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Abstract

With analytic applications in mind, in particular beyond endoscopy, we initiate the
study of the elliptic part of the trace formula. Incorporating the approximate functional
equation into the elliptic part, we control the analytic behavior of the volumes of tori
that appear in the elliptic part. Furthermore, by carefully choosing the truncation
parameter in the approximate functional equation, we smooth out the singularities of
orbital integrals. Finally, by an application of Poisson summation we rewrite the elliptic
part so that it is ready to be used in analytic applications, and in particular in beyond
endoscopy. As a by product we also isolate the contributions of special representations
as pointed out in [Beyond endoscopy, in Contributions to automorphic forms, geometry
and number theory (Johns Hopkins University Press, Baltimore, MD, 2004), 611–697].

1. Introduction

The Arthur–Selberg trace formula is (arguably) the most general tool in the theory of
automorphic forms to date. Its development into the current form has taken over half a century
and in the meantime it has given rise to many spectacular results on the functoriality conjectures
(see, for example, [Art05, §§ 25, 26] and [Art]). Almost all of these results go through a comparison
of trace formulas on different groups coupled with local harmonic analysis. Although these results
have been very successful, they only cover a limited number of special cases of the functoriality
conjectures, and in general the conjectures are wide open.

Relatively recently (in [Lan04]) a new strategy, which is now known as ‘beyond endoscopy’,
was introduced to attack the general functoriality conjectures. Very roughly, it can be described
as a two-step process. The first step is to isolate, by means of the trace formula, the (packets
of) cuspidal automorphic representations whose L-functions (for a representation of the dual
group) have a pole at s = 1. The second step involves a comparison of this data for two different
groups and aims to determine functorial transfers. The method, in particular, proposes a new and
non-comparative use of the trace formula. In this paper we will only be concerned with the first
of the two steps. The central problem of the first step is to understand the asymptotic behavior
of certain averages of trace formulae on a single group with varying test functions (cf. (••)).

In [Lan04] the study of these averages was initiated for the group GL(2) and symmetric
power representations (cf. § 1.1). At the heart of these averages are the terms coming from the
so-called ‘elliptic part’ of the trace formula (cf. (4)). The elliptic part involves averages of orbital
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integrals weighted by certain arithmetic data (volumes of certain tori) varying in families. The
highly irregular behavior of these quantities on top of the singularities of orbital integrals makes
the analysis troublesome. We also note that in [Lan04] the elliptic part, although numerically
analyzed, was not treated.

This paper lays the foundations for a method to study the elliptic part of the trace formula in
analytic problems. We introduce the approximate functional equation to the elliptic part in order
to resolve the problems of arithmetic and analytic nature at once. We then go on and isolate
the contribution of special representations in the elliptic part (cf. § 1.2). Finally, we end up with
an expression for the elliptic part that is ready to use in analytic applications, particularly in
beyond endoscopy. The results of this paper will then be used in two forthcoming papers where we
execute the first non-trivial case of beyond endoscopy via the trace formula, and prove bounds1

toward the Ramanujan conjectures.
In order to state our results more precisely and to put them into context, in the next few

paragraphs we will briefly go over the idea in [Lan04]. We will then state the main results of this
paper in Theorem 1.1.

1.1 A brief overview of beyond endoscopy
In order to simplify notation and to keep the analogy with [Lan04], we will be working only over
the field Q. Let us begin by describing the general idea of beyond endoscopy.

Let S be a finite set of primes including the archimedean place and π be a cuspidal
automorphic representation of G unramified outside of S. For p /∈ S, let A(πp) ∈ LG be the
local parameter of πp. Finally, let ρ be a finite-dimensional representation of LG. Recall that to
this data one can attach the incomplete2 automorphic L-function (cf. [BJ79] for details) defined
by

LS(s, π, ρ) :=
∏
p/∈S

det(1− ρ(A(πp)) · p−s)−1

:=
∑
n

gcd(n,S)=1

aπ,ρ(n)

ns
. (•)

Taking the negative of the logarithmic derivative of LS(s, π, ρ), we see that the asymptotic
expansion of the partial averages3

Sπ,ρ(X) :=
∑
p<X
p/∈S

log(p)aπ,ρ(p)

in terms of powers Xβ, <(β) > 1, gives us the location and multiplicity of the poles of LS(s, π, ρ)
on and to the right of <(s) = 1. Moreover, for certain test functions fp,ρv ∈ C∞(G(Qv)) at v /∈ S
(cf. § 2.2.2 or [Lan04, p. 19]), and for arbitrary4 fv ∈ C∞c (Qv), we can express the average of

1 More precisely, we will re-prove the classical 1
4
-bound of Kuznetsov via the trace formula.

2 The missing factors for the primes in S are expected not to affect the analytic behavior of the automorphic
L-functions.
3 Note that Sπ(X) depends on the chosen finite set of primes S. For our purposes we will chose S once and for
all, therefore we have dropped it from the notation. If the need to emphasize the choice of S arises we will write
Sπ,ρ(X,S) instead of Sπ,ρ(X).
4 We can also allow functions which are not necessarily compactly supported; however, this is not the main issue
here.
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Beyond endoscopy via the trace formula: 1

aπ(p) weighted by
∏
v∈S tr(πv(fv)) as the trace of the operator R(fp,ρ) (see [Art05, p. 7] for the

definition of R(f)) on the cuspidal part of the spectrum, where fp,ρ :=
∏
v∈S fv

∏
v/∈S f

p,ρ
v , i.e.∑

π

aπ,ρ(p)
∏
v∈S

tr(πv(fv)) = tr(Rcusp(fp,ρ)).

In the above expression we have denoted the orthogonal projection of R(fp,ρ) to the cuspidal
spectrum by Rcusp(fp,ρ). The idea in [Lan04] is to study the asymptotic behavior of

Sρ(X) :=
∑
π

∑
p<X
p/∈S

log(p)aπ,ρ(p)
∏
v∈S

tr(πv(fv))

=
∑
p<X
p/∈S

log(p) tr(Rcusp(fp,ρ)) (••)

by using the trace formula to re-express tr(Rcusp(fp,ρ)). At this moment let us pause momentarily
to make some comments.

Firstly, we would like to note that for a π which satisfies the Ramanujan conjectures [Sar05]
LS(s, π, ρ) is holomorphic in the region <(s) > 1, and it is expected that the only possible poles
appear at the point s = 1. Therefore, for π of the this type, the leading term of the asymptotic
expansion of Sπ,ρ(X) will only have terms of size X. On the other hand, one expects that the π
that violate the Ramanujan conjectures are functorial transfers from smaller groups and thus can
be understood inductively. Therefore one can focus the attention on representations satisfying
Ramanujan conjectures (which are called ‘Ramanujan type’ in [Lan04]) and study the coefficient
of the term X in the asymptotic expansion of Sπ,ρ(X). This was the approach taken in [Lan04].

Secondly, we would like to make a brief historical remark. Right after the idea of beyond
endoscopy appeared, Sarnak, in his letter to Langlands [Sar], suggested studying a variant of
Sπ,ρ(X) (for the group GL(2) and ρ = Symk, the symmetric kth power representation) where
the sum over p is replaced by a sum that runs over integers, and using the Petersson–Kuznetsov
formula [IK04, § 16.4], a relative trace formula, to analyze the resulting expressions. For k 6 2
these modifications conveniently allowed the asymptotic expansions of (the modified) SSymk(X)
to be studied (see [Ven04] for a treatment of k = 1, 2 and [Her10] for related results). For higher
k serious analytic problems arise and an analysis has not yet been carried out; for more details
on this we refer the reader to [Sar].

After this detour, we now return to Sρ(X) and [Lan04]. Since in this paper we will only be
considering GL(2) and symmetric power representations, for what follows let us fix an integer
k > 0 and use the notation ρ = ρk = Symk, Sρ(X) = Sk(X), fp,ρ = fp,k. As we have already
noted in the first part of the introduction, a detailed study of Sρ(X), for G = GL(2) and
ρ = Symk, was initiated in [Lan04, pp. 17–34]. There the contribution to (••) of all of the terms
but the elliptic ones was analyzed.

1.2 Obstacles in the study of the elliptic part
We have indicated in the introduction that the main difficulties that make the analysis of the
elliptic terms not straightforward are the appearance of class numbers of quadratic extensions
in various families (cf. (2)) and the singularities of orbital integrals (§ 2.2.3).

Additional complications are caused by contributions of certain special representations. More
precisely, as we have remarked in the previous paragraphs, the most fundamental part of the
asymptotic expansion of Sk(X) is expected to be the term of order X, which corresponds to
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the contribution of those forms of Ramanujan type. However, the trace formula5 expresses the
trace of the operator R(fp,ρ) on the discrete part of the spectrum as a sum of geometric and
spectral terms [JL70, pp. 271–272]. Thus in order to study the asymptotic behavior of Sk(X)
one needs to isolate on the geometric side the contribution of those representations that are not
of Ramanujan type. An important example (which is the only example in the setting considered
in [Lan04]) of this is the trivial representation, which we denote by 1. Its trace, tr(1(fp,k)), has to
be isolated on the geometric side (this contribution occurs in the elliptic part; cf. Theorem 1.1)
of the trace formula before one can use it to study Sk(X). Furthermore, we would like to isolate
this in such a way that the resulting expression is in a form that is suitable for further analysis
of Sk(X).

We would like to note that the contribution of tr(1(fp,k)) was previously studied in [Lan04]
and [FLN10]. In [Lan04] the contribution was approximated and numerical experiments were
done for the resulting expression for Sk(X). In the more recent paper [FLN10] the contribution of
tr(1(f)), for a general class of functions f , was isolated for a general group6 G that is semi-simple,
simply connected and satisfies G = Gder, where Gder denotes the derived group of G. In that
paper the authors perform Poisson summation on what they call the ‘Hitchin–Steinberg basis’
and identify the contribution of tr(1(f)) as the main term on the dual sum. However, their
approach has so far not allowed further study of the resulting expression after removing tr(1(f)).
Our method in this paper is similar to that in [FLN10] in that we also use Poisson summation.
The main difference, which allows us to go further and get an expression that is suitable for
analysis, is that we use the approximate functional equation (11) in treating the class numbers
(i.e. volumes of tori in [FLN10]), which amounts to an additive truncation rather than the
multiplicative truncation that is used in [FLN10].

Returning to our discussion, we would finally like to note that in [Lan04, p. 25] the

contribution to (••) of the residues of Eisenstein series7 (denoted in [Lan04] by tr(ξ0(f
p
m)),

which in our notation will be denoted by tr(ξ0(f
p,k))), was analyzed and shown to contribute

αkX + o(X) to Sk(X), where αk ∈ C is given in [Lan04, (31) and (32)]. It was stated there that

one expects this contribution to appear in the elliptic part; however, this has not been shown to

date. This contribution is also isolated in Theorem 1.1.

1.3 Results of this paper

In this paper we analyze the elliptic part of the trace formula, isolate the contributions of the

special representations that were mentioned in the previous paragraph, and rewrite it in a form

that is suitable for analytic applications, in particular for beyond endoscopy. In order to state

the result we will need to introduce some notation which is explained in detail in § 2.

Let G := GL(2) and AQ denote the ring of adèles of Q. To keep the analogy with [Lan04]

and to avoid notional complications we will be considering automorphic representations of G

over Q which are unramified at every finite place and whose central characters are trivial on

R×>0 ↪→ A×Q. Let p ∈ Z>0 be a prime and k ∈ Z>0 be an integer. Let us denote the scalar matrices

with positive real entries by Z+. Let fp,k = f∞ · fp,kp
∏
q 6=p f

p,k
q , where f∞ ∈ C∞(Z+\G(R)) and

fp,kq are as in § 2.2.2. We note that for a cuspidal automorphic representation, π, with central

character as above, this choice of test functions satisfies tr(π(f∞)) · aπ,ρk(p) = tr(π(fp,k)), where

aπ,ρk(p) is still defined by (•).

5 In [Lan04] Langlands uses the trace formula in [JL70] rather than Arthur’s trace formula, and we will follow this
choice.
6 These properties exclude G = GL(n), however their argument can easily be extended to cover this case too.
7 This is the contribution to the trace formula of term (vi) of [JL70].
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Beyond endoscopy via the trace formula: 1

Let G(Q)# denote the set of conjugacy classes in G(Q), and γ(4y,x) ∈ G(Q)# denote the
conjugacy class of elements having trace x and determinant y. We define the functions θ∓∞ ∈
Cc(R) by θ∓∞(x) := 2|x2 ± 1| · Orb(f∞; γ(∓1,x)), where the orbital integral, Orb(f∞; γ(∓1,x)), is
as defined in § 2.2.1. Let F,H0, H1 ∈ C∞(R) be as in equations (7), (H0) and (H1) of § 3.2,
respectively. Finally, let us denote the elliptic part of the trace formula for the test function fp,k

by tr(R(fp,k))ell.
Then we have the following theorem.

Theorem 1.1. Let 1 > α > 0, and υ > 0 be any number such that ζ(u+ 1) does not have any
zeros for |u| < υ. Let Cυ = {(0, it) | t ∈ (−∞,−υ) ∪ (υ,∞)} ∪Cυ, and let Cυ denote the left half
of the circle of radius υ around 0. Then

tr(R(fp,k))ell = tr(1(fp,k))− tr(ξ0(f
p,k))− Σ(�)− k + 1

2

∑
∓

∫
x2±1>0

θ∓∞(x)√
|x2 ± 1|

dx

+
pk/2

2

∑
∓

{∫
θ∓∞(x)

[
2

πi

∫
(−1)

F̃ (u)

(
(4pk)−α

|x2 ± 1|α

)−u

× ζ(2u+ 2)

ζ(u+ 2)

(1− p−(u+1)(k+1))

(1− p−(u+1))
du

+

√
πp−k/2√
|x2 ± 1|

1

πi

∫
Cυ
F̃ (u)

Γ((ι(x2±1) + u)/2)

Γ((ι(x2±1) + 1− u)/2)

×
(
π(4pk)α−1

|x2 ± 1|1−α

)−u ζ(2u)

ζ(u+ 1)

(1− p−u(k+1))

(1− p−u)
du

]
dx

}
+
pk/2

2

∑
∓

∞∑
f=1

1

f3

∞∑
l=1

1

l2

∑
ξ∈Z
ξ 6=0

Kll,f (ξ,∓pk)

×
{∫

θ∓∞(x)

[
F

(
lf2(4pk)−α

|x2 ± 1|α

)
+

lf2p−k/2

2
√
|x2 ± 1|

H

(
lf2(4pk)α−1

|x2 ± 1|1−α

)]
e

(
−xξpk/2

2lf2

)
dx

}
,

where8

Kll,f (ξ,∓pk) :=
∑

a mod 4lf2

a2±4pk≡0 mod f2

(a2±4pk)/f2≡0,1 mod 4

(
(a2 ± 4pk)/f2

l

)
e

(
aξ

4lf2

)
,

ιx2±1 :=

{
0 if x2 ± 1 > 0,

1 if x2 ± 1 < 0,

H

(
lf2(4pk)α−1

|x2 ± 1|1−α

)
= Hι(x2±1)

(
lf2(4pk)α−1

|x2 ± 1|1−α

)
,

8 For q 6= p a prime, Klq,1(ξ, pk) with gcd(ξ, q) = 1 is the classical Kloosterman sum S(2̄ξ, 2ξpk; q) (cf. [Sar, (70)]),
hence the notation.
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H0, H1 being defined in Corollary 3.5, and

Σ(�) :=
∑
∓

∑
m∈Z

m2±4pk=�

θ∓∞

(
m

2pk/2

) ′∑
f2|m2±4pk

1

f

∞∑
l=1

1

l

(
(m2 ± 4pk)/f2

l

)

×
[
F

(
lf2

|m2 ± 4pk|α

)
+

lf2√
|m2 ± 4pk|

H

(
lf2

|m2 ± 4pk|1−α

)]
,

where the ′ on top of the summation sign means the sum runs over f | (m2 ± 4pk) such that
(m2 ± 4pk)/fk ≡ 0, 1 mod 4.

Since it is easy to loose track in the rather overwhelming notation above, a few points of
clarification are in order.

– The functions fp,k are the test functions that are used in the trace formula to arrive
at (••).

– f∞ ∈ Z+\GL2(R) is an arbitrary smooth function. The property f∞ that its orbital
integrals are compactly supported is to ensure some generality that may be useful for
applications.9 For all practical purposes of the paper one can take f∞ as compactly supported
itself.

– F is the test function that we choose for the approximate functional equation, and H0,
H1 are transforms of F that appear in the approximate functional equation (cf. § 3.2). The
explicit choice made in (7) is for conveniently realizing the Mellin transform, F̃ , and its analytic
properties (cf. Lemma 3.3). The arguments go through with an arbitrary choice of a Schwarz
class function F .

We would also like note that although Theorem 1.1 is stated for the automorphic
representations with the ramification and central character restrictions given above, the methods
are robust and easily generalize to cover the most general case.

2. Preliminaries and the trace formula

In this section we will review the setup of [Lan04] in more detail. We will first describe the
set of automorphic representations that will be of interest to us. We will then fix measure
normalizations and review the appropriate choice of test functions to arrive at (••). Then we
will recall their their orbital integrals as well as the volume factors that appear in the trace
formula. Finally, we will review the singularities of (archimedean) orbital integrals which will be
central to the analysis.

Throughout the paper, unless otherwise explicitly stated, e(x) will denote e2πix, (D/·) will
denote the Kronecker symbol and

√
· will mean the positive branch of the square-root function.

2.1 The relevant sets of automorphic representations
Let G := GL(2) and A = AQ be the ring of adèles of Q. We will be interested in automorphic
representations π of G(A) where πp is unramified for every finite prime p, and whose central
characters are trivial on R×>0 ↪→ A×. Let us denote those matrices in the center of G(R) having
positive entries by Z+. Then we can, and will, identify R×>0 with Z+. We remark that since we are
insisting on πp being unramified at every finite place and the central character being trivial on

9 For instance, one may wish to take f∞ to be a matrix coefficient of some discrete series representation.
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Beyond endoscopy via the trace formula: 1

Z+, by strong approximation, the central character of the representation π is necessarily trivial
(as observed in [Lan04]).

2.2 The trace formula
2.2.1 Elliptic part of the trace formula and measure normalizations. An element, γ ∈ G(Q),

will be called elliptic10 if its characteristic polynomial is irreducible over Q. For γ ∈ G(Q) let Gγ
denote the centralizer of γ in G. We also let G(Q)# denote the set of Q-conjugacy classes in G,
and G(Q)#,ell denote the set of elliptic conjugacy classes. The elliptic part of the trace formula
is the sum ∑

γ∈G(Q)#,ell

vol(γ) ·
∏
q

Orb(fq; γ),

where

Orb(fq; γ) :=

∫
Gγ(Qq)\G(Qq)

fq(g
−1γg) dḡq,

vol(γ) :=

∫
Z+Gγ(Q)\Gγ(A)

dg,

and the product over q runs through all the primes including ∞.
Measures in the above integrals are normalized as follows.11 On G, at a non-archimedean

prime p we choose the Haar measure on G(Qp) giving measure 1 to G(Zp), and at ∞ we choose
any Haar measure (the explicit choice is not important for our purposes here). On Gγ , we
normalize the measures in a similar manner.

– At a non-archimedean prime p we choose the Haar measure giving measure 1 to Gγ(Zp).
– At ∞, any δ ∈ G(R) can be decomposed as δ = zδ δ̄uδ, where zδ ∈ Z+ is the central

matrix with entries
√
| det(δ)|, uδ =

(
sign(det(γ))

1

)
, and δ̄ ∈ SL2(R):

∗ if γ ∈ G(Q) is elliptic over R (i.e. has two non-real eigenvalues), and letting the
eigenvalues of δ̄ ∈ Gγ(R) be eiθ, e−iθ, we take the measure to be dθ;

∗ if γ ∈ G(Q) is split over R (i.e. has two distinct real eigenvalues), and letting the
eigenvalues of δ̄ ∈ Gγ(R) be λ, λ−1, we take the measure to be dλ/λ.

2.2.2 Test functions, orbital integrals and volumes of tori. In this subsection we quickly go
over the relevant choices of test functions to reach (••). The details of the calculations of orbital
integrals and volumes of tori can be found in [Lan04, pp. 19–21]. Let p be a prime and k > 0 be
an integer. Let ρ = Symk be the symmetry kth power representation of LG = GL(2,C).

For a finite prime q and an integer r > 0, let us first define f
(r)
q ∈ Cc(Qq) to be the

characteristic function of the set

{X ∈ Mat2×2(Zq) | |det(X)|q = q−r},

where Mat2×2(Zq) denotes the set of two-by-two matrices with coefficients in Zq and | · |q denotes

the q-adic absolute value on Q. Now let fp,kq ∈ C∞c (Qq) be defined as follows:

10 The notion of an elliptic element depends on the choice of the field. However, since we have fixed the base field
to be Q we drop this from the notation and simply say ‘elliptic’ instead of ‘elliptic over Q’. When the time arises
to distinguish a field K we will use the notation ‘elliptic over K’.
11 We note here that the only reason to choose this normalization is to keep the analogy with [Lan04]. There are
more natural choices of measures on both G and the tori (see, for example, [FLN10]).
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– if q is finite prime such that q 6= p, then fp,kq := f
(0)
q ;

– at p, fp,kp := p−k/2f
(k)
p ;

– at ∞, f∞ ∈ C∞(Z+\G(R)) is such that its orbital integrals are compactly supported, and
other than this condition it is arbitrary.

Finally, define fp,k by

fp,k := f∞ · fp,kp ·
∏
q 6=p

fp,kq .

Let γ ∈ G(Q) be elliptic and let us denote (4 det(γ), tr(γ)) by (Nγ ,mγ). Let m2
γ −Nγ = s2γDγ ,

where Dγ is the discriminant of the quadratic number field Q(
√
m2
γ −Nγ). Normalizing the

measures as above, the computations12 on [Lan04, pp. 17–18] give

vol(γ) =


2h(γ)R(γ) if Dγ > 0,

2πh(γ)

ωγ
if Dγ < 0,

(1)

where ωγ , h(γ), R(γ) are the number of roots of unity, the class number and the regulator of

Q(
√
m2
γ −Nγ), respectively. Following [Lan04, Lemma 1], we see that if det(γ) = ±pk, then

vol(γ) ·
∏
q

Orb(fp,kq ; γ) = p−k/2 vol(γ) ·Orb(f∞; γ) ·
{∑
f |sγ

f
∏
q|f

(
1−

(
Dγ

q

)
q−1
)}

(2)

and the left-hand side is 0 otherwise (cf. [Lan04, (60)]). Recall that by Dirichlet’s class number
formula, we have

L

(
1,

(
Dγ

·

))
=


2h(γ)R(γ)√

Dγ

if Dγ > 0,

2πh(γ)

ωγ
√
|Dγ |

if Dγ < 0.

Combining this with (1), we get

vol(γ) =
√
|Dγ |L

(
1,

(
Dγ

·

))
.

Substituting this into (2) gives

vol(γ) ·
∏
q

Orb(fp,kq ; γ) = p−k/2 Orb(f∞; γ)
√
|Dγ |L

(
1,

(
Dγ

·

)){∑
f |sγ

f
∏
q|f

(
1−

(
Dγ

q

)
q−1
)}

.

Finally, by using the change of variables f 7→ sγ/f and rearranging the terms, we get

vol(γ) ·
∏
q

Orb(fp,kq ; γ) = Orb(f∞; γ)
|m2

γ −Nγ |1/2

pk/2

∑
f |sγ

1

f
L

(
1,

(
(m2

γ −Nγ)/f2

·

))
(3)

when det γ = ±pk, and the left-hand side vanishes otherwise.

12 In [Lan04] it is assumed that Q(
√
m2
γ −Nγ) 6= Q(

√
−2) or Q(

√
−3); however, the calculations easily generalize

to cover those cases.
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2.2.3 Archimedean orbital integrals and their singularities. We will recall the asymptotic
behavior of archimedean orbital integrals13 in our context. For a more detailed introduction
see [Kna86, Lab08, She79] and references therein.

Let f∞ ∈ C∞c (Z+\G(R)) be as above and γ ∈ G(Q) be a regular semisimple element (i.e.
its centralizer has minimal dimension). We are interested in the behavior of Orb(f ; γ) as γ
approaches a central element z ∈ G(Q). As is described in [Lan04, p. 21, (26)] and14 [She79,
(1)], around z ∈ Z(R), there exist a Weyl group invariant neighborhood, Nz, of z and smooth
functions g1, g2 ∈ C∞c (Nz) (depending on the function f∞ and the point z) such that

Orb(f∞; γ) = g1(γ) +
|γ1γ2|1/2

|γ1 − γ2|
g2(γ), (?)

where γ1, γ2 are the eigenvalues of γ. Furthermore, g1 is supported only on the elliptic torus.
We also remark that as γ approaches a central element the orbital integral, Orb(f∞; γ),
has a singularity of the prescribed form, |γ1γ2|1/2/|γ1 − γ2|, and that γ1γ2/(γ1 − γ2)2 is the
discriminant function of G.

We will now re-express (?) in terms of the (Nγ ,mγ) coordinates as in the previous section.
Recall that mγ = tr(γ), and Nγ = 4 det(γ). The discriminant then becomes

(γ1 − γ2)2

γ1γ2
= 4

(
m2
γ

Nγ
− 1

)
.

Then in the (N,m) coordinates the asymptotic expansion of the orbital integral can be re-
expressed as

Orb(f∞; γ) = g1(mγ , Nγ) +
1

2

∣∣∣∣m2
γ

Nγ
− 1

∣∣∣∣−1/2g2(Nγ ,mγ)

where, by abuse of notation, g1, g2 denote the corresponding functions in the (N,m) coordinates.
Also recall that f∞ is assumed to be invariant under Z+, therefore we have f∞(zγ) = f∞(g)

for any z ∈ Z+. This, in particular, implies that gi(a
2N, am) = gi(N,m) for any a ∈ R+ and

i = 1, 2. By taking a =
√
|N |, g1 and g2 depend only on the ratio m/

√
|N | and the sign of N .

Therefore the orbital integrals can be expressed as

Orb(f∞; γ) = g
sign(Nγ)
1

(
mγ√
|Nγ |

)
+

1

2

∣∣∣∣m2
γ

Nγ
− 1

∣∣∣∣−1/2gsign(Nγ)2

(
mγ√
|Nγ |

)
, (??)

where g∓1i (x) := gi(∓1, x). We also remark that by the note following (?), when sign(Nγ) < 0,
the torus Gγ is split at ∞, and g1 vanishes.

2.2.4 Final form of the elliptic part. Recall that the elliptic part of the trace formula is the
sum ∑

γ∈G(Q)#,ell

vol(γ) ·
∏
q

Orb(fq; γ).

13 The non-archimedean orbital integrals have exactly the same type of singularities; however, since we will only
be considering representations that are unramified at every finite place, the archimedean case will be sufficient for
our purposes.
14 A quick look shows that our measure normalizations on the tori are the same as the ones given in [She79] up to
a constant.
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By (3) this is

∑
γ∈G(Q)#,ell

det(γ)=±pk

Orb(f∞; γ)
|m2

γ −Nγ |1/2

pk/2

∑
f |sγ

1

f
L

(
1,

(
(m2

γ −Nγ)/f2

·

))
.

Also recall that only the γ for which Nγ = 4 det(γ) = ±4pk give a non-zero contribution to the
sum above. Therefore pk/2 =

√
|Nγ |/2. Hence, by (??),

Orb(f∞; γ)
|m2

γ −Nγ |1/2

pk/2
= 2 Orb(f∞; γ)

∣∣∣∣m2
γ

Nγ
− 1

∣∣∣∣1/2
= 2

∣∣∣∣m2
γ

Nγ
− 1

∣∣∣∣1/2gsign(Nγ)1

(
mγ√
|Nγ |

)
+ g

sign(Nγ)
2

(
mγ√
|Nγ |

)
= θ

sign(Nγ)
∞

(
mγ√
|Nγ |

)
,

where

θ∓∞(x) := 2|x2 ± 1|1/2g∓1 (x) + g∓2 (x). (? ? ?)

Finally, recall that the conjugacy classes in GL(2) are parametrized by their determinant
and trace, and a conjugacy class corresponding to determinant n and trace m is elliptic if and
only if m2 − 4n 6= � ∈ Q. Since with our choice of test functions the only contribution to the
elliptic part is from γ with det(γ) = ±pk, the elliptic part can be written as

∑
∓

∑
m∈Z

m2±4pk 6=�

θ∓∞

(
m

2pk/2

) ′∑
f2|m2±4pk

1

f
L

(
1,

(
(m2 ± 4pk)/f2

·

))
, (4)

where the ′ on top of the summation sign indicates that the sum over f is over the square divisors
of m2 ± 4pk such that (m2 ± 4pk)/f2 is a discriminant, i.e. (m2 ± 4pk)/f2 ≡ 0, 1 mod 4.

3. Approximate functional equation

This section is dedicated to the derivation of an approximate functional equation for the weighted
sum of the L-values that appear in (4). We will first review the functional equation that the sum
over f of the L-values satisfies. The point to pay attention to is that the weights (i.e. the f -sum)
in (4) are arranged so that the f -sum as a whole satisfies a convenient functional equation. Once
we have the functional equation we will derive an approximate functional equation in a routine
manner. For most of the material on the approximate functional equation we will follow [IK04,
§ 10.4].

3.1 A functional equation

Let δ ∈ Z\{0} be a discriminant, i.e. δ ≡ 0, 1 mod 4, and let ( δ· ) denote the Kronecker symbol.

As usual, let L(z, ( δ· )) denote the Dirichlet L-function associated to the character ( δ· ), i.e.

L

(
z,

(
δ

·

))
=

∞∑
l=1

1

lz

(
δ

l

)
.
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Let L(z, δ) be defined by

L(z, δ) :=
′∑

f2|δ

1

f2z−1
L

(
z,

(
δ/f2

·

))
, (5)

where the ′ on top of the summation sign once again means that the sum runs over f such that
δ/f2 ≡ 0, 1 mod 4. Let Λ(z, δ) be the completed L-function, i.e.

Λ(z, δ) :=

(
|δ|
π

)z/2
Γ

(
z + ιδ

2

)
L(z, δ),

where ιδ is defined by

ιδ =

{
0 δ > 0,

1 δ < 0.
(#)

Then the completed L-function satisfies the following functional equation.

Proposition 3.1.
Λ(z, δ) = Λ(1− z, δ). (6)

In particular, we have

L(z, δ) =

(
|δ|
π

)1/2−zΓ((1− z + ιδ)/2)

Γ((z + ιδ)/2)
L(1− z, δ). (6′)

Proof. This is the content of [SY13, Lemma 2.1]. We only note that in the indicated reference it is
implicitly assumed that δ/f2 is a discriminant. It turns out that this functional equation was also
observed earlier by several other authors in related contexts (see, for instance, [Byk94, Zag77]).
We refer the reader to the proof of [SY13, Lemma 2.1] and the references in § 2 of the same paper
for more on the history. 2

3.2 Approximate functional equation
In what follows we will derive an approximate functional equation for L(z, δ). Everything in this
section is standard and we include this section to keep the treatment self-contained. almost all
of this material is from [IK04, ch. 10, § 10.4].

Let F ∈ C∞(R+) be

F (x) =
1

2K0(2)

∫ ∞
x

e−y−1/y
dy

y
, (7)

where Ks(z) denotes the sth modified Bessel function of the second kind. Then we have the
following lemma.

Lemma 3.2. For every x > 0, we have

0 < F (x) <
e−x

2K0(2)
(8)

and

0 < 1− F (x) <
e−1/x

2K0(2)
. (9)

Proof. [IK04, p. 257]. 2
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Let F̃ (z) denote the Mellin transform of F , i.e.

F̃ (z) =

∫ ∞
0

F (u)uz
du

u
. (10)

We have the following lemma about the analytic behavior of F̃ .

Lemma 3.3. Explicitly, F̃ (z) = (1/z)(Kz(2)/K0(2)). It is holomorphic except for a simple pole
at z = 0 with residue 1. Furthermore, F̃ (z) is odd, and for z = σ + it ∈ C we have the uniform
bound F̃ (z)� |z||σ|−1e−(π/2)|t|.

Proof. [IK04, pp. 257–258]. 2

Proposition 3.4 (Approximate functional equation). Let δ ∈ Z be a discriminant (i.e. δ ≡ 0,
1 mod 4) and L(z, δ) be defined by (5). Then, for any z ∈ C, we have

L(z, δ) =
′∑

f2|δ

1

f2z−1

∞∑
l=1

1

lz

(
δ/f2

l

)
F

(
lf2

A

)
+

(
|δ|
π

)1/2−z

×
′∑

f2|δ

1

f1−2z

∞∑
l=1

1

l1−z

(
δ/f2

l

)
Hδ,z

(
lf2A

|δ|

)
,

where

Hιδ,z(y) :=
πz−1/2

2πi

∫
<(u)=1

Γ((1 + u− z + ιδ)/2)

Γ((z − u+ ιδ)/2)
(πy)−uF̃ (u) du.

Proof. Let F̃ be as in (10). For an arbitrary parameter A > 0, consider

1

2πi

∫
<(u)=σ

L(z + u, δ)F̃ (u)Au du,

where σ is such that σ+<(z) > 1, and therefore the integral and the sum defining the L-function
are absolutely convergent. Interchanging the integral and the sum and using the Mellin inversion
formula gives

′∑
f2|δ

1

f2z−1

∞∑
l=1

1

lz

(
δ/f2

l

)
F

(
lf2

A

)
=

1

2πi

∫
<(u)=σ

L(z + u, δ)AuF̃ (u) du

=
1

2πi

∫
<F̃ (u)=σ

L(z + u, δ)AuF̃ (u) du.

Then shifting the contour to <(u) = σ′ < 0 picks up the pole of F̃ (u) at u = 0 and gives

1

2πi

∫
<(u)=σ

L(z + u, δ)AuF̃ (u) du = L(z, δ) +
1

2πi

∫
<(u)=σ′

L(z + u, δ)AuF̃ (u) du.

Using the change of variables u 7→ −u and using the oddness of F̃ transforms the σ′-integral to

1

2πi

∫
<(u)=σ′

L(z + u, δ)AuF̃ (u) du = − 1

2πi

∫
<(u)=σ′

L(z − u, δ)A−uF̃ (u) du.
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Finally, using the functional equation (6′) gives

1

2πi

∫
<(u)=σ′

L(z − u, δ)A−uF̃ (u) du

=
1

2πi

∫
<(u)=−σ′

(
|δ|
π

)1/2+u−zΓ((1 + u− z + ιδ)/2)

Γ((z − u+ ιδ)/2)
L(1− z + u, δ)A−uF̃ (u) du.

Therefore, we get

L(z, δ) =
′∑

f2|δ

1

f2z−1

∞∑
l=1

1

mz

(
δ/f2

l

)
F

(
lf2

A

)

+ |δ|1/2−z
′∑

f2|δ

1

f1−2z

∞∑
l=1

1

l1−z

(
δ/f2

l

)
Hιδ,z

(
lf2A

|δ|

)
.

We note that in the statement of the proposition we took σ′ = 1 for convenience. 2

Corollary 3.5. Let δ ∈ Z be a discriminant (i.e. δ ≡ 0, 1 mod 4) and L(1, δ) be defined by (5).

Then

L(1, δ) =

′∑
f2|δ

1

f

∞∑
l=1

1

l

(
δ/f2

l

)[
F

(
lf2

A

)
+

lf2√
|δ|
Hιδ

(
lf2A

|δ|

)]
, (11)

where ιδ is as defined in (#), and

H0(y) := H0,1(y)

=

√
π

2πi

∫
<(u)=1

Γ(u/2)

Γ((1− u)/2)
(πy)−uF̃ (u) du, (H0)

H1(y) := H1,1(y)

=

√
π

2πi

∫
<(u)=1

Γ((1 + u)/2)

Γ((2− u)/2)
(πy)−uF̃ (u) du. (H1)

3.3 Estimates on Hιδ

We have the following bound on Hιδ .

Lemma 3.6. For any <(x) > 1, we have

Hιδ(x)� 1

x
e−2
√
x, (12)

where the implied constant is absolute.

Proof. The only difference between H0 and H1 is the difference in the Γ-factors, so we start with

bounding those. Recall Stirling’s approximation (cf. [SS03, p. 326]):

Γ(u) =
√

2π
uu√
ueu

(
1 +O

(
1√
|u|

))
.
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Using this, we get

Γ(u/2)

Γ((1− u)/2)
=

(
u

2e

)u−1/2(1

u
− 1

)u/2(
1 +O

(
1√
|u|

))
,

Γ((1 + u)/2)

Γ((2− u)/2)
=

(
u

2e

)u−1/2(
1 +

1

u

)u/2(2

u
− 1

)(u−1)/2(
1 +O

(
1√
|u|

))
.

Note that the map u 7→ 1/u − 1 maps the line <(u) = 1 to the circle centered at −1/2 on the
real line, with radius 1/2, and therefore we have |1/u − 1| 6 1. Similarly, we get |1 + 1/u| 6 2
and |2/u− 1| 6 1. These inequalities then imply that for <(u) = 1,

Γ(u/2)

Γ((1− u)/2)
,
Γ((1 + u)/2)

Γ((2− u)/2)
�
(

u√
2e

)u−1/2
, (†)

where the implied constant is absolute. Substituting (†) into the definitions for Hιδ(x), and using
the bound on F̃ (x) given in Lemma 3.3, we get

Hιδ(x)�
∫
(1)

∣∣∣∣ u√
2πe

∣∣∣∣<(u)−1/2|x|−<(u)|u|<(u)−1e−π|=(u)|/2 du
�
∫
(1)
|u|2<(u)−3/2|e2x|−<(u)e−π|=(u)|/2 du.

Shifting the contour to <(u) = max{1,
√√

2πx} then gives

Hιδ(x)� 1

x3/4
e−
√√

2πx

� 1

x
e−2
√
x,

where the implied constant is absolute. 2

4. Poisson summation

With the notation of (5), the elliptic part of the trace formula (i.e. (4)) is∑
∓

∑
m∈Z

m2±4pk 6=�

θ∓∞

(
m

2pk/2

)
L(1,m2 ± 4pk).

Our aim is to apply Poisson summation to the m-sum above. This, however, is not
straightforward due to the problems caused by the singularities of θ∓∞ and by the conditional
convergence of the Dirichlet series defining the value of the L-functions. In the following
paragraphs we will first review the problems and then state the simple but important observation,
Proposition 4.1, that will allow us to resolve these issues and apply Poisson summation.

4.1 Remarks on Poisson summation
As we said, there are a few points to be resolved before Poisson summation can be applied.

(i) The m-sum is not running over the complete lattice (it is missing the values for
which m2 ± 4pk = �) and adding these values manually is problematic since the L-functions,
L(s, ((m2 ± 4pk)/·)), have poles at s = 1 when m2 ± 4pk = �.
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(ii) The sums that define the values of the L-functions do not converge absolutely, hence the
interchange of summations is problematic.

(iii) The functions θ∓∞ are not smooth. They have singularities of the prescribed type that we
have discussed in § 2.2.3.

The first two of these problems are easily resolved by the introduction of the approximate
functional equation which replaces the conditionally convergent series defining L(1, (m2 ± 4pk/·))
with absolutely (and rapidly) converging sums. Substituting (11) in (4) results in

∑
∓

∑
m∈Z

m2±4pk 6=�

θ∓∞

(
m

2pk/2

) ′∑
f2|m2±4pk

1

f

∞∑
l=1

1

l

(
(m2 ± 4pk)/f2

l

)

×
[
F

(
lf2

A

)
+

lf2√
|m2 ± 4pk|

H

(
lf2A

|m2 ± 4pk|

)]
, (4′)

where in order to not to complicate the notation we denoted Hι
m2±4pk

by H keeping the

dependence on m and p implicit.

4.2 Smoothing and Poisson summation
Although introducing the approximate functional equation resolves the first two problems, it
does not immediately resolve the third. The crucial observation, stated in the next proposition,
is that by choosing the parameter A appropriately we can smooth out the function θ∓∞ which
allows us to use Poisson summation without trouble.

Proposition 4.1. Let α > 0 and Φ(x) ∈ S(R) be a Schwartz class function. Then the functions
θ∓∞(x)Φ(|1− x2|−α) and |1− x2|−1/2θ∓∞(x)Φ(|1− x2|−α) are both smooth.

Proof. By (? ? ?) we see that the only problematic points are x = ±1. Without loss of generality
we can take x = 1, since the argument is the same for both points. Furthermore, the argument
is verbatim for both functions, so without loss of generality we will treat the first function. We
will show that both the left and right derivatives of the functions at x = 1 are 0, which will show
that the function is differentiable. It will then be clear from the proof that the same argument
shows that left and right derivatives of all orders exit and are 0.

We begin with the left derivative. Consider the difference quotient,

lim
h→0+

θ∓∞(1− h)Φ((1− (1− h)2)−α)

h
= lim

h→0+

θ∓∞(1− h)Φ((2h− h2)−α)

h
.

Since Φ is Schwarz class, for any M > 0 we have

Φ(x) = OM (x−M ).

Therefore, as h → 0+,
Φ((2h− h2)−α) = OM ((2h− h2)Mα).

Therefore,
θ∓∞(1− h)Φ((2h− h2)−α)

h
= OM

(
θ∓∞(1− h)

h
(2h− h2)Mα

)
.

By (??), θ∓∞ is bounded and hence we see that the limit is 0. Now note that the same
argument applies verbatim to the right derivative, and hence proves differentiability. Since M
was arbitrary the same argument proves that all the derivatives exists. 2
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Recall that in (11) the constant A > 0 is yet to be chosen. By Proposition 4.1 and estimates
in Lemma 3.6, for any 1 > α > 0, if we choose A = |m2 ± 4pk|α then both

θ∓∞

(
m

2pk/2

)
F

(
lf2

|m2 ± 4pk|α

)
and

|m2 ± 4pk|−1/2θ∓∞
(

m

2p1/2

)
H

(
lf2

|m2 ± 4pk|1−α

)
are smooth functions of the variable m, and hence Poisson summation can be applied.

Theorem 4.2. Let 1 > α > 0 and set A = |m2 ± 4pk|α in (11). Then

(4) + Σ(�) =
pk/2

2

∑
∓

∞∑
f=1

1

f3

∞∑
l=1

1

l2

∑
ξ∈Z

{∫
θ∓∞(x)

[
F

(
lf2(4pk)−α

|x2 ± 1|α

)

+
lf2p−k/2

2
√
|x2 ± 1|

H

(
lf2(4pk)α−1

|x2 ± 1|1−α

)]
e

(
−xξpk/2

2lf2

)
dx

}
·Kll,f (ξ,∓pk), (13)

where15

Kll,f (ξ,∓pk) :=
∑

a mod 4lf2

a2±4pk≡0 mod f2

(a2±4pk)/f2≡0,1 mod 4

(
(a2 ± 4pk)/f2

l

)
e

(
aξ

4lf2

)
,

H

(
lf2(4pk)α−1

|x2 ± 1|1−α

)
=


H0

(
lf2(4pk)α−1

|x2 ± 1|1−α

)
if x2 ± 1 > 0,

H1

(
lf2(4pk)α−1

|x2 ± 1|1−α

)
if x2 ± 1 < 0,

H0, H1 being defined in Corollary 3.5, and

Σ(�) :=
∑
∓

∑
m∈Z

m2±4pk=�

θ∓∞

(
m

2pk/2

) ′∑
f2|m2±4pk

1

f

∞∑
l=1

1

l

(
(m2 ± 4pk)/f2

l

)

×
[
F

(
lf2

A

)
+

lf2√
|m2 ± 4pk|

H

(
lf2A

|m2 ± 4pk|

)]
.

Proof. Since the l-sums in (4′) converge absolutely we can add and subtract the values of m ∈ Z
for which m2 ± 4pk = � to (4′). Therefore, (4) can be written as

∑
∓

∑
m∈Z

θ∓∞

(
m

2pk/2

) ′∑
f2|m2±4pk

1

f

∞∑
l=1

1

l

(
(m2 ± 4pk)/f2

l

)

×
[
F

(
lf2

A

)
+

lf2√
|m2 ± 4pk|

H

(
lf2A

|m2 ± 4pk|

)]
− Σ(�).

15 For q 6= p a prime, Klq,1(ξ, pk) with gcd(ξ, q) = 1 is the classical Kloosterman sum S(2̄ξ, 2ξpk; q) (cf. [Sar, (70)]),
hence the notation.
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The sum Σ(�) is the second term on the left of (13) and will not be analyzed any further. So
from now on we focus on the first sum. Note the Kronecker symbol (((m2 ± 4pk)/f2)/l) as well
as the condition that (m2 ± 4pk)/f2 ≡ 0, 1 mod 4 are periodic (in m) mod 4lf2. Therefore by
interchanging the f - and l-sums with the m-sum (which we can do because the l-sum converges
absolutely and the f -sum is finite), and breaking the m-sum into arithmetic progressions
mod 4lf2, we can rewrite the first sum as follows:∑

∓

∞∑
f=1

1

f

∞∑
l=1

1

l

∑
a mod 4lf2

a2±4pk≡0 mod f2

(a2±4pk)/f2≡0,1 mod 4

(
(m2 ± 4pk)/f2

l

)

∑
m∈Z

m≡a mod 4lf2

θ∓∞

(
m

2pk/2

)[
F

(
lf2

|m2 ± 4pk|α

)
+

lf2√
|m2 ± 4pk|

H

(
lf2

|m2 ± 4pk|1−α

)]
.

Applying Poisson summation to the m-sum (which we can by Proposition 4.1; see the
argument prior to the statement of the theorem) proves the theorem. 2

5. An auxiliary Dirichlet series

For any n ∈ Z and z ∈ C, let D(z;n) be defined by

D(z;n) :=

∞∑
f=1

1

f2z+1

∞∑
l=1

Kll,f (0, n)

lz+1
. (14)

In order to analyze the ξ = 0 term of the sum in Theorem 4.2, we will need the analytic properties
of D(z;n).

Lemma 5.1.
D(z;n) =

∏
p

Dp(z;n),

where, for each prime p, Dp(z;n) is defined by

Dp(z;n) :=
∞∑
u=0

1

pu(2z+1)

∞∑
v=0

Klpv ,pu(0, n)

pv(z+1)
.

Proof. Chinese remainder theorem. 2

Lemma 5.2. Let p - n be an prime. Then

Dp(z;n) =


(1− 1/pz+1)

(1− 1/p2z)
if p is odd,

4
(1− 1/2z+1)

(1− 1/22z)
if p = 2.

Proof. Let us first assume that p ≡ 1 mod 2. In order to compute Dp(z;n) we need to compute
Klpv ,pu(0, n) for various values of u and v.

– v = u = 0.
In this case the Kl1,1(0, n) is obviously 1.
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– v > 0, u = 0.

Klpv ,1(0, n) =
∑

a mod pv

(
a2 − 4n

pv

)

=
∑

a0 mod p

(
a20 − 4n

pv

) ∑
a1 mod pv−1

1

= pv−1
∑

a0 mod p

(
a20 − 4n

pv

)
. (i)

This last sum depends on the parity of v.

∗ v ≡ 0 mod 2.
In this case

(i) = pv−1
∑

a0 mod p
a20 6=4n

1

= pv − pv−1
(

1 +

(
n

p

))
. (ii)

∗ v ≡ 1 mod 2.
In this case

(i) = −pv−1, (iii)

where we used [Lan04, Lemma 2 of Appendix A].

– v = 0, u > 0.
Since p 6= 2,

Kl1,pu(0, n) =
∑

a mod p2u

a2≡4n mod p2u

1

= 1 +

(
n

p

)
. (iv)

– v, u > 0. First of all the sum is clearly 0 unless n is a square mod p. If n is a square mod p,
since p 6= 2 there are two exact square roots of 4n modulo p2u. Let us denote them by n1, n2.
Then

Klpv ,pu(0, n) =
∑

a mod pv+2u

a2≡4n mod p2u

(
(a2 − 4n)/p2u

pv

)

= pv−1
∑

a0 mod p1+2u

a20≡4n mod p2u

(
(a20 − 4n)/p2u

pv

)

= pv−1
∑

a0 mod p1+2u

a0≡nj mod p2u

(
(a20 − 4n)/p2u

pv

)
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= pv−1
∑

a2 mod p
j=1,2

(
a2nj
pv

)

= pv−1


0 if v ≡ 1 mod 2,

(p− 1)

(
1 +

(
n

p

))
if v ≡ 0 mod 2.

(v)

We can now compute Dp(z;n):

Dp(z;n) =
∞∑
u=0

1

pu(2z+1)

∞∑
v=0

Klpv ,pu(0, n)

pv(z+1)

= 1 +

∞∑
v=1

Klpv ,1(0, n)

pv(z+1)
+

∞∑
u=1

Kl1,pu(0, n)

pu(2z+1)
+

∞∑
u=1

1

pu(2z+1)

∞∑
v=1

Klpv ,pu(0, n)

pv(z+1)
.

Using (i) to (v), we then get

Dp(z;n) = 1 +

∞∑
v=1

Klpv ,1(0, n)

pv(z+1)
+

∞∑
u=1

Kl1,pu(0, n)

pu(2z+1)
+

∞∑
u=1

1

pu(2z+1)

∞∑
v=1

Klpv ,pu(0, n)

pv(z+1)

= 1 +
∞∑
v=1

Klp2v ,1(0, n)

p2v(z+1)
+
∞∑
v=0

Klp2v+1,1(0, n)

p(2v+1)(z+1)

+

∞∑
u=1

Kl1,pu(0, n)

pu(2z+1)
+

∞∑
u=1

1

pu(2z+1)

∞∑
v=1

Klp2v ,pu(0, n)

p2v(z+1)

= 1 +

(
1− 1

p

(
1 +

(
n

p

))) ∞∑
v=1

p2v

p2v(z+1)
− 1

p

∞∑
v=0

p2v+1

p(2v+1)(z+1)

+

(
1 +

(
n

p

)) ∞∑
u=1

1

pu(2z+1)
+

(
1− 1

p

)(
1 +

(
n

p

)) ∞∑
u=1

1

pu(2z+1)

∞∑
v=1

p2v

p2v(z+1)

= 1 +

(
1− 1

p

(
1 +

(
n

p

))) ∞∑
v=1

1

p2vz
− 1

p

∞∑
v=0

1

p(2v+1)z
+

(
1 +

(
n

p

)) ∞∑
u=1

1

pu(2z+1)

+

(
1− 1

p

)(
1 +

(
n

p

)) ∞∑
u=1

1

pu(2z+1)

∞∑
v=1

1

p2vz

=
1− 1/pz+1

1− 1/p2z
+

(
1 +

(
n

p

)) ∞∑
u=1

1

pu(2z+1)

∞∑
v=0

1

p2vz

− 1

p

(
1 +

(
n

p

)) ∞∑
u=0

1

pu(2z+1)

∞∑
v=1

1

p2vz

=
1− 1/pz+1

1− 1/p2z
.

This finishes the proof of the lemma when p ≡ 1 mod 2. The computation for p = 2 follows the
same argument using the properties of the Kronecker symbol (·/2). The only difference is that
we need to do a case-by-case calculation depending on the congruence class of n mod 8. We leave
the details to the reader. 2
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Lemma 5.3. Let p | n be a prime, and let vp(n) denote the p-adic valuation of n. Then

Dp(z;n) =


(1− 1/pz(vp(n)+1))(1− 1/pz+1)

(1− 1/p2z)(1− 1/pz)
if p is odd,

4
(1− 1/2z(vp(n)+1))(1− 1/2z+1)

(1− 1/22z)(1− 1/2z)
if p = 2.

Proof. As in the proof of Lemma 5.2, we first assume that p≡ 1 mod 2. The computation depends
on the parity of the p-adic valuation of n. Let r = vp(n) throughout the proof. As in the proof
of Lemma 5.2, we need to compute the values of Klpv ,pu(0, n) first.

– r ≡ 1 mod 2. We divide the computation into cases depending on the values of v and u.

∗ v = u = 0.
In this case Klpv ,pu(0, n) is obviously 1.

∗ v > 0, u = 0.
Since p | n,

Klpv ,1(0, n) =
∑

a mod pv

(
a2 − 4n

pv

)

=
∑

a mod pv

(
a2

pv

)
= pv − pv−1. (i)

∗ 2u > r.
In this case we use the assumption that r ≡ 1 mod 2 and that p 6= 2. Note that in
this case the sum runs over a mod p2u such that a2 ≡ 4n mod p2u. If a mod p2u is such
that a2 ≡ 4n mod p2u then we need to have a = p(r+1)/2a0 for some a0 mod p2u−(r+1)/2.
But in this case a2 = pr+1a20 ≡ 0 mod pr+1, therefore we cannot have a2 ≡ 4n mod p2u.
Hence, in this case the sum is 0.

∗ r > 2u > 0, v > 0.
In this case n ≡ 0 mod p2u and hence in order to have a2 ≡ a mod p2u we necessarily
have a ≡ 0 mod pu. Then the sum is

Klpv ,pu(0, n) =
∑

a mod pv+2u

a2≡4n mod p2u

(
(a2 − 4n)/p2u

pv

)

=
∑

a0 mod pv+u

(
a20
pv

)
(?)

= pu+v − pu+v−1, (ii)

where in passing to (?) we used the assumption that r ≡ 1 mod 2 so that a/p2u ≡
0 mod p.

∗ r > 2u > 0, v = 0.
In this case,

Kl1,pu(0, n) =
∑

a mod p2u

a2≡4n mod p2u

1

= pu. (iii)
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Using (i)–(iii) and the argument above, we see that

Dp(z;n) = 1 +
∞∑
v=1

Klpv ,1(0, n)

pv(z+1)
+
∞∑
u=1

Kl1,pu(0, n)

pu(2z+1)
+
∞∑
u=1

1

pu(2z+1)

∞∑
v=1

Klpv ,pu(0, n)

pv(z+1)

= 1 +

(
1− 1

p

) ∞∑
v=1

pv

pv(z+1)
+

(r−1)/2∑
u=1

pu

pu(2z+1)

+

(
1− 1

p

) (r−1)/2∑
u=1

pu

pu(2z+1)

∞∑
v=1

pv

pv(z+1)

=

(
1− 1

p

) (r−1)/2∑
u=0

1

p2uz

∞∑
v=1

1

pvz
+

(r−1)/2∑
u=0

1

p2uz

=
1− 1/pz+1

1− 1/pz

(r−1)/2∑
u=0

1

p2uz

=
(1− 1/pz+1)(1− 1/pz(r+1))

(1− 1/pz)(1− 1/p2z)
,

which finishes the proof in the case of r ≡ 1 mod 2.

– r ≡ 0 mod 2.

Let r = 2r0. We proceed as before and first compute Klpv ,pu(0, n). The computation once

again depends on the values of v and u.

∗ v = u = 0.

Once again Kl1,1(0, n) = 1.

∗ v > 0, u = 0.

In this case the result of (i) is still valid.

∗ r0 > u > 0, v = 0.

In this case (iii) is still valid.

∗ u > r0, v = 0.

In this case we need to compute

Kl1,pu(0, n) =
∑

a mod p2u

a2≡4n mod p2u

1.

Let n = p2r0n0. Then the sum vanishes unless (n0/p) = 1. If this is the case, then we

have

Kl1,pu(0, n) =
∑

a mod p2u

a2≡4n mod p2u

1

=
∑

a0 mod p2u−r0

a20≡4n0 mod p2u−2r0

1

= 2pr0 .
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Therefore, in this case

Kl1,pu(0, n) =

(
1 +

(
n0
p

))
pr0 . (iv)

∗ r0 > u > 0, v > 0.
In this case (ii) is still valid.

∗ u = r0, v > 0.
In this case, we have

Klpv ,pu(0, n) =
∑

a mod pv+2u

a2≡4n mod p2u

(
(a2 − 4n)/p2u

pv

)

=
∑

a0 mod pv+u

(
a20 − 4n0

pv

)

=

−p
v+u−1 if v ≡ 1 mod 2,

pv+u − pv+u−1
(

1 +

(
n0
p

))
if v ≡ 0 mod 2,

where we used [Lan04, Lemma 2 of Appendix A] in the first line.

∗ u > r0, v > 0.
In this case, we need to compute

Klpv ,pu(0, n) =
∑

a mod pv+2u

a2≡4n mod p2u

(
(a2 − 4n)/p2u

pv

)
.

Let n = p2r0n0, where vp(n0) = 0. Then, since p 6= 2, in order to have a2 ≡ 4n mod p2u

we need to have n0/p = 1, i.e. n0 is a square modulo p. This, by Hensel’s lemma,
implies that n0 is a square modulo p2u−2r0+1. Let us assume that this is the case and
denote the square roots (of which there are exactly two since p 6= 2) of n0 modulo
p2u−2r0+1 by u1, u2, i.e. u2j ≡ n0 mod p2u−2r0+1. Then Klpv ,pu(0, n) can be written as

Klpv ,pu(0, n) =
∑

a mod pv+2u

a2≡4n mod p2u

(
(a2 − 4n)/p2u

pv

)

= pv−1
∑

a0 mod p1+2u

a20≡4n mod p2u

(
(a20 − 4n)/p2u

pv

)

= pv−1
∑

a1 mod p1+2u−r0

a21≡4n0 mod p2(u−r0)

(
(a21 − 4n0)/p

2(u−r0)

pv

)

= pv+r0−1
∑
j=1,2

∑
a3 mod p

(
a3uj
pv

)

= pv+r0−12

{
0 if v ≡ 1 mod 2,

p− 1 if v ≡ 0 mod 2.
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We therefore get

Klpv ,pu(0, n) = pv+r0
(

1− 1

p

)(
1 +

(
n0
p

)){
0 if v ≡ 1 mod 2,

1 if v ≡ 0 mod 2.
(v)

We can now compute Dp(z;n). By using (i)–(v), we get

Dp(z;n) = 1 +
∞∑
v=1

Klpv ,1(0, n)

pv(z+1)
+

r0∑
u=1

Kl1,pu(0, n)

pu(2z+1)
+

∞∑
u=r0+1

Kl1,pu(0, n)

pu(2z+1)

+

r0−1∑
u=1

1

pu(2z+1)

∞∑
v=1

Klpv ,pu(0, n)

pv(z+1)
+

1

pr0(2z+1)

∞∑
v=1

Klpv ,pr0 (0, n)

pv(z+1)

+
∞∑

u=r0+1

1

pu(2z+1)

∞∑
v=1

Klpv ,pu(0, n)

pv(z+1)

= 1 +

(
1− 1

p

) ∞∑
v=1

1

pvz
+

r0∑
u=1

1

p2uz
+ pr0

(
1 +

(
n0
p

)) ∞∑
u=r0+1

1

pu(2z+1)

+

(
1− 1

p

) r0−1∑
u=1

1

p2uz

∞∑
v=1

1

pvz
+

pr0

pr0(2z+1)

(
1− 1

p

(
1 +

(
n0
p

))) ∞∑
v=1

1

p2vz

− pr0−1

pr0(2z+1)

∞∑
v=0

1

p(2v+1)z
+ pr0

(
1− 1

p

)(
1 +

(
n0
p

)) ∞∑
u=r0+1

1

pu(2z+1)

∞∑
v=1

1

p2vz

= 1 +

(
1− 1

p

) ∞∑
v=1

1

pvz
+

r0∑
u=1

1

p2uz
+

(
1− 1

p

) r0−1∑
u=1

1

p2uz

∞∑
v=1

1

pvz

+
pr0

pr0(2z+1)

∞∑
v=1

1

p2vz
− pr0−1

pr0(2z+1)

∞∑
v=0

1

p(2v+1)z

= 1 +

(
1− 1

p

) r0−1∑
u=0

1

p2uz

∞∑
v=1

1

pvz
+

r0∑
u=1

1

p2uz
+

(1/pz − 1/p)

p(2r0+1)z(1− 1/p2z)

=
(1− 1/p2(r0+1)z)

(1− 1/p2z)
+

(1− 1/p)(1− 1/p2r0z)

pz(1− 1/p2z)(1− 1/pz)
+

(1/pz − 1/p)

p(2r0+1)z(1− 1/p2z)

= 1 +

r0−1∑
u=0

1

p2uz

∞∑
v=1

1

pvz
+

r0∑
u=1

1

p2uz
− 1

p

r0−1∑
u=0

1

p2uz

∞∑
v=1

1

pvz
− 1

p(2r0+1)z+1(1− 1/p2z)

= 1 +
(1− 1/p2r0z)

p2z(1− 1/pz)(1− 1/p2z)
− (1− 1/p(2r0+1)z)

pz+1(1− 1/pz)(1− 1/p2z)

=
(1− 1/p(2r0+1)z)(1− 1/pz+1)

(1− 1/pz)(1− 1/p2z)
.

This finishes the proof of the lemma for the case p ≡ 1 mod 2. The calculations for

p = 2 follow the same lines and, as in the proof of Lemma 5.2, we leave this case to the

reader. 2
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Corollary 5.4. Let n ∈ Z. Then

D(z;n) = 4
ζ(2z)

ζ(z + 1)

∏
p|n

(1− p−z(vp(n)+1))

(1− p−z)
.

Proof. This result follows from Lemmas 5.2 and 5.3. 2

6. Isolation of the contribution of special representations

In this section we will isolate the special representations as promised in the introduction and
finish the proof of Theorem 1.1. We will identify the contribution of the trivial representation
and the residues of Eisenstein series (denoted by ξ0 in § 1.2) to the trace formula in the dominant
term, (13)ξ=0, of (13), where we define (13)ξ=0 by

(13)ξ=0 :=
pk/2

2

∑
∓

∞∑
f=1

1

f3

∞∑
l=1

Kll,f (0,∓pk)
l2

×
{∫

θ∓∞(x)

[
F

(
lf2(4pk)−α

|x2 ± 1|α

)
+

lf2p−k/2

2
√
|x2 ± 1|

H

(
lf2(4pk)α−1

|x2 ± 1|1−α

)]
dx

}
.

Theorem 6.1. Let 1 > α > 0, and υ > 0 be any number such that ζ(u+ 1) does not have any
zeros for |u| < υ. (Such an υ exists since ζ(u + 1) is non-zero at u = 0 and the zeta function is
meropmorphic.) Let Cυ = {(0, it) | t ∈ (−∞,−υ) ∪ (υ,∞)} ∪Cυ, and Cυ denotes the left-half of
the circle of radius υ around 0. Then

(13)ξ=0 = 2pk/2
(1− p−(k+1))

(1− p−1)
∑
∓

∫
θ∓∞(x) dx− (k + 1)

∑
∓

∫
x2±1>0

θ∓∞(x)√
|x2 ± 1|

dx

+
pk/2

2

∑
∓

∫
θ∓∞(x)

[
4

1

2πi

∫
(−1)

F̃ (u)

(
(4pk)−α

|x2 ± 1|α

)−u ζ(2u+ 2)

ζ(u+ 2)

(1− p−(u+1)(k+1))

(1− p−(u+1))
du

+
2
√
πp−k/2√
|x2 ± 1|

1

2πi

∫
Cυ
F̃ (u)

Γ((ι(x2±1) + u)/2)

Γ((ι(x2±1) + 1− u)/2)

(
π(4pk)α−1

|x2 ± 1|1−α

)−u
× ζ(2u)

ζ(u+ 1)

(1− p−u(k+1))

(1− p−u)
du

]
dx,

where ι(x2±1) = 0, 1 depending on whether x2± 1 is positive or negative, respectively (as already
defined in (#)).

Proof. The ξ = 0 term in (13) is

pk/2

2

∑
∓

∞∑
f=1

1

f3

∞∑
l=1

1

l2

{∫
θ∓∞(x)

[
F

(
lf2(4pk)−α

|x2 ± 1|α

)

+
lf2p−k/2

2
√
|x2 ± 1|

H

(
lf2(4pk)α−1

|x2 ± 1|1−α

)]
dx

}
·Kll,f (0,∓pk), (◦)
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where H = H0 if x2 ± 1 > 0 and H = H1 if x2 ± 1 < 0 (cf. Theorem 4.2). Let F̃ denote the
Mellin transform of F . By Lemma 3.3, F̃ (z) is holomorphic for <(z) > 0. Therefore, by Mellin
inversion, we have

F (y) =
1

2πi

∫
(1)
F̃ (u)y−u du.

Also recall that

H0(y) =

√
π

2πi

∫
(1)

Γ(u/2)

Γ((1− u)/2)
(πy)−uF̃ (u) du,

H1(y) =

√
π

2πi

∫
(1)

Γ((1 + u)/2)

Γ((2− u)/2)
(πy)−uF̃ (u) du.

We will need to distinguish cases according to whether x2 ± 1 < 0 or not. In the first case we
have H = H1 and in the second H = H0. We also note that when the sign in the first sum in (◦)
is minus, we necessarily have x2 + 1 > 0.

– x2 ± 1 < 0.
As we have noted above, in this case we necessarily have the plus sign in the first sum of (◦).

Therefore, we have

pk/2

2

∞∑
f=1

1

f3

∞∑
l=1

Kll,f (0, pk)

l2

{∫
|x|<1

θ+∞(x)
1

2πi

∫
(1)
F̃ (u)

[(
lf2(4pk)−α

(1− x2)α

)−u
+

√
πlf2p−k/2

2
√

1− x2
Γ((1 + u)/2)

Γ((2− u)/2)

(
πlf2(4pk)α−1

(1− x2)1−α

)−u]
du dx

}
. (◦1)

Note that the integrand in the u-integral is holomorphic for <(u) > 0, therefore we can move
the u-contour to the right without changing the value of the integral. Then, by moving the
contour to <(u) = c > 1 and using the trivial bound |Kll,f (0, n)| < 4lf2, we can ensure that
the l- and f -sums and the integrals converge absolutely and bring the sums into the integrals
to get

pk/2

2

∫
|x|<1

θ+∞(x)

[
1

2πi

∫
(c)
F̃ (u)

(
(4pk)−α

(1− x2)α

)−u
D(u+ 1; pk) du

+

√
πp−k/2

2
√

1− x2
1

2πi

∫
(c)
F̃ (u)

Γ((1 + u)/2)

Γ((2− u)/2)

(
π(4pk)α−1

(1− x2)1−α

)−u
D(u; pk) du

]
dx,

where D(u; pk) is as in (14). Using Corollary 5.4, we see that this is equal to

pk/2

2

∫
|x|<1

θ+∞(x)

[
4

1

2πi

∫
(c)
F̃ (u)

(
(4pk)−α

(1− x2)α

)−u ζ(2u+ 2)

ζ(u+ 2)

(1− p−(u+1)(k+1))

(1− p−(u+1))
du

+
2
√
πp−k/2√
1− x2

1

2πi

∫
(c)
F̃ (u)

Γ((1 + u)/2)

Γ((2− u)/2)

(
π(4pk)α−1

(1− x2)1−α

)−u
× ζ(2u)

ζ(u+ 1)

(1− p−u(k+1))

(1− p−u)
du

]
dx.

Now note the following:
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∗ (Γ((1 + u)/2)ζ(2u)/Γ((2− u)/2)ζ(u+ 1))((1− p−u(k+1))/(1− p−u)) has a simple pole at

u = 1/2 with residue (1− p−(k+1)/2)/2ζ(3/2)(1− p−1/2) and is holomorphic on and to the

right of the line <(u) = 0.

∗ By Lemma 3.3, F̃ (u) has a simple pole at u = 0 with residue 1 and is holomorphic otherwise.

Note that in this case we also have limu→0 (Γ((1 + u)/2)/Γ((2− u)/2))(ζ(2u)/ζ(u+ 1))

(1− p−u(k+1))/(1− p−u) = 0.

∗ ζ(2u+ 2)(1− p−(u+1)(k+1))/ζ(u+ 2)(1− p−(u+1)) has a simple pole at u = −1/2 with

residue (1− p−(k+1)/2)/2ζ(3/2)(1− p−1/2) and is holomorphic on and to the right of the

line <(u) = −1.

∗ The rest of the functions (of the variable u) in the first integral are holomorphic everywhere

on and to the right of the line <(u) = −1, and in the second integral on and to the right of

the line <(u) = 0.

Therefore by shifting the u-contour of the first integral to <(u) = −1 and the second to Cυ,

we get

(◦1) =
(4pk)(1−α)/2F̃ (1/2)(1− p−(k+1)/2)

2ζ(3/2)(1− p−1/2)

∫
|x|<1

θ+∞(x)

(1− x2)α/2
dx

+ 2pk/2
(1− p−(k+1))

(1− p−1)

∫
|x|<1

θ+∞(x) dx

+
(4pk)(1−α)/2F̃ (−1/2)(1− p−(k+1)/2)

2ζ(3/2)(1− p−1/2)

∫
|x|<1

θ+∞(x)

(1− x2)α/2
dx

+
pk/2

2

∫
|x|<1

θ+∞(x)

[
4

1

2πi

∫
(−1)

F̃ (u)

(
(4pk)−α

(1− x2)α

)−u ζ(2u+ 2)

ζ(u+ 2)

(1− p−(u+1)(k+1))

(1− p−(u+1))
du

+
2
√
πp−k/2√
1− x2

1

2πi

∫
Cυ
F̃ (u)

Γ((1 + u)/2)

Γ((2− u)/2)

(
π(4pk)α−1

(1− x2)1−α

)−u ζ(2u)

ζ(u+ 1)

(1− p−u(k+1))

(1− p−u)
du

]
dx.

Finally, recall that, by Lemma 3.3, F̃ is odd,16 and therefore the first and the third terms above

cancel and we get

(◦1) = 2pk/2
(1− p−(k+1))

(1− p−1)

∫
|x|<1

θ+∞(x) dx

+
pk/2

2

∫
|x|<1

θ+∞(x)

[
4

1

2πi

∫
(−1)

F̃ (u)

(
(4pk)−α

(1− x2)α

)−u ζ(2u+ 2)

ζ(u+ 2)

(1− p−(u+1)(k+1))

(1− p−(u+1))
du

+
2
√
πp−k/2√
1− x2

1

2πi

∫
Cυ
F̃ (u)

Γ((1 + u)/2)

Γ((2− u)/2)

(
π(4pk)α−1

(1− x2)1−α

)−u ζ(2u)

ζ(u+ 1)

(1− p−u(k+1))

(1− p−u)
du

]
dx.

– x2 ± 1 > 0.

16 We note that the oddness of F̃ is completely peripheral to the argument. The whole argument is valid for an
arbitrary choice of F and F̃ . If F̃ is not odd, then we would get −F̃ (−u) in the dual part of the approximate
functional equation.
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In this case, we have

pk/2

2

∑
∓

∞∑
f=1

1

f3

∞∑
l=1

Kll,f (0, pk)

l2

{∫
x2±1>0

θ∓∞(x)

[
1

2πi

∫
(1)
F̃ (u)

(
lf2(4pk)−α

(x2 ± 1)α

)−u
du

+

√
πlf2p−k/2

2
√
x2 ± 1

1

2πi

∫
(1)
F̃ (u)

Γ(u/2)

Γ((1− u)/2)

(
πlf2(4pk)α−1

(x2 ± 1)1−α

)−u
du

]
dx

}
. (◦2)

We proceed as above. Shifting the contour right to <(u) = c > 1, then interchanging the l- and

f -sums with the integrals and using Corollary 5.4 results in

pk/2

2

∑
∓

∫
x2±1>0

θ∓∞(x)

[
4

1

2πi

∫
(c)
F̃ (u)

(
(4pk)−α

(x2 ± 1)α

)−u ζ(2u+ 2)

ζ(u+ 2)

(1− p−(u+1)(k+1))

(1− p−(u+1))
du

+
2
√
πp−k/2√
x2 ± 1

1

2πi

∫
(c)
F̃ (u)

Γ(u/2)

Γ((1− u)/2)

(
π(4pk)α−1

(x2 ± 1)1−α

)−u ζ(2u)

ζ(u+ 1)

(1− p−u(k+1))

(1− p−u)
du

]
dx.

Now note that:

∗ (Γ(u/2)ζ(2u)/Γ((1− u)/2)ζ(u+ 1))((1− p−u(k+1))/(1− p−u)) has a simple pole at u = 1/2

with residue (1− p−(k+1)/2)/2ζ(3/2)(1− p−1/2) and is holomorphic on and to the right of

the line <(u) = 0.

∗ By Lemma 3.3, F̃ (u) has a simple pole at u = 0 with residue 1 and is holomorphic

otherwise. On the other hand, Γ(u/2) has a simple pole with residue 2 at u = 0. Finally,

we see that (ζ(2u)/ζ(u+ 1))((1− p−u(k+1))/(1− p−u)) = uζ(2u)(k + 1) + O(u2) around

u = 0. Therefore, F̃ (u)(Γ(u/2)/Γ((1− u)/2))(ζ(2u)/ζ(u+ 1))((1− p−u(k+1))/(1− p−u))

has a simple pole at u = 0 with residue −(k + 1)/
√
π.

∗ ζ(2u+ 2)(1− p−(u+1)(k+1))/ζ(u+ 2)(1− p−(u+1)) has a simple pole at u = −1/2 with

residue (1− p−(k+1)/2)/2ζ(3/2)(1− p−1/2) and is holomorphic on and to the right of the

line <(u) = −1.

∗ The rest of the functions (of the variable u) in the first integral are holomorphic on and to

the right of the line <(u) = −1, and in the second integral are holomorphic on and to the

right of the line <(u) = 0.

Therefore, shifting the first contour to <(u) = −1 and the second to Cυ, we get

(◦2) = 2pk/2
(1− p−(k+1))

(1− p−1)
∑
∓

∫
x2±1>0

θ∓∞(x) dx+
(4pk)(1−α)/2F̃ (1/2)(1− p−(k+1)/2)

2ζ(3/2)(1− p−1/2)

×
∑
∓

∫
x2±1>0

θ∓∞(x)

(x2 ± 1)α/2
dx− (k + 1)

∑
∓

∫
x2±1>0

θ∓∞(x)√
x2 ± 1

dx

+
(4pk)(1−α)/2F̃ (−1/2)(1− p−(k+1)/2)

2ζ(3/2)(1− p−1/2)
∑
∓

∫
x2±1>0

θ∓∞(x)

(x2 ± 1)α/2
dx

+
pk/2

2

∑
∓

∫
x2±1>0

θ∓∞(x)

[
4

1

2πi

∫
(−1)

F̃ (u)

(
(4pk)−α

(x2 ± 1)α

)−u ζ(2u+ 2)

ζ(u+ 2)

(1− p−(u+1)(k+1))

(1− p−(u+1))
du

+
2
√
πp−k/2√
x2 ± 1

1

2πi

∫
Cυ
F̃ (u)

Γ(u/2)

Γ((1− u)/2)

(
π(4pk)α−1

(x2 ± 1)1−α

)−u ζ(2u)

ζ(u+ 1)

(1− p−u(k+1))

(1− p−u)
du

]
dx.
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The first and fourth terms in the above sum cancel because F̃ is odd (once again this is not

essential to the argument; see footnote 16), and we get

(◦2) = 2pk/2
(1− p−(k+1))

(1− p−1)
∑
∓

∫
x2±1>0

θ∓∞(x) dx− (k + 1)
∑
∓

∫
x2±1>0

θ∓∞(x)√
x2 ± 1

dx

+
pk/2

2

∑
∓

∫
x2±1>0

θ∓∞(x)

[
4

1

2πi

∫
(−1)

F̃ (u)

(
(4pk)−α

(x2 ± 1)α

)−u ζ(2u+ 2)

ζ(u+ 2)

(1− p−(u+1)(k+1))

(1− p−(u+1))
du

+
2
√
πp−k/2√
x2 ± 1

1

2πi

∫
Cυ
F̃ (u)

Γ(u/2)

Γ((1− u)/2)

(
π(4pk)α−1

(x2 ± 1)1−α

)−u ζ(2u)

ζ(u+ 1)

(1− p−u(k+1))

(1− p−u)
du

]
dx.

Summing (◦1) and (◦2) finishes the proof. 2

Finally, we have the following auxiliary lemma that identifies the contribution of the special

representations in the sum in Theorem 6.1.

Lemma 6.2. Let tr(1(fp,k)) be the contribution of the trivial representation, and tr(ξ0(f
p,k))

be the contribution to the trace formula by the residues of the Eisenstein series as explained

on [Lan04, p. 25]. Then

tr(1(fp,k)) = 2pk/2
(1− p−(k+1))

(1− p−1)
∑
∓

∫
θ∓∞(x) dx,

tr(ξ0(f
p,k)) =

k + 1

2

∑
∓

∫
x2±1>0

θ∓∞(x)√
|x2 ± 1|

dx.

Proof. We start with the trivial representation. Recall from (???) that θ∓∞(x) = 2|x2±|1/2g∓1 (x)+

g∓2 (x), where γ(∓1,x) is as in (??). Then

2pk/2
(1− p−(k+1))

(1− p−1)
∑
∓

∫
θ∓∞(x) dx

= 2pk/2
(1− p−(k+1))

(1− p−1)
∑
∓

∫
(2|x2 ± 1|1/2g∓1 (x) + g∓2 (x)) dx

= 4pk/2
(1− p−(k+1))

(1− p−1)
∑
∓

∫ (
g∓1 (x) +

g∓2 (x)

2|x2 ± 1|1/2

)
|x2 ± 1|1/2 dx. (∗)

Now a quick comparison of (∗) with [Lan04, (65)]17 (using (26) of the same reference) shows that

(∗) = tr(1(fp,k)).

For the second equality we only need to note that the integer we denote by k is denoted by

m in [Lan04], and [Lan04, (31)] is equal to ((k + 1)/2)
∑
∓
∫
x2±1>0 (θ∓∞(x)/

√
|x2 ± 1|) dx. 2

Finally, Theorem 6.1 combined with Lemma 6.2 finishes the proof of Theorem 1.1.

17 There is a misprint in [Lan04, (65)]: the exponent m should be m+ 1.
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