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Mechanical forces are essential for the survival of many, if not all, living systems. Fundamental 

biological processes including cell division, migration, and gene expression cannot proceed without 

molecular level forces [1,2]. There are many protein mediated physical and mechanical interactions at 

the interface between a cell and it’s environment, with both other cells and the extracellular milieu. 

Studying the mechanotransduction, or the interconversion between mechanical forces and chemical 

signals, of these interactions relies on the development of novel molecular technologies and 

instrumentation. Developing these tools with high spatial and temporal resolution is paramount to a 

global understanding of signaling pathways in living systems. Current microscopy-based techniques 

capable of measuring force direction suffer from µm spatial resolution and nN force sensitivity, two to 

three orders of magnitude greater than forces applied by individual receptors [3]. 

 

We previously developed molecular tension probes that report the magnitude of individual receptor 

forces to address these limitations, however in doing so the force orientation was lost [4]. Tension 

probes are comprised of an extendible “spring-like” element, such as a DNA hairpin, flanked by a 

fluorophore and quencher. When a receptor transmits pN forces to the probe, the spring extends, 

separating the fluorophore from the quencher, and generating up to a 100-fold increase in fluorescence. 

While molecular tension probes improve spatial resolution and force sensitivity, they provide no 

information about force orientation. No current technique is able to measure both the magnitude and 

direction of molecular forces at the piconewton scale.  

 

To fill the gap, we integrated fluorescence polarization microscopy and molecular tension probes to 

measure the magnitude and 3D orientation of pN cellular forces. Because fluorophores absorb and emit 

polarized light in an orientation-dependent manner, fluorescence polarization microscopy can be used to 

calculate orientations from measurable quantities such as fluorescence intensity [5]. Here we 

demonstrate, that cyanine dye tagged DNA hairpin based molecular tension probes can be used in 

combination with fluorescence polarization - what we named molecular force microscopy (MFM) - to 

determine the orientation of cellular forces (Figure 1) [6].  

 

We will describe the experimental system, utlizing excitation resolved fluorescence polarization 

microscopy to determine the orientation of cellular traction forces reported by molecular tension probes. 

There are several key features that will be described theoretically and experimentally. First, it is critical 

that the dye stack rigidly with the DNA of the tension probe, thereby ensuring the fluorophore reports 

the probe orientation. Second, the mechanical force required to open the tension probe will also orient it, 
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allowing the probe to report the force direction. Third, only open probes, or those experiencing a 

mechanical force, contribute substantially to the fluorescence signal. Therefore the signal is dominiated 

by probes oriented by a force with minimal background – what we term mechanoselection. The 

sensitivity, accuracy, and limitations of MFM will be explored with computational modeling.  

 

We will next present the experimental results from two model systems using MFM. First we determined 

the orientation of traction forces generated by integrin αIIbβ3 in human platelets, chosen because their 

activation and clotting functions are mediated by mechanical forces. Multi-cell analysis revealed two 

populations of platelets with differentially organized forces. The diffraction limited spatial resolution of 

MFM was critical in discerning these differences in spatial orientation. Next we mapped integrin-

mediated forces in NIH-3T3 fibroblasts. We were able to determine the 3D organization of integrin 

forces were relatively well aligned relative to the cell and to individual focal adhesions.  

 

Finally, we will discuss technical advances, beyond linear dichroism, to our polarization microscopy 

methods to greatly improve time and orientational resolution. Due to its simplicity and compatibility 

with fluorescence microscopy, we anticipate MFM will provide a powerful link between structural 

biology and mechanobiology [7]. 
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Figure 1: a) Molecular tension probes are surface-anchored DNA hairpins flanked by a fluorophore-

quencher pair that unfold and dequench when pulled on with force exceeding a sequence-specific 

threshold. b) The de-quenched fluorophore rigidly stacks perpendicular to the opened tension probe. It’s 

polar (θforce) and azimuthal (φforce) angles can be inferred by imaging with polarized excitation light, 

rotating the polarization angle, and c) fitting the intensity to a cos2 function. d) Applying this treatment 

to each pixel in a widefield image Allows diffraction-limited force orientation mapping. 
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