
⊆ Dombt for some R > 1 and A is a row contraction, the limit

lim
r↑1

bt(rA) = bt(A)
exists. Similarly, sinceW ∈ Bd

m , the entire expression converges to

x∗K(W ,A)[vu∗]y − x∗K(W ,A)[bt(Z)vu∗bt(A)∗]y.
Let Kb{A, y, v}(W) denote this pointwise limit. Observe that by assumption,

bt(A)v = b(At)tv = ζv .
Now, consider

∥Kb{rA, y, v}∥2
H2 = y∗K(rA, rA) [vv∗ − bt(rA)vv∗bt(rA)∗] y
≤ y∗K(rA, rA)[In]y ⋅ ∥vv∗ − bt(rA)vv∗bt(rA)∗∥
≤ tr (vv∗ − bt(rA)vv∗bt(rA)∗) ⋅ y∗ ∞∑

j=0
r2 j Ad

( j)
A,A∗(In)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=In

y

= ∥y∥2 v∗ (In − bt(rA)∗bt(rA)) v
1 − r2

= ∥y∥2 v∗ (bt(A)∗bt(A) − bt(rA)∗bt(rA)) v(1 − r)(1 + r) .(5.9)

Since R ⋅Bd
N
⊆ Dombt for some R < 1, it follows that bt(Z) and hence bt(Z)∗bt(Z)

are Gâteaux differentiable at any point on the boundary, ∂Bd
N
. We conclude that the

limit supremum of equation (5.9) as r ↑ 1 is finite. By weak compactness, there is a
weakly convergent subsequence Kb{rkA, y, v}which necessarily converges pointwise
toKb{A, y, v}(Z). Hence, any weakly convergent subsequence has the same limit and
the entire net converges weakly to Kb{A, y, v} ∈H

t(b). By weak convergence, given
any h ∈H

t(b),
⟨Kb{A, y, v}, h⟩H t(b) = lim

r↑1
⟨Kb{rA, y, v}, h⟩H t(b)

= lim y∗h(rA)v .
It follows that h(rA) is convergent and we let h(A) denote this limit. ∎
Remark 5.9 If µ = µb is the singular NC rational Clark measure of an NC rational
inner le� multiplier, b ∈ [H∞d ]1, then we can define the support of µ, supp(µ), on the
boundary, ∂Bd

N
, as the set of all finite-dimensional row co-isometries, Z ∈ ∂Bd

N
, so

that the minimal row isometric dilation, V, of Z, is unitarily equivalent to a direct
summand of Πµ . By�eorem C, Z ∈ supp(µ) if and only if there is a Tµ-co-invariant
subspace Jµ ⊆Hµ , so that Z∗ is jointly unitarily equivalent to T∗µ ∣Jµ

. Proposition 5.6

then implies that 1 is an eigenvalue of b(Z t) for any Z ∈ supp(µ).
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Recall that in one variable, any rational inner function in H2 is a finite Blaschke
product:

b(z) = ζ N∏
k=1

z −wk

1 −wkz
, wk ∈ D, ζ ∈ ∂D.

In this case, µb is a finite, positivelyweighted sumof exactlyN pointmasses on the unit
circle, so that µb is singular and L2(µb) = H2(µb). Hence, Πb ≃ Mζ is unitary, and
Πb = Πµb is irreducible if and only ifN = 1 and b is a single Blaschke factor.Moreover,
the point masses of µb are located precisely at the N points on the unit circle where
b(ζ) = 1. Proposition 5.7 can be viewed as an analogue of this classical fact.

If b ∈ H∞ is rational, it extends analytically to a disk of radius > 1, and so it has finite
Carathéodory angular derivatives at any point ζ ∈ ∂D.�at is, ∣b(ζ)∣ = 1 for all ζ ∈ ∂D
and b′(ζ) has a nontangential limit at each point on the boundary. By [63, VI-4], this
is equivalent to saying that every h ∈H (b) has a nontangential limit at every point
on the boundary.�eorem 5.8 can then be viewed as a generalization of this classical
result.

5.2 Mutual singularity of Clark–Cuntz perturbations

Let b ∈ [H∞]1 be a contractive analytic function in the complex unit disk. Given
any ζ ∈ ∂D, let µζ ∶= µbζ be the one-parameter family of positive Clark measures of

the contractive functions ζb. �e goal of this subsection is to obtain an analogue of
the following classical theorem of Aronszajn and Donoghue [4, 24], for the case of
contractive NC rational multipliers of the Fock space.

Aronszajn–Donoghue �e singular parts of the family of Clark measures {µζ =
µ
bζ
∣ ζ ∈ ∂D} are mutually singular,

µζ ;s ⊥ µξ;s for ζ , ξ ∈ ∂D, ζ ≠ ξ.
One can show that two positive, finite, and regular Borel measures on the complex

unit circle are mutually singular if and only if their Herglotz spaces of Cauchy
transforms have trivial intersection [41, Section 1.1, Corollary 8.5]. �e following is
then an NC analogue of the Aronszajn–Donoghue theorem for arbitrary contractive
le� multipliers of Fock space.

�eorem 5.10 (NC Aronszajn–Donoghue) Given b ∈ [H∞d ]1, consider the one-
parameter family of NC Clark measures µζ ∶= µζb , ζ ∈ ∂D. �e singular parts of this

family of NCmeasures are mutually singular in the sense that their spaces of NC Cauchy
transforms have trivial intersection,

H
+(H

ζb;s
)⋂H

+(H
ξb;s
) = {0}.

Proof Suppose that h ∈H
+(H

ζb;s
)⋂H

+(H
ξb;s
).�en right multiplication by I −

ζbt and by I − ξbt both take this intersection space intoH
t(b). Hence, both h − ζhbt

and h − ξhbt belong to H
t(b), and hence both h and hbt belong to H

t(b) ⊆ H2
d .

In particular, h ∈ H2
d ⋂H

+(H
ζb;s
) = {0}, since µ

ζb;s
is a singular NC measure, by

assumption [41, Corollary 8.13]. ∎
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�e classical Aronszajn–Donoghue theorem can also be restated in operator-
theoretic language. If µ, λ are positive measures, both singular with respect to
Lebesgue measure on the complex unit circle, consider the measure spaces L2(µ) =
H2(µ) and L2(λ) = H2(λ), where as before,H2(µ) denotes the closure of the analytic
polynomials. It follows that the isometries of multiplication by the independent
variable on H2(µ) and H2(λ), Uµ ∶= Mζ ∣H2(µ) = Mζ and Uλ , are unitary. To say that
the singular measures µ, λ are mutually singular is then equivalent to the statement
that Uµ and Uλ are mutually singular in the sense that they have no unitarily
equivalent restrictions to reducing subspaces. Similarly, we will say that two Cuntz
row isometries, U and U ′, are mutually singular, and we write U ⊥ U ′, if they have
no unitarily equivalent direct summands, i.e., unitarily equivalent restrictions to
reducing subspaces. �e exact NC analogue of this formulation of the Aronszajn–
Donoghue theorem would then state that if b ∈ [H∞d ]1, then the singular Cuntz GNS
row isometries Π(ζ)s = Πµ

ζb;s
are mutually singular for ζ , ξ ∈ ∂D, ζ ≠ ξ. While the

proof of this general statement eludes us at this time, we can prove the following
weaker statement for contractive NC rational multipliers.

�eorem 5.11 (NC rational Aronszajn–Donoghue) Let b ∈ [H∞d ]1 be an NC rational
contractive le� multiplier of Fock space. For any ζ ∈ ∂D, let µζ = µζ⋅b be the finitely

correlated NC Clark measure of ζ ⋅ b with GNS representation Π(ζ).
If b is inner so thatΠ(ζ) = Π(ζ)s for all ζ ∈ ∂D, ifΠ(ζ) is irreducible for some ζ and

if b∣
Bd
1
does not vanish identically, then Π(ζ) ⊥ Π(ξ) for any ξ ≠ ζ, ξ ∈ ∂D.

If b ∈ [H∞d ]1, dimHµ = n ∈ N, µ = µ1, and {ζ1 , . . . , ζn+1} ⊆ ∂D is any set of n + 1
distinct points on the circle, then there is a j ∈ {1, . . . , n + 1}, so that Π(ζ j)s ⊥ Π(ζk)s
for all k ≠ j.

5.3 Mutual singularity and disjointness

LetU ,U ′ be Cuntz row isometries acting on Hilbert spacesK,K′, respectively.�ese
row isometries are said to be disjoint if there is no bounded operator X ∶K→K′ so
that XUk = U ′kX [26]. Such an X is called an intertwiner.�e following is well known
and can be found in [41, Lemma 8.9].

Lemma 5.12 Let U ,U ′ be row isometries onK,K′, respectively, and suppose that X ∶
K→K′ is a bounded intertwiner, XUω = U ′ωX. If U is a Cuntz unitary, then also

X∗U
′ω = UωX∗ ,

so that D ∶= X∗X belongs to the commutant of the von Neumann algebra, vN(U),
generated by U, and D′ = XX∗ belongs to the commutant of vN(U ′).

In particular, ifU is a Cuntz row isometry, then the commutant ofU, i.e., the set of
all operators that commute with each Uk , 1 ≤ k ≤ d, is a von Neumann algebra.

Proposition 5.13 Let U ,U ′ be Cuntz row isometries onK,K′, and let X ∶K→K′ be
an intertwiner. �en U ′∣PRan X

and U ∣PRan X∗
are unitarily equivalent subrepresentations.

�at is, two Cuntz row isometries are disjoint if and only if they are mutually
singular. In the above statement, we are identifying any row isometry, U, with a ∗-
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representation, πU of the Cuntz–Toeplitz C∗-algebra, Ed ∶= C∗{I, L1 , . . . , Ld}. To say
that πU and πU ′ have no unitarily equivalent subrepresentations is equivalent to the
statement that U ,U ′ have no unitarily equivalent restrictions to reducing subspaces.

Proof By the previous lemma XX∗ ∈ vN(U ′)′, the commutant of vN(U ′), so that
PX ∶= PRan X ∈ vN(U ′)′ is U ′-reducing, and similarly PX∗ is U-reducing. Hence,
U ′∣Ran PX

and U ∣Ran PX∗
are subrepresentations of the Cuntz algebra. Define W ∶

Ran PX∗ → Ran PX by the formulaW
√
X∗Xh = Xh ∈ Ran X ⊆K′.�enW is defined

on a dense subset of Ran PX∗ = Ran X∗ ⊆K, it has dense range in Ran PX , and

∥W√X∗Xh∥2 = ⟨Xh, Xh⟩K′
= ⟨h, X∗Xh⟩K = ∥√X∗Xh∥2 .

�e linear map W ∶ Ran X∗ → Ran X extends by continuity to an onto isometry.
Finally,

WUk

√
X∗Xh =W√X∗XUkh

= XUkh = U ′kXh
= U ′kW

√
X∗Xh.

�is proves that WUkPX∗ = U ′kPXW so that these Cuntz subrepresentations are
unitarily equivalent. ∎

5.4 Proof of the NC Aronszajn–Donoghue theorem

Recall that we are assuming that b(0) = 0 so that Kb
0 = 1.

Lemma 5.14 If b(0) = 0, then for any ζ ∈ ∂D,
X(ζ) j1 = ζL∗j bt and X(ζ) = X + X(ζ)1⟨1, ⋅⟩b .

Proof We performed this calculation for the case ζ = 1 in Section 4. Since we are
assuming that b(0) = 0, for any ζ ∈ ∂D,

X(ζ) j Kb
0

=̄1

= 0 + ζL∗j bt .

�e formula for X(ζ) becomes

X(ζ) = X + ζL∗bt⟨1, ⋅⟩b
= X + X(ζ)1⟨1, ⋅⟩b . ∎

Recall that X(ζ)k =FζΠ(ζ)∗kF−1
ζ is the image of a component of the adjoint of the

GNS row isometry Π(ζ) = Πµ
ζ⋅b

under the unitary weighted free Cauchy transform,

Fζ ∶ H2
d(µζ)→H

t(b). Furthermore, recall that

T(ζ)∗ ∶= X(ζ)∣M(b)
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is defined as the restriction of X(ζ) to the finite-dimensional space M (b) ⊆H
t(b),

for any ζ ∈ C. Each T(ζ)∗ is a rank-one perturbation of T(0)∗ = L∗∣M(b),

T(ζ)∗ = T(0)∗ + ζL∗bt⟨1, ⋅⟩H t(b)∣M(b)
= T(0)∗ + T(ζ)∗1⟨1, ⋅⟩.

A finite FM realization of ζ ⋅ b, for any ζ ∈ ∂D, is then given as the transfer function of
the colligation,

(A B
C D

) = (T(0)∗ T(ζ)∗1
1∗ 0

).(5.10)

Note that the minimal FM realization is obtained by compressing to M0(b) ∶=⋁ω≠∅ L
∗ωbt ⊆M (b), so that the above realization is not necessarily minimal,

although it is close to it in the sense that the size of this realization is at most one
greater than that of the minimal realization. By construction, X(ζ)∗ ≃ Π(ζ) is the
minimal row-isometric dilation of T(ζ) for every ζ ∈ ∂D.

By �eorem C, for any ζ , ξ ∈ ∂D, Π(ζ)s and Π(ξ)s will have unitarily equivalent
direct summands if and only if there are minimal T(ζ) and T(ξ) co-invariant
subspaces,Kζ andKξ of M (b), so that

F∗ζ ∶= T(ζ)∗∣Kζ
and F∗ξ ∶= T(ξ)∗∣Kξ

are unitarily equivalent and irreducible row co-isometries.�at is,

T(ζ)∗ = (F(ζ)∗ ∗
G(ζ)∗)(5.11)

has some block upper triangular decomposition with respect to Kζ and K
⊥
ζ , T(ξ)∗ has

a similar decomposition with respect to Kξ , and F(ζ) is unitarily equivalent to F(ξ).
Without loss of generality, we will assume for the remainder of this section that ξ = 1
and ζ ≠ 1. Let P, Pζ be the projections ontoK =K1 andKζ .

Lemma 5.15 Assume that b ∈ [H∞d ]1 and that b(0) = 0.�en, for any Z ∈ Bd
N
, I − Z ⊗

T(0)∗ is invertible and
det (In ⊗ I − Z ⊗ T(ζ)∗) = det (I − Z ⊗ T(0)∗) ⋅ det (In − ζb(Z)) .

Proof �is follows from Proposition 5.5, the formula

T(ζ)∗ = T(0)∗ + ζT(1)∗1⟨1, ⋅⟩,
the fact that (T(0)∗ , T(1)∗1, 1∗ , 0) is a finite (but not necessarily minimal) FM
realization of b, and the fact thatT(0) is a pure andfinite-dimensional row contraction
so that I − Z ⊗ T(0)∗ is invertible for any row contraction, Z, by Lemma 2.1. Since b ∈[H∞d ]1, theminimal de Branges–Rovnyak FM realization (A, B,C ,D) of b is such that
A = T(0)∗∣M0(b) and it follows that A is pure and similar to a strict row contraction
by�eoremA and [58,�eorem 3.8] or [62, Proposition 2.3 and Remark 2.6]. It is not
difficult to show that since RanT(0)∗ ⊆M0(b), that T(0)∗ is then itself also pure,
and hence similar to a strict row contraction. Lemma 2.1 then implies that T(0)∗ is
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jointly similar to a strict column contraction so that I − Z ⊗ T(0)∗ is invertible for
every Z ∈ Bd

N
. ∎

Proof (of �eorem 5.11) First, assume that b is inner, that b does not vanish
identically on the first level of the row-ball, that Π(1) is irreducible, and that Π(1)
is unitarily equivalent to Π(ζ). By the previous lemma, we obtain that

det(I − b(Z)) = det(I − ζb(Z)),
for all Z ∈ Bd

N
. In particular, choosing Z = z ∈ Bd

1 gives

1 − b(z) = 1 − ζb(z),
which implies that ζ = 1, a contradiction.

To prove the second part of the theorem statement, assume that b ∈ [H∞d ]1 is
an arbitrary and contractive NC rational le� multiplier of Fock space, and that
the finitely correlated NC measure µ = µb is such that dimHµ = n. Assume that{ζ1 , . . . , ζn+1} are n + 1 distinct points on the circle, and that there is no 1 ≤ j ≤ n + 1 so
that Π(ζ j) ⊥ Π(ζk) for all k ≠ j. Equivalently, given any fixed 1 ≤ j ≤ n + 1 and every
1 ≤ k ≤ n + 1, j ≠ k, Π(ζ j) and Π(ζk) have unitarily equivalent and singular Cuntz
direct summands. Hence, for every 1 ≤ k ≤ n + 1, as described above,

T(ζk)∗ = (F(ζk)∗ ∗
0 G(ζk)∗),

where each F(ζk) is an irreducible row co-isometry, and the F(ζk) are jointly unitarily
equivalent for each 1 ≤ k ≤ n + 1. Since b is an NC function, it follows that thematrices
b (F(ζk)t) ∈ Cn×n are unitarily equivalent for 1 ≤ k ≤ n + 1, so that each ζk is an
eigenvalue of b (F(ζk)t), and hence also of

b (T(ζk)t) = (b(F(ζk)t) ∗
b(G(ζk)t)),

by Proposition 5.6.�is is impossible as b (T(ζk)t) is isomorphic to an n × n matrix
and has at most n distinct eigenvalues. ∎
Remark 5.16 Our NC Aronszajn–Donoghue theorem (�eorem 5.11) shows that
“most of ” the singular parts of the GNS row isometries, Π(ζ), associated with a
contractive NC rational b ∈ [H∞d ]1, are mutually singular or disjoint. Although we
suspect that it may generally be that Π(ζ)s ⊥ Π(ξ)s for any ζ ≠ ξ, there are several
obstacles to extending our argument above. First, if b is inner, vanishes identically on
B
d
1 , and Π(ζ) = Π(ζ)s is irreducible, then if Π(ζ) and Π(ξ) are not disjoint, then

Π(ζ) is unitarily equivalent to the restriction of Π(ξ) to a reducing subspace. By
�eorem C, this happens if and only if T(ζ) and T(ξ) are unitarily equivalent, or
equivalently if and only if Π(ζ) and Π(ξ) are unitarily equivalent. In this case, we
obtain, as in the above proof, that

det(I − b(Z)) = det(I − ζb(Z)),
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for all Z ∈ Bd
N
. Hence, if

fζ(Z) ∶= (I − ζb(Z))(I − b(Z))−1 ,
then fζ ∈ O(Bd

N
) is NC rational and det fζ(Z) ≡ 1. However, such NC rational func-

tions exist, and one example is

f(x , y) = (1 − xy)(1 − yx)−1
[70]. If we set ζ = −1, f ∶= f−1,

f =∶ (1 − r)(1 + r)−1
and solve for r, we obtain that

r(x , y) = (xy − yx)(2 − xy − yx)−1 .
By rescaling the variables, x ↦ r ⋅ x, y ↦ r ⋅ y, for some sufficiently small 0 < r < 1, we
then obtain a contractive NC rational function b ∈ [H∞d ]1, b(Z) ∶= r(rZ), so that

f̃(Z) = (I + b(Z))(I − b(Z))−1
is anNC rationalHerglotz functionwith constant determinant 1 on its domain.Hence,
to prove the NC rational Aronszajn–Donoghue theorem in the case where b is inner
and Π(ζ) is an irreducible Cuntz row isometry, one would need to argue that these
assumptions on b imply that the function fζ(Z) cannot have constant determinant.
�e reducible case seems even more difficult: If Π(ζ)s and Π(ξ)s are reducible and
not mutually singular, then we obtain that

det LG(ζ)∗(Z) ⋅ det (I − ξb(Z)) = det LG(ξ)∗(Z) ⋅ det (I − ζb(Z)) .
Appendix A provides a characterization of NC functions with constant determinant.

Another class of examples of NC functions with constant determinant can be
constructed as follows: If f , g ∈ H∞d are any two outer or singular inner le�multipliers
of Fock space, then f , g are pointwise invertible in the NC unit row-ball, Bd

N
[43], and

h ∶= f g f −1g−1 ∈ O(Bd
N
) will have constant determinant equal to 1.

�e following two examples illustrate phenomena in the behavior of the compo-
nents of T(ζ)∗ as a function of ζ .

Example 5.17 In this example, eachT(ζ) is a row co-isometry andT(1)∗ is reducible;
however, for ζ ≠ 1, the T(ζ)∗ are all irreducible. All of the T(ζ)∗ are pairwise
nonsimilar. Set

T(1)∗1 = (1 0
0 0
) , T(1)∗2 = (0 0

0 1
) .

It is immediate to check that x = 1√
2
( 11 ) is a cyclic vector for T∗(1). Hence,

T(ζ)∗1 = T(1)∗1 (1 − (ζ − 1)xx∗) = ( ζ+1
2

ζ−1
2

0 0
) , T(ζ)∗2 = ( 0 0

ζ−1
2

ζ+1
2

) .
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It is well known that a pair of 2 × 2 matrices is reducible if and only if the determinant
of their commutator is 0.�erefore, we compute

det[T(ζ)∗1 , T(ζ)∗2 ] = 1

16
det((ζ − 1)2 ζ2 − 1

1 − ζ2 −(ζ − 1)2) = 1

4
ζ(ζ − 1)2 .

In particular, this polynomial does not vanish for any ζ ≠ 1 on the unit circle. �us,

for every 1 ≠ ζ ∈ ∂D, the point T(ζ)∗ is irreducible. Moreover, since trT(ζ)∗1 = ζ+1
2
,

we conclude that these matrices are pairwise nonsimilar. By [20,�eorem 6.8], since
X(ζ)∗ ≃ Π(ζ) is the minimal row isometric dilation of T(ζ), where Π(ζ) is the GNS
row isometry of µ

ζb
, each Π(ζ) is a Cuntz row isometry of dilation type, Π(ζ) is

irreducible for ζ ≠ 1, Π(1) is reducible, and Π(ζ) ⊥ Π(ξ) aremutually singular Cuntz
row isometries.

Recall that the reducible tuples of matrices form an algebraic subvariety ofCd
n . Let

p1 , . . . , pk be the polynomials in the co-ordinates of Cd
n that cut out the subvariety

of reducible matrices.�e map ζ ↦ T(ζ)∗ is affine in ζ ; hence, we obtain a family of
polynomials in ζ : q1(ζ) = p1(T(ζ)∗), . . . , qk(ζ) = pk(T(ζ)∗). Since the points where
T(ζ)∗ is reducible are precisely the common zeroes of q1 , . . . , qk , there are either at
most finitely many of them, or q1 = ⋅ ⋅ ⋅ = qk = 0. �e following example shows that
the second case can occur.

Example 5.18 �e matrices considered in this example are 4 × 4. We will denote by
e1 , e2 , e3 , e4 the standard basis for C4. Consider the row co-isometry

T(1)∗1 =
⎛⎜⎜⎜⎝
0 0 0 0
1 0 0 0
0 0 0 0
0 0 1 0

⎞⎟⎟⎟⎠
and T(1)∗2 =

⎛⎜⎜⎜⎝
0 0 0 0
0 1 0 0
0 0 0 1
0 0 0 0

⎞⎟⎟⎟⎠
.

We take x = 1
2
(e1 + e2 + e3 + e4). It is straightforward to check that x is cyclic for both

T(1)∗ and T(1). For example, T(1)1x = e1 + e3, T(1)2x = e2 + e4, T(1)2T(1)1x = e4,
T(1)22x = e2, and T(1)1T(1)2T(1)1x = e3. Now, we set ω = ζ−1

4
and calculate

T(ζ)∗1 =
⎛⎜⎜⎜⎝

0 0 0 0
ω + 1 ω ω ω
0 0 0 0
ω ω ω + 1 ω

⎞⎟⎟⎟⎠
and T(ζ)∗2 =

⎛⎜⎜⎜⎝
0 0 0 0
ω ω + 1 ω ω
ω ω ω ω + 1
0 0 0 0

⎞⎟⎟⎟⎠
.

Note that the subspaceV spanned by {e2 , e3 , e4} is always T(ζ)∗-invariant. However,
it is easy to see that there are twominimal T(1)∗-invariant subspaces, the one spanned
by e2 and the one spanned by {e3 , e4}. Let C∗ζ = T(ζ)∗∣V . Since C∗ζ is 3 × 3, if it is
reducible, then det[C∗ζ ;1 ,C∗ζ ;2] = 0, since this pair will have either an invariant or a
coinvariant one-dimensional subspace. However,

det[C∗ζ ;1 ,C∗ζ ;2] = −2ω2(2ω + 1).
Hence, C∗ζ is reducible if and only if ζ = 1 or ζ = −1. We understand the former case.
In the latter case, there is a minimal C∗

−1 (and T∗
−1) invariant subspace spanned by

e2 + e4.�is vector is T(−1)-cyclic, and thus by [20, Corollary 5.5], we have that this
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minimal subspace is unique. Note that trT(ζ)∗1 = 2ω and thus these pairs are pairwise
nonsimilar. Moreover, the Cuntz isometries X(ζ) are irreducible for all ζ ∈ ∂D/{1}.
However, the free semigroup algebra of X(−1)∗ is different from those of the X(ζ)∗
for ζ ≠ ±1 by [20,�eorem 5.15].

5.5 Additional NC rational Aronszajn–Donoghue results

Proposition 5.19 Suppose that T(ζ) is an irreducible row co-isometry. If there is a
Z ∈ Cd

N
so that Z ⊗ T(ζ)∗ is not singular, then Π(ζ)s ⊥ Π(ξ)s for any ζ ≠ ξ, ζ , ξ ∈ ∂D.

Proof �is follows easily from the fact that

T(ζ)∗ = T(ξ)∗Vζ ,ξ , where Vζ ,ξ = I − ξ ⋅ ζ 1⟨1, ⋅⟩.
�e matrix Vζ ,ξ is unitary with determinant detVζ ,ξ = ξ ⋅ ζ ≠ 1. Assuming that
T(ζ), T(ξ) are unitarily equivalent gives the contradiction

det Z ⊗ T(ξ)∗ = det Z ⊗ T(ζ)∗
= det Z ⊗ T(ξ)∗ ⋅ det I ⊗ Vζ ,ξ

= ξζ ⋅ det Z ⊗ T(ξ)∗ . ∎
Example 5.20 �ere are irreducible column isometries/row co-isometries that vio-
late the condition of the preceding proposition. For example, denote by E i j ∈ C3×3 the
matrix units. �en the tuple T∗ = (E12 ,

1√
2
E21 , E13 ,

1√
2
E31) is an irreducible column

isometry, such that for every Z, Z ⊗ T∗ is singular. However, this tuple does not
contradict the general NC Aronszajn–Donoghue conjecture that T(ξ)∗ and T(ζ)∗
have no unitarily equivalent restrictions to invariant subspaces for ξ ≠ ζ , ξ, ζ ∈ ∂D.

Let A = (A1 , . . . ,Ad) ∈ Cd
n be an irreducible tuple. Let x ∈ Cn and consider the

functions A j(z)∶C→ C
n×n given by A j(z) = A j(I + z xx∗) so that A = A(0) and set

A(z) = (A1(z), . . . ,Ad(z)). Let
SA = {z ∈ C/{0}∣ A(z) is similar to A} .

Lemma 5.21 Let ω be a word in {1, . . . , d} with ∣ω∣ = m. Let pω(z) =
1
z (trA(z)ω − trAω). If SA ≠ ∅, then deg pω ≤ ⌊m2 ⌋ − 1.
Proof Let z0 ∈ SA. Since A(z0) is similar to A, we have that trA j(z0) = trA j .
However, trA j(z0) = trA j + z0⟨A jx , x⟩. Hence, for all j = 1, . . . , d, ⟨A jx , x⟩ = 0.Now,
consider

trA(z)ω = tr (Aω1
+ zAω1

xx∗) ⋅ ⋅ ⋅ (Aωm
+ zAωm

xx∗).
For ℓ ≥ ⌊m

2
⌋ + 1, we note that the coefficient of zℓ will be a sum of traces of products

of matrices. Each product will contain a pair of adjacent elements of the form
Aω j

xx∗Aω j+1
xx∗, where if j + 1 > m, thenwe reduce itmodulom. Hence, this product

is going to be 0.�erefore, all of the coefficients of trA(z)ω of zℓ for ℓ ≥ ⌊m
2
⌋ + 1 are 0.

�e claim follows from the definition of pω . ∎
Corollary 5.22 In the setting of the previous lemma, if ∣SA∣ ≥ n2/2, then A(z) is similar
to A(0) = A for all z ∈ C.
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Proof Since A is irreducible, the similarity orbit of A is closed [5]. Moreover, the
ring of similarity invariant functions on C

d
n is generated by traces of monomials [59].

Hence, A(z) is similar to A = A(0) if and only if for all words ω, trA(z)ω = trAω . By a
result of Razmislov [61], taking words with ∣ω∣ ≤ n2 is enough to generate the algebra
of invariants. Since SA is contained in the zeroes of pω for all ω and ∣SA∣ ≥ deg pω for
all ∣ω∣ ≤ n2, we obtain that they are identically 0.�erefore, all traces are identically 0,
and we have that A(z) are all similar to A. ∎
Remark 5.23 Kuzmin (see [25] and the references therein) has provided a lower

bound of
n(n+1)

2
on the length of words needed to generate the invariant algebra.

He has conjectured that the lower bound is always sufficient. Dubnov and Lee have
verified the conjecture for n ≤ 4.
Corollary 5.24 In the setting of Lemma 5.21, if n = 2 and SA ≠ ∅, then f (z) is similar
to A for all z ∈ C.
Proof By a result of Dubnov [25], we need traces of words of length at most 3
to generate the algebra of invariant functions. For all words of length at most 3,
deg pω ≤ 0. However, pω all vanish on SA, and thus these polynomials are identically
0. ∎

Setting A(z) j ∶= T(z)∗j , where T(z)∗ is the finite-dimensional Clark perturbation
defined in equation (5.6), corresponding to an NC rational inner, b, Corollaries 5.22
and 5.24 yield additional Aronszajn–Donoghue-type results.

Corollary 5.25 Suppose that dimM (b) = n so that rowT(z)∗ ≃ A(z) ∈ Cd
n , where

the T(z) are the finite-dimensional Clark perturbations corresponding to anNC rational
inner.�en there are at most n2/2 − 1 points ζk ∈ ∂D so that the row co-isometric T(ζk)
are mutually and jointly similar. If n = 2, then T(ζ) cannot be jointly similar to T(ξ)
for any ζ ≠ ξ, ζ , ξ ∈ ∂D.
Proof If either of these statements holds, Corollary 5.22 or Corollary 5.24 implies
that every T(z)∗ is jointly similar, for every z ∈ C. In particular, T(ζ)∗ is similar to
T(0)∗ for every ζ ∈ ∂D.�is is impossible as T(0) is a pure row d-tuple and each T(ζ)
is a row co-isometry for ζ ∈ ∂D (since we assume that they are the Clark perturbations
corresponding to an NC rational inner). Hence, either ∣SA∣ < n2/2, or, if n = 2, then
SA = ∅. ∎

A SL(N)-valued NC functions

Suppose that f is a free NC function so that det f (Z) is constant on its domain
Dom f ⊆ Cd

N
. By taking direct sums, it follows that if f is not identically zero, then

det f (Z) ≡ 1.
�eorem A.1 Let f be a free NC function with uniformly open and connected domain
Dom f ⊆ Cd

N
. Furthermore, assume that 0 ∈ Dom f and that f −1(Z) is defined in a

uniformly open neighborhood of 0 ∈ Bd
1 . If

f (Z) = ∞∑
j=0

f j(Z) and f (Z)−1 = ∑
k=0

gk(Z)

https://doi.org/10.4153/S0008414X22000384 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X22000384


1442 M. T. Jury, R. T. W. Martin, and E. Shamovich

are the Taylor–Taylor series expansions of f , f −1 at 0 ∈ Bd
1 so that f j , g j ∈ C{z} are

homogeneous free polynomials of degree j, then det f (Z) ≡ 1 on Dom f if and only if

0 = ∑
j+k=ℓ

j∈N, k∈N∪{0}

j tr f j(Z)gk(Z),
for every ℓ ∈ N.
Proof Choose r > 0 so that rBd

N
⊆ Dom f ⋂Dom f −1. Fix Z ∈ rBd

N
and define an

analytic function on D by

h(λ) ∶= det f (λZ) = 1.
Taking the derivative and applying Jacobi’s formula yields

0 = h′(λ) = det f (λ(Z))´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
≡1

⋅tr ∂Z f (λZ) f (λZ)−1

=
∞∑

j=1, k=0
λ j+k−1 j tr f j(Z)gk(Z)

=
∞∑
ℓ=1

λℓ−1 ∑
j+k=ℓ

j∈N, k∈N∪{0}

jtr f j(Z)gk(Z).

Multiplying both sides of this expression by λ
n
and integrating with respect to

normalized Lebesgue measure over the complex unit circle yields

0 =∑
ℓ

∫
∂D

e i(ℓ−n−1)θdθ ∑
j+k=ℓ

j∈N, k∈N∪{0}

jtr f j(Z)gk(Z)
= ∑

j+k=n+1
j∈N, k∈N∪{0}

jtr f j(Z)gk(Z),
for any n ∈ N ∪ {0}.

Conversely, if the above condition holds, then it follows that for any fixed Z ∈ rBd
n ,

the function h(λ) ∶= det f (λZ) has vanishing derivative. Hence, h(λ) is constant so
that h(λ) = 1 since f is NC. In particular,

1 = h(1) = det f (Z) = h(0) = det f (0),
and this holds for every Z ∈ rBd

N
, and hence for every Z ∈ Dom f since Dom f is

connected. ∎
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[64] B. Sz.-Nagy and C. Foiaş, Harmonic analysis of operators on Hilbert space, Elsevier, New York,
1970.

[65] J. L. Taylor, A general framework for a multi-operator functional calculus. Adv. Math. 9(1972),
183–252.

[66] J. L. Taylor, Functions of several noncommuting variables. Bull. Amer. Math. Soc. 79(1973), 1–34.
[67] D. V. Voiculescu, Free analysis questions I: duality transform for the coalgebra of ∂X∶B . Int. Math.

Res. Not. IMRN 2004(2004), 793–822.
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